人教版高二数学掌握必考知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高二数学掌控必考知识点
要握住高考这个实现企图的阶梯,建立一个最美的梦给未来的自己,让自己的未来不再平凡!以下是作者整理的有关高考考生必看的人教版高二数学必考知识点,期望对您有所帮助,望各位考生能够爱好。

人教版高二数学必考知识点1
一、随机事件
主要掌控好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)事件的五种关系:包含、相等、互斥(互不相容)、对峙、相互独立。

二、概率定义
(1)统计定义:频率稳固在一个数邻近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件显现的可能性相等,则事件
A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素显现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来运算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映照。

三、概任性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则
P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B
相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,....,An下产生,则用全概率公
式求B产生的概率;如果事件B已经产生,要求它是由Aj引发的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力实验(三个条件:n次重复,每次只有A与A的逆可能产生,各次实验结果相互独立)时,要推敲二项概率公式.
人教版高二数学必考知识点2
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确运用不等式的基本性质.
(2)正确运用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范畴.
3.不等式的同解性
(5)|f(x)|
(6)|f(x)| g(x)①与f(x) g(x)或f(x) -g(x)(其中g(x)≥0)同解;②与g(x) 0同解.
(9)当a 1时,af(x) ag(x)与f(x) g(x)同解,当0ag(x)与f(x)
人教版高二数学必考知识点3
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。

运用:比较大小,证明不等式,解不等式。

奇偶性:
定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。

f(x)-f(-
x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

判别方法:定义法,图像法,复合函数法
运用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
运用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌控常见基本函数的图像,掌控函数图像变换的一样规律。

常见图像变化规律:(注意平移变化能够用向量的语言说明,和按向量平移联系起来摸索)
平移变换y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系数,要先提取系数。

如:把函数y=f(2x)经过平移得到函数
y=f(2x+4)的图象。

(ⅱ)会结合向量的平移,知道依照向量(m,n)平移的意义。

对称变换y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x),关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保存,x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保存,然后将y轴右边部分关于y轴对称。

(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 人教版高二数学掌控必考知识点到此结束。

相关文档
最新文档