2018年江苏省盐城市中考数学试卷

合集下载

2018年江苏省盐城中考数学试卷含答案

2018年江苏省盐城中考数学试卷含答案

2018年中考数学试卷<江苏盐城卷)<本试卷满分150分,考试时间120分钟)一、选择题<本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)b5E2RGbCAP1.-2、0、1、-3四个数中,最小的数是【】A. B.0 C.1 D.【答案】D。

2.如果收入50元记作+50元,那么支出30元记作【】A.+30元 B.-30元 C.+80元 D.-80元【答案】B。

3.下面的几何体中,主视图不是矩形的是【】A.B. C. D.【答案】C。

4.若式子在实数范围内有意义,则x的取值范围是【】A.x≥3 B.x≤3 C.x>3 D.x<3【答案】A。

5.下列运算中,正确的是【】A. B.C. D.【答案】D。

6.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是【】A.2400元、2400元 B.2400元、2300元 C.2200元、2200元 D.2200元、2300元p1EanqFDPw【答案】A。

7.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于【】A.600 B.700 C.800 D.900DXDiTa9E3d【答案】C。

8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有【】RTCrpUDGiTA.4种 B.5种 C.6种 D.7种【答案】B。

二、填空题<本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是▲ .【答案】±4。

10.分解因式:=▲ .【答案】。

11.2018年4月20日,四川省雅安市芦山县发生7.0级地震,我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学计数法可表示为▲ .5PCzVD7HxA【答案】1.4×106。

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

江苏省盐城市2018届九年级数学上学期第四届命题竞赛试题C5新版苏科版20180731159

江苏省盐城市2018届九年级数学上学期第四届命题竞赛试题C5新版苏科版20180731159

中考数学模拟试卷一、选择题(下列各题所给答案中,只有一个答案是正确的,每小题 3分,共 18分)1 1. 的相反数是2 1 A . B . C . D .2222.下列计算错误的为12A . (2a )2 4a 2B . (a 3 )2 a 5C . 20 1D . 231 83.方程 x 26x 80 的两根是三角形的边,则三角形的第三条边长可以是A .2B .6C .4D .84.下列图案中,属于轴对称图形的是A .B .C .D .5.一个几何体的三视图如右图所示,则这个几何体可能是A .B .C .D .6.已知下列命题:①若a 2 b 2 ,则a b ; ②对角线互相垂直平分的四边形是菱形; ③过一点有且只有一条直线与已知直线平行;2 y x④在反比例函数中,如果函数值 y < 1时,那么自变量 x > 2.其中真命题的个数是 A .4个 B .3个 C .2个 D .1个二、填空题(每小题 3分,共 30分)7.若 2a ﹣b =5,则 6a ﹣3b 的值是 .8.一组数据 2、-2、4、1、0的中位 数是.9.已知∠α 的补角是 130°,则∠α= 度.10.因式分解: abab 2_____________.11.PM2.5是大气中直径小于或等于 0.0000025米的颗粒物,将 0.0000025用科学记数法表示 为.12.命题“平行四边形的对角线互相平分”的逆命题是______命题.(填“真”或“假”)13.如图,把一块含有 45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=1 5°,则∠2 的度数是__________ .AA M D1OB C B C Q 第13题第15题第16题14.已知⊙O1的半径r1=2,⊙O2的半径r2是方程3(x-1)=2x的根,⊙O1与⊙O2的圆心距为1,那么两圆的位置关系为_________.15.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为__________ .16.如图,在△ABC中,AB=AC=7,BC=2,点Q是BC的延长线上一点,且AQ=BQ+CQ,求tanQ=.三、解答题(本大题共10题,共102分)-22-1-32cos3020140 17.(本小题满分12分)(1)计算:214x x x(2)先化简,再从-2,0,2,4中选择一个合适的数代入,求x2x x4x4x22出这个代数式的值.x43x218.(本题8分)解不等式组:,并写出不等式组的整数解.x1x2319.(本小题满分8分)我市某中学九年级学生对市民“创建国家卫生城市“知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:等级非常了解比较了解基本了解不太了解从未听说频数40 60 48 36 16频率0.2 m 0.24 0.18 0.08(1)本次问卷调查抽取的样本容量为________,表中m的值为_______;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;20.(本小题满分8分)某新建的商场有3000m2的地面花岗岩需要铺设,现有甲、乙两个工程队希望承包铺设地面的过程:甲工程队平均每天比乙工程队多铺50m2,甲工程队单独完成该工3程的工期是乙工程队单独完成该工程所需工期的.求甲、乙两个工程队完成该工程各需4几天?21.(本题满分10分)一个不透明的口袋中有n个小球,其中两个是白球,其余为红球,这些23球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是.5(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…,n1,随机地取出一个小球后不放回,再随机地取出一个小球,请用画树状图或列表的方法求第二次取出小球标号大于第一次取出小球标号的概率.22.(本题满分10分)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1∶3,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离.(结果精确到0.1米,参考数据:3≈1 .73).k23.(本小题满分10分)如图,在平面直角坐标系中,反比例函数y= (x>0)的图象和矩形ABCDx在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点A、C恰好同时落在反比例函数的图象上,请求矩形的平移距离和反比例函数的解析式.24.(本小题满分10分)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;1(2)已知sinA= ,⊙O的半径为4,求图中阴影部分的面积.225.(本小题满分12分)如图,正方形ABCD的边AB=8厘米,对角线AC、BD交于点O,点P 沿射线AB从点A开始以2厘米/秒的速度运动;点E沿DB边从点D开始向点B以2厘米/秒的速度运动.如果P、E同时出发,用t秒表示运动的时间(0<t <8).(1)如图1,当0<t <4时①求证:△APC∽△DEC;②判断△PEC的形状并说明理由;(2)若以P、C、E、B为顶点的四边形的面积为25,求运动时间t的值.A D A DEP O3 OB C B C26.(本小题满分14分)如图1,抛物线交x轴于点A、B(A左By ax2 3ax4a(a0)右),交y轴正半轴于点C.(1)求A、B两点的坐标;(2)点D在抛物线在第一象限的部分上一动点,当∠ACB=90°时①求抛物线的解析式;②当四边形OCDB的面积最大时,求点D的坐标;③如图2,若E为的中点,DE的延长线交线段AB于点F,当△BEF为钝角三角形时,请直接写出点D的纵坐标y的范围.y yD DC CEA oB B xxA o F图1 图2参考答案1―6 ABCADD7.158.19.5010.ab(1+b)11.2.5×10-6412.真 13.30° 14.内切 15.20 16. 311 17.(1)-2 (2)-当 x=-2时,原式=-(x 2)16218.-1≤x <3 -1,0,1,2 19.(1)200 0.3 (2)72° 20.甲 15天,乙 20天21.(1)n=5 (2)92022.(1)30 (2)34.623.(1)B(2,4) C(6,4) D(6,6)6(2)平移距离 3 解析式 y=x 824.(1)略 (2)6 3 -325.(1)①略 ②等腰直角三角形,理由略 (2)t=3, t= 26.(1)A(-1,0) B(4,0)1 x 2x 3(2)①y=-2 22②D(2,3)25413 ③<y ≤925 85。

2022年中考数学试题分项版解析汇编(第02期)专题1.3 代数式(含解析)

2022年中考数学试题分项版解析汇编(第02期)专题1.3 代数式(含解析)

专题1.3 代数式一、单选题1.【四川省内江市2018年中考数学试卷】下列计算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,同底数幂的除法等运算法则,熟练掌握这些法则是解此题的关键.2.【湖北省恩施州2018年中考数学试题】下列计算正确的是()A. a4+a5=a9 B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【答案】B点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.【湖北省宜昌市2018年中考数学试卷】下列运算正确的是()A. x2+x2=x4 B. x3•x2=x6 C. 2x4÷x2=2x2 D.(3x)2=6x2【答案】C【解析】分析:根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.详解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.点睛:本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.4.【湖北省宜昌市2018年中考数学试卷】1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A. a=1,b=6,c=15 B. a=6,b=15,c=20C. a=15,b=20,c=15 D. a=20,b=15,c=6【答案】B点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5.【山东省威海市2018年中考数学试题】已知5x=3,5y=2,则52x﹣3y=()A. B. 1 C. D.【答案】D【解析】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.详解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y=.故选:D.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.【湖南省张家界市2018年初中毕业学业考试数学试题】观察下列算式: , , , ,, , , …,则…的未位数字是( )A. 8 B. 6 C. 4 D. 0【答案】B点睛:本题考查的是尾数特征,根据题意找出数字循环的规律是解答此题的关键.7.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.8.【湖北省武汉市2018年中考数学试卷】计算(a﹣2)(a+3)的结果是()A. a2﹣6 B. a2+a﹣6 C. a2+6 D. a2﹣a+6【答案】B【解析】【分析】根据多项式的乘法法则进行解答即可.【详解】(a﹣2)(a+3)=a2+3a-2a-6=a2+a﹣6,故选B.【点睛】本题考查了多项式的乘法,熟练掌握多项式乘法的运算法则是解题的关键.【湖北省随州市2018年中考数学试卷】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”9.(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A. 33 B. 301 C. 386 D. 571【答案】C【点睛】本题主要考查数字的变化规律,解题的关键是由图形得出第n个三角形数为1+2+3+…+n=,第n个正方形数为n2.10.【湖北省随州市2018年中考数学试卷】下列运算正确的是()A. a2•a3=a6 B. a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2 D.(﹣a2)3=﹣a6【答案】D【解析】【分析】根据同底数幂的乘法、同底数幂的除法、完全平方公式、幂的乘方逐一进行计算即可得.【详解】A、a2•a3=a5,故A选项错误;B、a3÷a﹣3=a6,故B选项错误;C、(a﹣b)2=a2﹣2ab+b2,故C选项错误;D、(﹣a2)3=﹣a6,故D选项正确,故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.11.【山东省烟台市2018年中考数学试卷】如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A. 28 B. 29 C. 30 D. 31【答案】C点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.12.【湖北省黄石市2018年中考数学试卷】下列计算中,结果是a7的是()A. a3﹣a4 B. a3•a4 C. a3+a4 D. a3÷a4【答案】B【解析】分析:根据同底数幂的乘、除法法则、合并同类项法则计算,判断即可.详解:A、a3与a4不能合并;B、a3•a4=a7,C、a3与a4不能合并;D、a3÷a4=.故选:B.点睛:本题考查的是同底数幂的乘、除法、合并同类项,掌握它们的运算法则是解题的关键.13.【江苏省盐城市2018年中考数学试题】下列运算正确的是()A. B. C. D.【答案】C点睛:本题考查合并同类项、同底数幂的乘除法以及幂的乘方运算,解答本题的关键是熟悉并灵活运用各法则进行计算.14.【四川省内江市2018年中考数学试题】下列计算正确的是()A.a+a=a2 B.(2a)3=6a3 C.(a﹣1)2=a2﹣1 D.a3÷a=a2【答案】D【解析】分析:根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.详解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a-1)2=a2-2a+1≠a2-1,故该选项错误;D,a3÷a=a2,故该选项正确,故选:D.点睛:本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.15.【浙江省宁波市2018年中考数学试卷】在矩形ABCD内,将两张边长分别为a和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2a B. 2b C. D.【答案】B【点睛】本题考查了正方形的性质,整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题16.【山东省菏泽市2018年中考数学试题】若,,则代数式的值为__________.【答案】-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为:点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.17.【江苏省泰州市2018年中考数学试题】计算:x•(﹣2x2)3=_____.【答案】﹣4x7【解析】分析:直接利用积的乘方运算法则化简,再利用单项式乘以单项式计算得出答案.详解:x•(﹣2x2)3=x•(﹣8x6)=﹣4x7.故答案为:﹣4x7.点睛:此题主要考查了积的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.18.【浙江省杭州市临安市2018年中考数学试卷】已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.【答案】109【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.19.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】根据下列各式的规律,在横线处填空:,,,…,﹣_____=.【答案】【解析】分析:根据给定等式的变化,可找出变化规律“(n为正整数)”,依此规律即可得出结论.详解:∵,,,…,∴(n为正整数).∵2018=2×1009,∴.故答案为:.点睛:本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“(n为正整数)”是解题的关键.20.【江苏省淮安市2018年中考数学试题】(a2)3=_____.【答案】a6【解析】分析:直接根据幂的乘方法则运算即可.详解:原式=a6.故答案为a6.点睛:本题考查了幂的乘方与积的乘法:(a m)n=a mn(m,n是正整数);(ab)n=a n b n(n是正整数).21.【山东省淄博市2018年中考数学试题】将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【答案】2018点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.22.【四川省达州市2018年中考数学试题】已知a m=3,a n=2,则a2m﹣n的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵a m=3,∴a2m=32=9,∴a2m-n==4.5.故答案为:4.5.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.23.【湖北省孝感市2018年中考数学试题】我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【答案】11点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.24.【广西壮族自治区桂林市2018年中考数学试题】将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.25.【黑龙江省大庆市2018年中考数学试卷】若2x=5,2y=3,则22x+y=_____.【答案】75【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案即可.【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.【点睛】本题考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解题的关键.26.【广西壮族自治区玉林市2018年中考数学试卷】已知ab=a+b+1,则(a﹣1)(b﹣1)=_____.【答案】2【解析】【分析】将(a﹣1)(b﹣1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得.【详解】(a﹣1)(b﹣1)= ab﹣a﹣b+1,当ab=a+b+1时,原式=ab﹣a﹣b+1=a+b+1﹣a﹣b+1=2,故答案为:2.【点睛】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用.27.【上海市2018年中考数学试卷】某商品原价为a元,如果按原价的八折销售,那么售价是_____元.(用含字母a的代数式表示).【答案】0.8a【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.28.【上海市2018年中考数学试卷】计算:(a+1)2﹣a2=_____.【答案】2a+1【解析】【分析】原式利用完全平方公式展开,然后合并同类项即可得到结果.【详解】(a+1)2﹣a2=a2+2a+1﹣a2=2a+1,故答案为:2a+1.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式以及合并同类项的法则是解题的关键. 29.【吉林省长春市2018年中考数学试卷】计算:a2•a3=_____.【答案】a5.【解析】【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【详解】a2•a3=a2+3=a5,故答案为:a5.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数的幂的乘法的运算法则是解题的关键.30.【云南省昆明市2018年中考数学试题】若m+=3,则m2+=_____.【答案】7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.31.【广西钦州市2018年中考数学试卷】观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是_____.【答案】3【点睛】本题考查了规律题——数字的变化类,正确得出尾数变化规律是解题关键.32.【湖北省荆门市2018年中考数学试卷】将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,,,,,…,,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=_____.【答案】63【解析】【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【详解】∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点睛】本题考查了规律型——数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.33.【湖北省黄冈市2018年中考数学试题】若a-=,则a2+值为_______________________.【答案】8点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.34.【四川省成都市2018年中考数学试题】已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【答案】【解析】分析:根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.详解:S1=,S2=-S1-1=--1=-,S3=,S4=-S3-1=-1=-,S5=,S6=-S5-1=(a+1)-1=a,S7=,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=-.故答案为:-.点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.三、解答题35.【山东省淄博市2018年中考数学试题】先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【答案】2ab﹣1,=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.36.【湖南省邵阳市2018年中考数学试卷】先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=.【答案】4ab,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【详解】(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣4.【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键.37.【江苏省无锡市2018年中考数学试题】计算:(1)(﹣2)2×|﹣3|﹣()0;(2)(x+1)2﹣(x2﹣x)【答案】(1)11;(2)3x+1.点睛:本题主要考查了整式的运算与实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值、完全平方公式、去括号法则、合并同类项等考点的运算.38.【湖北省襄阳市2018年中考数学试卷】先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.【答案】3【解析】【分析】根据平方差公式、单项式乘多项式和完全平方公式进行展开,然后进行合并化简,最后再将x、y的值代入化简后的式子即可解答本题.【详解】(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2=x2﹣y2+xy+2y2﹣x2+2xy﹣y2=3xy,当x=2+,y=2﹣时,原式=3×(2+)×(2﹣)=3.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握整式的混合运算顺序以及乘法公式是解答本题的关键.39.【湖北省宜昌市2018年中考数学试卷】先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【答案】点睛:本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.40.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.。

专题概率 2018年中考数学试题分项版解析汇编(解析版)

专题概率 2018年中考数学试题分项版解析汇编(解析版)

专题6.3 概率一、单选题1.在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【来源】2018年海南省中考数学试卷【答案】A【解析】【分析】此题涉及的知识点是概率,根据概率公式=,利用比例性质得到n的值.【详解】根据题意得: =,所以n=6.故选A.【点睛】本题重点考查学生对于概率公式的理解,熟练掌握这一规律是解题的关键.2.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1[【来源】四川省南充市2018届中考数学试卷【答案】A【解析】【分析】利用调查的方式,概率的意义以及实际生活常识分析得出即可.【详解】A、调查某班学生的身高情况,适宜采用全面调查,此选项正确;B、篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C、天气预报说明天的降水概率为,意味着明天下雨可能性较大,此选项错误;D、小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1,此选项错误;故选:A.【点睛】此题主要考查了调查的方式,随机事件的定义和概率的意义,正确把握相关定义是解题关键.3.下列成语中,表示不可能事件的是( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【来源】2018年黑龙江省齐齐哈尔市中考数学试卷【答案】A【解析】【分析】不可能事件,就是一定不会发生的事件,必然事件是一定会发生的事件.【详解】缘木求鱼,是不可能事件,符合题意;杀鸡取卵,是必然事件,不符合题意;探囊取物,是必然事件,不符合题意;日月经天,江河行地,是必然事件,不符合题意.故答案为:A.【点睛】本题考查的知识点是可能事件与不可能事件的判断,解题关键是熟记可能时间和不可能事件的定义.4.已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【来源】【市级联考】湖南省衡阳市2019届中考数学试卷【答案】A【解析】【分析】根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】A.连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B.连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C.大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D.通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选A.【点睛】本题考查了概率的意义,解题的关键是弄清随机事件和必然事件的概念的区别.5.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.【来源】2018年广东省广州市中考数学试卷【答案】C【解析】【分析】用画树状图法求出所有情况,再计算概率.【详解】如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C【点睛】本题考核知识点:概率. 解题关键点:用画树状图法得到所有情况.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540°D.长分别为3,4,6的三条线段能围成一个三角形【来源】2018年内蒙古包头市中考数学试题【答案】C【解析】【分析】直接利用随机事件以及确定事件的定义分析得出答案.【详解】A、某个数的绝对值大于0,是随机事件,故此选项错误;B、某个数的相反数等于它本身,是随机事件,故此选项错误;C、任意一个五边形的外角和等于540°,是不可能事件,故此选项正确;D、长分别为3,4,6的三条线段能围成一个三角形,是必然事件,故此选项错误.故答案选C.【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定事件.7.有A,B两只不透明口袋,每只品袋里装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A.B.C.D.【来源】2010年高级中等学校招生全国统一考试数学卷(河北)【答案】B【解析】共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B.8.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是()A.B.C.D.【答案】D【解析】:由李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,可得一共有9种等可能的结果,又由数学试卷2张,根据概率公式即可求得答案.9.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【来源】福建省2018年中考数学试题(b卷)【答案】D【解析】【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【详解】A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选D.【点睛】此题主要考查了随机事件,关键是掌握随机事件定义.10.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.—组数据的方差越大,则这组数据的波动也越大【来源】【全国市级联考】四川省德阳市2018届中考数学试卷【答案】D【解析】【分析】根据概率的意义,事件发生可能性的大小,可得答案.【详解】A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.【点睛】本题考查了概率的意义、随机事件,利用概率的意义,事件发生可能性的大小是解题关键.11.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【来源】四川省泸州市2016年中考数学试题【答案】C【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小【详解】根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.12.“若是实数,则≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件【来源】四川省广元市2018年中考数学【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义进行解答即可.【详解】因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0,故选A.【点睛】本题主要考查了必然事件概念以及绝对值的性质,用到的知识点为:必然事件指在一定条件下一定发生的事件.13.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A.B.C.D.【来源】青海省2018年中考数学试卷【答案】D【解析】【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【详解】“陆地”部分对应的圆心角是,“陆地”部分占地球总面积的比例为:,宇宙中一块陨石落在地球上,落在陆地的概率是,故选D.【点睛】本题考查了简单的概率计算以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.二、填空题14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.【来源】四川省甘孜州2018年中考数学试题【答案】20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为:20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____.【来源】2018年四川省绵阳市中考数学试卷【答案】【解析】【分析】先列举出从1,2,3,4,5的木条中任取3根的所有等可能结果,再根据三角形三边间的关系从中找到能组成三角形的结果数,利用概率公式计算可得.【详解】从1,2,3,4,5的木条中任取3根有如下10种等可能结果:3、4、5;2、4、5;2、3、5;2、3、4;1、4、5;1、3、5;1、3、4;1、2、5;1、2、4;1、2、3;其中能构成三角形的有3、4、5;2、4、5;2、3、4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是,故答案是:.【点睛】考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.16.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.【来源】2018年宁夏中考数学试卷【答案】【解析】【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【详解】∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是=.故答案为:.【点睛】本题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.17.在﹣2,1,4,﹣3,0这5个数字中,任取一个数是负数的概率是______.【来源】湖南省岳阳市2018年中考数学试卷【答案】.【解析】【分析】一共有5个数,其中负数有2个,根据概率公式计算即可得.【详解】在﹣2,1,4,﹣3,0这5个数字中,负数有-2、-3共2个,所以任取一个数是负数的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.18.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是_____.【来源】湖南省永州市2018年中考数学试卷【答案】100.【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.03,解得,n=100,故估计n大约是100,故答案为:100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【来源】2018年山东省青岛市中考数学试卷【答案】这个游戏不公平.理由见解析.【解析】【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【详解】不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平.【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.20.一个不透明的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.【来源】2018年吉林省中考数学试卷【答案】.【解析】依据题意画树状图(或列表)法分析所有可能的出现结果即可解答.【详解】解:列表得:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由列表可知可能出现的结果共9种,其中两次摸出的小球所标字母相同的情况数有3种,所以该同学两次摸出的小球所标字母相同的概率==.故答案为:.【点睛】本题主要考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是多少,中位数是多少.(2)已知获得2018年四川省南充市的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.【来源】四川省南充市2018届中考数学试卷【答案】(1)众数为2018年四川省南充市,中位数为2018年四川省南充市;(2)恰好抽到八年级两名领操员的概率为.【分析】(1)根据众数和中位数的定义求解可得;(2)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)由于2018年四川省南充市出现次数最多,所以众数为2018年四川省南充市,中位数为第8个数,即中位数为2018年四川省南充市,故答案为:2018年四川省南充市、2018年四川省南充市;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,所以恰好抽到八年级两名领操员的概率为=.【点睛】本题主要考查众数、中位数及列表法与树状图法,解题的关键是掌握众数和中位数的定义,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.22.将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).【来源】2018年江苏省常州市中考数学试卷【答案】(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.23.密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【来源】广西百色市2018年中考数学试卷【答案】(1)1或2(2)(3)30种【解析】【分析】(1)根据每个月分为上旬、中旬、下旬,分别是:上旬:1日﹣10日中旬:11日﹣20日下旬:21日到月底,由此即可解决问题;(2)利用列举法即可解决问题;(3)小张同学是6月份出生,6月份只有30天,推出第一个转轮设置的数字是6,第三个转轮设置的数字可能是0,1,2,3;第二个转轮设置的数字可能,0,1,2,…9;由此即可解决问题;【详解】(1)∵小黄同学是9月份中旬出生,∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2.故答案为:1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918;密码数能被3整除的概率.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0),∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.24.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【来源】期末检测卷2018-2019学年九年级上学期数学教材【答案】(1)(2)详见解析【解析】【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案。

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。

选择题和填空题共计65分,解答题共计85分。

试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。

二、选择题分析选择题共计15道,每道2分,共计30分。

选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。

如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。

A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。

解答题部分难度适中,考查了学生的运算能力和理解能力。

基础题型占多数,部分题目需要思维拓展,需要学生多加思考。

如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。

2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。

如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。

各地2018年中考数学试卷等腰三角形(word,含解析)

各地2018年中考数学试卷等腰三角形(word,含解析)

等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。

2018年中考数学试卷及答案

2018年中考数学试卷及答案

2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。

2018年江苏省盐城市中考数学试卷及答案解析

2018年江苏省盐城市中考数学试卷及答案解析

2018年江苏省盐城市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018江苏省盐城市,1,3分)-2018的相反数是().A.2018 B.-2018 C.12018D.-12018【答案】A【解析】-2018的相反数是2018,故选A.【知识点】相反数2.(2018江苏省盐城市,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是().D.C.B.A.【答案】D【解析】在平面内,沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,这条直线就叫做对称轴.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.根据轴对称图形和中心对称图形的定义即可作出判断,故选D.【知识点】轴对称图形;中心对称图形3.(2018江苏省盐城市,3,3分)下列运算正确的是().A.a2+a2=a4B.a3÷a=a3C.a2·a3=a2、5D.(a2)4=a6【答案】C【解析】A.a2+a2=2a 2,该选项错误;B.a3÷a=a 2,该选项错误;C.a2·a3=a5,该选项正确;D.(a2)4=a8,该选项错误;故选C.【知识点】合并同类项;同底数幂的除法;同底数幂的乘法;幂的乘方4.(2018江苏省盐城市,4,3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为().A.1.46×105B.0.146×106C.1.46×106D.146×103【答案】A【解析】将数据146000用科学记数法表示为1.46×105,故选A.【知识点】科学记数法(较大数)5.(2018江苏省盐城市,5,3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是().D.C.B.A.第5题图【答案】B【解析】左视图是从左面看到的图形,故选B. 【知识点】简单几何体的三视图 6.(2018江苏省盐城市,6,3分)一组数据2,4,6,4,8的中位数为( ). A .2 B .4 C .6 D .8 【答案】B【解析】将这组数据按从小到大的顺序排列为2,4,4,6,8,位于最中间位置的是4,所以这组数据的中位数是4. 故选B.【知识点】中位数 7.(2018江苏省盐城市,7,3分)如图,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ).A .35°B .45°C .55°D .65°B OAC D【答案】C【解析】∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ABC =∠ADC =35°,∴∠CAB =65°.故选C. 【知识点】圆的基本性质 8.(2018江苏省盐城市,8,3分)已知一元二次方程x 2+kx -3=0有一根为1,则k 的值为( ). A .-2 B .2 C .-4 D .4 【答案】B【解析】把x =1代入一元二次方程,得12+k -3=0,解得k =2.故选B . 【知识点】一元二次方程的根二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上. 9.(2018江苏省盐城市,9,3分)根据如图所示的车票信息,车票的价格为 ___________元.【答案】77.5【解析】根据如图所示的车票信息,车票的价格为77.5元.【知识点】识图;生活中的数学10.(2018江苏省盐城市,10,3分)要使分式12x-有意义,则x的取值范围是___________.【答案】x≠2【解析】要使分式12x-有意义,x-2≠0,则x≠2.【知识点】分式有意义的条件11.(2018江苏省盐城市,11,3分)分解因式:x2-2x+1=___________.【答案】(x-1)2【解析】x2-2x+1=(x-1)2.【知识点】分解因式;完全平方公式12.(2018江苏省盐城市,12,3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下来时,停在地板中阴影部分的概率为___________.【答案】4 9【解析】∵图中共有9个小方格,每个小方格形状大小完全相同,有阴影的小方格有4个,∴蚂蚁停在地板中阴影部分的概率为49.【知识点】几何概率13.(2018江苏省盐城市,13,3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=___________.21【答案】85°【解析】如图,∵矩形的对边平行,∴∠2=∠3.∵∠4=45°,∠1=40°,∴∠2=∠3=85°.4321【知识点】矩形的性质;三角形的外角14.(2018江苏省盐城市,14,3分)如图,点D 为矩形OABC 的边AB 的中点,反比例函数y =kx(x >0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k =___________. xy EDB OAC【答案】4【解析】设点D 的坐标为(x ,y ),则点E 的坐标为(2x ,12y ). ∵△BDE 的面积=12·x ·12y =1,∴xy =4=k . 【知识点】反比例函数系数k 的意义 15.(2018江苏省盐城市,15,3分)如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA =2cm, ∠AOB =120°.则右图的周长为 ___________cm (结果保留π).BAO【答案】83π 【解析】∵半径OA =2cm, ∠AOB =120°∴AB 的长=1202180π⋅⋅=43π,AO 的长+OB 的长=43π,∴右图的周长=43π+43π=83π. 【知识点】弧长公式16.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边AC 、AB 上的两个动点,若要使△APQ是等腰三角形且△BPQ 是直角三角形,则AQ =___________.ACBPQ【答案】154或307【解析】在直角△ABC 中,∠C =90°,AC =6,BC =8,∴A B =2268+=10.当QP ⊥AB 时,QP ∥AC .∴AB AC =QB QP .设QP =AQ =x ,则QB =10-x .∴106=10-x x .∴AQ =x =154; 当PQ ⊥AB 时,△APQ 是等腰直角三角形.∵△ABC ∽△PBQ , ∴AC BC =PQ BQ ,∴68=10-x x .∴AQ =x =307.【知识点】勾股定理;平行线分线段成比例定理;分类讨论三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤) 17.(2018江苏省盐城市,17,6分) 计算:π0-(12)-1+38 【思路分析】按零指数幂,负整数指数幂,立方根的运算法则先分别求出π0,(12)-1,38的值,然后进行有理数的运算.【解题过程】解:原式=1-2+2=1.【知识点】零指数幂;负整数指数幂;立方根 18.(2018江苏省盐城市,18,6分) 解不等式:3x -1≥2(x -1),并把它的解集在数轴上表示出来.–1–212【思路分析】类比解方程的步骤解不等式. 【解题过程】解:去括号,得3x -1≥2x -2, 移项,合并同类项,得x ≥-1.把不等式的解集在数轴上表示出来,如下图:–1–2–312【知识点】解不等式;在数轴上表示不等式的解集19.(2018江苏省盐城市,19,8分) 先化简,再求值:(1-11x +)÷21xx -,其中x =2+1 【思路分析】先根据分式运算法则将分式化简,再求值.【解题过程】解:原式=111x x +-+×21x x -=1x x +×11x x x+-()()=x -1.当x =2+1时,原式=2+1-1=2.【知识点】分式的化简求值 20.(2018江苏省盐城市,20,8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同), 其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 【思路分析】(1)根据题意画出树状图或列表. (2)利用概率公式计算可得. 【解题过程】解:(1)画树状图如下,第二次第一次豆沙粽子肉馅粽子2肉馅粽子1豆沙粽子红枣粽子肉馅粽子1豆沙粽子红枣粽子肉馅粽子2肉馅粽子1肉馅粽子2红枣粽子开始豆沙粽子红枣粽子肉馅粽子2肉馅粽子1列表:肉馅粽子1 肉馅粽子2 红枣粽子 豆沙粽子 肉馅粽子1(肉馅1,肉馅2) (肉馅1,红枣) (肉馅1,豆沙) 肉馅粽子2 (肉馅2,肉馅1)(肉馅2,红枣) (肉馅2,豆沙) 红枣粽子 (红枣,肉馅1) (红枣,肉馅2)(红枣,豆沙) 豆沙粽子(豆沙,肉馅1)(豆沙,肉馅2)(豆沙,红枣)(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果. 所以P (小悦拿到的两个粽子都是肉馅的)=112=16. 【知识点】概率 21.(2018江苏省盐城市,21,8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE =DF ,连接AE 、AF 、CE 、CF ,如图所示.EDAB CF(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由. 【思路分析】(1)根据SAS 可证△ABE ≌△ADF ;(2)四边形AECF 是菱形.利用正方形的性质,证△ABE ≌△ADF ,进而可得AE =CF =EC =AF , ∴四边形AECF 是菱形.【解题过程】解:(1)∵四边形ABCD 是正方形,∴∠ABD =45°,∠CDB =45°,AB =CD . ∴∠ABE =∠CDF =135°.∵BE =DF ,∴△ABE ≌△ADF (SAS); (2)∴四边形AECF 是菱形.理由:∵△ABE ≌△ADF ,∴AE =CF . 同理AF =CE ,AE =EC . ∴四边形AECF 是菱形. 【知识点】 22.(2018江苏省盐城市,22,10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动,接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与B .家长和学生一起参与C .仅家长自己参与D .家长和学生都未参与类别人数806020各类情况扇形统计图各类情况条形统计图A 20%BC DDC B A 40801201602002400请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了___________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【思路分析】(1)根据图中提供的信息,得A 类人数有80人,占总调查人数的20%,所以在这次抽样调查中,共调查了学生80÷20%=400(名);(2)C 类所对应扇形的圆心角的度数=360°×C 类人数所占的百分比;(3)2000×D 类人数所占的百分比,可得该校2000名学生中“家长和学生都未参与”的人数. 【解题过程】解:(1)400.(2)C 类所对应扇形的圆心角的度数为360°×60400=54°,同理可得其他A 、B 、D 各类所对应扇形的圆心角的度数.400×B 类人数所占的百分比=B 类人数,补全条形统计图如下.类别人数806020240各类情况条形统计图DC B A 40801201602002400(3)2000×20400=100,所以该校2000名学生中“家长和学生都未参与”的人数约100人. 【知识点】条形统计图;扇形统计图;样本估计总体 23.(2018江苏省盐城市,23,10分) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,该店采取了降价措施.在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为___________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元? 【思路分析】(1)由题意得,20+2×3=26,所以若降价3元,则平均每天销售数量为26件; (2)本题中的相等关系:每天每件的盈利×每天的销量=每天销售利润 【解题过程】解:(1)26;(2)设当每件商品降价x 元时,该商店每天销售利润为1200元. 由题意,得(40-x )(20+2x )=1200. 整理,得x 2-30 x +200=0. (x -10)(x -20)=0. x 1=10,x 2=20.又每件盈利不少于25元,∴x =20.不合题意舍去答:当每件商品降价10元时,该商店每天销售利润为1200元. 【知识点】一元二次方程的应用 24.(2018江苏省盐城市,24,10分) 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t =___________分钟时甲乙两人相遇,甲的速度为___________米/分钟; (2)求出线段AB 所表示的函数表达式. t (分钟)y(米)AB24006024O【思路分析】(1)由图象得当t =24分钟时甲乙两人相遇,甲的速度为240060=40米/分钟; (2)根据题意,先求得点A 的坐标,然后用待定系数法求出线段AB 所表示的函数表达式. 【解题过程】解:(1)24,40; (2)∵甲、乙两人的速度和为240024=100米/分钟,甲的速度为40米/分钟,∴乙的速度为60米/分钟. 乙从图书馆回学校所用的时间为240060=40分钟. 相遇后,乙到达学校时,两人之间的距离y =60×(40-24)=1600(米), ∴点A 的坐标为(40,1600).∵点B 的坐标为(40,1600)∴设线段AB 所表示的函数表达式为y =kx +b . 根据题意,得k b k b ⎧⎨⎩1600=40+,2400=60+,解得40,0.k b =⎧⎨=⎩∴线段AB 所表示的函数表达式为y =40x .【知识点】一次函数的图象的应用;一次函数的表达式 25.(2018江苏省盐城市,25,10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC .将△ABC 沿AB 翻折得到△ABD .(1)试说明点D 在⊙O 上;BE 为⊙O 的切线;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.FED OAB C【思路分析】(1)因为AB 为直径,点C 是⊙O 上一点,由圆的对称性得出点D 在⊙O 上; (2)利用相似三角形的判定得出△DAB ∽△BAE ,进而证得∠ABE =90°.(3)证△FCA ∽△FDB .利用相似三角形的性质构建方程,解之可得线段EF 的长. 【解题过程】解:(1)∵AB 为直径,点C 是⊙O 上一点,∴∠ACB =90°.将△ABC 沿AB 翻折得到△ABD ,∴∠ADB =90°,点D 在⊙O 上;(2)∵AB 2=AC ·AE ,∠DAB =∠BAE ,∴△DAB ∽△BAE .∴∠ABE =∠ADB =90°.∴BE 为⊙O 的切线; (3)∵BC =2,AC =4,∴BD =2,AD =4,AB =25.∵AB 2=AC ·AE ,∴AE =5,DE =1.在Rt △BDE 中,∵BD =2,DE =1,∴BF =2221EF ++().∵∠C =∠FDB =90°,∠F =∠F ,∴△FCA ∽△FDB .∴FD FC =DB CA ,即221212EF EF ++++()=24,整理,得3EF 2-2EF -5=0.解得EF =-1(舍去),EF =53.即线段EF 的长为53.【知识点】圆的基本性质;相似三角形的判定与性质 26.(2018江苏省盐城市,26,12分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF =___________; (2)求证:△EBD ∽△DCF .图①FD A BCE 图②FE A BCD【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边ABAC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长比为___________(用含α的表达式表示).图③NEO BCAF M【思路分析】 【发现】(1)先求出DC 的值,再证△FDC 是等边三角形即可.(2)根据两角对应相等两三角形相似,只需证∠B =∠C ,∠BED =∠FCD 即可. 【思考】利用角平分线的性质得DM =DG =DN .利用全等三角形的性质得BD =CD . 【探索】类比(2)猜想应用EF =EG +FH .设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEF ABC CC =1-cos α. 【解题过程】 【发现】(1)∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°,AB =BC =AC . ∵AB =6,AE =4,∴BE =2.∵BD =2,∴DC =4.∵∠EDF =60°,∴∠FDC =60°.∴△FDC 是等边三角形. ∴CF =4.(2))∵△ABC 是等边三角形, ∴∠B =∠C =60°,∴∠BED +∠BED =120°.∵∠EDF =60°,∴∠BDE +∠FDC =120°.∴∠BED =∠FCD .∴△EBD ∽△DCF .【思考】存在.点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BD BC =12. 理由:如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC ,∵ED 平分∠BEF ,FD 平分∠CFE ,∴DM =DG =DN .∴△DBM ≌△DCN .∴BD =CD .∴点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BD BC =12. NG M E ABC D F【探索】如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC .有∠GOH =2∠EOF =2α.由(2)可猜想应用EF =EG +FH .(通过旋转半角证明)设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEFABC C C =22()AG AB OB +=AG AB OB+=2cos cos m m m m αα-+=1-cos α. H DG E B CO AF MN【知识点】等边三角形的判定;相似三角形的判定;角平分线的性质;解直角三角形27.(2018江苏省盐城市,27,14分) ,如图①,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0)两点,且与y 轴交于点C .(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为-12,求△DPQ 面积的最大值,并求此时点D 的坐标; (Ⅱ)直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由. x y x y x y备用图图②图①O Q P O CB AO D 【思路分析】(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3,用待定系数法求抛物线的表达式;(2)(Ⅰ)根据题意先求得P 、Q 两点的坐标,再用待定系数法求直线PQ 的表达式.过点D 作DF ⊥x 轴于E ,交PQ 于F .直尺的宽度一定,当时DF 最长时,△DPQ 面积的最大.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +32),求得DF 的最大值,然后根据三角形的面积公式,求得△DPQ 面积的最大值. (Ⅱ)同理.设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),则直线PQ 的表达式可求; 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3),求得DF 的最大值,△DPQ 面积的最大值可得.【解题过程】解:(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3, 得 3.0+3 3.a b a b -⎧⎨⎩0=+=9+解得1,2,a b =-⎧⎨=⎩∴抛物线的表达式为y =-x 2+2x +3.(2)(Ⅰ)设直线PQ 的表达式为y =kx +b ,把P (-12,74),Q (72,-94)两点的坐标代入,得 71-4297-42k b k b ⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1,5.4k b =-⎧⎪⎨=⎪⎩ ∴直线PQ 的表达式为y =-x +54. 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +54), ∴DF =-m 2+2m +3-(-m +54) =-m 2+3m +74=-(m 2-3m )+74. =-(m -32)2+4当m =32时,DF 有最大值,最大值为4. 此时点D 的坐标(32,4). 直尺的宽度一定,所以当DF 最长时,△DPQ 面积的最大. △DPQ 的面积=12×4DF =12×4×4=8 ∴△DPQ 面积的最大值为8; xyEFQ PO D(Ⅱ)设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),把P 、Q 两点的坐标代入直线PQ 的表达式y =kx +b ,得222365(c 4)c c ck b c c k b ⎧⎪⎨+⎪⎩-++=+,---=+,解得222,4 3.k c b c c =--⎧⎨=++⎩ ∴直线PQ 的表达式为y =-(2c +2)x +c 2+4c +3.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3), ∴DF =-m 2+2m +3-[-(2c +2)m +c 2+4c +3]=-m 2+(2c +4)m -(c 2+4c )=-[m -(c +2)] 2+4当m =c +2时,DF 最长,最长为4.此时,△DPQ 的面积=12×4DF =12×4×4 =8. xyHGQ PO D【知识点】二次函数的表达式;一次函数的表达式;面积最值;由特殊到一般的思想方法。

2018年中考数学真题知识分类练习试卷:代数式(含答案)

2018年中考数学真题知识分类练习试卷:代数式(含答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键. 3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键. 9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n 的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略。

2018年江苏省南通市中考数学试卷(真题解析版)

2018年江苏省南通市中考数学试卷(真题解析版)

2018年南通中考数学 20180801第1页共18页南通市2018年初中毕业、升学考试试卷数学一、选择题(本大题共10小题,每小题3分,共30分•在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置 6的相反数是ABO -2-10 17. 若一个凸多边形的内角和为720 °则这个多边形的边数为B.C . 6D . 7& 一个圆锥的主视图是边长为4 cm 的正三角形,则这个圆锥的侧面积等于上)2. 计算x 2 x 3结果是A . 2x 5 3. 若代数式 x 1A . x v 14. B . 6B . x 5在实数范围内有意义,则B . x < 12017年国内生产总量达到 827 000亿元,1C .——6C . x 6 x 的取值范围是C . x > 1 稳居世界第二,将数D .D .D . x > 1827 000用科学记数法表示为A. 82.7 X 10B. 8.27 X 10C. 0.827 X 60D. 8.27 X 605. F 列长度的三条线段能组成直角三角形的是 A . 3, 4, 5B . 2, 3, 4C . 4, 6, 7D . 5, 11 , 126. 如图,数轴上的点 A , B, O, C , D 分别表示数—2, - 1, 0,2 .则表示数2 - •、5的点P 应落在A .线段AB 上B. 线段BO 上C. 线段OC 上D. 线段CD 上A. 16 n cm2B. 12 n cm2C. 8 n cm22D. 4n cm229. 如图,RtMBC 中,/ ACB = 90 ° CD 平分/ ACB 交AB 于点D ,按下列步骤作图.1步骤1:分别以点C 和点D 为圆心,大于—CD 的长为半径作弧,两弧相交于 M , N 两点;2 步骤2:作直线MN ,分别交AC, BC 于点E , F ;二、填空题(本大题共8小题,每小题3分,共24分•不需写出解答过程,请把最终结果直接填写在答题卡相应位置上) 11. 计算 3a 2b — a 2b =步骤3 :连接DE ,DF .若 AC = 4, BC = 2, 则线段 DE 的长为B .D.-34 、“F 处,tan / DCE=—.设312•某校学生来自甲,乙,丙三个地区,其人数比为 2 : 7 : 3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为度.E 是AB 的中点,将ABCE 沿 CE 翻折,点B 落在点 C.B .y 」6OD .14. 如图,/ AOB = 40 ° OP 平分/ AOB ,点C 为射线 OP 上一点,作 CD 丄OA 于点D ,在/ POB 的内部作 CE// OB ,则/ DCE= _________ 度.15. 古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之•意思是:跑得快的马平均每天能跑240里,跑得慢的马平均每天能跑150里•如果慢马先行12天,快马多少天能够追上慢马?若设快马 x 天可追上慢马,则由题 意,可列方程为 _______________________________ .16. 如图,在△ ABC 中,AD , CD 分别平分/ BAC 和/ACB, AE / CD, CE// AD ,若从三个条件:① AB=AC;②AB = BC;③AC = BC 中,选择一个作为已知条件,则能使四边形 ADCE 为菱形的是解答时应写出文字说明、证明过程或演算步骤)19. (本小题满分10分)13. 一个等腰三角形的两边长分别为4 cm 和9 cm ,则它的周长为117•若关于x 的一元二次方程x 2-2mx — 4m + 1 = 0有两个相等的实数根,则 2(m — 2)2 — 2m(m — 1)的值为 _____________ 18.在平面直角坐标系xOy 中,已知 A(2t , 0), B(0, — 2t), C(2t , 4t)三点,其中t > 0,函数 y =-x的图象分别与线段 BC , AC 交于点P , Q ,若S ZPAB — S PQB = t ,贝V t 的值为 三、解答题(本大题共10小题,共96分•请在答题卡指定区域内作答,_________ (填序号)计算(1) (- 2)2— 3 64 + (- 3)0- (-)-2; (2)320. (本小题满分8分)解方程丄 经 1x 1 3x 321. (本小题满分8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号1, 2, 3•随机摸取一个小球,然后放回,再随机摸出一个小球,用列表或画树状图的方法,求两次取出的小球标号相同的概 率.22 •(本小题满分8分)如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取/ ABD = 120 ° BD = 520 m , / D = 30 °那么另一边开挖点 E 离D 多远正好使 A ,C , E 三点 在一直线上.(3取1.732,结果取整数)23. (本小题满分9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况,对营业员进行适当的奖励•为了确定一个适当的月销售目标,商场服装部统计了每位营业员 在某月的销售额(单位:万元),数据如下: 收集数据1718 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19a 2 9 a 2 6a 9对这30个数据按组距3进行分组,并整理,描述和分析如下:频数分布表请根据以上信息解答下列问题.(1) ____________________ 填空:a= ______ , b = _________ , c= .(2) ____________________________________________________ 若将月销售额不低于25万元确定为销售目标,则有___________________________________________________ 位营业员获得奖励.(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?请说明理由.24. (本小题满分8分)如图,AB为O O的直径,C为O O上一点,AD和过点C的切线互相垂直,垂足为D,且交O O 于点E.连接OC, BE,相交于点F.(1)求证:EF= BF.(2)若DC= 4,DE= 2,求直径AB的长.25. (本小题满分9分)小明购买A, B两种商品,每次购买同一种商品的单价相同,具体信息如下表:(1)求A, B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.26. (本小题满分10分)5在平面直角坐标系xOy中,已知抛物线y = x2-2(k—1)x+ k2—_k (k为常数).2(1)若抛物线经过点(1, k2),求k的值.(2)若抛物线经过点(2k, y i)和点(2, y2),且y i> y2,求k的取值范围.(3)若将抛物线向右平移1个单位长度得到新抛物线,当K x w 2时,新抛物线对应的函数有最小值—3,求k的值.227. (本小题满分13分)如图,正方形ABCD中,AB= 2・.5 , O是BC边的中点,点E是正方形内一动点,OE= 2,连接DE,将线段DE绕点D逆时针旋转90。

盐城市2018年中考数学试卷及答案解析

盐城市2018年中考数学试卷及答案解析

盐城市2018年初中毕业与升学考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2018的相反数是()A.2018B.-2018C.12018D.-120182.下列图形中,既是轴对称图形又是中心对称图形的是()3.下列运算正确的是()A.A2+a2=a4B.A3÷a=a3C.A2·a3=a5D.(a2)4=a64.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×1035.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()第5题图6.一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°第7题图8.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.-2B.2C.-4D.4二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直接写在答题卡相应位置上)9.根据如图所示的车票信息,车票的价格为______元.第9题图10.要使分式1x-2有意义,则x的取值范围是______.11.分解因式:x2-2x+1=______.12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为______.第12题图13.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=______.第13题图(x>0)的图象经过点D,交BC边于点E.14.如图,点D为矩形OABC的AB边的中点,反比例函数y=kx若△BDE的面积为1,则k=______.第14题图15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分,右图中,图形的相关数据:半径OA=2cm,∠AOB=120°,则右图的周长为______cm(结果保留π).第15题图16.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=______.第16题图三、解答题(本大题共有11小题,共100分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)计算:π0-(12)-1+38.18.(本题满分6分)解不等式:3x -1≥2(x -1),并把它的解集在数轴上表示出来.19.(本题满分8分)先化简,再求值:(1-1x +1)÷x x 2-1,其中x =2+1.20.(本题满分8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(本题满分8分)在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE =DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.第21题图22.(本题满分8分)“安全教育平台”是中国教育协会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件,某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与B.家长和学生一起参与C.仅家长自己参与D.家长和学生都未参与第22题图请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了______名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.(本题满分10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为______件.(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.(本题满分10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=______分钟时甲乙两人相遇,甲的速度为40米/分钟;(2)求出线段AB所表示的函数表达式.第24题图25.(本题满分10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC ,将△ABC 沿AB 翻折后得到△AB D.(1)试说明点D 在⊙O 上;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.第25题图26.(本题满分12分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 点于E 、F .(1)若AB =6,AE =4,BD =2,则CF =______;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为______(用含α的表达式表示).图①图②图③第26题图27.(本题满分14分)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(-1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(Ⅰ)若点P的横坐标为-12,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.第27题图2018盐城市2018年初中毕业与升学考试数学解析1.A 【解析】只有符号不同的两个数互为相反数,故选A.2.D 【解析】逐项分析如下:选项逐项分析结论A 不是轴对称图形,是中心对称图形 B 是轴对称图形,不是中心对称图形 C 是轴对称图形,不是中心对称图形 D既是轴对称图形,也是中心对称图形√3.C【解析】逐项分析如下:选项逐项分析结论A a 2+a 2=2a 2≠a 4 B a 3÷a =a 2≠a 3 C a 2·a 3=a 5√D(a 2)4=a 8≠a 64.A 【解析】科学记数法的一般形式为a ×10n ,其中1≤|a |<10,n 为原数整数位数减1,∴a =1.46,n =5,即146000=1.46×105.5.B 【解析】左视图是指自左向右看得到的图形,B 选项符合题意.6.B 【解析】先将2,4,6,4,8从小到大排列为:2,4,4,6,8,由于是5个数,所以中位数是中间的那个数,中位数是4.7.C 【解析】∵在⊙O 中AC ︵所对圆周角为∠ABC ,∠ADC ,∴∠ABC =∠ADC =35°,又∵AB 为直径,∴∠ACB =90°,∴在Rt △ABC 中,∠CAB =90°-35°=55°.8.B 【解析】由根的定义知x =1使方程两边相等,所以把x =1代入原方程,得:1+k -3=0,解得:k =2.9.77.510.x ≠2【解析】要使得分式有意义,需使分母不为零,即x -2≠0,故x ≠2.11.(x -1)212.49【解析】整个方格地板是9格,而阴影部分是4格,∴P (停在地板中阴影部分)=49.13.85°【解析】如解图所示,∵AB ∥CD ,∴∠4=∠2=40°+45°=85°,∴∠2=85.第13题解图14.4【解析】设D (a ,b ),∵点D 为AB 的中点,∴B (2a ,b ),又∵BC ∥AO ,∴点E 的横坐标为2a ,又∵点D 、E 都在反比例函数图象上,∴E (2a ,b 2),∴S △BDE =12BD ·BE =12(2a -a )(b -b 2)=1,即ab4=1,∴ab=4,∵点D 在反比例函数图象上,∴y =4x,k =4.15.83π【解析】由于题中左图是由若干个右图组成的图案,∴如解图,设弧AB 的中点为点C ,连接AC ,OC ,则∠AOC =12∠AOB =60°,OA =OC ,∴△AOC 为等边三角形,∴AO ︵=DB ︵=AC ︵,∴右图的周长为lAO ︵+lOB ︵+lAB ︵=60π×2180+60π×2180+120π×2180=83π.第15题解图16.154或307【解析】由题意可得,AC =6,BC =8,则AC BC =34,且AB =62+82=10,如解图①,当∠QPB =90°,AQ =PQ 时,满足条件,设PQ =3x ,则PB =4x ,∴BQ =(3x )2+(4x )2=5x ,∵PQ =AQ =3x ,∴3x =10-5x ,解得x =54,∴AQ =3x =154;如解图②,当∠PQB =90°,AQ =PQ 时,满足条件,∵tan ∠B =PQ QB =AC BC =34,∴设PQ =3x ,则BQ =4x ,∴AQ =PQ =3x ,∴3x +4x =10,解得x =107,∴AQ =3x =307.综上可知,AQ 的值为154或307.第16题解图17.解:原式=1-2+2=1.18.解:3x -1≥2x -23x -2x ≥1-2x ≥-1.将不等式的解集表示在数轴上如解图所示,第18题解图19.解:原式=x +1-1x +1·(x +1)(x -1)x =x -1当x =2+1时,原式=2+1-1= 2.20.解:(1)列表如下:P (拿到两个肉粽)=212=16.21.(1)证明:如解图,连接AC ,交BD 于点O ,∵四边形ABCD 是正方形,∴AB =AD ,∠ABD =∠ADB =45°,∴∠ABE =∠ADF =135°,∴在△ABE 和△ADF 中,=AD ,ABE =∠ADF ,=DF ,∴△ABE ≌△ADF (SAS);第21题解图(2)解:四边形AECF 是菱形,理由如下:∵四边形ABCD 是正方形,∴OA =OC ,OB =OD ,又∵BE =DF ,∴OB +BE =OD +DF ,∴OE =OF ,∴AC 与EF 互相平分,∴四边形AECF 是平行四边形,∵四边形ABCD 是正方形,∴AC ⊥BD ,∴AC ⊥EF ,∴四边形AECF 是菱形.22.解:(1)80÷20%=400(名),∴在这次调查抽样调查中,共调查了400名学生.(2)C 类共60名学生,总调查人数共有400名学生,∴C 类所对应扇形圆心角度数:60400×360°=54°.补全条形统计图如解图;各类情况条形统计图第22题解图【解法提示】400-80-60-20=240(名),∴B 类共有240名学生(3)∵“家长和学生都未参与”为D 类,∴20400×2000=100(人),答:根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数为100人.23.解:(1)∵每降低1元,平均每天可多售出2件,∴每降价3元,平均每天可多售出6件,共降价3元,则平均每天销售数量为26件;(2)设平均每件商品降低x 元,(40-x )(20+2x )=1200,解得:x =100或x =20,∵每件盈利不少于25元,∴40-x ≥25,解得:x ≤15,∴x =10,答:当每件商品降低10元时,该商品每天销售利润为1200元.24.解:(1)24,40;【解法提示】当y =0时,t =24分钟,甲乙两人相遇,∵乙先到达终点,∴B 点表示甲到达目的地时所用时间为60分钟,∴甲的速度为:2400÷60=40(米/分钟).(2)当t =24分钟时,甲乙两人相遇,∴甲乙的速度和为2400÷24=100(米/分钟),∵甲的速度为40米/分钟,∴乙的速度为60米/分钟,而A 点表示乙到达目的地,∴乙到达目的地所用时间为2400÷60=40(分钟).而此时甲乙两人相距:40×100-2400=1600(米)∴A 点坐标为(40,1600),B 的坐标为(60,2400)设线段AB 解析式为:y =kt +b ,将A ,B 两点代入,得:k +b =1600k +b =2400,∴线段AB 所表示的函数解析式为:y =40t (40≤t ≤60)25.解:(1)如解图,连接OD ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵△ABC 沿AB 翻折后得到△ABD ,∴△ABC ≌△ABD ,第25题解图∴∠ACB =∠ADB =90°,∵OA =OB ,∴OD =12AB =OB ,∴D 在⊙O 上;(2)∵△ABC ≌△ABD ,∴AC =AD 又AB 2=AC ·AE ,∴AB 2=AD ·AE ,即ADAB =ABAE ,在△ABD 和△AEB 中,∵∠BAD =∠BAE ,ADAB =ABAE ,∴△ABD ∽△AEB ,∴∠ADB =∠ABE =90°,(3)在Rt △ABC 中,∠C =90°,∴AB =AB 2+BC 2=25,由(2)得AB 2=AD ·AE ,∴AE =5,∴DE =AE -AD =1,在△BDF 和△ACF 中,∠F =∠F ,∠BDF =∠ACF =90°,∴△BDF ∽△ACF ,设EF =x ,BF =y ,则DF =x +1,CF =y +2,∴DF FC =BDAC =BFAF ,∴x +1y +2=24=yx +5,=53=103,∴EF =53.26.(1)解:4【解法提示】∵△ABC 是等边三角形,∴BC =AB =5,∠B =∠C =60°,∵AB =6,AE =4,∴BE =2,∵BE =2,∠B =60°,BD =2,∴△BDE 是等边三角形,∴∠BDE =60°,∵∠EDF =60°,∴∠FDC =60°,∵∠FCD =60°,∴△FDC 是等边三角形,∴CF =CD =BC -BD =4.(2)证明:∵∠EDF =60°,∴∠BDE +∠CDF =120°,∵∠C =60°,∴∠CDF +∠CFD =120°,∴∠BDE =∠CFD ,又∵∠B =∠C =60°,∴△EBD ∽△DCF ;【思考】存在,D 是中点,此时BD BC =12;第26题解图①【解法提示】如解图①,作DM ⊥AB 于M ,DN ⊥EF 于N ,DG ⊥CF 于G ,∵DE 平分∠BEF ,DF 平分∠CFE ,∴DM =DN =DG ,在△BMD 和△CGD中,B =∠C =60°BMD =∠CGD =90°=GD,∴△BMD ≌△CGD (AAS),∴BD =CD ,则BD BC =12,【探索】(1-cos α)∶1;第26题解图②【解法提示】∵AB =AC ,OB =OC ,∴∠B =∠C ,AO ⊥BC ,∵∠MON =∠B =α,∴易证△BOE ∽△CFO ,∴OB OE =CF OF ,∵OB =OC ,∴OC OE =CF OF,又∵∠EOF =∠C =α,∴△EOF ∽△OCF ∽△EBO ,∴∠BEO =∠OEF =∠COF ,∠BOE =∠EFO =∠CFO ,如解图②,作OP ⊥AB 于P ,OL ⊥EF 于L ,OQ ⊥CF 于Q ,∴OP =OL =OQ ,∴易得△EPO ≌ELO ,△LFO ≌△OFQ ,△APO ≌△AQO ,∴EL =EP ,FL =FQ ,AP =AQ ,∴C△AEF =AE +EF +AF =AE +EL +FL +AF =AE +EP +FQ +AF =AP +AQ =2AP ,C △ABC =2(AB +OB ),C △AEF C △ABC=2AP 2(AB +OB )=AP AB +OB =AP (AB -OB )(AB +OB )(AB -OB )=AP (AB -OB )OA 2=AP (AB -OB )AP ·AB =AB -OB AB =1-cos α,∴C △AEF 与C △NEF 之比为(1-cos α)∶1.27.解:(1)∵抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0),∴把A (-1,0),B (3,0)代入y =ax 2+bx +3-b +3=0a +3b +3=0,=-1=2,∴抛物线表达式为y =-x 2+2x +3;(2)(Ⅰ)∵点P 横坐标为-12,直尺宽为4,点P 在点Q 的左侧,∴点Q 横坐标为72,∵P 、Q 两点都在抛物线y =-x 2+2x +3上,∴点P 坐标为(-12,74),点Q 坐标为(72,-94),设直线PQ 解析式为y =kx +c ,将P (-12,84),点Q (72,-94)-12k +c =74,+c =-94,=-1=54,∴直线PQ 解析式为y =-x +54,第27题解图如解图,过点D 作x 轴垂线,交PQ 于点H ,过点P 、Q 分别作DH 垂线,垂足分别为点M 、N设点D 坐标为(n ,-n 2+2n +3),则点H 坐标为(n ,n +54)∵点D 在线段PQ 上方∴DH =(-n 2+2n +3)-(-n +54)=-n 2+3n +74∵S △DPQ =S △PDH +S △PDH ,其中S △PDH =12DH ·PM ,S △QDH =12DH ·QN ,∴S △DPQ =12DH ·PM +12DH ·QN =12DH ·(PM +QN )=124DH =2DH ,∴S △DPQ =2(-n 2+3n +74)=-2(n -32)2+8∵-2<0,∴当n =32时,S △DPQ 取得最大值8,此时点D 坐标为(32,154).(Ⅱ)设点P 坐标为(m ,-m 2+2m +3).则点Q 横坐标为m +4,故点Q 坐标为(m +4,-m 2-6m -5)设直线PQ 解析式为y =kx +c将P 、Q 坐标代入y =kx +c =-2m -2=m 2+4m +3∴直线PQ 解析式为y =(-2m -2)x +m 2+4m +3如解图,设点D 坐标为(n ,-n 2+2n +3).则点H 坐标为(n ,m 2+4m +3-2mn -2n ).DH =-n 2+2n +3-(m 2+4m +3-2mn -2n )=-m 2-n 2+2mn -4m +4n=-(m -n )2-4(m -n )=-[(m -n )2+4(m -n )]=-[(m -n )2+4(m -n )+4-4]=-(m -n +2)2+4∵-1<0∴当m -n +2=0时DH 取得最大值4由(Ⅰ)得S △DPQ =2DH ,故S △DPQ 存在最大值,最大值为8.。

江苏省盐城市2018中考数学试题及答案

江苏省盐城市2018中考数学试题及答案
答案:由题意可知,抛物线$y = x^{2} - 2x$与$x$轴有交点,所以一元二次方程$x^{2} - 2x = 0$有实数根.再根 据根的判别式$\mathrm{\Delta} = b^{2} - 4ac = 4 - 4 \times 1 \times 0 = 4 > 0$,所以抛物线与$x$轴有两个不同的 交点.
• 答案:$3$ • 解析:增根是分式方程化为整式方程后求得的根,必须满足分式方程的定义域,即$x - 3 = 0$,解得$x = 3$,将$x = 3$代入整式方程即可求得$k$的
值.
• 题目:已知关于$x$的一元二次方程$x^{2} + 4x + k - 1 = 0$有两个不相等的实数根. 答案:$k < 5$ 解析:根据一元二次方程的根的 判别式$\mathrm{\Delta} = b^{2} - 4ac > 0$列出关于$k$的不等式,求出不等式的解集即可得到$k$的范围.
• 题目:若关于$x$的分式方程$\frac{x}{x - 2} - 2 = \frac{k}{x - 2}$有增根,则$k =$____. 答案:$- 2$ 解析:去分母得:$x - 2(x - 2) = k$,由题意得:$x 2 = 0$,解得:$x = 2$,把$x = 2$代入整式方程得:$k = - 2$。 • 答案:$- 2$ • 解析:去分母得:$x - 2(x - 2) = k$,由题意得:$x - 2 = 0$,解得:$x = 2$,把$x = 2$代入整式方程得:$k = - 2$。
添加 标题
解析:根据抛物线的对称性,若抛物线 经过点 (0, 0) 和点 (2, 0),则其对称轴 为直线 x = 1。
添加 标题
易错点:学生可能误认为抛物线的对称 轴是 y 轴,而忽略了抛物线经过的两个 点的对称性。

江苏省淮安市2018年中考数学真题试题(含答案)

江苏省淮安市2018年中考数学真题试题(含答案)

江苏省淮安市2018年中考数学真题试题注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .C .D .32.地球与太阳的平均距离大约为150 000 000km,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .74.若点A(﹣2,3)在反比例函数的图像上,则k 的值是A .﹣6B .﹣2C .2D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B.45° C .55° D.65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是 A .20 B .24 C .40 D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是 A .70° B.80° C.110° D.140°第II 卷 (选择题 共126分)13-13ky x =二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:= . 10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt△ABC 中,∠C=90°,AC =3,BC =5,分别以点A 、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:(2)解不等式组:23()a 32x y =⎧⎨=⎩21y x =-1202sin 45(1)2π︒+-+-.18.(本题满分8分)先化简,再求值:,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数. 21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.35131212x x x x -<+⎧⎪⎨--≥⎪⎩212(1)11aa a -÷+-(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =S△BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,∠B=50°,AC =4.8,求图中阴影部分的面积.131.414≈ 1.732≈25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为 件;(2)当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润. 26.(本题满分12分)如果三角形的两个内角与满足=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °; (2)如图①,在Rt△ABC 中,∠ACB=90°,AC =4,BC =5,若AD 是∠BAC 的平分线,不难证明△ABD 是“准互余三角形”.试问在边BC 上是否存在点E (异于点D ),使得△ABE 也是“准互余三角形”?若存在,请求出BE 的长;若不存在,请说明理由.(3)如图②,在四边形ABCD 中,AB =7,CD =12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC 的长.αβ2αβ+27.(本题满分12分)如图,在平面直角坐标系中,一次函数的图像与x 轴和y 轴分别相交于A 、B 两点.动点P 从点A 出发,在线段AO 上以每秒3个单位长度的速度向点O 作匀速运动,到达点O 停止运动.点A 关于点P 的对称点为点Q ,以线段PQ 为边向上作正方形PQMN .设运动时间为t 秒.(1)当t =秒时,点Q 的坐标是 ;(2)在运动过程中,设正方形PQMN 与△AOB 重叠部分的面积为S ,求S 与t 的函数表达式;(3)若正方形PQMN 对角线的交点为T ,请直接写出在运动过程中OT +PT 的最小值.243y x =-+13参考答案一、选择题三、解答题17.(1)1;(2).18.化简结果为,计算结果为﹣2.19.先证△AOE≌△COF,即可证出AE =CF . 20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名. 21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2);(2)点A 落在第四象限的概率为.22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米. 24.(1)先根据“SSS”证明△AEO≌△DEO,从而得到∠ODE=∠OAE=90°,即可判断出直线DE 与⊙O 相切;(2)阴影部分面积为:. 25.(1)180;13x ≤<12a -13241059π-(2), ∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为(思路:利用△CAE∽△CBA 即可);(3)20,思路:作AE⊥CB 于点E ,CF⊥AB 于点F ,先根据△FCB∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20. 27.(1)(4,0);(2);(3)OT +PT.2[20010(50)](40)10(55)2250y x x x =---=--+9522233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩祝福语祝你考试成功!。

2018中考数学专题05 化简求值题(解答题重难点题型)(解析版)

2018中考数学专题05 化简求值题(解答题重难点题型)(解析版)

1中考指导:代数式的化简求值是初中数学的一个重点和难点,既考查学生的计算能力,又考查代数式的化简技巧,其中涉及的知识点包括整式、分式的混合运算、实数的计算、因式分解,另外还可能涉及解方程(组)、解不等式(组)等.考查的类型主要有两大类型:整式的化简求值和分式的化简求值,整式的化简求值应先去括号合并同类项,然后把未知数对应的值代入求出整式的值;分式的化简求值应先把分式化简后,再把分式中未知数对应的值代 入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.中考试题中分值一般占5-8分.典型例题解析:【例1】先化简,再求值:(x-y )2-(x-y )(x+y )+(x+y )2,其中x=3,y=-31. 解:原式=-2xy+y 2+x 2+y 2-x 2+x 2+2xy+y 2=x 2+3y 2, 当x=3,y=-31时,原式=931.点睛:此题是一般的整式的化简求值题,解答时先去括号,然后合并同类项,最后把x 、y 的值代入计算即可. 【例2】已知a ﹣2b=﹣1,求代数式 (a ﹣1)2﹣4b (a ﹣b )+2a 的值. 【答案】2.点睛:此题是整式的化简求值题,解答时先去括号,然后合并同类项,最后整体代人计算即可,此题考查的整体思想的应用.【例3】先化简,再求值:(﹣x ﹣1)÷,其中x 是不等式组的一个整数解.解:原式====﹣(x+2)(x﹣1)=﹣x2﹣x+2,由得,﹣1<x≤2.∵x﹣1≠0,x﹣2≠0,∴x≠1,x≠2.∵x是不等式组的一个整数解,∴x=0.[:网]当x=0时,原式=﹣02﹣0+2=2.[点睛:此题考查了分式的化简求值题和不等式组的解法,解答时应先把分式化简后,再把不等式组中未知数对应的值代入计算即可.强化训练1.已知:a、b互为相反数,c、d互为倒数,|x|=2,y=1,且x<y.求(a+b﹣1)x﹣cdy+4x+3y的值.【答案】﹣4.2点睛: 本题考查了代数式求值,解题的关键是熟练掌握相反数、绝对值、倒数的概念,并注意整体代入.2.已知a+b=6,ab=3,求a2+b2和(a-b)2的值.【答案】a2+b2=30,(a-b)2=24【解析】试题分析:(1)根据a2+b2=(a+b)2-2ab代入即可求解;(2)根据)(a-b)2=(a+b)2-4ab代入即可求解.试题解析:(1)a2+b2=(a+b)2−2ab=36-6=30;(2)原式=(a+b)2−4ab=36-12=243.(江苏省盐城市明达中学2017届九年级下学期第三次模拟)已知,求代数式3的值;【答案】原式==4【解析】化简得整体代入计算结果。

2018年中考数学真题知识分类练习试卷:方程(含答案)

2018年中考数学真题知识分类练习试卷:方程(含答案)

方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年江苏省盐城市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2018的相反数是()A.2018B.﹣2018C.D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6 4.(3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×1035.(3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.6.(3分)一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.87.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°8.(3分)已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)根据如图所示的车票信息,车票的价格为元.10.(3分)要使分式有意义,则x的取值范围是.11.(3分)分解因式:x2﹣2x+1=.12.(3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.13.(3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=.14.(3分)如图,点D为矩形OABC的AB边的中点,反比例函数y(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=.15.(3分)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).16.(3分)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB 上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=.三、解答题(本大题共有11小题,共102分。

请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:π0﹣()﹣1.18.(6分)解不等式:3x﹣1≥2(x﹣1),并把它的解集在数轴上表示出来.19.(8分)先化简、再求值:,其中.20.(8分)端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.(8分)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.22.(10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?24.(10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式.25.(10分)如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB 翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.26.(12分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).27.(14分)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(Ⅰ)若点P的横坐标为,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.2018年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)﹣2018的相反数是()A.2018B.﹣2018C.D.【解答】解:﹣2018的相反数是2018.故选:A.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.3.(3分)下列运算正确的是()A.a2+a2=a4B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【解答】解:A、a2+a2=2a2,故A错误;B、a3÷a=a2,故B错误;C、a2•a3=a5,故C正确;D、(a2)3=a8,故D错误.故选:C.4.(3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A.1.46×105B.0.146×106C.1.46×106D.146×103【解答】解:将146000用科学记数法表示为:1.46×105.故选:A.5.(3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.【解答】解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.6.(3分)一组数据2,4,6,4,8的中位数为()A.2B.4C.6D.8【解答】解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选:B.7.(3分)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°【解答】解:由圆周角定理得,∠ABC=∠ADC=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠ABC=55°,故选:C.8.(3分)已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4【解答】解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.(3分)根据如图所示的车票信息,车票的价格为77.5元.【解答】解:根据如图所示的车票信息,车票的价格为77.5元,故答案为:77.5.10.(3分)要使分式有意义,则x的取值范围是x≠2.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义.故答案为:x≠2.11.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【解答】解:x2﹣2x+1=(x﹣1)2.12.(3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.【解答】解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为:.13.(3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=85°.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.14.(3分)如图,点D为矩形OABC的AB边的中点,反比例函数y(x>0)的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=4.【解答】解:设D(a,),∵点D为矩形OABC的AB边的中点,∴B(2a,),∴E(2a,),∵△BDE的面积为1,∴•a•()=1,解得k=4.故答案为4.15.(3分)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).【解答】解:由图1得:的长的长的长∵半径OA=2cm,∠AOB=120°则图2的周长为:故答案为:.16.(3分)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB 上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=或.【解答】解:①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴,∴,∴x,∴AQ.②当AQ=PQ,∠PQB=90°时,设AQ=PQ=y.∵△BQP∽△BCA,∴,∴,∴y.综上所述,满足条件的AQ的值为或.三、解答题(本大题共有11小题,共102分。

相关文档
最新文档