第3章 传热设备在石油化工行业中的应用

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章传热设备在石油化工行业中的应用

下面,以换热器在石油化工行业中的应用为例,简要介绍其工作原理及传热过程。

3.1 换热器换热的工艺流程

图3-1 换热器换热工艺流程

3.2 余热回收

余热是指受历史、技术、理念等因素的局限性,在已投运的工业企业耗能装置中,原始设计未被合理利用的显热和潜热。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热等。根据调查,各行业的余热约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。

3.3 换热器

3.3.1简介

在煤化工、炼油等化工行业中,绝大多数化工工艺过程中均需要加热、冷却和冷凝过程,这些过程总称为换热过程。换热过程的进行需要一定的设备来完成,这些使产热过程得以实现的设备就称之为换热设备。

因为绝大部分的化学反应或传质传热过程都与热量的变化密切相关,如反应过程中有的放热、有的吸热,要维持反应的连续进行,就必须排除多余的热量或者补充所需的热量,另外,一些化工过程产生多余的热量可以用于需要热量补充的其他化工过程,既可回收热量又可降低能耗。以上与热量交换有个的过程都需要换热设备。换热设备在化工、动力、原子能、冶金等多个行业都有着广泛的应用。

3.3.2分类

换热器按照用途分类分为加热器、冷却器、冷凝器、蒸发器和再沸器;按照冷热流体的热量交换方式分为:直接接触式、蓄热式和间壁式,直接接触式换热器是在工艺上允许的条件下直接将冷热流体混合实现热量交换,方便有效且结构简单,常用于气体的冷却或者水蒸气的冷凝。蓄热式换热器主要由热容量较大的蓄热室构成,室内填充耐火砖等填料,冷热流体交替通过蓄热室通过填料实现热交换,这种换热器结构简单、可耐高温,适于气体热余量或者冷量回收,但其设备尺寸较大,且冷热流体会在某种程度上混合。间壁式换热器是目前化工行业内使用较为普遍的换热器,该换热器冷热流体用某种导热性能较好的材料分开,以保证冷热流体在不混合的条件下实现热交换。

3.3.3原理及特点

■板式换热器的构造原理、特点:

板式换热器由高效传热波纹板片及框架组成。板片由螺栓夹紧在固定压紧板及活动压紧板之间,在换热器内部就构成了许多流道,板与板之间用橡胶密封。压紧板上有本设备与外部连接的接管。板片用优质耐腐蚀金属薄板压制而成,四角冲有供介质进出的角孔,上下有挂孔。人字形波纹能增加对流体的扰动,使流体在低速下能达到湍流状态,获得高的传热效果。并采用特殊结构,保证两种流体介质不会串漏。

■列管式换热器的构造原理、特点:

列管式换热器(又名列管式冷凝器),按材质分为碳钢列管式换热器,不锈钢列管式换热器和碳钢与不锈钢混合列管式换热器三种,按形式分为固定管板式、浮头式、U型管式换热器,按结构分为单管程、双管程和多管程,传热面积1~500m2,可根据用户需要定制。

■管壳式换热器的构造原理、特点:

管壳式换热器是进行热交换操作的通用工艺设备。广泛应用于化工、石油、石油化工、电力、轻工、冶金、原子能、造船、航空、供热等工业部门中。特别是在石油炼制和化学加工装置中,占有极其重要的地位。换热器的型式。

■浮头式换热器的构造原理、特点:

浮头式换热器其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产生温差应力。浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提供了方便。这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程都要进行清洗的工况。

■管式换热器的构造原理、特点:

DLG型列管式换热器利用热传导和热辐射的原理,烟道气通过管程与逆流通过壳程的空气进行能量交换,从而达到输出洁净热空气的目的。该换热器结构紧凑,运行可靠,列管采用耐高温的薄壁波纹管,增加发传热面积和换热效率。广泛应用于化工、制药、轻工等行业废气余热利用和空气加热。

3.4 影响间壁式换热器性能的因素及强化措施

3.4.1影响间壁式换热器传热性能的因素

间壁式换热器主要以热传导、对流形式传热。但管壁导热热阻较小,对传热影响不大,.影响其传热过程的因素主要来自对流传热过程,其中影响较大的有以下几方面。

1)流体的种类和相变:不同的液体、气体或蒸汽的对流传热系数都不相同,牛顿型流体和非牛顿型流体也有区别。流体有相变的传热过程,其传热机理不同于无相变过程,所以传热系数不同。

2)流体的特性:对对流传热系数影响较大的流体物性有导热系数、乳度、比热容、密度以及体积膨胀系数。对同一种流体,流体的物性不同,对流传热系数亦不同。

3)流体的流动状态:由层流和湍流的传热机理可知,流体处于层流状态,对流传热系数较小,流体处于剧烈的湍流状态时,对流传热系数大。

4)流体流动的原因:按引起流动的原因分,对流传热分为自然对流和强制对流。强制对流的传热系数较自然对流的传热系数大几倍甚至几十倍。

5)传热面的形状、位置和大小:传热面的形状(如管、板、环隙、翅片等)、传热面方位和布置(水平或垂直放置,管束的排列方式等)及管道尺寸(如管径和管长等)都直接影响对流传热系数。

6)流体的温度:流体的温度对对流传热的影响表现在流体温度和壁面温度之差、流体物性随温度变化的程度以及附加自然对流等方面。此外,由于流体内部温度分布不均匀,必然导致密度的差异,从而产生附加的自然对流,这种影响又与热流方向及管子排列情况等有关。

此外,换热器在实际操作中,传热表面上常有污垢积存,对传热产生附加热阻,所以生产用的换热器要防止和减少污垢层的形成,降低其对传热效果的影响。

3.4.2间壁式换热器传热过称的强化路径

换热器传热过程的强化就是力求使换热器在单位时间内,单位传热面积传递的热量尽可能增多。其意义在于:在设备投资及输送功耗一定的条件下,获得较大的传热量,从而增大设备容量,提高劳动生产率;在设备容量不变的情况下使其结构更加紧凑,减少占地空间,节约材料,降低成本:在某种特定技术过程中使某些特殊工艺要求得以实施等。换热设备传热计算的基本关系式揭示了换热设备的传热速率Q与总传热系数K、平均温度差以及传热面积A之间的关系。因此,要使换热设备的传热过程得到强化,可以通过提高传热系数,增大换热面积和增大平均传热温差来实现。

3.4.2.1增大传热面积

A.增大传热面积,是指从设备的结构入手,通过改进传热面的结构来提高单位体积的传热面积,而非靠增大换热器的尺寸.使用多种高效能传热面,不仅使传热面得到充分的扩展,而且还是流体的流动和换热设备的性能得到相应的改善。主要型式介绍如下:

1)翅化面(肋化面):用翅(肋)片来扩大传热面面积和促进流体的湍动,从而提高传热效率,是最早提出的方法之一翅化面的种类和型式很多,用材广泛,制造工艺多样,翅片管式换热器、板翅式换热器等均采用此法强化传热。

2)异形表面:用轧制、冲压、打扁或爆炸成型等方法将传热面制造成各种凹凸形、波纹形、扁平状等,使流道截面的形状和大小均发生变化。这不仅使传热

相关文档
最新文档