二次函数与几何结合中考题目

合集下载

二次函数与几何交点问题(解析版)

二次函数与几何交点问题(解析版)

二次函数与几何交点问题1(2023·黑龙江大庆·中考真题)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,且自变量x 的部分取值与对应函数值y 如下表:x ⋯-101234⋯y⋯-3-4-35⋯备用图(1)求二次函数y =ax 2+bx +c 的表达式;(3)若将线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y =1t(ax 2+bx +c )的图象只有一个交点,其中t 为常数,请直接写出t 的取值范围.【详解】(1)解:由表格可知,二次函数y =ax 2+bx +c 的图象经过点-1,0 ,0,-3 ,1,-4 ,代入y =ax 2+bx +c 得到a -b +c =0c =-3a +b +c =-4 ,解得a =1b =-2c =-3,∴二次函数y =ax 2+bx +c 的表达式为y =x 2-2x -3;(3)由表格可知点A -1,0 、B 3,0 ,将线段AB 先向上平移3个单位长度,再向右平移1个单位长度,得到A 0,3 、B 4,3 ,由题意可得,二次函数y =1t (x 2-2x -3)=1t x -1 2-4t ,与线段A B 只有一个交点,当t >0时,抛物线y =1t (x 2-2x -3)=1t x -1 2-4t 开口向上,顶点1,-4t在A B 下方,当x =4时,1t(x 2-2x -3)≥y B ,即-3t<3,解得t ≤53,∴t ≤53,当x =0时,1t (x 2-2x -3)<y A,即-3t<3,解得t >-1,∴0<t≤53,此时满足题意,当t<0时,抛物线y=1t(x2-2x-3)=1tx-12-4t开口向下,顶点1,-4t在A B 上时,-4t=3,解得t=-4 3,此时满足题意,将点A 0,3代入y=1t(x2-2x-3)得到3=-3t,解得t=-1,将点B 4,3代入y=1t(x2-2x-3)得到3=1t(16-8-3),解得t=53,∴-1<t<0,此时满足题意,综上可知,-1<t≤53且t≠0或t=-43.2(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(-4,0),B(2,0),与y 轴交于点C(0,-4).(1)求抛物线的解析式;(2)如图1,如果把抛物线x轴下方的部分沿x轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=kx+6与新图象有三个公共点时,求k的值;【详解】(1)设抛物线的解析式为y=ax2+bx+c,∵C(0,-4),∴c=-4,y=ax2+bx-4,把A(-4,0),B(2,0)代入y=ax2+bx+c,得:16a-4b-4=0 4a+2b-4=0,解得:a=12 b=1,∴抛物线的解析式为y=12x2+x-4(2)∵直线表达式y=kx+6,∴直线经过定点0,6,∴将过点0,6的直线旋转观察和新图象的公共点情况∵把抛物线x轴下方的部分沿x轴翻折180°,抛物线的解析式为y=12x2+x-4,∴新图象表达式为:-4<x<2时,y=-12x2-x+4;x≤-4或x≥2时,y=12x2+x-4,如下图当直线y=kx+6与翻折上去的部分抛物线相切时,和新图象有三个公共点,联立y=-12x2-x+4y=kx+6,得:-12x2-x+4=kx+6,整理得:x2+21+kx+4=0Δ=0,41+k2-16=0,41+k2=16,1+k=±2,k=±2-1,k1=2-1=1时,即如上图所示,符合题意,k2=-2-1=-3时,如下图所示,经过点B,不符合题意,故舍去,如下图,当直线y=kx+6经过点A时,和新图象有三个公共点,把A (-4,0)代入y =kx +6,得:-4k +6=0,解得:k =32,综上所述,当平面内的直线y =kx +6与新图象有三个公共点时,k 的值为1或323(2023·山东济南·中考真题)在平面直角坐标系xOy 中,正方形ABCD 的顶点A ,B 在x 轴上,C 2,3 ,D -1,3 .抛物线y =ax 2-2ax +c a <0 与x 轴交于点E -2,0 和点F .(1)如图1,若抛物线过点C ,求抛物线的表达式和点F 的坐标;(2)如图2,在(1)的条件下,连接CF ,作直线CE ,平移线段CF ,使点C 的对应点P 落在直线CE 上,点F 的对应点Q 落在抛物线上,求点Q 的坐标;(3)若抛物线y =ax 2-2ax +c a <0 与正方形ABCD 恰有两个交点,求a 的取值范围.【答案】(1)y =-38x 2+34x +3,F 4,0 ;(2)-4,-6 ;(3)-13<a <0或-35<a <-38【分析】(1)将点C 2,3 ,E -2,0 代入抛物线y =ax 2-2ax +c ,利用待定系数法求出抛物线的表达式,再令y =0,求出x 值,即可得到点F 的坐标;(2)设直线CE 的表达式为y =kx +b ,将点C 2,3 ,E -2,0 代入解析式,利用待定系数法求出直线CE 的表达式为:y =34x +32,设点Q t ,-38t 2+34t +3 ,根据平移的性质,得到点P t -2,-38t 2+34t +6 ,将点P 代入y =34x +32,求出t 的值,即可得到点Q 的坐标;(3)根据正方形和点C 的坐标,得出BC =3,OB =2,OA =1,将E -2,0 代入y =ax 2-2ax +c ,求得y =ax 2-2ax -8a =a x -1 2-9a ,进而得到顶点坐标1,-9a ,分两种情况讨论:①当抛物线顶点在正方形内部时,②当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,分别列出不等式组求解,即可得到答案.【详解】(1)解:∵抛物线y =ax 2-2ax +c 过点C 2,3 ,E -2,0 ∴4a -4a +c =34a +4a +c =0 ,解得:a =-38c =3 ,∴抛物线表达式为y =-38x 2+34x +3,当y =0时,-38x 2+34x +3=0,解得:x 1=-2(舍去),x 2=4,∴F 4,0 ;(2)解:设直线CE 的表达式为y =kx +b ,∵直线过点C 2,3 ,E -2,0 ,∴2k +b =3-2k +b =0 ,解得:k =34b =32,∴直线CE 的表达式为:y =34x +32,∵点Q 在抛物线y =-38x 2+34x +3上,∴设点Q t ,-38t 2+34t +3 ,∵C 2,3 ,F 4,0 ,且PQ 由CF 平移得到,∴点Q 向左平移2个单位,向上平移3个单位得到点P t -2,-38t 2+34t +6 ,∵点P 在直线CE 上,∴将P t -2,-38t 2+34t +6 代入y =34x +32,∴34t -2 +32=-38t 2+34t +6,整理得:t 2=16,解得:t 1=-4,t 2=4(舍去),当x =-4时,y =-38×-4 2+34×-4 +3=-6∴Q 点坐标为-4,-6 ;(3)解:∵四边形ABCD 是正方形,C 2,3 ,∴BC =AB =3,OB =2,∴OA =AB -OB =1,∴点A 和点D 的横坐标为-1,点B 和点C 的横坐标为2,将E -2,0 代入y =ax 2-2ax +c ,得:c =-8a ,∴y =ax 2-2ax -8a =a x -1 2-9a ,∴顶点坐标为1,-9a ,①如图,当抛物线顶点在正方形内部时,与正方形有两个交点,∴-9a <3-9a >0,解得:-13<a <0;②如图,当抛物线与直线BC 交点在点C 上方,且与直线AD 交点在点D 下方时,与正方形有两个交点,∴a ×22-2a ×2-8a >3a ×-1 2-2a ×-1 -8a <3 ,解得:-35<a <-38,综上所述,a 的取值范围为-13<a <0或-35<a <-38.4(2023·山东日照·中考真题)在平面直角坐标系xOy 内,抛物线y =-ax 2+5ax +2a >0 交y 轴于点C ,过点C 作x 轴的平行线交该抛物线于点D .(1)求点C ,D 的坐标;(3)坐标平面内有两点E 1a,a +1,F 5,a +1 ,以线段EF 为边向上作正方形EFGH .①若a =1,求正方形EFGH 的边与抛物线的所有交点坐标;②当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52时,求a 的值.【分析】(1)先求出C 0,2 ,再求出抛物线对称轴,根据题意可知C 、D 关于抛物线对称轴对称,据此求出点D 的坐标即可;(3)分图3-1,图3-2,图3-3三种情况,利用到x轴的距离之差即为纵坐标之差结合正方形的性质列出方程求解即可.【详解】(1)解:在y=-ax2+5ax+2a>0中,当x=0时,y=2,∴C0,2,∵抛物线解析式为y=-ax2+5ax+2a>0,∴抛物线对称轴为直线x=-5a-2a =52,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D5,2;(3)解:①当a=1时,抛物线解析式为y=-x2+5x+2,E1,2,F5,2,∴EH=EF=FG=4,∴H1,6,G5,6,当x=1时,y=-12+5×1+2=6,∴抛物线y=-x2+5x+2恰好经过H1,6;∵抛物线对称轴为直线x=52,由对称性可知抛物线经过4,6,∴点4,6时抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F5,2;综上所述,正方形EFGH的边与抛物线的所有交点坐标为1,6,4,6,5,2;②如图3-1所示,当抛物线与GH、GF分别交于T、D,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52,∴点T的纵坐标为2+2.5=4.5,∴5-1a+a+1=4.5,∴a2+1.5a-1=0,解得a=-2(舍去)或a=0.5;如图3-2所示,当抛物线与GH 、EF 分别交于T 、S ,∵当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52,∴5-1a=2.5,解得a =0.4(舍去,因为此时点F 在点D 下方)如图3-3所示,当抛物线与EH 、EF 分别交于T 、S ,∵当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52,∴-a ⋅1a 2+5a ⋅1a+2=a +1+2.5,∴7-1a=a +3.5,∴a 2-3.5a +1=0,解得a =7+334或a =7-334(舍去);当x =52时,y =-ax 2+5ax +2=6.25a +2,当a =7+334时,6.25a +2>7-1a ,∴a =7+334不符合题意;综上所述,a =0.5.5(2022·吉林长春·中考真题)在平面直角坐标系中,抛物线y =x 2-bx (b 是常数)经过点2,0 .点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2m ,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =4时,求点B 的坐标;(3)若m >0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.【答案】(1)y =x 2-2x (2)B -1,3(3)0<m ≤12或m ≥3(4)m =-38或m =12或m =32.【分析】(1)将点2,0 代入y =x 2-bx ,待定系数法求解析式即可求解;(2)设B m ,m 2-2m ,根据对称性可得C 2-m ,m 2-2m ,根据BC =4,即可求解;(3)根据题意分两种情况讨论,分别求得当正方形PQMN 点Q 在x 轴上时,此时M 与O 点重合,当PQ 经过抛物线的对称轴x =1时,进而观察图像即可求解;(4)根据题意分三种情况讨论,根据正方形的性质以及点的坐标位置,即可求解.【详解】(1)解:∵抛物线y =x 2-bx (b 是常数)经过点2,0 ∴4-2b =0解得b =2∴y =x 2-2x (2)如图,由y =x 2-2x =x -1 2-1则对称轴为直线x =1,设B m ,m 2-2m ,则C 2-m ,m 2-2m ∵BC =2-m -m =4解得m =-1∴B -1,3(3)∵点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2m ,且PQ ⊥x 轴∴MN =PQ =2m ,且M ,N 在y 轴上,如图,①当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,如图,当正方形PQMN点Q在x轴上时,此时M与O点重合,∵PN=PQ∴OP的解析式为y=x∴A m,m代入y=x2-2x,将A m,m即m2-2m-m=0解得m1=0,m2=3∵m>0∴A3,3观察图形可知,当m≥3时,抛物线在正方形内部的点的纵坐标y随x的增大而增大;②当抛物线在正方形内部的点的纵坐标y随x的增大而减小时,当PQ经过抛物线的对称轴x=1时,∵MQ=PQ=2m ,m>0∴2m=1解得m=1 2,观察图形可知,当0<m≤12时,抛物线在正方形内部的点的纵坐标y随x的增大而增大;综上所述,m的取值范围为0<m≤12或m≥3(4)①如图,设正方形与抛物线的交点分别为E,F,当y E-y F=34时,则MN=3 4∵A是正方形PQMN的中心,A m,m2-2m∴x A =12MN=38即m=-3 8②如图,当A点在抛物线对称轴左侧,y轴右侧时,∵A m,m2-2m∴MN=2m∴y E=y A+12MN=y A+m=m2-2m+m=m2-m∵交点的纵坐标之差为34,∴F的纵坐标为m2-m-34∵F的横坐标为MQ=PQ=2m∴F 2m ,m 2-m -34∵F 在抛物线y =x 2-2x 上,∴m 2-m -34=2m 2-2×2m 解得m =12③当A 在抛物线对称轴的右侧时,正方形与抛物线的交点分别为O ,S ,设直线AM 交x 轴于点T ,如图,则y N =y S =34∴OM =OT =34即M 0,34 ,N 34,0 设直线MN 解析式为y =kx +b ,则34k +b =0b =34,解得k =-1b =34 ∴直线MN 解析式为y =-x +34联立y =x 2-2x解得x 1=32,x 2=-12(舍去)即A 的横坐标为32,即m =32,综上所述,m =-38或m =12或m =32.【点睛】本题考查了二次函数的综合问题,二次函数的对称性,正方形的性质,掌握二次函数图像的性质是解题的关键.6(2022·湖南永州·中考真题)已知关于x 的函数y =ax 2+bx +c .(1)若a =1,函数的图象经过点1,-4 和点2,1 ,求该函数的表达式和最小值;(2)若a =1,b =-2,c =m +1时,函数的图象与x 轴有交点,求m 的取值范围.(3)阅读下面材料:设a >0,函数图象与x 轴有两个不同的交点A ,B ,若A ,B 两点均在原点左侧,探究系数a ,b ,c 应满足的条件,根据函数图像,思考以下三个方面:①因为函数的图象与x 轴有两个不同的交点,所以Δ=b 2-4ac >0;②因为A ,B 两点在原点左侧,所以x =0对应图象上的点在x 轴上方,即c >0;③上述两个条件还不能确保A ,B 两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需-b 2a<0.综上所述,系数a ,b ,c 应满足的条件可归纳为:a >0Δ=b 2-4ac >0c >0-b 2a <0请根据上面阅读材料,类比解决下面问题:若函数y =ax 2-2x +3的图象在直线x =1的右侧与x 轴有且只有一个交点,求a 的取值范围.【答案】(1)y =x 2+2x +1或y =x +1 2,0(2)m ≤0(3)-1<a ≤0或a =13【分析】(1)利用待定系数法即可求得函数解析式,然后化顶点式即可求得最小值;(2)利用函数的图象与x 轴有交点△≥0,即可得出结论;(3)根据a >0、a =0、a <0,分别讨论,再利用△,x =1处函数值的正负、函数对称轴画出草图,结合图象分析即可.【详解】(1)根据题意,得1+b +c =-44+2b +c =1a =1解之,得a =1b =2c =-7,所以y =x 2+2x -7=x +1 2-8函数的表达式y =x 2+2x -7或y =x +1 2-8,当x =-1时,y 的最小值是-8.(2)根据题意,得y =x 2-2x +m +1而函数的图象与x 轴有交点,所以Δ=b 2-4ac =-2 2-4m +1 ≥0所以m ≤0.(3)函数y =ax 2-2x +3的图象图1:a <0-2 2-12a >0--22a <1a -2+3>0即a <0a <13a >1a >-1 ,所以,a 的值不存在.图2:a <0-2 2-12a >0--22a >1a -2+3>0即a <0a <13a <1a >-1 的值-1<a <0.图3:a <0-2 2-12a =0--22a >1a -2+3<0即a <0a =13a <1a <-1 所以a 的值不存在图4:a >0-2 2-12a >0--22a >1a -2+3<0即a >0a <13a <1a <-1 所以a 的值不存在.图5:a >0-2 2-12a =0--22a >1a -2+3>0即a >0a =13a <1a >-1所以a的值为1 3图6:y=-2x+3函数与x轴的交点为 1.5,0所以a的值为0成立.综上所述,a的取值范围是-1<a≤0或a=1 3.【点睛】本题考查二次函数的应用.(1)中掌握待定系数法是解题关键;(2)中掌握二次函数与x轴交点个数与△的关系是解题关键;(3)中需注意分类讨论,结合图象分析更加直观.7(2022·湖南衡阳·中考真题)如图,已知抛物线y=x2-x-2交x轴于A、B两点,将该抛物线位于x 轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=-x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=-x2+x+2-1<x<2(2)b=2或b=3(3)存在,1,0或1+172,0或1+5,0【分析】(1)先求出点A、B、C坐标,再利用待定系数法求解函数关系式即可;(2)联立方程组,由判别式△=0求得b值,结合图象即可求解;(3)根据相似三角形的性质分∠CNM=90°和∠NCM=90°讨论求解即可.【详解】(1)解:由翻折可知:C0,2.令x2-x-2=0,解得:x1=-1,x2=2,∴A-1,0,B2,0,设图象W的解析式为y=a x+1x-2,代入C0,2,解得a=-1,∴对应函数关系式为y=-x+1x-2=-x2+x+2-1<x<2.(2)解:联立方程组y=-x+by=-x2+x+2 ,整理,得:x2-2x+b-2=0,由△=4-4(b-2)=0得:b=3,此时方程有两个相等的实数根,由图象可知,当b=2或b=3时,直线y=-x+b与图象W有三个交点;(3)解:存在.如图1,当CN∥OB时,△OBC∽△NMC,此时,N与C关于直线x=12对称,∴点N的横坐标为1,∴P1,0;如图2,当CN∥OB时,△OBC∽△NMC,此时,N点纵坐标为2,由x2-x-2=2,解得x1=1+172,x2=1-172(舍),∴N的横坐标为1+172,所以P1+172,0 ;如图3,当∠NCM=90°时,△OBC∽△CMN,此时,直线CN的解析式为y=x+2,联立方程组:y=x+2y=x2-x-2,解得x1=1+5,x2=1-5(舍),∴N的横坐标为1+5,所以P1+5,0,因此,综上所述:P点坐标为1,0或1+172,0或1+5,0.【点睛】本题考查二次函数的综合,涉及翻折性质、待定系数法求二次函数解析式、二次函数与一次函数的图象交点问题、相似三角形的性质、解一元二次方程等知识,综合体现数形结合思想和分类讨论思想的运用,属于综合题型,有点难度.。

(新)中考数学二次函数与几何综合典型试题(附答案解析)

(新)中考数学二次函数与几何综合典型试题(附答案解析)
【详解】
解:(1)当x=0时,y=3,即A(0,3),
设抛物线的解析式为:y=a(x+3)(x-1),
把A(0,3)入得:3=-3a,
a=-1,
∴y=-(x+3)(x-1)=-x2-2x+3,
1.(1)m2;(2)m1=-3,m2=1;(3) 或 ;(4)-3<m≤-1或m>1
【分析】
(1)根据平行线的性质知,点B与点A的横坐标相同,所以把x=m代入抛物线解析式,即可求得点B的纵坐标;
(2)把点A代入二次函数解析式,列出方程,然后解方程即可;
(3)根据等量关系AB=2和两点间的距离公式列出方程,解方程即可求得m的值;
∴线段AB的长度随m的增大而增大时,-3<m≤-1.
当m>1时,根据题意知,线段AB的长度随m的增大而增大时,m>1.
综上所述,m的取值范围是-3<m≤-1或m>1.
【点睛】
本题主要考查了二次函数综合题,注重培养二次函数的解析式的求法和与几何图形结合的综合能力.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
所以方程组的解为: 或 ,

【点睛】
本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.
4.(1) (2)P(4,5)(3)(-2,5)或(4,5).
【详解】
解:(1)将A(-1,0),B(3,0)代入抛物线解析式得
解得
∴抛物线的解析式为
(2)∵抛物线的解析式为 ,A(-1,0),B(3,0)

2023年中考数学高频考点训练——二次函数的实际运用-几何问题

2023年中考数学高频考点训练——二次函数的实际运用-几何问题

2023年中考数学高频考点训练——二次函数的实际运用-几何问题一、综合题1.社区利用一块矩形空地建了一个小型的便民停车场,其布局如图所示.已知52m AD =,28m AB =,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为2640m .(1)求通道的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨5元,就会少租出1个车位,求停车场的月租金收入最多为多少元?2.如图,有长为30m 的篱笆,现一面利用墙(墙的最大可用长度a 为9m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数关系式,并写出x 的取值范围;(2)如果围成花圃的面积为263m ,那么AB 应确定多长?3.如图,已知二次函数24y ax x c =-+的图象经过点A (-1,0)和点D (5,0).(1)求该二次函数的解析式;(2)直接写出该抛物线的对称轴及顶点C 的坐标;(3)点B是该抛物线与y轴的交点,求四边形ABCD的面积.4.如图,抛物线顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.5.如图,用一段长为32米的篱笆围成一个一边靠墙的矩形苗圃园,墙长为18米,设这个苗圃园垂直于墙的一边AB的长为x米,苗圃园的面积为y平方米.(1)求y关于x的函数表达式.(2)当x为何值时,苗圃的面积最大?最大值为多少平方米?6.如图,将直角三角形截出一个矩形PMCN,∠C=90°,AC=6,BC=3,点P,M,N分别在AB,AC,BC上,设CN=x.(1)试用含x的代数式表示PN,并写出x的范围;(2)设矩形PMCN的面积为y,当x为何值时,y取得的最大值是多少?7.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB 边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)若矩形场地面积为160平方米,求矩形场地的长和宽.(2)矩形场地的长和宽为多少时,矩形场地的面积最大,并求出最大面积.8.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中y m.的建筑材料可建围墙的总长度为50m.设饲养室为长为x(m),占地面积为()2(1)如图1,问饲养室为长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m的门,且仍使饲养室占地面积最大.小敏说:“只要饲养室长比(12m就行了.”请你通过计算,判断小敏的说法是否符合题意.9.如图,点O为矩形ABCD内部一点,过点O作EF AD交AB于点E,交CD于点F,过点O作GH AB交AD于点G,交BC于点H,设CH=x,BH=8-2x,CF=x+2,DF=3x-3.(1)x的取值范围是;(2)矩形BCFE的周长等于;(3)若矩形ABCD的面积为42,x的值为;(4)求矩形OFCH的面积S的取值范围.10.如图,某小区有一块靠墙(墙的长度30m)的空地,为美化环境,用总长为60m 的篱笆围成矩形花圃(矩形一边靠墙一侧不用篱笆,篱笆的厚度不计).(1)如图1,怎么才能围成一个面积为2432m的矩形花圃;(2)如图2,若围成四块矩形且面积相等的花圃,设BC的长度为m x,求x的取值范围及矩形区域ABCD的面积的最大值.11.如图,某小区有一块靠墙(墙的长度不限)的矩形ABCD,为美化环境,用总长为90m的篱笆围成四块矩形,其中S1=S2=S3=12S4(靠墙一侧不用篱笆,其余部分均使用,篱笆的厚度不计).(1)若AE=x,用含有x的式子表示BE的长;(2)求矩形ABCD的面积y关于x的解析式,并直接写出当面积取得最大值时,AE的长.12.矩形管在我们日常生活中应用广泛,石油、天然气的运输,制造建筑结构网架,制造公路桥梁等领域均有应用.如图,若矩形管ABCD的两边长20,6AB cm AD cm==,(1)若点PQ分别从A B、同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x 秒,PBQ 的面积为()2y cm .求PBQ 面积的最大值;(2)若点P 在边AB 上,从点A 出发,沿AB 方向以每秒2cm 的速度匀速运动,点Q 在边BC 上,从BC 中点出发,沿BC 方向以每秒1cm 的速度匀速运动,当点P 运动到AB 中点时,点Q 开始向上运动,当一点到达终点时,另一点也停止运动.设点P 运动时间为t 秒,PBQ 的面积为2mcm .求m 与t 的函数关系式.13.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m ,直角三角形较短直角边长n ,且n =m ﹣2,大正方形的面积为S.(1)求S 关于m 的函数关系式;(2)若小正方形边长不大于3,当大正方形面积最大时,求m 的值.14.如图(1)问题提出如图1,在ABCD 中,45A ∠=︒,8AB =,6AD =,E 是AD 的中点,点F 在DC 上且5DF =求四边形ABFE 的面积.(结果保留根号)(2)问题解决某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上建一个五边形河畔公园ABCDE 按设计要求,要在五边形河畔公园ABCDE 内挖一个四边形人工湖OPMN ,使点O 、P 、M 、N 分别在边BC 、CD 、AE 、AB 上,且满足22BO AN CP ==,AM OC =.已知五边形ABCDE 中,90A B C ∠=∠=∠=︒,800m AB =,1200m BC =,600m CD =,900m AE =.满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN ?若存在,求四边形OPMN 面积的最小值及这时点N 到点A 的距离;若不存在,请说明理由.15.如图,因疫情防控需要,某校在足够大的空地利用旧墙MN 和隔离带围成一个矩形隔离区ABCD ,已知墙长a 米,AD≤MN ,矩形隔离区的一边靠墙,另三边一共用了200米长的隔离带.(1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD 的长;(2)若a=150.求矩形隔离区ABCD 面积的最大值.16.如图,抛物线28y ax bx =++(0)a ≠经过(2,0)A -,(4,0)C 两点,点B 为抛物线的顶点,抛物线的对称轴与x 轴交于点D.(1)求抛物线的解析式;(2)动点P 从点B 出发,沿线段BD 向终点D 作匀速运动,速度为每秒1个单位长度,运动时间为t ,过点P 作PM BD ⊥,交BC 于点M ,以PM 为正方形的一边,向上作正方形PMNQ ,边QN 交BC 于点R ,延长NM 交AC 于点E .①当t 为何值时,点N 落在抛物线上;②在点P 运动过程中,是否存在某一时刻,使得四边形ECRQ 为平行四边形?若存在,求出此时刻的t 值;若不存在,请说明理由.17.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2y x bx c =++交x 轴于A ,B 两点,交y 轴于点C ,直线3y x =-经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作直线CD y ⊥轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE x ⊥轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN AC ⊥于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接PC ,过点B 作BQ PC ⊥于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST TD =时,求线段MN 的长.18.如图,抛物线2y x bx c =++经过A (-3,0),B (1,0)两点,与y 轴交于点C ,P 为y 轴上的动点,连接AP ,以AP 为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN 与△AOP 面积之比为5∶2时,求点P 的坐标;(3)当正方形AMPN 有两个顶点在抛物线上时,直接写出点P 的坐标.19.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P P 的对应点为E ,点C 的对应点为F.当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标.20.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x 轴交于A ,B 两点(点A 在点B 的右侧),点P 是该抛物线上的一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D.(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)解:设通道的宽为x 米,根据题意得:()()522282640x x --=,解得:34x =(舍去)或6x =,答:通道的宽为6米;(2)解:设月租金上涨a 元,停车场的月租金收入为y 元,根据题意得:()200505a y a ⎛⎫=+- ⎪⎝⎭,整理,得()2125101255y a =--+,所以,当25a =时,y 有最大值为10125;答:每停车场的月租金收入最多为10125元.【解析】【分析】(1)设通道的宽为x 米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a 元,则租出的车位数量是(50-5a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式求解即可.2.【答案】(1)解:根据题意,得()303S x x =-,即所求的函数关系式为2330S x x =-+.∵03039x <-≤,∴710x ≤<,即S 与x 的函数关系式为S=-3x 2+30x(7≤x <10);(2)解:当263m S =时,233063x x -+=,解得17x =,23x =(不合题意,舍去).∴当7m AB =时,围成花圃的面积为263m .【解析】【分析】(1)先求出()303S x x =-,再求出710x ≤<,最后作答即可;(2)先求出233063x x -+=,再求解即可。

中考数学 考点系统复习 第三章 函数 第八节 二次函数与几何综合题

中考数学 考点系统复习 第三章 函数 第八节 二次函数与几何综合题

如解图 1,连接 OP,
则 S△PBC=S△OPC+S△OPB-S△OBC,
1
1
1
=2·OC·xp+2·OB·yp-2·OB·OC
=12×3×32+12×4×7156-12×4×3
=485,
45 ∴△PBC 的面积为 8 .
(3)①∵在△OBC 中,BC<OC+OB, ∴当动点 E 运动到终点 C 时,另一个动点 D 也停止运动,
(1)求 A,B,C 三点的坐标(用数字或含 m 的式子表示); (2)已知点 Q 在抛物线的对称轴上,当△AFQ 的周长的最小值等于152时,
求 m 的值. 解:(1)由 x2-(m+1)x+m=0 得 x=m 或 1, ∴A(m,0),B(1,0),
∴对称轴为直线 x=m+2 1,∴Cm+2 1,0.
(3)将点 D 向左平移 3 个单位,向上平移 1 个单位得到点 D′(-2,-a), 如解图,
作点 F 关于 x 轴的对称点 F′,则点 F′的坐标为(0,a-1),当满足条 件的点 M 落在 F′D′上时,由图象的平移知 DN=D′M,故此时 FM+ND 最小,理由:
∵FM+ND=F′M+D′M=F′D′=2 10为最小,
∴当点 F,Q,B 三点共线时,FQ+AQ 最小,此时△AFQ 的周长最小,如 解图.
∵△AFQ 的周长的最小值为152, ∴FQ+AQ 的最小值为75,即 BF=75. ∵OF2+OB2=BF2, ∴1-m2+1=4295,∴m=±15. ∵-1<m<0,∴m=-15.
类型二:二次函数与面积 问题
OT OE TE ∴△ETO∽△OEB,∴EB=OB=OE, ∴OE2=OB·TE,∴3TE=2455=95, 解得 TE=35, ∴OT= BE5=65,∴E53,-65,

中考数学 考点系统复习 第三章 函数 第十节 二次函数与几何综合题

中考数学 考点系统复习 第三章 函数 第十节 二次函数与几何综合题
解:此抛物线的解析式为 y=x2-4x.
(2)若点 B 是抛物线对称轴上的一点,且点 B 在第一象限,当△OAB 的面积 为 15 时,求点 B 的坐标;
如答图①,∵点 B 是抛物线对称轴上的一点,且点 B 在第一象限, ∴设 B(2,m)(m>0),设直线 OA 的解析式为 y=kx, 则 5k=5,解得 k=1, ∴直线 OA 的解析式为 y=x,设直线 OA 与抛物线对称 轴交于点 H,则 H(2,2),∴BH=m-2,
2.(2022·北部湾)已知抛物线 y=-x2+2x+3 与 x 轴交于 A,B 两点(点 A 在点 B 的左侧). (1)求点 A,点 B 的坐标;
解:当 y=0 时, -x2+2x+3=0, ∴x1=-1,x2=3, ∴A(-1,0),B(3,0).
(2)如图,过点 A 的直线 l:y=-x-1 与抛物线的另一个交点为 C,点 P 为抛物线对称轴上的一点,连接 PA,PC,设点 P 的纵坐标为 m,当 PA= PC 时,求 m 的值;
点 E 的坐标为(-1,0),
∴AE=4,OB=3,CD=2,
1
1
∴S△BCE=S△ABE-S△ACE=2AE·OB-2AE·CD
=12×4×3-12×4×2=2,
∴△BCE 的面积为 2.
3.(2022·广东)如图,抛物线 y=x2+bx+c(b,c 是常数)的顶点为 C, 与 x 轴交于 A,B 两点,A(1,0),AB=4,点 P 为线段 AB 上的动点, 过点 P 作 PQ∥BC 交 AC 于点 Q.
第十节 二次函数与几何 综合题
类型一:二次函数与线段 问题
1.(2022·齐齐哈尔)如图,某一次函数与二次函数 y=x2+mx+n 的图象 交点为 A(-1, 0),B(4, 5). (1)求抛物线的解析式;

2023中考数学专题训练:二次函数的实际应用-几何问题

2023中考数学专题训练:二次函数的实际应用-几何问题

2023中考数学专题训练:二次函数的实际应用-几何问题1.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.2.学校要围一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为16米的篱笆恰好围成(如图所示).设矩形的一边AB的长为x米(要求AB<AD),矩形ABCD 的面积为S平方米.(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;(2)要想使花圃的面积最大,AB边的长应为多少米?花圃的面积是多少?3.如图,小亮父亲想用长80m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边AB=xm,面积为Sm2.(1)用x的代数式表示BC的长;(2)写出S与x之间的函数表达式,并写出x的取值范围;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大值是多少?4.如图,墙壁EF长24米,需要借助墙壁围成一个矩形花园ABCD,现有围栏48米,设AB长x 米.(1)若AD为y米,直接写出y关于x的函数表达式及其自变量x的取值范围;(2)AB长为多少米时,这个花园的面积最大,并求出这个最大值.5.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?6.如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)与x轴交于A、B两点(点A 在点B左侧),与y轴交于点C.(1)若A(-1,0),B (3,0),C(0,-3)①求抛物线的解析式;②若点P为x轴上一点,点Q为抛物线上一点,△CPQ是以CQ为斜边的等腰直角三角形,求出点P的坐标;(2)如图2,若直线y=bx+t(t>c)与抛物线交于点M、点N(点M在对称轴左侧).直线AM交y轴于点E,直线AN交y轴于点D.试说明点C是线段DE的中点.7.某农场准备围建一个矩形养鸡场,其中一边靠墙(墙的长度为15米),其余部分用篱笆围成,在墙所对的边留一道1米宽的门,已知篱笆的总长度为23米.(1)设图中AB(与墙垂直的边)长为x米,则AD的长为米(请用含x的代数式表示);(2)若整个鸡场的总面积为y米2,求y的最大值.8.某小区计划建一个矩形花圃,花圃的一边利用长为a的墙,另三边用总长为79米的篱笆围成,围成的花圃是如图所示的矩形ABCD,并在BC边上留有一扇1米宽的门.设AD边的长为x米,矩形花圃的面积为S平方米.(1)求S与x之间的函数关系式.(2)若墙长a=30米,求S的最大值.9.某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.10.某单位为响应市“创建全国文明城市”的号召,不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并求出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)当矩形ABCD空地的面积最大时,利用的墙长是多少m;并求此时的最大面积.11.某社区决定把一块长为50m、宽30m的矩形空地建为居民健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区均为大小、形状都相同的矩形),空白区域为活动区,且四周的四个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.(1)求y与x的函数表达式并求出自变量x的取值范围,(2)求活动区最大面积.12.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?13.如图,在正方形ABCD中,AB=4,E为BC上一点,F为CD上一点,且AE=AF.设△AEF的面积为y,CE=x.(1)求y关于x的函数表达式.(2)当△AEF为正三角形时,求△AEF的面积.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求△P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当△P的半径为1时,若△P与以上(2)中所得函数图象相交于点C、D,其中交点D (m,n)在点C的右侧,请利用图②,求cos△APD的大小.15.如图,小亮父亲想用长为80m的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD,已知房屋外墙长50m,设矩形ABCD的边AB=xm,面积为Sm2.(1)写出S与x之间的关系式,并指出x的取值范围;(2)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少?16.如图,抛物线y=ax2- 43x+c与x轴交于A、B两点,与y轴交于C点,连结AC,已知B(-1,0),且抛物线经过点D(2,-2)。

中考数学总复习《二次函数的实际应用与几何问题》练习题及答案

中考数学总复习《二次函数的实际应用与几何问题》练习题及答案

中考数学总复习《二次函数的实际应用与几何问题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则图中阴影部分的面积为()A.πB.2πC.3πD.4π2.如图,已知抛物线y=mx2﹣6mx+5m与x轴交于A、B两点,以AB为直径的⊙P经过该抛物线的顶点C,直线l⊙x轴,交该抛物线于M、N两点,交⊙P与E、F两点,若EF=2√3,则MN的长为()A.2√6B.4√2C.5D.63.如图,已知⊙ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2B.b<﹣2C.b≥﹣2D.b>﹣24.如图,在⊙ABC中,⊙C=90°,AC=BC=3cm.动点P从点A出发,以√2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC →CB方向运动到点B.设⊙APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.5.长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为()A.y=x2B.y=(12﹣x2)C.y=(12﹣x)•x D.y=2(12﹣x)6.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门。

已知计划中的建筑材料可建围墙(不包括门)的总长度为50m。

设饲养室长为x(m),占地面积为y(m²),则y关于x的函数表达式是()A.y=-x²+50x B.y= −12x²+24xC.y= −12x2+25x D.y= −12x2+26x7.如图,四边形ABCD中,AB=AD,CE⊙BD,CE= 12BD.若⊙ABD的周长为20cm,则⊙BCD的面积S(cm2)与AB的长x(cm)之间的函数关系式可以是()2−10x+100B.S=2x2−40x+200A.S=14xC.S=x2−20x+100D.S=x2+20x+1008.如图,四边形ABCD的两条对角线互相垂直,AC+BD=12,则四边形ABCD的面积最大值是()A.12B.18C.24D.369.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若⊙ABC与⊙ABD的面积比为1:4,则k值为()A.1B.12C.43D.4510.半径是3的圆,如果半径增加2x,那么面积S和x之间的函数关系式是()A.S=2π(x+3)2B.S=9π+xC.S=4πx2+12x+9D.S=4πx2+12πx+9π11.设抛物线y=ax2+bx+c(ab≠0)的顶点为M ,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1 () A.y=−3(x−1)2+1B.y=2(x−0.5)(x+1.5)C.y=13x 2−43x+1D.y=(a2+1)x2−4x+2(a为任意常数)12.已知坐标平面上有两个二次函数y=a(x+1)(x−7),y=b(x+1)(x−15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x−15)的图形依下列哪一种方式平移后,会使得此两图形的对称轴重叠().A.向左平移4单位B.向右平移4单位C.向左平移8单位D.向右平移8单位二、填空题13.如图,点A(0,1),平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE⊙AC,交y2于点E,则DE =.14.用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是cm2.15.如图,在平面直角坐标系中,菱形OABC的边长为2,⊙AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊙AB时,CE的长为。

2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)

2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)

重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。

所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。

中考数学二次函数和几何综合汇编经典和答案解析1

中考数学二次函数和几何综合汇编经典和答案解析1

中考数学二次函数和几何综合汇编经典和答案解析1一、二次函数压轴题1.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()()1, 0, 3, 0A B -两点,点C 为抛物线的顶点.点(0,)M m 为y 轴上的动点,将抛物线绕点M 旋转180︒,得到新的抛物线,其中B C 、旋转后的对应点分别记为’'B C 、.(1)若1a =,求原抛物线的函数表达式;(2)在(1)条件下,当四边形''BCB C 的面积为40时,求m 的值;(3)探究a 满足什么条件时,存在点M ,使得四边形' 'BCB C 为菱形?请说明理由.2.综合与探究如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,()2,0A -,()4,0B ,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式:(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积;(3)在直线l 上有一点P ,连接AP ,CP ,则AP CP 的最小值为______;(4)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (﹣12,0),B (2,0)两点,与y 轴交于点C (0,1).(1)求抛物线的函数表达式;(2)如图1,点D 为第一象限内抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第四象限内是否存在这样的点P ,使△BPQ ∽△CAB .若存在,请直接写出所有符合条件的点P 的坐标,若不存在,请说明理由.4.如图,抛物线y =x 2﹣2x ﹣8与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q . (1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A 、C 、Q 为顶点的三角形是等腰三角形?若存在,请求出此时点Q 的坐标;若不存在,请说明理由.5.小明结合自己的学习经验,对新函数y =21b kx +的解析式、图象、性质及应用进行探究:已知当x =0时,y =2;当x =1时,y =1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为: . (2)函数图象探究:①根据解析式,补全如表,则m = ,n = .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象. x …… ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 0121 2 n 4 ……y……21715 25m85285 12515 217…… (3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质: .(4)综合应用:已知函数y =|715x ﹣815|的图象如图所示,结合你所画的函数图象,直接写出不等式|715x ﹣815|≤21bkx +.6.如果抛物线C 1:2y ax bx c =++与抛物线C 2:2y ax dx e =-++的开口方向相反,顶点相同,我们称抛物线C 2是C 1的“对顶”抛物线.(1)求抛物线247y x x =-+的“对顶”抛物线的表达式;(2)将抛物线247y x x =-+的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线247y x x =-+形成两个交点M 、N ,记平移前后两抛物线的顶点分别为A 、B ,当四边形AMBN 是正方形时,求正方形AMBN 的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C 1与C 2的顶点位于x 轴上,那么系数b 与d ,c 与e 之间的关系是确定的,请写出它们之间的关系.7.某校九年级数学兴趣社团的同学们学习二次函数后,有兴趣的在一起探究“函数2||y x x =-的有关图象和性质”.探究过程如下:(1)列表:问m =______. x …3- 2- 1- 0 1 2 122…y (6)20 0 2 m…(2)请在平面直角坐标系中画出图象.(3)若方程2||x x p -=(p 为常数)有三个实数根,则p =______.(4)试写出方程2||x x p -=(p 为常数)有两个实数根时,p 的取值范围是______. 8.定义:如果一条直线把一个封闭的平面图形分成面积相等的两部分,我们把这条直线称为这个平面图形的一条中分线.如三角形的中线所在的直线是三角形的一条中分线.(1)按上述定义,分别作出图1,图2的一条中分线.(2)如图3,已知抛物线2132y x x m =-+与x 轴交于点(2,0)A 和点B ,与y 轴交于点C ,顶点为D .①求m 的值和点D 的坐标;②探究在坐标平面内是否存在点P ,使得以A ,C ,D ,P 为顶点的平行四边形的一条中分线经过点O .若存在,求出中分线的解析式;若不存在,请说明理由.9.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n nn A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推. (1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________. (3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.10.如图1,在平面直角坐标系中,已知抛物线y=a x 2+b x+3经过A(1,0) 、B(-3,0)两点,与y 轴交于点C .直线BC 经过B 、C 两点.(1)求抛物线的解析式及对称轴;(2)将△COB 沿直线 BC 平移,得到△C 1O 1B 1,请探究在平移的过程中是否存在点 O 1落在抛物线上的情形,若存在,求出点O 1的坐标,若不存在,说明理由;(3)如图2,设抛物线的对称轴与x 轴交于点E ,连结AC ,请探究在抛物线上是否存在一点F ,使直线EF ∥AC ,若存在,求出点F 的坐标,若不存在,说明理由.二、中考几何压轴题11.如图(1),已知点G 在正方形ABCD 的对角线AC 上,,GE BC ⊥垂足为点,E GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AGBE的值为_ _; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转a 角)045(a ︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:若24AB EC ==,正方形CEGF 在绕点C 旋转过程中,当A E G 、、三点在一条直线上时,则BE = .12.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明. 13.几何探究: (问题发现)(1)如图1所示,△ABC 和△ADE 是有公共顶点的等边三角形,BD 、CE 的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC 和△ADE 是有公共顶点的含有30角的直角三角形,(1)中的结论还成立吗?请说明理由; (拓展延伸)(3)如图3所示,△ADE 和△ABC 是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE 绕点A 自由旋转,若22BC =,当B 、D 、E 三点共线时,直接写出BD 的长.14.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A 、B 、C 在⊙O 上,∠ABC 的平分线交⊙O 于点D ,连接AD 、CD . 求证:四边形ABCD 是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD 中,AB =AD ,连接AC ,AC 是否平分∠BCD ?请说明理由; (升华运用)(3)如图3,在等补四边形ABCD 中,AB =AD ,其外角∠EAD 的平分线交CD 的延长线于点F .若CD =6,DF =2,求AF 的长. 15.综合与实践 操作探究(1)如图1,将矩形ABCD 折叠,使点A 与点C 重合,折痕为EF ,AC 与EF 交于点G .请回答下列问题:①与AEG △全等的三角形为______,与AEG △相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接AF 、CE ,请判断四边形AFCE 的形状:______.并证明你的结论; 拓展延伸(2)如图2,矩形ABCD 中,2AB =,4BC =,点M 、N 分別在AB 、DC 边上,且AM NC =,将矩形折叠,使点M 与点N 重合,折痕为EF ,MN 与EF 交于点G ,连接ME .①设22m AM AE =+,22n ED DN =+,则m 与n 的数量关系为______; ②设AE a =,AM b =,请用含a 的式子表示b :______; ③ME 的最小值为______.16.综合与实践.特例感知.两块三角板△ADB 与△EFC 全等,∠ADB =∠EFC =90°,∠B =45°,AB =6.将直角边AD 和EF 重合摆放.点P 、Q 分别为BE 、AF 的中点,连接PQ ,如图1.则△APQ 的形状为 .操作探究(1)若将△EFC 绕点C 顺时针旋转45°,点P 恰好落在AD 上,BE 与AC 交于点G ,连接PF ,如图2. ①FG :GA = ;②PF 与DC 的位置关系为 ; ③求PQ 的长; 开放拓展(2)若△EFC 绕点C 旋转一周,当AC ⊥CF 时,∠AEC 为 . 17.综合与实践动手实践:一次数学兴趣活动,张老师将等腰Rt AEF 的直角顶点A 与正方形ABCD 的顶点A 重合(AE AD >),按如图(1)所示重叠在一起,使点E 在CD 边上,连接BF .则可证:ADE ≌△△______,______三点共线;发现问题:(1)如图(2),已知正方形ABCD ,E 为DC 边上一动点,DC nDE =,AF AE ⊥交CB 的延长线于F ,连结EF 交AB 于点G .若2n =,则AG BG =______,AGE BGFS S =△△______; 尝试探究:(2)如图(3),在(1)的条件下若3n =,求证:5AG GB =;拓展延伸:(3)如图(4),在(1)的条件下,当n =______时,AG 为GB 的6倍(直接写结果,不要求证明). 18.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD 是正方形,四边形BEDF 是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE .求证:AE ⊥CE .”并展示了如下的证明方法:证明:如图3,分别连接AC ,BD ,EF ,AF .设AC 与BD 相交于点O . ∵四边形ABCD 是正方形,∴OA =OC =12AC ,OB =OD =12BD ,且AC =BD . 又∵四边形BEDF 是矩形,∴EF经过点O,∴OE=OF=1EF,且EF=BD.2∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=31,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.19.(1)问题发现如图1,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP 长度的最小值及此时点N的坐标.20.如图,已知ABC和ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.B解析:(1)2 23;y x x =--(2)416m m ==-或;(3)3a ≥M ,使得四边形''BCB C 为菱形,理由见解析【分析】(1)因为1a =,所以2y x bx c =++,将()()1, 0, 3, 0A B -代入得关于b 和c 的二元一次方程组,解方程组得到b 和c 即可求得原抛物线的解析式;(2)连接','CC BB ,延长BC 与y 轴交于点E ,根据题(1)可求出点B 、C 的坐标,继而求出直线BC 的解析式及点E 的坐标,根据题意易知四边形''BCB C 是平行四边形,继而可知()1312BCM MBE MCE S S S ME ME ∆∆∆=-=⨯-⨯=,由此可知ME =10,继而即可求解点M 的坐标;(3)如图,过点C 作CD y ⊥轴于点D ,当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,继而可证MOB CDM ∆∆,根据相似三角形的性质可得MO MD BO CD •=•代入数据即可求解.【详解】解:(1)∵1a =,∴2y x bx c =++将()()1, 0, 3, 0A B -代入得:10930b c b c -+=⎧⎨++=⎩解得:23b c =-⎧⎨=-⎩∴原抛物线的函数表达式为:2 23y x x =--;(2)连接','CC BB ,并延长BC 与y 轴交于点E ,二次函数2 23y x x =--的项点为(1,4,)-()1,4,C ∴-()3, 0,B∴直线BC 的解析式为: 2 6.y x =--()0,6E ∴-抛物线绕点M 旋转180︒','MB MB MC MC ==∴四边形''BCB C 是平行四边形,()1312BCM MBE MCE S S S ME ME ∆∆∆∴=-=⨯-⨯= 10ME416m m ∴==-或(3)如图,过点C 作CD y ⊥轴于点D当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,当MB MC ⊥时,MOB CDM ∆∆,MO BO CD MD∴= 即MO MD BO CD •=•二次函数()()13y a x x =+-的顶点为()()()1,4,0,,3,0a M m B - 1,,4,3CD MO m MD m a ON ∴==-=+=,()43m m a ∴-+=,∴2430m am ,216120,0a a ∆-≥>a ∴≥所以a ≥M ,使得四边形''BCB C 为菱形.【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.2.A解析:(1)233642y x x =--;(2)454;(3)134)存在,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭ 【分析】(1)把A 、B 两点坐标代入26y ax bx =+-可得关于a 、b 的二元一次方程组,解方程组求出a 、b 的值即可得答案;(2)过D 作DG x ⊥轴于G ,交BC 于H ,根据抛物线解析式可得点C 坐标,利用待定系数法可得直线BC 的解析式,设233,642D x x x ⎛⎫-- ⎪⎝⎭,根据BC 解析式可表示出点H 坐标,即可表示出DH 的长,根据△BCD 的面积列方程可求出x 的值,即可得点D 坐标,利用三角形面积公式即可得答案;(3)根据二次函数的对称性可得点A 与点B 关于直线l 对称,可得BC 为AP +CP 的最小值,根据两点间距离公式计算即可得答案;(4)根据平行四边形的性质得到MB //ND ,MB =ND ,分MB 为边和MB 为对角线两种情况,结合点D 坐标即可得点N 的坐标.【详解】(1)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,()2,0A -,()4,0B ,∴426016460a b a b --=⎧⎨+-=⎩, 解得:3432a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为:233642y x x =--. (2)如图,过D 作DG x ⊥轴于G ,交BC 于H ,当0x =时,6y =-,∴()0,6C -,设BC 的解析式为y kx b =+,则640b k b =-⎧⎨+=⎩, 解得326k b ⎧=⎪⎨⎪=-⎩, ∴BC 的解析式为:362y x =-, 设233,642D x x x ⎛⎫-- ⎪⎝⎭,则3,62H x x ⎛⎫- ⎪⎝⎭, ∴2233336632424DH x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵BCD △的面积是92, ∴1922DH OB ⨯=, ∴213943242x x ⎛⎫⨯⨯-+= ⎪⎝⎭, 解得:1x =或3,∵点D 在直线l 右侧的抛物线上,∴153,4D ⎛⎫- ⎪⎝⎭, ∴ABD △的面积11154562244AB DG ⨯=⨯⨯=;(3)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,∴点A 与点B 关于直线l 对称,∴BC 为AP +CP 的最小值,∵B (4,0),C (0,-6),∴AP +CP 的最小值=BC =2246+=213. 故答案为:213(4)①当MB 为对角线时,MN //BD ,MN =BD ,过点N 作NE ⊥x 轴于E ,过当D 作DF ⊥x 轴于F ,∵点D (3,154-), ∴DF =154, 在△MNE 和△BDF 中,NEM DFB NMB DBF MN BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MNE ≌△BDF ,∴DF =NE =154, ∵点D 在x 轴下方,MB 为对角线,∴点N 在x 轴上方,∴点N 纵坐标为154, 把y =154代入抛物线解析式得:215336442x x =--, 解得:1114x =-,2114x =+, ∴1N (114-,154),2N (114+,154)如图,当BM 为边时,MB //ND ,MB =ND ,∵点D (3,154-), ∴点N 纵坐标为154-, ∴233156424x x --=-, 解得:11x =-,23x =(与点D 重合,舍去),∴3N (1-,154-),综上所述:存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题. 3.A解析:(1)2312y x x =-++;(2)DE AE 的最大值为45;(3)914511924145(P -+-+或9177317()P --+ 【分析】(1)用待定系数法求出函数解析式即可;(2)构造出△AGE ∽△DEH ,可得DE DH AE AG=,而DE 和AG 都可以用含自变量的式子表示,最后用二次函数最大值的方法求值.(3)先发现△ABC 是两直角边比为2:1的直角三角形,由△BPQ ∽△CAB ,构造出△BPQ ,表示出Q 点的坐标,代入解析式求解即可.【详解】解:(1)分别将C (0,1)、A (﹣12,0)、B (2,0)代入y =ax 2+bx +c 中得110424201a b c a b c c ⎧++=⎪⎪++=⎨⎪=⎪⎩, 解得:1321a b c =-⎧⎪⎪=⎨⎪=⎪⎩,∴抛物线的函数表达式为2312y x x =-++. (2)过A 作AG ∥y 轴交BC 的延长线于点G ,过点D 作DH ∥y 轴交BC 于点H ,∵B (2,0)C (0,1),∴直线BC :y =12x +1,∵A (-12,0),∴G (-12,54), 设D (23,12m m m -++),则H (1,12m m -+), ∴DH =(2312m m -++)﹣(112m -+), =﹣m 2+2m ,∴AG=54, ∵AG ∥DH , ∴()2224415554DE DH m m m AE AG -+===--+,∴当m =1时,DE AE 的最大值为45. (3)符合条件的点P 914511924145-+-+9177317--+ ∵l ∥BC , ∴直线l 的解析式为:y =-12x ,设P (n ,-12n ),∵A (-12,0),B (2,0),C (0,1),∴AC 2=54,BC 2=5,AB 2=254.∵AC 2+BC 2=AB 2,∴∠ACB =90°.∵△BPQ ∽△CAB , ∴12BP AC BQ BC ==, 分两种情况说明:①如图3,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵∠PNB =∠BMQ =90°, ∠NBP +∠MBQ =90°,∠MQB +∠MBQ =90°,∴∠NBP =∠MQB .∴△NBP ∽△MQB ,∴12PN NB BM MQ ==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴1,2PN n ON n ==, ∴BN =2﹣n ,∴BM =2PN =n ,QM =2BN =4﹣2n ,∴OM =OB +BM =2+n ,∴Q (2+n ,2n ﹣4),将Q 的坐标代入抛物线的解析式得:()()23221242n n n -++++=-, 2n 2+9n ﹣8=0, 解得:)1291459145n n -+--==舍∴P (914511924145,416-+-+). ②如图4,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵△PNB ∽△BMQ ,又∵△BPQ ∽△CAB ,∴2BC QM AC BN==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴Q (2﹣n ,4﹣2n ),将Q 的坐标代入抛物线的解析式得:()()23221422n n n --+-+=-, 化简得:2n 2﹣9n +8=0, 解得:)12917917n n -+==舍, ∴P 9177317--+. 【点睛】本题考查待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程,掌握待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程的关系是解题关键.4.A 解析:(1)A (﹣2,0),B (4,0),C (0,﹣8);(2)存在,Q 点坐标为124(85,858)55Q ,21722(,)77Q . 【分析】(1)解方程2280x x --=,可求得A 、B 的坐标,令0x =,可求得点C 的坐标;(2)利用勾股定理计算出AC =BC 的解析式为28y x =-,可设Q (m ,2m ﹣8)(0<m <4),分三种情况讨论:当CQ =AC 时,当AQ =AC 时,当AQ =QC 时,然后分别解方程求出m 即可得到对应的Q 点坐标.【详解】(1)当0y =,2280x x --=,解得x 1=﹣2,x 2=4,所以(2,0)A -,(4,0)B ,x =0时,y =﹣8,∴(0,8)C -;(2)设直线BC 的解析式为y kx b =+,把(4,0)B ,(0,8)C -代入解析式得:408k b b +=⎧⎨=-⎩,解得28k b =⎧⎨=-⎩, ∴直线BC 的解析式为28y x =-,设Q (m ,2m ﹣8)(0<m <4),当CQ =CA 时,22(288)68m m +-+=,解得,1m =2m =∴Q 8), 当AQ =AC 时,22(2)(28)68m m ++-=,解得:128m 5=(舍去),m 2=0(舍去); 当QA =QC 时,2222(2)(28)(2)m m m m ++-=+,解得177m =, ∴Q 1722(,)77-.综上所述,满足条件的Q 点坐标为18)Q ,21722(,)77Q -. 【点睛】 本题考查了二次函数,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质,会利用待定系数法求函数解析式,理解坐标与图形性质,会利用勾股定理表示线段之间的关系,会运用分类讨论的思想解决数学问题.5.(1) y=221x +;(2)m=1,n=3;(3) 函数存在最大值,当x=0是,y 取得最大值2.(4)-1≤x≤2 【分析】(1)待定系数法求解函数解析式(2)分别将m,n 代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得20111b b k ⎧=⎪⎪+⎨⎪=⎪+⎩ 解得:12k b =⎧⎨=⎩ ∴函数的解析式为y =221x + (2) ①令x =-1, 则y=1, ∴m =1令y =15,则x =±3,∵2<n <4, ∴n =3②(3)函数存在最大值,当x =0是,y 取得最大值2. (4)直接观察图象可知,当|715x ﹣815|≤时,-1≤x ≤2 【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.6.C解析:(1)241y x x =-+-;(2)2;(3)b dc e =-⎧⎨=-⎩【分析】(1)先求出抛物线C 1的顶点坐标,进而得出抛物线C 2的顶点坐标,即可得出结论; (2)设正方形AMBN 的对角线长为2k ,得出B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ),再用点M (2+k ,3+k )在抛物线y =(x −2)2+3上,建立方程求出k 的值,即可得出结论;(3)先根据抛物线C 1,C 2的顶点相同,得出b ,d 的关系式,再由两抛物线的顶点在x 轴,求出c ,e 的关系,即可得出结论. 【详解】解:(1)解:(1)∵y =x 2−4x +7=(x −2)2+3, ∴顶点为(2,3),∴其“对顶”抛物线的解析式为y =−(x −2)2+3, 即y =−x 2+4x −1; (2)如图,由(1)知,A (2,3), 设正方形AMBN 的对角线长为2k ,则点B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ), ∵M (2+k ,3+k )在抛物线y =(x −2)2+3上, ∴3+k =(2+k −2)2+3, 解得k =1或k =0(舍);∴正方形AMBN 的面积为12×(2k )2=2;(3)根据抛物线的顶点坐标公式得,抛物线C 1:y =ax 2+bx +c 的顶点为(2b a-,244ac b a-),抛物线C 2:y =−ax 2+dx +e 的顶点为(2d a ,244ae d a---),∵抛物线C 2是C 1的“对顶”抛物线, ∴22b d a a-=, ∴=-b d ,∵抛物线C 1与C 2的顶点位于x 轴上,∴224444ac b ae d a a ---=-, ∴c e =-,即b d c e =-⎧⎨=-⎩. 【点睛】此题主要考查了抛物线的顶点坐标公式,正方形的性质,理解新定义式解本题的关键. 7.(1)154m =;(2)见解析;(3)0p =;(4)14p =-或0p >.【分析】(1)把x=122代入解析式,计算即可;(2)按照画图像的基本步骤画图即可;(3)一个方程有两个不同实数根,另一个方程有两个相等的实数根和两个方程都有两个不同的实数根,但是有一个公共根;(4)结合函数的图像,分直线经过顶点和在x 轴上方两种情形解答即可. 【详解】(1)当x=122时,2||y x x =-=25)2|(|52- =154, ∴154m =; (2)画图像如下;(3)当x≥0时,函数为2y x x ;当x <0时,函数为2y x x =+;∵方程2||x x p -=(p 为常数)有三个实数根, ∴两个方程有一个公共根,设这个根为a , 则22a a a a -=+, 解得a=0, 当a=0时,p=0, 故答案为:p=0;(4)∵方程2||x x p -=(p 为常数)有两个实数根, ∴p >0; 或△=0 即1+4p=0, 解得14p =-.综上所述,p 的取值范围是14p =-或0p >. 【点睛】本题考查了二次函数图像,二次函数与一元二次方程的关系,熟练掌握抛物线与一元二次方程的关系,灵活运用分类思想,数形结合思想是解题的关键. 8.(1)见解析;(2)①4m =,1(3,)2D -;②存在,76y x =或2y x =或110y x =-【分析】(1)对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线; (2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,抛物线解析式2211134(3)222y x x x =-+=--,顶点为1(3,)2D -;②根据抛物线解析式求出(2,0)A ,(4,0)B ,(0,4)C ,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.Ⅰ.当CD 为对角线时,对角线交点坐标为37(,)24,中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标(1,2).中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为51(,)24-,中分线解析式为110y x =-. 【详解】解:(1)如图,对角线所在的直线为平行四边形的中分线, 直径所在的直线为圆的中分线,(2)①将(2,0)A 代入抛物线2132y x x m =-+,得 143202m ⨯-⨯+=, 解得4m =,∴抛物线解析式2211134(3)222y x x x =-+=--,∴顶点为1(3,)2D -;②将0y =代入抛物线解析式21342y x x =-+,得 234201x x -+=, 解得2x =或4,(2,0)A ∴,(4,0)B , 令0x =,则4y =,(0,4)C ∴,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分, 所以平行四边形的中分线必过对角线的交点. Ⅰ.当CD 为对角线时,对角线交点坐标为14032(,)22-+,即37(,)24,中分线经过点O ,∴中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标为2004(,)22++,即(1,2). 中分线经过点O ,∴中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为10232(,)22-+,即51(,)24-, 中分线经过点O ,∴中分线解析式为110y x =-, 综上,中分线的解析式为式为76y x =或为2y x =或为110y x =-.【点睛】本题考查了二次函数,熟练运用二次函数的性质与平行四边形的性质是解题的关键.9.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m . 【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解. 【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ; 故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2; (3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去), 抛物线的表达式为:y =−(x−1)2 +1; ②y 1n c -=−(m−n +1)2+(n−1)2, y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m . 【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.10.F解析:(1)223y x x =--+,1x =-;(2)O 1)3)满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【分析】(1)把A (1,0),B (-3,0)代入y=ax 2+bx+3即可求解;(2)先求出直线OO 1的解析式为y x =,再根据223x x x --+=,求解即可或是根据23(23)3x x x +---+=得出x 的值,再根据直线OO 1的解析式为y x =求解;(3)先求出直线EF 解析式为 33y x =--,再根据22333x x x --+=--求解即可. 【详解】解:(1)将点A (1, 0),B (-3, 0)代入抛物线解析式y=a x 2+b x+3 得:{309330a b a b ++=-+=解得:{12a b =-=-∴抛物线解析式为 223y x x =--+ ∴2(1)4y x =++ ∴1x =-(2)∵点C 为223y x x =--+与y 轴的交点∴C (0,3) ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y x = 根据题意 得 223x x x --+= 整理得 2330x x +-=解得 1x =2x =∴O 1 )或)解法2 ∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∴OC=3 ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 01C 1=3 ∴23(23)3x x x +---+= 整理得 2330x x +-= 解得 13212x -+=23212x --= ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y=x ∴O 1(3212-+,3212-+ )或(3212--,3212--)(3)∵抛物线对称轴与x 轴交于点E,则点E 的坐标为E(-1,0),过点C 作CF ∥x 轴 根据抛物线的对称性得F 的坐标为F(-2,3) ∴AE=CF=2 ∵CF ∥AE ∴四边形CFEA 为平行四边形 ∴EF ∥CA设直线EF 的解析式为y kx b =+ 得:{320k bk b =-+=-+ 解得:{33k b =-=-∴直线EF 解析式为 33y x =-- 根据题意 得 22333x x x --+=-- 解得12x =- 23x =满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线的判定和性质,解题的关键是学会利用参数构建方程组解决问题,学会用转化的思想思考问题.二、中考几何压轴题11.(1)证明见解析;;(2)线段与之间的数量关系为;(3)或 【分析】(1)①由、结合可得四边形CEGF 是矩形,再由即可得证;②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得; (2解析:(1)①证明见解析;2)线段AG 与BE 之间的数量关系为AG =;(3【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CGCE=GE //AB ,利用平行线分线段成比例定理可得; (2)连接CG ,只需证ACG BCE 即可得;(3)由(2)证出ACGBCE 就可得到BE AG =,再根据A E G 、、三点在同一直线上分在CD 左边和右边两种不同的情况求出AG 的长度,即可求出BE 的长度. 【详解】(1)①证明:四边形ABCD 是正方形,90,45BCD BCA ∴∠=︒∠=︒ ,,GE BC GF CD ⊥⊥90,CEG CFG ECF ∴∠=∠=∠=︒∴四边形CEGF 是矩形,45,CGE ECG ∠=∠=︒,EG EC ∴=∴四边形CEGF 是正方形;②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=,GE ∥AB ,∴AG CGBE CE==(2)如下图所示连接,CG 由旋转性质知,BCE ACG a ∠=∠=在Rt CEG △和Rt CBA 中,45CE cos CG =︒=45CB cos CA =︒=CG CACE CB∴== ,ACGBCE ∴AG CABE CB∴==∴线段AG 与BE 之间的数量关系为2AG BE =;(3)解:①当正方形CEGF 在绕点C 旋转到如下图所示时: 当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CABE CB∴==, 22BE AG ∴=∠CEG=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+=42AC ∴=22222(42)228AE AC CE ∴=-=-=27AE ∴=272AG AE EG ∴=+=+22(272)14222BE AG ∴==⨯+=+②当正方形CEGF 在绕点C 旋转到如下图所示时:当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CA BE CB∴==, 2BE AG ∴=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+= 42AC ∴=22222(42)228AE AC CE ∴=-=-= 27AE ∴=272AG AE EG ∴=-=-22(272)14222BE AG ∴==⨯-=-142142【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.12.(1)是,理由见解析;(2)或或;(3),证明见解析.【分析】(1)证明,可得,又点F 为CD 中点,即可得出结论;(2)当为点构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:和,根解析:(1)是,理由见解析;(2)1211t =或2t =或4t =;(3)M CNF ∠=∠,证明见解析.【分析】(1)证明EDB ABD ∠=∠,可得DE BE AE ==,又点F 为CD 中点,即可得出结论; (2)当MN 为点,,,A B E F 构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:BE AF 和EF AB ∥,根据平行线分线段成比例列方程即可求解;(3)连接BD ,取BD 的中点H ,连接EH ,FH 得两条中位线,根据中位线定理,得平行,可找到相等角和线段,从而可得EFH △是等腰三角形,进而可得M HEF HFE CNF ∠=∠=∠=∠.【详解】解:(1)EF 是四边形ABCD 的准中位线,理由如下:∵DE AE =,。

数学中考一轮复习专项突破训练:二次函数与几何变换(含答案)

数学中考一轮复习专项突破训练:二次函数与几何变换(含答案)

数学中考一轮复习专项突破训练:二次函数与几何变换(附答案)1.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+32.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣13.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣)2﹣B.y=﹣(x+)2﹣C.y=﹣(x﹣)2﹣D.y=﹣(x+)2+4.在同一平面直角坐标系中,若抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A.m=,n=﹣B.m=5,n=﹣6C.m=﹣1,n=6 D.m=1,n=﹣25.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣36.把函数y=﹣x2的图象,经过怎样的平移变换以后,可以得到函数y=﹣(x﹣1)2+1的图象()A.向左平移1个单位,再向下平移1个单位B.向左平移1个单位,再向上平移1个单位C.向右平移1个单位,再向上平移1个单位D.向右平移1个单位,再向下平移1个单位7.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.a>3B.a<3C.a>5D.a<58.在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到9.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+510.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③四边形部分的面积为4④若c=﹣1,则b2=4a.11.如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上P A段扫过的区域的面积为.12.已知二次函数的图象经过点P(2,2),顶点为O(0,0)将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.13.将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为.14.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.15.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中OPQ部分的面积为.16.把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为.17.将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).18.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为.19.如图,在平面直角坐标系中,将抛物线y=﹣x2+4绕点A(2,0)旋转180°,则旋转后的抛物线所对应的函数表达式为.20.将抛物线y=ax2+bx﹣1向上平移3个单位长度后,经过点(﹣2,5),则8a﹣4b﹣11的值是.21.将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.22.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是.23.如图,在平面直角坐标系中,正方形ABCD的顶点A,B的坐标分别为(0,2),(1,0),顶点C在函数y=x2+bx﹣1的图象上,将正方形ABCD沿x轴正方形平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′间的距离为.24.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.25.已知二次函数y1=x2+2x﹣3的图象如图所示.将此函数图象向右平移2个单位得抛物线y2的图象,则四边形部分的面积为.26.在平面直角坐标系xOy中,抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A,求点A的坐标;(3)抛物线y=﹣2x2+(m+9)x﹣6与y轴交于点C,点A关于平移后抛物线的对称轴的对称点为点B,两条抛物线在点A、C和点A、B之间的部分(包含点A、B、C)记为图象M.将直线y=2x﹣2向下平移b(b>0)个单位,在平移过程中直线与图象M始终有两个公共点,请你写出b的取值范围.27.已知抛物线y=﹣2x2﹣4x+1.(1)求这个抛物线的对称轴和顶点坐标;(2)将这个抛物线平移,使顶点移到点P(2,0)的位置,写出所得新抛物线的表达式和平移的过程.28.已知二次函数的图象如图所示.(1)求这个二次函数的表达式;(2)观察图象,当﹣2<x≤1时,y的取值范围为;(3)将该二次函数图象向上平移个单位长度后恰好过点(﹣2,0).29.如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.30.抛物线C1:y=+bx+c与y轴交于点C(0,3),其对称轴与x轴交于点A(2,0).(1)求抛物线C1的解析式;(2)将抛物线C1适当平移,使平移后的抛物线C2的顶点为D(0,k).已知点B(2,2),若抛物线C2与△OAB 的边界总有两个公共点,请结合函数图象,求k的取值范围.31.已知一个二次函数的图象经过A(0,﹣3)、B(2,﹣3)、C(﹣1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图象平移,使顶点移到点P(0,﹣3)的位置,求所得新抛物线的表达式.32.在平面直角坐标系xOy中,抛物线M:y=ax2+bx+c(a≠0)经过A(﹣1,0),且顶点坐标为B(0,1).(1)求抛物线M的函数表达式;(2)设F(t,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1.①抛物线M1的顶点B1的坐标为;②当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.33.已知在平面直角坐标系中,抛物线l1的解析式为y=﹣x2,将抛物线l1平移后得到抛物线l2,若抛物线l2经过点(3,﹣1),且对称轴为x=1.(1)求抛物线l2的解析式;(2)求抛物线l2的顶点坐标;(3)若将抛物线l2沿其对称轴继续上下平移,得到抛物线l3,设抛物线l3的顶点坐标为B,直线OB于抛物线l3的另一个交点为C,当OB=OC时,求C点坐标.34.在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D,若m>0,CD=8,求m的值.(3)已知A(﹣k+4,1),B(1,k﹣2),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,请求出k的取值范围.参考答案1.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.2.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.3.解:∵抛物线的解析式为:y=x2+5x+6,设原抛物线上有点(x0,y0),绕原点旋转180°后,变为(﹣x0,﹣y0),点(﹣x0,﹣y0)在抛物线y=x2+5x+6上,将(﹣x0,﹣y0)代入y=x2+5x+6得到新抛物线﹣y0=x02﹣5x0+6,所以原抛物线的方程为y0=﹣x02+5x0﹣6=﹣(x0﹣)2+,∴向下平移3个单位长度的解析式为y0=﹣(x0﹣)2+﹣3=﹣(x0﹣)2﹣.故选:A.4.解:∵抛物线y=x2+(2m﹣1)x+2m﹣4与y=x2﹣(3m+n)x+n关于y轴对称,∴,解之得,∴则符合条件的m,n的值为m=1,n=﹣2,故选:D.5.解:因为y=x2﹣4x﹣4=(x﹣2)2﹣8,所以抛物线y=x2﹣4x﹣4的顶点坐标为(2,﹣8),把点(2,﹣8)向左平移3个单位,再向上平移5个单位所得对应点的坐标为(﹣1,﹣3),所以平移后的抛物线的函数表达式为y=(x+1)2﹣3.故选:D.6.解:抛物线y=﹣x2的顶点坐标是(0,0),抛物线线y=﹣(x﹣1)2+1的顶点坐标是(1,1),所以将顶点(0,0)向右平移1个单位,再向上平移1个单位得到顶点(1,1),即将函数y=﹣x2的图象向右平移1个单位,再向上平移1个单位得到函数y=﹣(x﹣1)2+1的图象.故选:C.7.解:∵y=x2﹣4x+a=(x﹣2)2﹣4+a,∴将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,得到的函数解析式为y=(x﹣2+1)2﹣4+a+1,即y=x2﹣2x+a﹣2,将y=2代入,得2=x2﹣2x+a﹣2,即x2﹣2x+a﹣4=0,由题意,得△=4﹣4(a﹣4)>0,解得a<5.故选:D.8.解:二次函数y=(x﹣2)2+1,a=1>0,∴该函数的图象开口向上,对称轴为直线x=2,顶点为(2,1),当x=2时,y有最小值1,当x>2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,y=x2的图象向右平移2个单位长度得到y=(x﹣2)2,再向上平移1个单位长度得到y=(x ﹣2)2+1;故选项D的说法正确,故选:C.9.解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.10.解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.11.解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=sin45°•OA=×3=,∴抛物线上P A段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.12.解:设原来的抛物线解析式为:y=ax2(a≠0).把P(2,2)代入,得2=4a,解得a=.故原来的抛物线解析式是:y=x2.设平移后的抛物线解析式为:y=(x﹣b)2.把P(2,2)代入,得2=(2﹣b)2.解得b=0(舍去)或b=4.所以平移后抛物线的解析式是:y=(x﹣4)2.故答案是:y=(x﹣4)2.13.解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.14.解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.15.解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.16.解:二次函数y=(x﹣1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(﹣1,﹣2),所以,旋转后的新函数图象的解析式为y=﹣(x+1)2﹣2.故答案为:y=﹣(x+1)2﹣2.17.解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.18.解:根据题意,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣1,3),∴平移后抛物线解析式为:y=﹣(x+1)2+3.故答案为:y=﹣(x+1)2+3.19.解:抛物线y=﹣x2+4的顶点坐标(0,4),该顶点关于A(2,0)对称的点的坐标是(4,﹣4).根据旋转的性质,旋转后的抛物线所对应的函数表达式为y=(x﹣4)2﹣4.故答案是:y=(x﹣4)2﹣4.20.解:将抛物线y=ax2+bx﹣1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(﹣2,5),代入得:4a﹣2b=3,则8a﹣4b﹣11=2(4a﹣2b)﹣11=2×3﹣11=﹣5,故答案为:﹣5.21.解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为:y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.22.解:原抛物线的顶点为(0,﹣1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=2(x﹣h)2+k,代入得:y=2(x+1)2+3.23.解:如图,过C作GH⊥x轴,交x轴于G,过D作DH⊥GH于H,∵A(0,2),B(1,0),∴OA=2,OB=1,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABO+∠CBG=90°,∵∠ABO+∠OAB=90°,∴∠CBG=∠OAB,∵∠AOB=∠BGC=90°,∴△AOB≌△BGC,∴BG=OA=2,CG=OB=1,∴C(3,1),同理得:△BCG≌△CDH,∴CH=BG=2,DH=CG=1,∴D(2,3),∵C在抛物线的图象上,把C(3,1)代入函数y=x2+bx﹣1中得:b=﹣,∴y=x2﹣x﹣1,设D(x,y),由平移得:D与D′的纵坐标相同,则y=3,当y=3时,x2﹣x﹣1=3,解得:x1=4,x2=﹣3(舍),∴DD′=4﹣2=2,则点D与其对应点D′间的距离为2,故答案为:2.24.解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2+6x﹣11.25.解:由题意知,y1=x2+2x﹣3=(x+1)2﹣4,则顶点坐标是(﹣1,﹣4).所以,阴影部分的面积为:2×4=8.故答案是:8.26.解:(1)∵抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2,∴.∴m=﹣1.∴抛物线的表达式为y=﹣2x2+8x﹣6.∴y=﹣2(x﹣2)2+2.∴顶点坐标为(2,2).(2)由题意得,平移后抛物线表达式为y=﹣2(x﹣3)2+2,∵﹣2(x﹣2)2=﹣2(x﹣3)2,∴.∴A(,).(3)点A坐标为(,),则点B的坐标为(,),设直线y=2x﹣2向下平移b(b>0)个单位经过点B,则y=2x﹣2﹣b,故=7﹣2﹣b,解得b=,设直线y=2x﹣2向下平移b(b>0)个单位经过点A,=5﹣2﹣b,b=,由,消去y得到:2x2﹣10x+14﹣b=0,由题意:△=0,∴100﹣8(14﹣b)=0,∴b=,观察图象可知:平移过程中直线与图象M始终有两个公共点,则.27.解:(1)y=﹣2x2﹣4x+1,=﹣2(x2+2x+1)+2+1,=﹣2(x+1)2+3,所以,对称轴是直线x=﹣1,顶点坐标为(﹣1,3);(2)∵新顶点P(2,0),∴y=﹣2(x﹣2)2,∵2﹣(﹣1)=2+1=3,0﹣3=﹣3,∴平移过程为:向右平移3个单位,向下平移3个单位.28.解:(1)设抛物线的解析式为y=a(x+1)2﹣4,把(1,0)代入得4a﹣4=0,解得a=1,所以抛物线的解析式为y=(x+1)2﹣4;(2)当x=﹣2时,y=(﹣2+1)2﹣4=﹣3;当x=1时,y=0;所以当﹣2<x≤1时,y的取值范围为﹣4≤y≤0;(3)设二次函数图象向上平移k(k>0)个单位长度后恰好过点(﹣2,0).则抛物线解析式可设为y=(x+1)2﹣4+k,把(﹣2,0)代入得(﹣2+1)2﹣4+k=0,解得k=3,即将该二次函数图象向上平移3个单位长度后恰好过点(﹣2,0).故答案为﹣4≤y≤0;3.29.解:(1)将点A(1,0)代入y=(x﹣3)2+m得(1﹣3)2+m=0,解得m=﹣4.所以二次函数解析式为y=(x﹣3)2﹣4,即y=x2﹣6x+5;当x=0时,y=9﹣4=5,所以C点坐标为(0,5),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=3,所以B点坐标为(6,5),将A(1,0)、B(6,5)代入y=kx+b得,,解得:.所以一次函数解析式为y=x﹣1;(2)假设存在点P,设点P(a,a2﹣6a+5),∵S△ABP=S△ABC,∵,如图1,当点P在直线AB的下方时,过点P作PE∥y轴交直线AB于点E,∴=15,∴E(a,a﹣1)∴PE=﹣a2+7a﹣6,∴,∴a2﹣7a+12=0解得:a1=4,a2=3,∴P1(3,﹣4),P2(4,﹣3),如图2,当点P在直线AB的上方时,过点P作PF∥y轴交直线AB于F,同理可得S△P AB=S△PF A﹣S△PFB==15,∴,解得a=0(舍去),a=7,∴P3(7,12).综合以上可得P点坐标为(3,﹣4)或(4,﹣3)或(7,12).30.解:(1)∵抛物线与y轴交于点C(0,3),∴c=3.∵抛物线的对称轴为x=2,∴,解得b=﹣2,∴抛物线C1的解析式为.(2)由题意,抛物线C2的解析式为.当抛物线经过点A(2,0)时,,解得k=﹣2.∵O(0,0),B(2,2),∴直线OB的解析式为y=x.由,得x2﹣2x+2k=0,①当△=(﹣2)2﹣4×1×2k=0,即时,抛物线C2与直线OB只有一个公共点,此时方程①化为x2﹣2x+1=0,解得x=1,即公共点P的横坐标为1,点P在线段OB上.∴k的取值范围是.31.解:(1)设所求二次函数的解析式为y=ax2+bx+c,由题意得,解得.所以这个二次函数的解析式为y=x2﹣2x﹣3;(2)因为新抛物线是由抛物线y=x2﹣2x﹣3平移得到,而新抛物线的顶点坐标是(0,﹣3),所以新抛物线的解析式为y=x2﹣3.32.解:(1)由抛物线M的顶点坐标为B(0,1),设抛物线的解析式为y=ax2+1,将A(﹣1,2)代入解析式,得a×(﹣1)2+1=0,解得a=﹣1,∴抛物线的解析式为y=﹣x2+1,(2)①由旋转的性质,得B1(x,y)与B(0,1)关于F(t,0)对称,=t,=0,解得x=2t,y=﹣1,B1(2t,﹣1);故答案为:(2t,﹣1);②如图1,由题意,得顶点是B1(2t,﹣1),二次项系数为1,∴抛物线M1的解析式为y=(x﹣2t)2﹣1 (t>0),当抛物线M1经过A(﹣1,0),时(﹣1﹣t)2﹣1=0,解得t1=﹣1,t2=0.当抛物线M1经过B(0,1)时,(2t)2﹣1=1,解得t=,结合图象分析,∵t>0,∴当抛物线M1与线段AB有公共点时,t的取值范围0<t≤.33.解:(1)根据题意,设抛物线l2的解析式为:y=﹣(x﹣1)2+k,将点(3,﹣1)代入函数解析式,∴﹣1=﹣4+k,解得:k=3,∴抛物线l2的解析式为:y=﹣(x﹣1)2+3;(2)∴抛物线l2的顶点坐标为(1,3);(3)设l3的解析式为:y=﹣(x﹣1)2+3+m,∴B点坐标为(1,3+m),∵B,O,C三点共线且OB=OC,∴C点坐标为(﹣1,﹣3﹣m),∵C在l3上,∴﹣(﹣1﹣1)2+3+m=﹣3﹣m,∴m=﹣1,∴C点坐标为(﹣1,﹣2).34.解:(1)∵y=x2﹣2mx+m2﹣1=(x﹣m)2﹣1,∴抛物线的顶点坐标为(m,﹣1);(2)由对称性可知,点C到直线y=﹣1的距离为4,∴OC=3,∴m2﹣1=3,∵m>0,∴m=2;(3)设直线AB的解析式为y=ax+b,把A(﹣k+4,1),B(1,k﹣2)代入得,解得a=1,b=k﹣3,∴y=x+k﹣3,∵m=2,∴抛物线为y=x2﹣4x+3,当抛物线经过点A(﹣k+4,1)时,k=2+或k=2﹣;当抛物线经过点B(1,k﹣2)时,k=2;若直线AB抛物线y=x2﹣2mx+m2﹣1只有一个公共点,则x2﹣4x+3=x+k﹣3,即x2﹣5x+6﹣k=0中,△=0,∴25﹣4(6﹣k)=0,解得k=﹣,∵线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点,∴2﹣<k≤2或k≥2+或k=﹣.。

中考数学《二次函数图像的几何变换》专项练习题及答案

中考数学《二次函数图像的几何变换》专项练习题及答案

中考数学《二次函数图像的几何变换》专项练习题及答案一、单选题1.在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2B.y=(x﹣2)2﹣2C.y=(x﹣2)2+2D.y=(x+2)2﹣22.将抛物线影响y=-x2向左平移2个单位后,得到的抛物线的解析式是()A.y=-(x+2)2B.y=-x2+2C.y=-(x-2)2D.y=-x2-23.若将抛物线y=5x2先向右平移2个单位,再向下平移3个单位,可得到新的抛物线是()A.y=5(x+2)2+3B.y=5(x−2)2+3C.y=5(x+2)2−3D.y=5(x−2)2−34.在平面直角坐标系内,将抛物线y=(x+2)2−3经过两次平移后,得到的新抛物线为y=(x−1)2−4.下列对这一平移过程描述正确的是()A.先向右平移3个单位长度,再向下平移1个单位长度B.先向左平移3个单位长度,再向下平移1个单位长度C.先向右平移3个单位长度,再向上平移1个单位长度D.先向左平移3个单位长度,再向下平移1个单位长度5.下列平移中,不能使二次函数y=2x2+4x−6经过原点的是()A.向左平移1个单位B.向右平移3个单位C.向上平移6个单位D.向上平移8个单位6.二次函数y=x2-1的图象可由下列哪个函数图象向右平移2个单位,向下平移2个单位得到()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x−2)2−3D.y=(x+2)2+37.如图,在直角坐标系中,O为坐标原点,点A(4,0),以OA为对角线作正方形ABOC,若将抛物线y= 12x2沿射线OC平移得到新抛物线y= 12(x-m)2+k(m>0).则当新抛物线与正方形的边AB有公共点时,m的值一定是()A.2,6,8B.0<m≤6C.0<m≤8 D.0<m≤2 或6 ≤ m≤88.将抛物线y=3x2的图象先向右平移2个单位,再向上平移5个单位后,得到的抛物线解析式是()A.y=3(x﹣2)2﹣5B.y=3(x﹣2)2+5C.y=3(x+2)2﹣5D.y=3(x+2)2+59.在平面直角坐标系中,对于二次函数y=(x−2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到10.抛物线y=12x2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是()A.y=12(x+1)2﹣2B.y=12(x﹣1)2+2C.y=12(x﹣1)2﹣2D.y=12(x+1)2+211.将二次函数y=x2的图象如何平移可得到y=x2+4x+3的图象()A.向右平移2个单位,向上平移一个单位B.向右平移2个单位,向下平移一个单位C.向左平移2个单位,向下平移一个单位D.向左平移2个单位,向上平移一个单位12.把抛物线y=(x+2)2向下平移2个单位长度,再向右平移1个单位长度,所得抛物线是()A.y=(x+2)2+2B.y=(x+1)2−2C.y=x2+2D.y=x2−2二、填空题13.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.14.抛物线y=-x2-2x+3可由抛物线y=ax2平移得到,则a的值是。

中考数学《二次函数-动态几何问题》专项练习及答案

中考数学《二次函数-动态几何问题》专项练习及答案

中考数学《二次函数-动态几何问题》专项练习及答案一、单选题1.如图1,在△ABC中,△B=90°,△C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P恰好为AC的中点时,PQ的长为()A.2B.4C.2 √3D.4 √32.如图,在四边形DEFG中,△E=△F=90°,△DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2,将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是()A.B.C.D.3.点C是线段AB上的一点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C是AB的三等分点时,S最大4.下列函数属于二次函数的是()A.y=5x+3B.y=1x2C.y=2x2+x+1D.y=√x2+15.在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣26.如图,直线l1:y=−x+4与x轴和y轴分别相交于A、B两点,平行于直线l1的直线l2从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴和y轴分别相交于C、D两点,运动时间为t秒(0≤t≤4).以CD为斜边作等腰直角ΔCDE(E、O两点分别在CD两侧),若ΔCDE和ΔOAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.7.如图,菱形ABCD的边长为2,△A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH△BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.8.把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣29.如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F 是线段AB上的动点,设AF=x,AE2﹣FE2=y,则能表示y与x的函数关系的图象是()A.B.C.D.10.如图,在△ABC中,△ACB=90°,AC=4,BC=2.P是AB边上一动点,PD△AC于点D,点E 在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小11.将抛物线y=-2x2先向左平移1个单位,再向上平移3个单位,两次平移后得到的抛物线的解析式为()A.y=-2(x+1)2+3 B.y=-2(x+1)2-3C.y=-2(x-1)2+3 D.y=-2(x-1)2-312.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且△APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.二、填空题13.如图,在Rt△ABC中,△C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE△AB 交边BC于点E,过点B作BF△BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE 和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF 的长度为.14.已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点。

二次函数与几何图形结合题及答案

二次函数与几何图形结合题及答案

1.如图,抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .〔1〕求A 、B 、C 三点的坐标;〔2〕过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积;解:〔1〕令0y =,得210x -= 解得1x =± 令0x =,得1y =-∴A (1,0)-B (1,0)C (0,1)-……………………3分〔2〕∵O A =O B =O C =1∴∠BAC =∠AC O=∠BC O=45∵A P ∥CB , ∴∠P AB =45过点P 作P E ⊥x 轴于E ,那么∆A P E 为等腰直角三角形令O E =a ,那么P E =1a +∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=- 解得12a =,21a =-〔不合题意,舍去〕∴P E =3……………………………………………………………………………5分∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯=………………………………6分2.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D .〔1〕求b ,c 的值;〔2〕点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;〔3〕在〔2〕的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 假设存在,求出所有点P 的坐标;假设不存在,说明理由.解:〔1〕由得:A 〔-1,0〕 B 〔4,5〕…………………1分∵二次函数2y x bx c =++的图像经过点A 〔-1,0〕B(4,5)∴101645b c b c -+=⎧⎨++=⎩…………………………………………………2分 解得:b=-2 c=-3…………………………………………………3分〔2〕如26题图:∵直线AB 经过点A 〔-1,0〕 B(4,5)∴直线AB 的解析式为:y=x+1……………………………………4分∵二次函数223y x x =--∴设点E(t , t+1),那么F 〔t ,223t t --〕………………………5分∴EF= 2(1)(23)t t t +---………………………………………6分=2325()24t --+ ∴当32t =时,EF 的最大值=254 ∴点E 的坐标为〔32,52〕………………………………7分 〔3〕①如26题图:顺次连接点E 、B 、F 、D 得四边形EBFD.可求出点F 的坐标〔32,154-〕,点D 的坐标为〔1,-4〕 S EBFD 四边行 = SBEF + S DEF =12531253(4)(1)242242⨯-+⨯- =758………………………………………………10分 ②如26题备用图:ⅰ)过点E 作a ⊥EF 交抛物线于点P,设点P(m ,223m m --)那么有:25232m m --= 解得:1226m =-,2226m += ∴12265(,)2p -, 22265(,)2p + ⅱ〕过点F 作b ⊥EF 交抛物线于3P ,设3P 〔n ,223n n --〕那么有:215423n n --=- 解得:112n = ,232n =〔与点F 重合,舍去〕 ∴3P 11524(,-) 综上所述:所有点P 的坐标:12265(,)22p -,22265(,)22p +3P 〔11524(,-). 能使△EFP 组成以EF 为直角边的直角三角形.…………………………………… 13分3.如图,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,与y 轴交于点P ,顶点为C 〔1,-2〕. 〔1〕求此函数的关系式;〔2〕作点C 关于x 轴的对称点D ,顺次连接A 、C 、B 、D.假设在抛物线上存在点E ,使直线PE 将四边形ABCD 分成面积相等的两个四边形,求点E 的坐标;〔1〕∵c bx x y ++=2的顶点为C 〔1,-2〕, ∴2)1(2--=x y ,122--=x x y . ……………2分 26题备用图〔2〕设直线PE 对应的函数关系式为b kx y +=由题意,四边形ACBD 是菱形.故直线PE 必过菱形ACBD 的对称中心M . ………3分由P (0,-1),M 〔1,0〕,得⎩⎨⎧=+-=01b k b .从而1-=x y , …5分 设E (x ,1-x ),代入122--=x x y ,得1212--=-x x x . 解之得01=x ,32=x ,根据题意,得点E (3,2) …………………………………7分.4如图,抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点〔点A 在点B 的右侧〕,点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动〔点P 与A 不重合〕,过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,假设点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?假设存在,求点F 的坐标;假设不存在,请说明理由.解:〔1〕∵抛物线的顶点为Q 〔2,-1〕∴设()122--=x a y将C 〔0,3〕代入上式,得()12032--=a1=a ∴()122--=x y , 即342+-=x x y …〔3分〕〔2〕分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合(如图)令y =0, 得0342=+-x x 解之得11=x , 32=x∵点A 在点B 的右边, ∴B(1,0), A(3,0)∴P 1(1,0) 〔5分〕②解:当点A 为△APD 2的直角顶点是(如图)∵OA=OC, ∠AOC= 90, ∴∠OAD 2=45当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2- .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO, ∴P 2、D 2关于x 轴对称设直线AC 的函数关系式为b kx y +=将A(3,0), C(0,3)代入上式得 ⎩⎨⎧=+=bb k 330, ∴⎩⎨⎧=-=31b k ∴3+-=x y ……………〔7分〕 ∵D 2在3+-=x y 上, P 2在342+-=x x y 上,∴设D 2(x ,3+-x ), P 2(x ,342+-x x )∴(3+-x )+(342+-x x )=0 0652=+-x x , ∴21=x , 32=x (舍)∴当x =2时, 342+-=x x y =32422+⨯-=-1 ∴P 2的坐标为P 2(2,-1)(即为抛物线顶点)∴P 点坐标为P 1(1,0), P 2(2,-1) …………………………………………………〔9分〕(3)解: 由题(2)知,当点P 的坐标为P 1(1,0)时,不能构成平行四边形……………………〔10分〕当点P 的坐标为P 2(2,-1)(即顶点Q)时,平移直线AP(如图)交x 轴于点E,交抛物线于点F.当AP=FE 时,四边形PAFE 是平行四边形∵P(2,-1), ∴可令F(x ,1)∴1342=+-x x 解之得: 221-=x , 222+=x ∴F 点有两点, 即F 1(22-,1), F 2(22+,1) ……………〔13分〕3. 〔2021,25,10分〕如图,抛物线212y x x a =-+与x 轴交于A ,B 两点,与y 轴交于点C ,其顶点在直线y =-2x 上.(1)求a 的值;(2)求A ,B 两点的坐标; (3)以AC ,CB 为一组邻边作□ABCD ,那么点D 关于x 轴的对称点D ´是否在该抛物线上?请说明理由.考点:二次函数综合题。

2023年中考数学高频考点专题训练--二次函数与动态几何综合题

2023年中考数学高频考点专题训练--二次函数与动态几何综合题

2023年中考数学高频考点专题训练--二次函数与动态几何综合题1.如图,已知抛物线y=−43x2+bx+c经过A(0,4),B(3,0)两点,与x轴负半轴交于点C,连接AC、AB.(1)求该抛物线的解析式;(2)D、E分别为AC、AB的中点,连接DE,P为DE上的动点,PQ⊥BC,垂足为Q,QN⊥AB,垂足为N,连接PN.①当△PQN与△ABC相似时,求点P的坐标;②是否存在点P,使得PQ=NQ,若存在,直接写出点P的坐标,若不存在,请说明理由.2.如图,抛物线y= 12x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求∥PCE面积最大时P点的坐标;(3)在(2)的条件下,若点D为OA的中点,点M是线段AC上一点,当∥OMD为等腰三角形时,连接MP、ME,把∥MPE沿着PE翻折,点M的对应点为点N,直接写出点N的坐标.3.已知抛物线y=−12x2+mx+m+12与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,−52),点P为抛物线在直线AC上方图象上一动点.(1)求抛物线的解析式;(2)求∥PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个交点,求图象M的顶点横坐标n的取值范围.4.如图,抛物线y= −14x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,52).直线y=kx−32过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y= −14x2+bx+c与直线y=kx −32的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作DE∥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN∥AD于点N,设∥PMN的周长为l,点P的横坐标为x,求l与x 的函数关系式,并求出l的最大值.5.如图,抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)当点P是直线BC下方的抛物线上一点,且S∥PBC=2S∥ABC时,求点P的坐标;(3)点P(﹣2,﹣3),点E是抛物线上一点,点F是抛物线对称轴上一点,是否存在这样的点E和点F,使得以点B、P、E、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.6.如图,抛物线y=ax2+bx+2交x轴于点A(-3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式.(2)点D的坐标为(-1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)点M为抛物线对称轴上的点,问:在抛物线上是否存在点N,使∥MNO为等腰直角三角形,且∥MNO为直角?若存在,请直接写出点N的坐标;若不存在,请说明理由.7.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,点O为坐标原点,点A在第一象限,点B在x轴正半轴上,AO=AB,OB=4,tan∥AOB=2,点C是线段OA的中点.(1)求点C的坐标;(2)若点P是x轴上的一个动点,使得∥APO=∥CBO,抛物线y=ax2+bx经过点A、点P,求这条抛物线的函数解析式;(3)在(2)的条件下,点M是抛物线图象上的一个动点,以M为圆心的圆与直线OA相切,切点为点N,点A关于直线MN的对称点为点D.请你探索:是否存在这样的点M,使得∥MAD∥∥AOB?若存在,请直接写出点M的坐标;若不存在,请说明理由.9.如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A在y轴的左侧,点C 在x轴的下方,且OA=OC=5.(1)求抛物线对应的函数解析式;(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F 为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.10.综合与探究如图,已知抛物线y=ax2+2x+c(a≠0)与x轴负半轴交于点A(−1,0),与y轴交于点C(0,3),抛物线的顶点为D,直线y=x+b与抛物线交于A,F两点,过点D作DE∥y轴交直线AF于点E.(1)求抛物线和直线AF的解析式;(2)在直线AF上方的抛物线上有一点P,使S△PAE=3S△PDE,求点P的坐标;(3)若点M为抛物线上一动点,试探究在直线AF上是否存在一点N,使得以D,E,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的对称轴为x=2,与y轴交于点A与x轴交于点E、B,且点A(0,5),B(5,0),过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的点,且在AC的上方,作PD平行于y轴交AB于点D.(1)求二次函数的解析式;(2)当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)在抛物线上是否存在点Q,使得以点A、C、D、Q为顶点的四边形为平行四边形,如果存在,请写出点Q,D的坐标,如果不存在,请说明理由.12.如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.13.已知抛物线y=−12x2+32x+2,与x轴交于两点A,B(点A在点B的左侧),与y轴交于点C.(1)求点A,B和点C的坐标;(2)已知P是线段BC上的一个动点.①若PQ⊥x轴,交抛物线于点Q,当BP+PQ取最大值时,求点P的坐标;②求√2AP+PB的最小值.14.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DE ⊥x轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.15.如图,抛物线y=12x2+32x+2与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.(1)求点A、B、C的坐标.(2)点P为AB上的动点(点A、O、B除外),过点P作直线PN∥x轴,交抛物线于点N,交直线BC于点M.设点P到原点的值为t,MN的长度为s,求s与t的函数关系式.(3)在(2)的条件下,试求出在点P运动的过程中,由点O、P、N围成的三角形与Rt∥COB 相似时点P的坐标.16.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM∥x轴,垂足为点M,PM交BC于点Q.(1)求此抛物线的表达式:(2)过点P作PN∥BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标,若不存在,请说明理由.答案解析部分1.【答案】(1)解:将A(0,4),B(3,0)代入抛物线的解析式得:{c=4−12+3b+c=0,解得:b=83,c=4.∴抛物线的解析式为:y=−43x2+83x+4.(2)解:①如图1所示:∵令y=0,−43x2+83x+4=0解得:x1=−1,x2=3,∴C(−1,0).∴BC=4,AB=√32+42=5.∵D、E分别为AC、AB的中点,∴DE//BC.∴ADDC=AFFO=1.∴PQ=FO=2.∵PQ⊥BC,QN⊥AB,∴∠PQN+∠NQB=90°,∠NQB+∠QBN=90°.∴∠PQN=∠QBN.∴当PQQN=ABCB或POQN=CBAB时,△PQN与△ABC相似.∵当PQQN=ABCB时,2QN=54,解得:QN=8 5.∵QNQB=OAAB=45,∴QB=54QN=54×85=2.∴OQ=3−2=1.∴点P的坐标为(1,2).当PQQN=CBAB时,2QN=45,解得:QN=2.5.∵QNQB=OAAB=45,∴QB=54QN=54×52=258.∴OB−BQ=−1 8,∴点P的坐标为(−18,2).综上所述点P的坐标为:(1,2)或(−18,2).②如图2所示:∵PQ=QN,PQ=2,∴QN=2.∵QN⊥AB,∴∠QNB=90°,∵由(2)可知OA=4,AB=5,∴sin∠ABO=4 5.∴QNQB=45,即2QB=45,解得:QB=52.∴OQ =OB −QB =3−52=12. ∴P(12,2) .2.【答案】(1)解:根据题意得:{c =−42+2b +c =0 , 解得: {b =1c =−4,所以该抛物线的解析式为:y= 12x 2+x ﹣4;(2)解:令y=0,即 12 x 2+x ﹣4=0,解得x 1=﹣4,x 2=2,∴A (﹣4,0),S ∥ABC = 12 AB•OC=12设P 点坐标为(x ,0),则PB=2﹣x . ∵PE∥BC ,∴∥BPE=∥BAC ,∥BEP=∥BCA , ∴∥PBE∥∥BAC ,∴S △PBE S △ABC=( PB AB )2,即 S△PBE 12 =( 2−x 6 )2,化简得:S ∥PBE = 13(2﹣x )2. S ∥PCE =S ∥PCB ﹣S ∥PBE = 12 PB•OC ﹣S ∥PBE = 12 ×(2﹣x )×4﹣ 13 (2﹣x )2=﹣ 13 x 2﹣ 23 x+ 83 =﹣ 13 (x+1)2+3∴当x=﹣1时,S ∥PCE 的最大值为3. (3)解:由(2)已知A (﹣4,0), ∵点D 为0A 中点, ∴D (﹣2,0),设直线AC 的解析式为y=mx+n ,把A (﹣4,0)、C (0,﹣4)分别代入得: {−4m +n =0n =−4 ,解得 {m =−1n =−4 ,∴直线AC 的解析式为y=﹣x ﹣4.∵PE∥AC ,所以可设直线PE 的解析式为y=﹣x+a , 将P (﹣1,0)代入y=﹣x ﹣a 得a=﹣1,所以直线PE 的解析式为y=﹣x ﹣1. 设直线BC 的解析式为y=kx+a′,将B (2,0)、C (0,﹣4)代入y=kx+a′得 {2k +a′=0a′=−4 ,解得k=2,a′=﹣4.所以直线BC 的解析式为y=2x ﹣4.由2x ﹣4=﹣x ﹣1得x=1,将x=1代入y=2x ﹣4得y=﹣2, ∴E 点坐标为(1,﹣2). ①当MD=OD 时,如图1:∵AD=MD=AD ,OA=OC ,∥DAM=∥OAC , ∴∥ADM∥∥AOC ,∴∥ADM=∥AOC=90°,即DM∥x 轴,∴M 的横坐标为﹣2,将x=﹣2代入y=﹣x ﹣4,得y=﹣2. 所以此时M 的坐标为(﹣2,﹣2); ∵M 和E 点纵坐标相等, ∴ME∥x 轴, ∴∥PEM=45°.由翻折得∥ENM=2∥PEM=90°,即NE∥y 轴, ∴EN=ME=3, ∵E (1,﹣2), ∴N (1,1).②当DM=OM 时,过点M 作MG∥x 轴交于点,如图2:易知DG=OG=1,即G点与P点重合,M的横坐标为﹣1,将x=﹣1代入y=﹣x﹣4,得y=﹣3.∴M(﹣1,﹣3).∵ME= √(−1−1)2+(−3+2)2= √5,EB= √(1−2)2+22= √5,∴ME=EB,∵PB=3,PM=3,即PB=PM,又∵PE=PE,∴∥BPE∥∥MPE,∴∥BEP=∥MEP,∴点N与点B重合,∴N(2,0);③当OD=OM时,设点O到AC的最短距离为h,则OA•OC=h•AC∵AC= √OA2+OC2= √42+42=4 √2,∴h= 4×44√2=2 √2,∵h>OD,∴OD≠OM.此时等腰∥OMD不存在.综上所述,N点的坐标分别为(1,1)或(2,0).3.【答案】(1)解:将点C(0,−52)代入抛物线解析式得:m+12=−52,解得:m=−3,∴抛物线解析式为:y=−12x2−3x−52;(2)解:∵抛物线与x轴交于A、B两点,∴令0=−12x2−3x−52,解得:x1=−5,x2=−1,∴A、B坐标分别为:A(−5,0),B(−1,0),设直线AC的解析式为:y=kx+b(k≠0),将A(−5,0)和C(0,−52)代入得:{−5k+b=0b=−52,解得:{k=−12b=−52,∴直线AC的解析式为:y=−12x−52,如图所示,过P点作PQ∥x轴,交AC于Q点,∵P点在位于直线AC上方的抛物线上,∴设P(a,−12a2−3a−52),则Q(a,−12a−52),其中−5<a<0,∴PQ=y P−y Q=−12a2−3a−52−(−12a−52)=−12a2−52a,∵S△PAC=12PQ(x C−x A),∴S△PAC=12(−12a2−52a)×[0−(−5)]=−54(a+52)2+12516,∵−54<0,∴抛物线开口向下,当a=−52时,S△PAC取得的最大值,最大值为12516,此时,将a=−52代入抛物线解析式得:y=158,∴当P(−52,158)时,S△PAC取得的最大值,最大值为12516;(3)解:如图所示,抛物线y=−12x2+mx+m+12在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G .由(1)可知,原抛物线顶点坐标为(−3,2),∴沿x 轴向下翻折后,图象G 的顶点坐标为(−3,−2),图象G 的解析式为:y =12x 2+3x +52;∵图象G 沿着直线AC 平移,∴作直线BS∥AC ,交PC 于S 点,则随着平移过程,点B 在直线BS 上运动, 分如下情况讨论:①当图象G 沿直线AC 平移至B 点恰好经过S 点时,如图中M 1所示, 此时,平移后的图象M 恰好与线段PC 有一个交点,即为S 点,由(2)知,P(−52,158),以及直线AC 的解析式为y =−12x −52,∴设直线BS 的解析式为:y =−12x +b ,将B(−1,0)代入得:b =−12,∴直线BS 的解析式为:y =−12x −12;设直线PC 的解析式为:y =kx +b(k ≠0),将P(−52,158),C(0,−52)代入得:{−52k +b =158b =−52,解得:{k =−74b =−52,∴直线PC 的解析式为:y =−74x −52;联立{y =−12x −12y =−74x −52,解得:{x =−85y =310,即:S 点的坐标为S(−85,310),∴此时点B(−1,0)平移至S(−85,310),等同于向左平移35个单位,向上平移310个单位,即:当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向左平移35个单位,向上平移310个单位, ∵原图像G 的顶点坐标为:(−3,−2), ∴平移后图象M 1的顶点的横坐标n =−3−35=−185; ②当图象G 沿直线AC 平移至恰好经过C 点时,如图中M 2所示,设图象G 与直线AC 的交点为R ,联立{y =12x 2+3x +52y =−12x −52,解得:{x =−5y =0或{x =−2y =−32, ∴点R 的坐标为:R(−2,−32),由R(−2,−32)平移至C(0,−52),等同于向右平移2个单位,向下平移1个单位,∴当平移后的图象M 与线段PC 恰好仅有一个交点时,可由原图像G 向右平移2个单位,向下平移1各单位,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 2的顶点的横坐标n =−3+2=−1;∴当图象G 在M 1和M 2之间平移时,均能满足与线段PC 有且仅有一个交点, 此时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1; ③当图象G 沿直线AC 平移至A 点恰好经过C 点时,如图中M 3所示,此时,由A(−5,0)平移至C(0,−52),等同于向右平移5个单位,向下平移52个单位,即:原图像G 向右平移5个单位,向下平移52个单位,得到图象M 3,∵原图像G 的顶点坐标为:(−3,−2),∴平移后图象M 3的顶点的横坐标n =−3+5=2;综上所述,当新的图象M 与线段PC 只有一个交点时,图象M 的顶点横坐标n 的取值范围为:−185≤n ≤−1或n =2. 4.【答案】(1)解:∵y= −14x 2+bx+c 经过点A (2,0)和B (0, 52 ),∴由此得 {−1+2b +c =0c =52, 解得 {b =−34c =52. ∴抛物线的解析式是y= −14x 2﹣ 34 x+ 52 ,∵直线y=kx ﹣ 32 经过点A (2,0)∴2k ﹣ 32 =0,解得:k= 34,∴直线的解析式是y= 34 x ﹣ 32(2)解:设P 的坐标是(x , −14 x 2﹣ 34 x+ 52 ),则M 的坐标是(x , 34 x ﹣ 32 )∴PM=( −14 x 2﹣ 34 x+ 52 )﹣( 34 x ﹣ 32 )=﹣ 14 x 2﹣ 32 x+4,解方程 {y =−14x 2−34x +52y =34x −32得: {x =−8y =−712, {x =2y =0 , ∵点D 在第三象限,则点D 的坐标是(﹣8,﹣7 12 ),由y= 34 x ﹣ 32得点C 的坐标是(0,﹣32), ∴CE=﹣ 32 ﹣(﹣7 12)=6,由于PM∥y 轴,要使四边形PMEC 是平行四边形,必有PM=CE ,即﹣ 14 x 2﹣ 32 x+4=6解这个方程得:x 1=﹣2,x 2=﹣4, 符合﹣8<x <2,当x=﹣2时,y=﹣ 14 ×(﹣2)2﹣ 34 ×(﹣2)+ 52=3,当x=﹣4时,y=﹣ 14 ×(﹣4)2﹣ 34 ×(﹣4)+ 52= 32 ,因此,直线AD 上方的抛物线上存在这样的点P ,使四边形PMEC 是平行四边形,点P 的坐标是(﹣2,3)和(﹣4, 32) (3)解:在Rt∥CDE 中,DE=8,CE=6 由勾股定理得:DC= √82+62 ∴∥CDE 的周长是24, ∵PM∥y 轴, ∵∥PMN=∥DCE , ∵∥PNM=∥DEC , ∴∥PMN∥∥CDE ,∴△PMN 的周长△CDE 的周长 = PM DC ,即 l 24 = −14x 2−32x+410, 化简整理得:l 与x 的函数关系式是:l=﹣ 35 x 2﹣ 185 x+ 485,l=﹣ 35 x 2﹣ 185 x+ 485 =﹣ 35(x+3)2+15,∵﹣ 35<0,∴l 有最大值,当x=﹣3时,l 的最大值是15.5.【答案】(1)解:∵y =ax 2+bx+2(a≠0)与x 轴交于A (﹣1,0)、B (4,0), ∴{a −b +2=016a +4b +2=0 ,解得 {a =−12b =32 , ∴抛物线的解析式为:y =−12 x 2+32x+2.(2)解:∵A (﹣1,0)、B (4,0), ∴AB =5,由抛物线的解析式可得,C (0,2),∴OC =2,l BC :y =−12x+2.∴S ∥PBC =2S ∥ABC =2 ×12•AB•OC =5×2=10.在x 轴上取点M (﹣6,0),则MB =10,∴S ∥MBC =12 •MB•OC =12×2×10= 10.过点M 作BC 的平行线MN ,交抛物线于点P 1,P 2,∴l MN :y =−12 x ﹣3.联立 {y =−12x 2+32x +2y =−12x −3, 解得 {x =2+√14y =−4−√142 ,或 {x =2−√14y =−4+√142,∴P 1(2 +√14 ,﹣4 −√142 ),P 2(2 −√14 ,﹣4 +√142).(3)解:由抛物线解析式可得,抛物线对称轴为直线x =32.∵点F 是抛物线对称轴上一点, ∴设点F 的坐标为( 32,t ).若以点B 、P 、E 、F 为顶点的四边形是平行四边形,需要分以下两种情况: ①当BP 为边时,如图,由平行四边形的性质可知,E1(32+6,t+3),E2(32−6,t﹣3),∵点E在抛物线y =−12x2+32x+2上,∴t+3 =−12×(32+6)2+32×(32+6)+2,解得t =−1438,t﹣3 =−12×(32−6)2+32×(32−6)+2,解得t =−1378,∴F的坐标为(32,−1438)或(32,−1378).②当BP为对角线时,BP的中点为(1,−3 2),∵F(32,t),∴E(−12,﹣t﹣3),∴﹣t﹣3 =−12×(−12)2+32×(−12)+2,解得t =−338,∴F(32,−338).综上,点F的坐标为(32,−1438)或(32,−1378)或(32,−338).6.【答案】(1)解:抛物线的表达式为:y=a(x+3)(x-1)=a(x2+2x-3)=ax2+2ax-3a,即-3a=2,解得:a=- 2 3,故抛物线的表达式为:y=- 23x2- 43x+2,则点C(0,2),函数的对称轴为:x=1(2)解:连接OP,设点P(x,- 23x2- 43x+2),则S=S四边形ADCP=S∥APO+S∥CPO-S∥ODC= 12×AO×y P+ 12×OC×|x P|- 12×CO×OD = 12×3×(- 23x2- 43x+2) +12×2×(-x)- 12×2×1=-x2-3x+2,∵-1<0,故S有最大值,当x=- 32时,S的最大值为174(3)解:存在,理由:∥MNO为等腰直角三角形,且∥MNO为直角时,点N的位置如下图所示:①当点N在x轴上方时,点N的位置为N1、N2,N1的情况(∥M1N1O):设点N1的坐标为(x,- 23x2- 43x+2),则M1E=x+1,过点N1作x轴的垂线交x轴于点F,过点M1作x轴的平行线交N1F于点E,∵∥FN1O+∥M1N1E=90°,∥M1N1E+∥EM1N1=90°,∴∥EM1N1=∥FN1O,∥M1N1E=∥N1OF=90°,ON1=M1N1,∴∥M1N1E∥∥N1OF(AAS),∴M1E=N1F,即:x+1=- 23x2- 43x+2,解得:x=−7±√734(舍去负值),则点N1( −7+√734,−3+√734);N2的情况(∥M2N2O):同理可得:点N 2( −1−√734 , −3+√734); ②当点N 在x 轴下方时,点N 的位置为N 3、N 4,同理可得:点N 3、N 4的坐标分别为:( −7−√734 , −3−√734 )、( −1+√734 , −3−√734); 综上,点N 的坐标为:( −7+√734 , −3+√734 )或( −1−√734 , −3+√734 )或( −7−√734, −3−√734 )或( −1+√734 , −3−√734). 7.【答案】(1)解:令 4x −12=2x 2−8x +6 ,解得 x 1=x 2=3 ,当 x =3 时, 4x −12=2x 2−8x +6=0 ,∴y =ax 2+bx +c 必过 (3,0) ,又∵y =ax 2+bx +c 必过 (−1,0) ,∴{a −b +c =09a +3b +c =0,⇒,{b =−2a c =−3a, ∴y =ax 2−2ax −3a ,即 4x −12≤ax 2−2ax −3a ,即可看成二次函数 y =ax 2−2ax −3a 与一次函数 y =4x −12 仅有一个交点,且整体位于 y =4x −12 的上方∴a >0 ,∴ 4x −12=ax 2−2ax −3a 有两个相等的实数根∴ Δ=0∴(2a +4)2−4a(12−3a)=0 ,∴(a −1)2=0 ,∴a =1 ,∴b =−2 , c =−3 ,∴y =x 2−2x −3 .(2)解:由(1)可知: A(3,0) , C(0,−3) ,设 M(m ,m 2−2m −3),N(n ,0) ,①当 AC 为对角线时, {x A +x C =x M +x N y A +y C =y n +y N∴{3+0=m +n 0+(−3)=m 2−2m −3+0,解得 m 1=0 (舍), m 2=2 , ∴n =1 ,即 N 1(1,0) .②当AM为对角线时,{x A+x M=x C+x Ny A +yM=yC+yN∴{3+m=0+n0+m2−2m−3=−3+0,解得m1=0(舍)m2=2,∴n=5,即N2(5,0).③当AN为对角线时,{x A+x N=x C+x My A +yN=yC+yM∴{3+n=0+m0+0=−3+m2−2m−3,解得m1=1+√7,m2=1−√7,∴n=√7−2或n=−2−√7,∴N3(√7−2,0),N4(−2−√7,0).综上所述:N点坐标为(1,0)或(5,0)或(√7−2,0)或(−2−√7,0).8.【答案】(1)解:过点A作AD∥OB于点D,过点C作CE∥OB于点E,∵AO=AB,∴AD是∥AOB的中线,∴OD= 12OB=2,∵tan∥AOB=2,∴ADOD=2,∴AD=4,∵CE∥AD,点C是AO的中点,∴CE是∥AOD的中位线,∴CE= 12AD=2,OE=12OD=1,∴C的坐标为(1,2);(2)解:由(1)可知:CE=2,BE=3,A的坐标为(2,4),∴tan∥CBE= CEBE=23,∵∥APO=∥CBO,∴tan∥APO=tan∥CBO= 23, ∴AD PD = 23, ∴PD=6,设P 的坐标为(x ,0),∵D (2,0),∴PD=|x ﹣2|,∴|x ﹣2|=6,∴x=8或x=﹣4,∴P (8,0)或(﹣4,0);当P 的坐标为(8,0)时,把A (2,4)和(8,0)代入y=ax 2+bx ,∴{4=4a +b 0=64a +8b, 解得: {a =−13b =83, ∴抛物线的解析式为:y=﹣ 13 x 2+ 83x , 当P 的坐标为(﹣4,0)时,把A (2,4)和P (﹣4,0)代入y=ax 2+bx ,∴{4=4a +2b 0=16a −4b ,解得: {a =13b =43, ∴抛物线的解析式为:y= 13 x 2+ 43x , 综上所述,抛物线的解析式为:y=﹣ 13 x 2+ 83 x 或y= 13 x 2+ 43x ; (3)解:∵M 为圆心,N 为切点,∴MN∥OA ,∵D 点是A 点关于MN 的对称点,∴∥MAD 是等腰三角形,MA=MD当∥MAD∥∥AOB 时,∵∥AOB 是等腰三角形,∴∥MAD=∥AOB ,当抛物线的解析式为y=﹣ 13 x 2+ 83x 时,如图2,①若点N在A的上方时,此时∥MAN=∥AOB,∴AM∥x轴,∴M的纵坐标为4,∴把y=4代入y=﹣13x2+ 83x,解得:x=2(舍去)或x=6,∴M的坐标为(6,4),②当点N在点A的下方时,此时∥MDA=∥AOB,∴DM∥x轴,过点A作AE∥DM于点E,交于x轴于点F,设D点横坐标为a,∴DE=2-a,∵tan∥MDA=tan∥AOB=2,∴AE=2DE=4-2a,∴点M的纵坐标为2a,∴由勾股定理可知:AD= √5(2-a),OA=2 √5,∴OADM=OBAD,解2√5DM=4√5(2−a),∴DM= 5(2−a)2,设M的横坐标为x,∴x-a= 5(2−a)2∴x= 10−3a2,∴M(10−3a2,2a)把M(10−3a2,2a)代入y=﹣13x2+ 83x,得:2a=- 13×(10−3a2)2+ 83×(10−3a2)解得:a=2或a=- 10 3,∴当a=2时,M(2,4)舍去当a=- 103时,M(10,-203)当抛物线的解析式为y= 13x2+ 43x时,如图4,若点N在点A的上方时,此时∥MAN=∥AOB,延长MA交x轴于点F,∵∥MAN=∥OAF,∴∥AOB=∥OAF,∴FA=FO,过点F作FG∥OA于点G,∵A(2,4),∴由勾股定理可求得:AO=2 √5,∴OG= 12AO= √5 , ∵tan∥AOB= CF OG∴GF=2 √5 ,∴由勾股定理可求得:OF=5,∴F 的坐标为(5,0),设直线MA 的解析式为:y=mx+n ,把A (2,4)和F (5,0)代入y=mx+n ,∴{4=2m +n 0=5m +n, 解得: {m =−43n =203, ∴直线MA 的解析式为:y=﹣ 43 + 203, 联立 {y =13x 2+43x y =−43x +203, ∴解得:x=2(舍去)或x=﹣10,把x=﹣10代入y=﹣ 43 + 203, ∴y=20,∴M (﹣10,20),若点N 在点A 的下方时,此时∥MAN=∥AOB ,∴AM∥x 轴,∴M 的纵坐标为4,把y=4代入y= 13 x 2+ 43x , ∴x=﹣6或x=2(舍去),∴M (﹣6,4),综上所述,存在这样的点M (6,4)或(10,- 203)或(﹣10,20)或(﹣6,4),使得∥MAD∥∥AOB9.【答案】(1)解:由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y=x 2+bx+c 过点A ,点C ,∴{25−5b +c =0c =−5,∴抛物线对应的函数解析式为y=x 2+4x ﹣5;(2)解:∵y=x 2+4x ﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x 2+4x ﹣5与x 轴交于点A ,B ,∴点A ,B 关于直线x=﹣2对称.连结AC ,交对称轴于点P ,此时PB+PC 的值最小.设直线AC 的解析式为y=mx+n ,则 {−5m +n =0n =−5,解得 {m =−1n =−5 , ∴直线AC 的解析式为y=﹣x ﹣5,当x=﹣2时,y=﹣3,∴点P 的坐标为(﹣2,﹣3)(3)解:在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),∵四边形PEFM 为正方形,∴E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM=PE ,∴|x+2|=|x 2+4x ﹣5+3|,∴x 2+4x ﹣2=x+2,或x 2+4x ﹣2=﹣x ﹣2,整理得x 2+3x ﹣4=0,或x 2+5x=0,解得x 1=﹣4,x 2=1,x 3=0,x 4=﹣5,∴M (﹣4,﹣3)或M (1,﹣3)或M (0,﹣3)或M (﹣5,﹣3)10.【答案】(1)解:将A(−1,0)和C(0,3)代入y =ax 2+2x +c(a ≠0),得{a −2+c =0c =3,∴抛物线解析式为y=−x2+2x+3,将A(−1,0)代入y=x+b,得:-1+b=0,解得b=1,∴直线AF的解析式为y=x+1(2)解:y=−x2+2x+3=−(x−1)2+4,∴D(1,4),对于直线y=x+1,令x=1,则y=2,故E(1,2),∴DE=4-2=2.过点P作x轴的垂线,交AF于点H,过点P作PG∥AF于点G,过点P作PK∥DE于点K,连接PA和PD,如图所示:设P(m,−m2+2m+3),则H(m,m+1),∴PH=(−m2+2m+3)−(m+1)=−m2+m+2,对于直线y=x+1,令x=0,则y=1,由交点得出∥FAB=45°,∴∥PHG=45°,即∥PHG为等腰直角三角形,故有PG=√22PH=√22(−m2+m+2),延长DE交x轴于点Q,则Q(1,0),∴AQ=2,即AE=√2AQ=2√2,∴S△PAE=12AE⋅PG=12×2√2×√22(−m2+m+2)=−m2+m+2,∵P(m,−m2+m+3),K(1,−m2+m+3),∴PK=|1−m|,∴S△PDE=12DE⋅PK=12×2×|1−m|=|1−m|,由S△PAE=3S△PDE,得−m2+m+2=3|1−m|,解得m1=2−√3,m2=2+√3(不合题意,舍去),m3=−1+√6,m4=−1−√6(不合题意,舍去),将m1=2−√3代入−m2+2m+3,得−m2+2m+3=2√3,则得点P的坐标为P(2−√3,2√3);将m3=−1+√6代入−m2+2m+3,得−m2+2m+3=4√6−6,则得点P的坐标为P(−1+√6,4√6−6);综上所述,点P的坐标为P(2−√3,2√3)或P(−1+√6,4√6−6)(3)解:存在,N1(0,1),N2(2,3),N3(1+√172,3+√172),N4(1−√172,3−√172)11.【答案】(1)解:∵抛物线y=ax2+bx+c的对称轴为x=2,∴−b2a=2,∴b=−4a,∴抛物线解析式为y=ax2−4ax+c,∵点A(0,5),B(5,0),∴{c=525a−5b+c=0,∴{a=−1c=5,∴二次函数的解析式为y=−x2+4x+5;(2)解:∵AC//x轴,点A(0,5),当y=5时,−x2+4x+5=5,∴x1=0,x2=4,∴C(4,5),∴AC=4,设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),由点A、B的坐标得,直线AB的解析式为y=−x+5;设P(m,−m2+4m+5),∴D(m,−m+5),∴PD=−m2+4m+5+m−5=−m2+5m,∵AC=4,∴S四边形APCD =12AC⋅PD=2(−m2+5m)=−2(m−52)2+252∴当m=52时,四边形APCD的面积最大,∴即点P(52,354)时,四边形APCD的面积最大为252;(3)解:(3)设P(n,−n2+4n+5)则D(n,−n+5)①当AC为平行四边形的边,如图,∴AC∥DQ,AC=DQ,∴点Q的纵坐标为−n+5,又∵点Q在抛物线上,∴−x2+4x+5=−n+5,解得x=2±√4+n,∴点Q的坐标为(2+√4+n,−n+5)或(2−√4+n,−n+5),当Q点坐标为(2+√4+n,−n+5)时,∵AC =4,∴DQ =2+√4+n −n =4, ∴4+n =(n +2)2, 解得n =0或n =−3,∵点P 在第一象限,且在AC 的上方, ∴0<n <4, ∴此时不符合题意;当Q 点坐标为(2−√4+n ,−n +5)时, ∵AC =4,∴DQ =n −2+√4+n =4,∴4+n =(6−n)2,即n 2−13n +32=0解得n =13+√412或n =13−√412,∵点P 在第一象限,且在AC 的上方, ∴0<n <4,∴n =13−√412∴D 点坐标为(13−√412,√41−32),Q 点坐标为(2−√42−2√412,√41−32)②AC 为平行四边形的对角线时,如图,连接DQ 交AC 于点M , ∴AM =CM ,DM =QM , ∵A(0,5),C(4,5), ∴M 的坐标为(2,5),设点Q 的坐标为(t ,−t 2+4t +5),∴{t+n2=2−t 2+4t+5−n+52=5,解得{t =1n =3或{t =4n =0,同理可得0<n <4, ∴{t =1n =3, ∴点D 的坐标为(3,2),点Q 的坐标为(1,8);综上所述,存在Q 使得以A 、C 、D 、Q 为顶点的四边形为平行四边形,此时D 、Q 的坐标分别为(13−√412,√41−32),(2−√42−2√412,√41−32)或(3,2),(1,8). 12.【答案】(1)解:由题意得 {a −b −4a =0−4a =4 ,解得 {a =−1b =3.∴抛物线的解析式:y =﹣x 2+3x+4.(2)解:由B (4,0)、C (0,4)可知,直线BC :y =﹣x+4;如图1,过点P 作PQ//y 轴,交直线BC 于Q ,设P (x ,﹣x 2+3x+4),则Q (x ,﹣x+4);∴PQ =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;S ∥PCB = 12 PQ•OB = 12 ×(﹣x 2+4x )×4=﹣2(x ﹣2)2+8;∴当P (2,6)时,∥PCB 的面积最大; (3)解:存在.抛物线y =﹣x 2+3x+4的顶点坐标E (32,254) ,直线BC :y =﹣x+4;当 x =32 时,F (32,52) ,∴.EF =154.如图2,过点M 作MN∥EF ,交直线BC 于M ,设N (x ,﹣x 2+3x+4),则M (x ,﹣x+4);由题意点N 在第一象限,∴MN =(﹣x 2+3x+4)﹣(﹣x+4)=﹣x 2+4x ;当EF 与NM 平行且相等时,四边形EFMN 是平行四边形, 由﹣x 2+4x =154时,解得 x 1=52,x 2=32 (不合题意,舍去).当 x =52 时, y =−(52)2+3×52+4=214,∴N ( 52, 214 ).∴点N 坐标为( 52, 214 ).13.【答案】(1)令 y =0 ,则 −12x 2+32x +2=0 ,解得 x 1=−1 , x 2=4 .∴A 点坐标为 (−1,0) ,B 点坐标为 (4,0) . 令 x =0 ,则 y =2 . ∴C 点坐标为 (0,2) .(2)①设: l BC :y =mx +n ,将 B(4,0) , C(0,2) 分别代入得, {0=4m +n 2=n ,解得 {m =−12n =2,故 l BC :y =−12x +2 .可设 P(t,−12t +2) , 0≤t ≤4 ,则 Q(t,−12t 2+32t +2) ,且Q 在P 上方.所以 PQ =−12t 2+32t +2−(−12t +2)=−12t 2+2t .又 BP =√(4−t)2+(−12t +2)2=√52(4−t) .故 BP +PQ =√52(4−t)+(−12t 2+2t)=−12t 2+(2−√52)t +2√5 .当 t =2−√52 时取得最大值,此时 P(2−√52,1+√54) .②如图,延长AC至点D,使得CD=CB,连接BD,作DE⊥y轴于点E,过点P作PH⊥BD于点H.由AC2=12+22=5,BC2=22+42=20,AB2=(−1−4)2=25,所以AC2+BC2=AB2,∠ACB=90°.则△BDC是等腰直角三角形,∠CBD=45°.√2AP+PB=√2(AP+PBsin45°)=√2(AP+PH),由垂线段最短可知,当A,P,H共线时(AP+PH)取得最小值.∵∠BCD=∠DEC=∠COB=90°,∵∠DCE+∠BCO=∠BCO+∠CBO=90°,∴∠DCE=∠CBO.∴△CDE≌△BCO.∴DE=CO=2,CE=BO=4.可得点D的坐标为(2,6).∴BD=√(2−4)2+(6−0)2=2√10,=12BD⋅AH,代入可得12×5×6=12×2√10⋅AH,S△ABD=12AB⋅yD,故有√2AP+PB=√2(AP+PH)≥√2AH=3√5.解得AH=3√102所以√2AP+PB的最小值为3√5.14.【答案】(1)解:当抛物线与x轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)解:∵点A(-1,0)在抛物线y=-x2+2x+m上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x 2+2x+3,且C(0,3), 当x=0时,-x 2+2x+3=0, 解得x=-1,或x=3, ∴B (3,0),设直线BC 的解析式为y=kx+b ,将B(3,0),C(0,3)代入y=kx+b 中,得: {3k +b =0b =3 ,解得 {k =−1b =3,∴直线AB 的解析式为y=-x+3;(3)解:点D 在抛物线上,设坐标为(x ,-x 2+2x+3),F 在直线AB 上,坐标为(x ,-x+3) ,∴DF=-x 2+2x+3-(-x+3)=-x 2+3x= −(x −32)2+94,∴当 x =32 时,DF 最大,为 94 ,此时D 的坐标为( 32,154 ).15.【答案】(1)解:∵点A 、B 、C 在二次函数图象上 ∴把x=0代入 y =12x 2+32x +2 ,得y=2把y=0代入 y =12x 2+32x +2 ,得x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0),C (0,2);(2)解:设直线BC 的解析式为y=kx+b (k≠0),把B (4,0),C (0,2)代入,得 {4k +b =0b =2 , {k =−12b =2 ∴直线BC 的解析式为 y =12x +2∵OP=t∴P (t ,0),M (t ,﹣ 12 t+2),N (t ,﹣ 12 t 2+ 32 t+2),如图,∴S 1=N 1P 1﹣M 1P 1=﹣ 12 t 2+ 32 t+2﹣(﹣ 12 t+2)=﹣ 12t 2+2t (0<t <4),S2=M2P2﹣N2P2=﹣12t+2﹣(﹣12t2+ 32t+2)= 12t2﹣2t(﹣1<t<0),(3)解:如图,①若∥OPN∥∥OCB,当OP与OC是对应边时,则OPOC=NPBO,即t2=−12t2+32t+24化简得:t2+t﹣4=0,解得:t1=−1+√172,t2=−1−√172(不合题意,舍去)②若∥OPN∥∥OBC,当OP与OB是对应边时,则OPOB=PNCO,即t4=−12t2+32t+24化简得:t2﹣2t﹣4=0解得:t3=1+ √5,t4=1﹣√5(不合题意,舍去)∴符合题意的点P的坐标为(−1+√172,0)和(1+ √5,0).16.【答案】(1)解:由二次函数交点式表达式得:y=a(x+3)(x﹣4)=a(x2﹣x﹣12)=ax2﹣ax ﹣12a,即:﹣12a=4,解得:a=﹣1 3,则抛物线的表达式为y=−13x2+13x+4,(2)设点P(m,﹣13m2+ 13m+4),则点Q(m,﹣m+4),∵OB=OC,∴∥ABC=∥OCB=45°=∥PQN,PN=PQsin∥PQN=√22(﹣13m2+ 13m+4+m﹣4)=﹣√26(m﹣2)2+ 2√23,∵﹣√26<0,∴PN有最大值,当m=2时,PN的最大值为2√23.(3)存在,理由:点A 、B 、C 的坐标分别为(﹣3,0)、(4,0)、(0,4), 则AC =5,AB =7,BC =4 √2 ,∥OBC =∥OCB =45°, 将点B (4,0)、C (0,4)的坐标代入一次函数表达式:y =kx+b 得 {0=4k +b b =4 解得 {k =−1b =4∴直线BC 的解析式为y =﹣x+4…①, 设直线AC 的解析式为y=mx+n把点A (﹣3,0)、C (0,4)代入得 {0=−3m +n n =4解得 {m =43n =4∴直线AC 的表达式为:y = 43x+4,设直线AC 的中点为K (﹣ 32 ,2),过点M 与CA 垂直直线的表达式中的k 值为﹣ 34 ,设过点K 与直线AC 垂直直线的表达式为y =﹣ 34 x+q把K (﹣ 32 ,2)代入得2=﹣ 34 ×(﹣ 32 )+q解得q= 78∴y =﹣ 34 x+ 78 …②,①当AC =AQ 时,如图1,则AC =AQ =5,设:QM =MB =n ,则AM =7﹣n ,由勾股定理得:(7﹣n )2+n 2=25,解得:n =3或4(舍去4), 故点Q (1,3),②当AC=CQ时,如图1,CQ=5,则BQ=BC﹣CQ=4 √2﹣5,则QM=MB=8−5√22,故点Q(5√22,8−5√22).③当CQ=AQ时,联立①②,{y=−x+4y=−34x+78,解得,x=252(舍去),综上所述点Q的坐标为:Q(1,3)或Q(5√22,8−5√22).。

中考二次函数中的几何最值问题(一)

中考二次函数中的几何最值问题(一)

二次函数中的几何最值问题(一)模型一:如图,A,B 为坐标系中两个定点,x 轴上有一动点P ,求PA+PB 的最小值,并求此时P 点的坐标.作法:过作A 点关于x 轴的对称点A’,连接A’B 与x 轴的交点即为P 点 例1.如图,在平面直角坐标系中,52x 23x 105y 2++-=与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C.连接AC 、BC ,E 为BC 的中点,连接AE. (1) 判断△ACE 的形状;(2) 如图2,点P 为直线BC 上方抛物线上的一动点,当△PCE 的面积最大时,将△OAC 沿直线BC 进行平移,平移后点O 、A 、C 对应的点为O 1、A 1、C 1.连接A 1P 、A 1B 、PB ,当△PA 1B 的周长最短时,求此时点A 1的坐标及△PA 1B 周长的最小值.A迁移练习1.如图,在平面直角坐标系中,抛物线211242y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C.(1)求直线BC 的解析式及抛物线的对称轴;(2)如图1,D 为抛物线的顶点,P 是直线BC 上方抛物线上一点,当点P 到直线BC 距离最大时,在直线BC 上找一点Q 使得△DPQ 周长最小,求点Q 的坐标;模型2:如图:在∠ABC 内部有一点定点P ,点M 、N 分别为BC 、AB 上的动点,要使△PMN 的周长最短,试确定M 、N 的位置。

作法:作P 关于BC 的对称点P ' ,作P 关于AB 的对称点P '',连接P 'P '',与BC 、AB 的交点即为M 、N 点。

例2.如图1,已知抛物线333233y 2++-=x x 与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是点C 关于抛物线对称轴的对称点,连接CD ,过点D 作DH ⊥x 轴交于点H ,过点A 作AE ⊥AC 交DH 的延长线与点E. (1)求线段DE 的长度;(2)如图,试在线段AE 上找一点F ,在线段DE 上找一点P ,且点M 为直线PF 上方抛物线上的一点,求当△CPF 的周长最小时,△MPF 的面积的最大值是多少;BB迁移练习2.如图,抛物线c bx x y ++-=2与直线n mx y +=相交于点)8,1(A 和点)4,5(B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2013济南中考24.(本题满分12分) 】
例1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点, OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线2
y ax bx c =++经过点A 、B 、C .
(1)求抛物线的解析式.
(2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由.
【2012济南中考27.(本题满分9分)】
例2.如图,已知双曲线k
y x
=
,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;
(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.
第24题备用图
x y C O D A B 第24题图
x
y C O D A B l E
图2 M O x
y
N
【28.(本题满分9分)】
例3.如图1,抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0),与y 轴相交于点C ,⊙O 1为△ABC 的外接圆,交抛物线于另一点D . (1)求抛物线的解析式;
(2)求cos ∠CAB 的值和⊙O 1的半径;
(3)如图2,抛物线的顶点为P ,连接BP ,CP ,BD ,M 为弦BD 中点,若点N 在坐标平面内,满足△BMN ∽△BPC ,请直接写出所有符合条件的点N 的坐标.
【2011济南中考】(2)如图2,点M 的坐标为(2,0),直线MN 与y 轴的正半轴交于点N ,∠OMN =75º.
求直线MN 的函数解析式.
【2011济南中考27.(本题满分9分)】
例4.如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =-
4
9x 2 +bx +c 经过点A 、C ,与AB 交于点D .
(1)求抛物线的函数解析式;
(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式;
②当S 最大时,在抛物线y =- 4
9x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ 为直角三角形,
请直接..
写出所有符合条件的点F 的坐标;若不存在,请说明理由.
A D
B
P
Q
O
C
x
y A
D
B
O C
x
y l
备用图
O
第22题图
x
y
A B P C D
D
C M
N
O
A
B
P
l 第24题图
y E x
例5.如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).
⑴求线段AD 所在直线的函数表达式.
⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?
【2010济南中考24.(本题满分9分)】
例6.如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为333y x =-+,抛物线的对称轴l 与直线BD 交于点C 、与x 轴交于点E .
⑴求A 、B 、C 三个点的坐标.
⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .
①求证:AN =BM .
②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.
例7.已知:如图,正比例函数y ax =的图象与反比例函数k
y x
=
的图象交于点()32A ,.
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?
(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点
B ;过点A 作直线A
C y ∥轴交x 轴于点C ,交直线MB 于点
D .当四边形OADM 的面积为6时,请
判断线段BM 与DM 的大小关系,并说明理由.
【2009济南中考23.(本题满分9分)】
例8.如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个
单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.
(2)当MN AB ∥时,求t 的值.
(3)试探究:t 为何值时,MNC △为等腰三角形.
A D C
B M
N (第23题图) (第22题图)
y x
O
A
D M
C
B
例9.已知:抛物线()2
0y ax bx c a =++≠的对称轴为1x =-,
与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
A C x y
B O (第24题图)。

相关文档
最新文档