电致发光高分子材料综述

合集下载

电致发光材料

电致发光材料

电致发光材料电致发光材料,又称为电致冷光材料,指的是能够通过电场或电流激发而发出可见光的材料。

电致发光材料在现代电子技术和光电子技术中具有广泛的应用,例如LED、液晶显示器等。

最常见的电致发光材料是LED(Light Emitting Diode),也就是电致发光二极管。

LED是一种具有电致发光特性的二极管,通过施加正向电压,使得电子和空穴重新组合并释放能量,产生可见光。

LED具有体积小、节能、寿命长等优点,广泛应用于室内外照明、屏幕显示、汽车照明等领域。

另外一种常见的电致发光材料是有机电致发光材料(OLED)。

有机电致发光材料是一种由有机化合物构成的薄膜材料,通过电压激发有机分子的激发态,从而发出光线。

OLED具有发光均匀、色彩鲜艳、可弯曲等特点,因此被广泛应用于手机屏幕、电视屏幕、车载显示器等领域。

除了LED和OLED,还有一些其他的电致发光材料,如电致发光多晶硅材料、电致发光蓝宝石材料等。

这些电致发光材料都具有突出的发光特性,可以通过激励能源(如电场或电流)来产生发光效果。

电致发光材料的运作原理可以简单地描述为电子和空穴在材料中重新组合并释放能量,产生光线。

具体来说,当材料中施加电压时,电子会从高能级跃迁到低能级,而空穴则从低能级跃迁到高能级。

当电子和空穴重新组合时,释放出能量,这些能量以光的形式辐射出来。

电致发光材料的应用广泛,不仅可以用于照明和显示领域,还可以用于传感、通信、医疗等领域。

电致发光材料具有发光效率高、寿命长、响应速度快等优点,因此在现代科技中扮演着重要的角色。

总之,电致发光材料是一类能够通过电场或电流激发而发光的材料,其中LED和OLED是最常见的电致发光材料。

电致发光材料具有广泛的应用前景,推动了现代电子技术和光电子技术的发展。

高分子发光材料

高分子发光材料

高分子发光材料有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。

近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。

目前研究比较活跃的有聚噻吩、聚苯胺、聚毗咯、聚笏⑺等。

2.1高分子光致发光材料2.1.1简介高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。

高分子光致发材料均为含有共轭结构的高聚物材料。

2. 1.2发光机理高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。

高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象⑻。

2.1.3分类按照引入荧光物质而分为三类2. 1.3. 1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。

其中广泛应用2. 1.3. 2共轭结构的分子内电荷转移化合物有以下几类2.1.3.2. 1两个苯环之间以一C=C一相连的共轭结构的衍生物⑼如图2。

吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。

这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。

图2共轭结构的衍生物2 .1.3.2 .2香豆素衍生物no-⑵如图3。

在香豆素母体上引入胺基类取代基可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。

但是,香豆索类衍生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。

图3香豆素衍生物2. 1.3. 3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。

8—羟基喹琳与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[⑶。

电致发光高分子材料综述

电致发光高分子材料综述

电致发光高分子材料综述作者:张祺夏沣任彤尧汤伟摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。

聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。

对于各种新材料的不断开发和深入研究,PLED器件日益实用化。

本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。

关键词:高分子;电致发光;研究现状Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends.Keywords:Polymer; EL; Research status1.绪论信息技术,纳米技术,生物技术被誉为21世纪的最具前景的三大技术,它们将会给人们的生活方式带来彻底的改变。

有机电致发光材料..

有机电致发光材料..

4. 亮度,效率高;
5. 直流驱动电压低,能耗少,可与集成电路驱动相匹配; 6. 制作工艺简单,成本低;
7. 可实现超薄的大面积平板显示;
8. 良好的机械加工性能,可做成柔性显示器。
聚合物电致发光二极管(PLED)
PLED,即第二种有机发光材料为高分子聚合物,也称为高分子发光 二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。聚 合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子 有机发光二极管。 作为一种发光显示材料,聚合物发光二极管(PLED)材料具有很强的 应用潜力,因为它是一种自发光的材料,并且还具有制作相对容易的优点。 因此在制作有机发光二极管器件(OLEDs)时,PLED材料是一种很好的基 本材料,因为与小分子OLED材料20 ~25的发光效率相比,PLED材料的 发光效率则为30~40。
驱动电压30V, 但是器件的量子效率很低,小于1% 特点: (1)单层器件;(2)驱动电压高; (3)器件效率低
3). 1987年美国Kodak 公司的邓青云等采用了夹层式的多层器件结构,开创 了有机电致发光的新的时代。
创新点:(1)多功能有机层的结构; (2)超薄的有机层厚度
75nm 60nm驱动Fra bibliotek压小于10V最大外量子效率1%
最大亮度大于1000cd/m2
4).1990年,Burroughs等人将共轭聚合物聚对苯基乙烯(PPV)制作了高 分子发光二极管,简化了制备工艺,开辟了发光器件的又一个新领域, 即聚合物薄膜电致发光器件。
有机电致发光二极管(OLED)
近十多年里,OLED作为一种新型显示技术已经取得了长足的发展, 就器件的发光亮度、发光效率和寿命而言,OLED器件已经基本达到了 实用的要求。

高分子材料的电致发光

高分子材料的电致发光
9位的位阻效应使3,4在固态时是无定型态,PL效率 > 90%,Tg>200 oC,分别具有电子传输和空穴传输能力。
小分子蓝光材料5,Tg=207 oC,可以溶于常见的 有机溶剂中,能隙为2.91eV
EL器件7.7V时,亮度为300cd/m2,效率为1.22lm/W,最 大发光波长为424nm,基本上为纯蓝光发射。
1980年在金属催化剂催化下,通过2,5-二 溴噻吩的缩聚,获得了不带取代基的聚噻 吩。 1985年首次将烷基引入聚噻吩的3位,制成 烷基聚噻吩,PATs或P3ATs。 此后,不断合成出各种取代聚噻吩。 3位引入碳原子数目大于4的烷基时,聚噻 吩可溶于氯仿等有机溶剂中。
取代基对聚噻吩的光电性质的影响
在主链上插入硅原子,打断共轭长度,使材料发光效率有所 提高,缺点是共轭主链载流子迁移率下降。
(5)使载流子从电极注入器件后,获得载流子传输 平衡的材料对器件性能的提高至关重要。
将齐聚噻吩与电子传输能力好的噁二唑单元共聚后,既获 得了电子和空穴传输平衡的聚合物,使器件性能提高;
同时,共聚物的发光波长随噻吩的数目增多而红移(蓝至 绿至橙光)。
当芴臂超过一定长度就可以得到饱和红光。 芴臂的引入使得卟啉具有相当好的溶解性,芴环 的位阻效应也使材料在固态溥膜中不发生聚集.
量子效率是卟啉化合物2倍多。
苯为核心的芴的超支化合物14溶于常见有机溶剂 最大吸收和发射波长分别在310 nm和330 nm (THF), 有望成为一种良好的蓝光材料
6.3.5芴的纳米晶或者纳米乳夜类电 致发光材料
高分子发光材料的特点:
1、 可以避免晶体析出 2、来源广泛、可以根据特定性能进行分子设计 (通过分子设计还可设计分子、超分子水平上具有 特定功能的发光器件,实现能 带调控,得到全色 发光的优点 )

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展1.1引言有机光电材料(Organic Optoelectronic Materials),是具有光子和电子的产生、转换和传输等特性的有机材料。

目前,有机光电材料可控的光电性能已应用于有机发光二极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage, OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],生物/化学/光传感器[10,11,12],储存器[13,14,15],甚至是有机激光器[16,17]。

和传统的无机导体和半导体不同,有机小分子和聚合物可以由不同的有机和高分子化学方法合成,从而可制备出大量多样的有机半导体材料,这对于提高有机电子器件的性能有十分重要的意义。

其中,有机电致发光近十几年来受到了人们极大的关注。

有机电致发光主要有两个应用:一是信息显示,二是固体照明。

在信息显示方面,目前市面上主流的显示产品是液晶显示器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显示,被广泛应用于各种信息显示,如电脑屏幕,电视,手机,以及数码照相机等。

但是,液晶显示器也有其特有的缺点,比如响应速度慢,需要背光源,能耗高,视角小,工作温度范围窄等。

所以人们也迫切需要寻求一种新的显示技术来改变这种局面。

有机发光二级管显示器(OLED)被认为极有可能成为下一代显示器。

因为其是主动发光,相对于液晶显示器有着能耗低,响应速度快,可视角广,器件结构可以做的更薄,低温特性出众,甚至可以做成柔性显示屏等优势。

但是,有机发光显示技术目前还有许多瓶颈需要解决,尤其是在蓝光显示上,还需要面对蓝光显示的色度不纯,效率不高,材料寿命短的挑战。

目前,有机发光二极管显示的发展显示出研究,开发和产业化起头并进的局面。

电致发光材料

电致发光材料

电致发光材料
电致发光材料(Electroluminescent Materials,简称EL材料)是一种能够在电
场的作用下产生发光现象的材料。

它具有在室温下工作、发光效率高、寿命长、能耗低等优点,因此在显示、照明、生物医学、安全标识等领域有着广泛的应用前景。

EL材料的基本原理是在外加电场的作用下,通过电子和空穴的复合发生辐射
而产生光。

目前,主要的EL材料包括有机EL材料和无机EL材料两大类。

有机EL材料是指以有机化合物为基础的EL材料,其优点是制备工艺简单、
可制备成薄膜、柔性度高,适合于柔性显示器件的制备。

有机EL材料的发光颜色
丰富,可以通过不同的有机分子设计实现多种颜色的发光,因此在显示领域有着广泛的应用前景。

无机EL材料是指以无机化合物为基础的EL材料,其优点是发光效率高、寿
命长、稳定性好,适合于大面积照明和显示领域的应用。

无机EL材料的发光机理
复杂,通常包括发光中心和激活剂等组成,通过控制发光中心和激活剂的种类和浓度可以实现不同颜色的发光。

除了有机EL材料和无机EL材料,近年来还出现了混合型EL材料,即有机无
机杂化EL材料。

混合型EL材料综合了有机EL材料和无机EL材料的优点,具有
发光效率高、寿命长、制备工艺简单等特点,因此备受关注。

随着科学技术的不断发展,EL材料的研究和应用也在不断拓展。

未来,随着
新材料、新工艺的不断涌现,EL材料将会在显示、照明、生物医学等领域发挥越
来越重要的作用,为人类社会的发展和进步做出更大的贡献。

电功能高分子材料简介

电功能高分子材料简介

导电高分子材料
美国科学家A F Heeger,A G Macdiarmid和日本科学家H Shirakawa因为发现聚乙炔 (Polyacetylene)的导电性而 获得2000年诺贝尔化学奖 材料的导电性能通常以电导率来 衡量,通常的聚合物都是绝缘材 料,即使导电聚合物在纯态也只 相当于半导体,进行复合、修饰、 掺杂以后则显著改变导电性能, 例如,经过碘掺杂的聚乙炔的导 电能力已可达到σ=105
复合型导电高分子材料
导电机理:
主要有两类理论:一是宏观的渗流理论,即导电通道(作为分散相的导电粒子在连续相 中形成导电网络——粒子间距离小于1nm)学说;另一种是量子力学的隧道效应和场致 发射效应(粒子间距离在电场发射有效距离之内——小于5nm)学说
性质与应用: 1、导电性能。导电胶黏剂,导电橡胶,电极材料等 2、热敏性能。利用温度升高电阻率增大的正温度系数效应 (Positive/Negative Temperature Coefficient,PTC)制备 自控温材料和器件、热敏电阻、限流器件等
复合型导电高分子材料
导电填充材料:
目前主要有碳系材料(炭黑、石墨、碳纤维)、金属(金、 银、铜、镍、不锈钢)、金属氧化物(氧化锌、氧化锡)、 结构型导电高分子(聚吡咯、聚噻吩、聚苯胺)四大类。选 择依据只要是导电率、相容性、成本、稳定性、加工性能等 制备成型工艺:
将导电材料、聚合物基体和其他添加剂经过成型加工工艺组 合成具有实际应用价值的材料和器件是非常重要的方面。目 前主要有反应法(均匀性好)、混合法(容易加工)和压片 法三种。
b. 离子导电聚合物;
c.氧化还原型导电聚合物 。
复合型导电高分子材料
概念:
复合型导电高分子材料是指以高分子材料为基体(连续 相),与各种导电性物质,通过分散复合、层积复合、表 面复合或梯度复合等方法构成的具有导电能力的材料。

电致发光高分子材料

电致发光高分子材料

电致发光高分子材料
电致发光高分子材料(Electroluminescent Polymer Materials,简称ELP)是一类能够通过施加电场而产生发光的有机高分子材料。

它们具有以下特点:
1. 发光原理:电致发光高分子材料通过在材料中施加电场,使其电荷发生重组并释放能量,从而产生光。

一般来说,ELP材料包含有机发光分子和电荷传输分子,通过调控它们之间的能级结构和电子传输性质,实现电-光转换。

2. 发光颜色:电致发光高分子材料可实现多种发光颜色,包括红、绿、蓝等。

通过调整材料的化学结构和添加适当的发光分子,可以实现不同颜色的发光效果。

3. 柔性性质:ELP材料一般具有良好的柔性和可塑性,可用于制备柔性显示器、可穿戴设备等应用。

相比于传统的无机发光材料,ELP材料更容易实现柔性器件的制备。

4. 低功耗:电致发光高分子材料是一种低功耗的发光材料,能够以较低的电压和电流产生较高的光亮度。

这使得ELP材料在电子显示器、照明等领域具有潜在的能耗优势。

5. 制备成本较低:相较于无机发光材料,电致发光高分子材料制备成本较低,生产工艺也相对简单,有助于推动其在大规模应用中的发展。

电致发光高分子材料在有机发光二极管(OLED)和有机电激发光(OLET)等领域具有广泛的应用潜力,可以用于制造高效、柔性和多彩的显示器、照明设备和其他光电子器件。

有机高分子材料综述3

有机高分子材料综述3

聚合物材料的发展应用综述王奇华有机高分子聚合物是由小分子单体以重复连接方式结合而成的长链大分子。

化学家发展有机大分子的目标,是通过巧妙操控这些分子结构单元并利用其与功用的联系来发展当今社会需要的各种特殊材料。

高分子化学在20世纪早期随着高分子材料尼龙等的出现有过一次大的飞跃。

今天,对高分子聚合的大多数工作都主要是改进和精细调适现有的技术。

但对聚合物化学家和对高分子材料来讲仍有机会。

高分子材料在许多领域出现了一些重大进展。

而塑料在所有材料中用途是非常广泛的。

塑料以其优越的特性成为21世纪的宠儿,被广泛应用于各个方面。

虽然塑料对环境造成了危害,但塑料制品在我们生活中的作用是不容忽视的,而塑料也不会被其他材料替代,因为塑料有其优越的性能。

下面就高分子材料的地位、特点、近年来的重大进展以及我所关注的塑料的发展状况作一下简单的介绍。

一、高分子科学近年来取得的重要进展(一)、高分子化学在高分子合成方面,聚烯烃方面的微小突破就会带来很大的影响。

道化学公司的研究小组[1]利用高通量筛选找到了两种催化剂,带取代基双(水杨醛亚胺)锆作为乙烯聚合催化剂、带取代基的吡啶-胺铪作为辛烯-1聚合催化剂,在这种“链穿梭聚合”中,在单一反应器中利用二乙基锌作为链转移剂和聚合物链的“储藏库”,间歇穿梭于两种催化剂之间形成两种聚合物的交替嵌段,共聚物中嵌段数链转移速度可由单体和二乙基锌浓度来控制。

可以获得工业化规模的一系列乙烯-辛烯多嵌段共聚物。

连续过程有许多优点:性能比无规共聚物或两种均聚物共混物优异,比现有共聚物生产分批过程更加有效、经济和绿色、为一类新型热塑性弹性体的创制提供了新途径,有望获得新型聚合物产品。

“Click”化学的运用正处于广泛运用的时期,属于高分子合成中简单易行、高选择性、单一产物的新途径[6]。

近期《Macromolecules》点击率很高的论文多篇为此方面的,国内学者也已开始此领域的研究。

2005年包括易位聚合在内的烯烃易位反应获得了诺贝尔化学奖。

有机电致发光材料

有机电致发光材料

有机电致发光材料
有机电致发光(OLED)材料是一种在电场作用下产生发光的有机材料,具有高亮度、高对比度、宽视角、薄、轻、柔性等特点,被广泛应用于显示器、照明、生物医药等领域。

有机电致发光材料的研究和开发已经成为当今光电材料领域的热点之一。

首先,有机电致发光材料具有优异的发光特性。

它能够在低电压下产生高亮度的发光,具有较高的发光效率和光电转换效率。

同时,OLED材料的发光波长范围广,可以实现全彩色显示,满足不同应用场景的需求。

此外,有机电致发光材料还具有快速响应速度和良好的稳定性,能够长时间保持良好的发光性能。

其次,有机电致发光材料具有良好的加工性能和柔性。

OLED材料可以通过溶液法、真空蒸发法等简单加工工艺制备成薄膜,适用于各种基板材料上。

同时,有机电致发光材料可以制备成柔性器件,具有弯曲、折叠等特性,可以应用于柔性显示器、可穿戴设备等领域,拓展了其应用范围。

此外,有机电致发光材料还具有环保、节能的特点。

相较于传统的无机发光材料,OLED材料不含重金属等有害物质,对环境友好。

同时,有机电致发光材料在低电压下即可发光,具有较低的功耗,能够实现节能减排的效果,符合可持续发展的趋势。

总的来说,有机电致发光材料具有优异的发光特性、良好的加工性能和柔性、环保节能等优点,是一种具有广阔应用前景的新型光电材料。

随着技术的不断进步和应用需求的增加,有机电致发光材料必将在显示、照明、生物医药等领域发挥越来越重要的作用,为人类生活带来更多的便利和美好。

有机电致发光器件简介

有机电致发光器件简介
空穴注入层通常由宽带隙半导体材料 组成,如二氧化硅(SiO2)或氮化硅 (Si3N4),这些材料能够有效地将 正电荷注入到空穴传输层中。
空穴传输层
总结词
空穴传输层负责传输空穴到发光层。
详细描述
空穴传输层通常由有机材料组成,如多苯基小分子或聚合物,这些材料具有较高的空穴迁移率,能够有效地将空 穴传输到发光层。
度的显示效果。
THANK YOU
多色与高分辨率有机电致发光器件研究进展
多色与高分辨率有机电致发光器件是未 来发展的重要趋势之一,其研究进展主 要集中在彩色显示和高分辨率显示两个
方面。
在彩色显示方面,研究者通过合成不同 颜色的发光材料和精细的掺杂技术,实
现全色显示和多色动态显示。
在高分辨率显示方面,研究者采用高精 度印刷和纳米光刻技术,制备高分辨率 的像素电极和功能层,从而实现高清晰
照明应用
总结词
有机电致发光器件具有高效、环保、可弯曲 等优点,在照明领域具有广阔的应用前景。
详细描述
有机电致发光器件的发光效率高,能够实现 高效照明,同时其环保无汞的特性符合绿色 照明的趋势。此外,有机电致发光器件还可 以制成柔性照明产品,如柔性灯带、可折叠 灯具等,具有广泛的应用场景。
生物成像与传感应用
热活化延迟荧光材料的发光寿命较长, 且具有较高的发光效率,因此在有机 电致发光器件中具有广阔的应用前景。
04
有机电致发光器件的应用
显示应用
总结词
有机电致发光器件在显示领域具有高对 比度、宽色域、低能耗等优势,被广泛 应用于电视、显示器、广告牌等显示设 备。
VS
详细描述
有机电致发光器件通过电流激发有机材料 ,产生可见光,具有自发光的特性,无需 背光源,因此可以实现高对比度和宽色域 的显示效果。同时,有机电致发光器件的 能耗较低,能够降低显示设备的运行成本 和维护成本。

电致发光高分子材料的研究前沿与进展

电致发光高分子材料的研究前沿与进展

电致发光高分子材料的研究前沿与进展有机电致发光材料经过了几十年的发展,已经取得了长足进展。

材料的亮度、稳定性以及发光效率都得到了很大的提高,一些基色材料已经达到或者接近商业化开发的程度,并已经有一些小尺寸的器件投放到了市场。

但是蓝光材料仍没有达到真正可商业化开发应用的地步,这在一定程度上成了制约有机柔性平板显示技术发展的瓶颈之一,归结起来这很大程度上跟有机电致发光理论的不成熟有关。

现行的有机电致发光理论很大程度还是借鉴经典无机半导体物理理论而发展起来的,对现有有机电致发光研究中不断涌现的一些问题,只能是就事论事地进行经验解释,不能像经典半导体物理那样可以有很好的规律性理论来直接指导和规范具体研究,给人以“摸着石头过河”的感觉有机电致发光材料研究中的一些比较突出问题主要体现在以下方面。

首先,对电极功函的准确测定,对电极功函与材料的LUMO 和HOMO 能级之间的匹配而形成的势垒在具体器件性能中所扮演角色的定位,以及一些共聚物材料的LUMO 和HOMO 能量的确定等问题目前还没有一个圆满解决方案。

其次,由量子化学原理,有机半导体材料电致发光效率一般是光致发光效率的25 % ,但是已经有报道称有器件的电致发光效率可达到10 % ,而这样高的电致发光效率是现有很不完善的器件工艺所不可能达到的,这也是对传统半导体理论的巨大挑战。

就寡聚物而言,由于共轭长度有限的缘故,电子空穴对复合产生的激子由三线态激发态返回到基态的速度较快,所以该类材料的发光效率严格符合量子自旋规律。

而对具有较长共轭长度的高分子材料而言,如果电子空穴对复合产生的激子由三线态激发态返回到基态的速度较慢,则三线态激发态可以有足够的时间通过系间窜跃而变成单线态激发态。

后者如果以很快的速度返回基态,就可以实现对高分子材料发光效率的大幅度提高。

虽然有人用热激发与计算机模拟计算的方法得到了高分子材料在光激发下产生的三线态与单线态之间的能隙大约在3 —6meV之间,并且发现该能隙跟高分子材料的凝聚态结构有很大关系,但是真正意义上实现聚合物材料以100 %的量子效率发光目前还没有实现[48 ] 。

电致发光高分子材料

电致发光高分子材料

有机发光材料因分子间范德华力作用较弱,
对于处在激发态的有机分子,其电子与空
穴基本属于一个分子。因此大多数的有机 分子所形成的激子属于Frankel激子类型。 设激子的能级Eex。位于价带底能级Ec与价 带顶能级Ev之间,则它的激发能为Eg`= Eex—Ev ,小于Eg=Ec--Ev。显然激子的 束缚能为Ec—Eex;激子最终发生复合,即 在此过程中电子落人空穴之中,或者产生
余辉在10 -8 秒以下的称荧光.如受外来光 线激发发光的荧光灯发光;受阴极射线激发 发光的电视屏发光;都为荧光.荧光是冷光, 其余辉时间与发光体温度无关.荧光灯管和 电视屏上都涂有发光物质,荧光灯上涂的发 光物质常为卤磷酸钙.
磷光邮票与荧光邮票的区别:磷光邮票和荧 光邮票都是发光邮票,在紫外灯照射下发出 蓝绿色余辉,主要区别是撤除紫外线照射, 荧光邮票亮光立即消失,而磷光邮票亮光消 失较慢。
概述
长期以来,人们一直致力于研究开发无机半导体 电致发光器件,因为它们在通讯、光信息处理、 视频器件、测控仪器等光电子领域有着广泛而重 要的应用价值。
无机半导体二极管、半导体粉末、半导体薄膜等 电致发光器件尽管已取得了巨大的成就,但由于 其复杂的制备工艺、高驱动电压、低发光效率、 不能大面积平板显示、能耗较高以及难以解决短 波长(如荧光)等问题.使得无机电致发光材料的 进一步发展受到影响。
改变取代基 增加给电子基团发生红移 增加吸电子基团发生蓝移 改变共轭链的长短 部分共轭可以获得更大的量子效率,抑制了非光耗散 掺杂剂 改变了能量传递的效率和浓度,改变器件的发光光谱
制备
真空蒸镀 浸涂和旋涂 原位聚合法 利用单体的光聚合或者电化学聚合制备聚
聚合物电致发光的一些基本概念
载流子 激子 单线态与三线态 磷光和荧光 电致发光的量子效率 载流子注入效率

第七章有机高分子电致发光材料和器件

第七章有机高分子电致发光材料和器件

第七章有机高分子电致发光材料和器件有机高分子电致发光材料和器件是一种新型的发光材料和器件,其通过在高分子材料中引入发光分子,利用电场激发和控制发光,具有较高的发光效率和较长的寿命。

有机高分子电致发光材料和器件在显示、照明、生物医学和传感器等领域具有广泛的应用前景。

有机高分子电致发光材料和器件的基本原理是电发光机理,即通过施加电场刺激分子激发态,使其经过电子跃迁释放光子,实现发光。

该技术具有以下优点:首先,有机高分子电致发光材料能够实现宽光谱范围的发光,可以通过合理设计分子结构和化学修饰来调控发光波长和颜色;其次,该材料发光效率高、亮度高,并且具有很快的响应速度;此外,材料制备相对简单,成本较低,适合大规模生产。

有机高分子电致发光材料和器件可以应用于各种显示器件,如有机发光二极管(OLED)和柔性显示器。

OLED是一种利用有机高分子电致发光材料制造的显示器件,具有自发光、高对比度、宽视角等优点。

相比传统液晶显示器,OLED显示器的亮度更高,更薄,更省电。

此外,由于有机高分子材料的柔性特点,可以实现柔性显示器,将显示器应用于可穿戴设备、曲面屏幕等。

有机高分子电致发光材料和器件还可以用于照明领域。

传统的照明设备如白炽灯和荧光灯存在能源消耗大、汞污染等问题,而有机高分子电致发光材料可以使用更低的电压获得较高的亮度,具有更好的能源效率。

同时,由于有机高分子材料的柔性特点,可以制造出柔性照明设备,使得照明方式更加多样化。

此外,由于有机高分子材料对生物相容性好,可以在生物医学领域应用。

例如,可以将有机高分子电致发光材料制备成荧光探针,用于生物分子的检测和成像。

这些探针可以灵敏地检测到病原体、癌细胞和分子信号,为生物学研究和疾病诊断提供有效的工具。

在传感器领域,有机高分子电致发光材料和器件也具有广泛的应用。

其可以制备成传感器材料,用于检测环境污染物、气体成分和生物分子等。

这些传感器可以实现高灵敏度、快速响应和实时监测,为环境监测和生命科学研究提供有效的手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电致发光高分子材料综述作者:张祺夏沣任彤尧汤伟摘要:高分子发光二极管(PLED)是由英国剑桥大学的杰里米伯勒德及其同事首先发现的。

聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管,因其巨大的科学和商业价值而得到了广泛的关注,是近来国际上的研究热点。

对于各种新材料的不断开发和深入研究,PLED器件日益实用化。

本文主要综述了近几年国内外关于高分子聚合物在电致发光材料领域的研究进展,介绍了有机高分子发光材料的发展现状,概述了其市场前景及相关的应用,并展望了高分子电致发光材料的发展趋势。

关键词:高分子;电致发光;研究现状Abstract:Polymer light-emitting diode (PLED) first discovered by Jerry Mibo Lede of the University of Cambridge and his colleagues. Most organic polymer molecules from the small ones to chain together by a spin-coating to form polymer organic light-emitting diodes, because of its great scientific and commercial value ,it has been widespread concerned, and becomes the recent international researchs’ focus. For the continuous development of new materials and in-depth researchs, PLED devices become increasingly practical. This paper mainly overviews the recent years’domestic and foreign polymer progress of research in electroluminescent materials, describes the recent status of the development of organic polymer light-emitting materials, overviews the market prospects and related applications, and prospects of polymer electroluminescent material trends.Keywords:Polymer; EL; Research status1.绪论信息技术,纳米技术,生物技术被誉为21世纪的最具前景的三大技术,它们将会给人们的生活方式带来彻底的改变。

作为技术的载体,材料科学的发展通常会伴随技术的突破,而信息技术的持续快速发展对信息显示系统的性能,如亮度、对比度、色彩变化、分辨率、成本、能量消耗、质量和厚度等均提出了高的要求。

在已有的成熟显示技术中,电致发光显示设备能够满足上述性能要求,另外它还具有宽视角、较宽的工作温度范围和固有的强度等优点。

电致发光显示设备一般包括发光二极管(LED)、粉末磷设备、薄膜电致发光设备( TFEL)和厚介质电致发光设备等。

1.1 定义电致发光 (英文electroluminescent),又可称电场发光,简称EL,是通过加在两电极的电压产生电场,被电场激发的电子碰击发光中心,而引致电子解级的跃进、变化、复合导致发光的一种物理现象。

电致发光物料的例子包括掺杂了铜和银的硫化锌和蓝色钻石。

PLED(polymer light-emitting diode的缩写),即第二种有机发光材料为高分子聚合物,也称为高分子发光二极管(PLED),由英国剑桥大学的杰里米伯勒德及其同事首先发现。

聚合物大多由小的有机分子以链状方式结合在一起,以旋涂法形成高分子有机发光二极管。

1.2 发光机理[1]电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空间电荷相对迁移,在发光层内,电子和空穴相遇复合,形成激子,激子经过辐射衰变而发射可见光,或者激发活性层中其他发射体分子而发光。

2.国内外研究现状2.1 新型甲壳型液晶高分子的电致发光性能研究杨倩,徐一丁,沈志豪等[4]人对新型甲壳型液晶高分子的电致发光性能进行了研究,他们将优良的电子传输基团噁二唑引入甲壳型液晶高分子的分子结构中,可以使聚合物电致发光器件的电子传输性得到改善,最亮度可达290.8cd/m2,最大外量子效率可达0.24%[1]。

电致发光性能的优良可能与该聚合物在一定温度下可以进入近晶A相的液晶相态相关[2]。

为了进一步改善器件的发光性能,他们考虑将空穴传输基团引入分子结构中,期待能够实现空穴与电子传输平衡的目的。

也考虑进一步增大侧基的刚性,有利于使聚合物在进入液晶相以后可以发育出近晶相态[3],利用甲壳型液晶高分子的大侧基使分子间聚集减少的特点,使聚合物制得的电致发光器件可以达到更好的性能。

他们设计合成了一种新型的侧链含七个芳杂环的,尾链为辛氧基和癸氧基的甲壳型液晶高分子(如图7),研究了单体和相应聚合物的光物理性质,电致发光性质,液晶性以及偏振发光性质。

图7 甲壳型液晶高分子结构这种侧基尾链长度不同的,噁二唑和噻吩基团在侧链对称直接相连的甲壳型液晶高分子在膜中聚集较少,用该系列聚合物做成的电致发光器件的最大亮度可达541cd/m2,最大电流效率可达0.10cd/A。

同时聚合物的液晶性研究发现聚合物进入液晶态以后可形成近晶A相,偏振荧光测试发现偏振光沿不同方向入射时,取向的聚合物膜的荧光强度有较大差别。

可见,甲壳型结构的运用可以很大地提高侧链共轭聚合物的电致发光性能。

2.2 含磷高分子有机电致发光材料张胜兰,陈润锋,姜鸿基等[4]人对含磷有机电致发光材料进行了相关研究。

他们根据引入磷原子的不同方式,对磷杂环戊二烯、二噻吩并磷杂环戊二烯、磷芴以及磷杂聚苯撑乙烯等材料的结构特点和在有机电致发光材料方面的现状进行了研究。

从而得出相关结论:在有机π共轭材料中引入磷原子是一种有效改善材料光电性能的方法,因为磷原子一方面可以通过其d 轨道与π共轭体系间的σ-π相互作用来改变材料的电子结构;另一方面可以通过氧化、硫化或与金属配位等手段进行修饰,从而能在较大范围内调控材料的光电性能。

含磷的有机π共轭材料由于其独特的结构特点和多样化的性能,在有机电致发光材料中显示出了巨大的应用潜力。

磷杂环戊二烯、二噻吩并磷杂环戊二烯、磷芴和磷杂聚苯撑乙烯等材料可为π共轭体系提供新的共轭骨架;亚氨基膦类材料可作为空穴传输料;DOPO 作为侧基引入共轭体系可以调节材料的溶解性和热稳定性;富磷烯类材料可以作为电子供体。

目前研究较多的磷杂环戊二烯和二噻吩并磷杂环戊二烯等材料已经实现了三基色发射;磷芴等其他含磷光电功能材料则研究较少,但其独特的分子结构和光电特性显示出重要的研究价值。

综上所述,磷原子的引入为有机光电功能材料的分子结构设计和光电性能改善等方面的研究提供了广阔的空间,有望成为有机电致发光材料研究开发的一个新的发展方向。

2.3 蓝色荧光材料[9]由于蓝色发光材料一般具有较宽的能隙,很难同时满足蓝光对效率和色纯度的要求[5]。

虽然蓝色磷光材料在色纯度以及稳定性方面离实用化还有一定距离[6], 但是蓝色荧光方面已经有较多十分接近目标的工作发表。

二苯乙烯基上接入二苯胺结构会产生近平面的几何结构,减少分子的扭曲,引起吸收和荧光光谱红移, 为了解决这个问题, Li等[7] 在中间的芳基上引入氟原子以调节发光颜色。

以TFVBi为发光层做成器件, 电流效率可达5.91 cd/A,CIE 色度坐标为( 0.14, 0.14),外量子效率达4.87%。

Wei 等[ 8] 设计了一类新的蓝光材料,由二苯乙烯基的两个苯环与芴的C-9位置连接起来形成一个7元环。

这个结构可以避免分子间的π-π堆积而引起的发光淬灭或红移。

器件最大外量子效率达到了惊人的7.87%。

Lee 等[ 9]研究发现, 非对称结构的芳胺取代的二苯乙烯基衍生物共轭长度变短,发光波长蓝移,于是合成了一系列二苯乙烯基衍生物, 其中以BD为掺杂发光层的器件,发射波长为438nm,外量子效率达5.1%。

在已报道的蓝色荧光材料中, 三环芳香烃蒽类和螺芴类材料的性能较为突出。

它们的分子内都具有刚性的共轭环,热稳定性较高,同时大的取代基以及螺芴本身的扭曲结构,降低了分子的共平面性,共轭程度减小,发光波长蓝移,从而得到深蓝发射的器件。

不过三环芳香烃类蓝光材料在器件效率方面并不是很突出。

含氮蓝光材料最重要的一个特点是分子内具有电子推拉结构,有效地提高了材料的荧光量子效率,目前报道的含氮蓝光材料最大外量子效率达到7.87%。

但是含氮蓝光材料稳定性较差,分子内偶极矩较大,导致发光波长红移。

到目前为止,蓝光材料在效率和色纯度统一的问题上依然存在着困难。

为了得到性能更加优良的蓝光材料,人们开始尝试将含氮基团和具有扭曲刚性结构的三环芳香烃连接在一起,构建新型高效深蓝光材料,这种设计思路同时兼顾了材料的效率和色纯度。

随着研究的进一步进展,相信更加高效色纯度更好的深蓝色荧光材料将会更多。

2.4 高分子发光材料的颜色及调节[10]近些年来,在聚合物电致发光材料的制备,发光器件的效率,亮度和使用寿命等方面取得很大的突破,甚至已经有实用化的产品出现,特别是红,绿,蓝三色聚合物发光材料的研究取得了相当诱人的进展。

聚芴是最为典型的蓝馆聚合物,但其聚合物链段上接上不同的基团,可以得到从红光和绿光。

但目前的研究,红绿光聚合物较多,蓝光聚合物较少。

在这方面,邹应萍,霍利军,李永舫等[11]人,及张诚,王纳川,徐意等[12]人对发光材料及其颜色的调节做了详细的介绍。

另外,就目前的研究来说,纯的可以发白光的材料还不多,主要是通过共聚物在高分子主链上接枝上不同发光单元得到[13]。

3.市场与应用开发公司成果技术特点时间、地点或会展2英寸的绿色PLED 180000像素,2mm厚1998年2月CDT和Seiko-Epson1999,SID 同上全彩PLED面板喷墨打印技术,主动式TFT驱动,16灰阶4096色,约3000像素,120ppi17.1英寸全彩PLED——2002,SID Toshiba面板13英寸全彩PLED面1000小时寿命2004,SID Philips板40英寸全彩PLED面板喷墨打印技术,世界上首个大尺寸原型机,厚度2.1mm2004,SID Philips14英寸PLED全彩面板非晶硅主动矩阵底板驱动,喷墨打印技术,分辨率1280×7682006,SID CDT21英寸PLED全彩面板低温p-Si TFT驱动,72ppi 2007,SID Toshiba年LED市场总额将达到90亿美元。

相关文档
最新文档