小学教学11种基本类型应用题
一二年级的重点应用题分类总结
一二年级的重点应用题分类总结
应用题是小学数学教学中的重要组成部分,尤其对于一二年级的学生来说,通过解决应用题能够帮助他们将数学知识应用到实际生活中,培养解决问题的能力。
以下是对一二年级常见的重点应用题进行的分类总结,旨在帮助学生们更好地掌握解题技巧。
一、加减法应用题
1.水果问题:例如,小明有5个苹果,妈妈又给了他3个,请问小明现在有多少个苹果?
2.买卖问题:例如,一支铅笔3元钱,小明买了2支,请问小明一共花了多少钱?
二、乘法应用题
1.队伍问题:例如,一个队伍有5排,每排有4个人,请问这个队伍一共有多少人?
2.面积问题:例如,一个长方形的长是5厘米,宽是3厘米,请问这个长方形的面积是多少?
三、除法应用题
1.分享问题:例如,有12个糖果要平均分给4个小朋友,每个小朋友能分到几个糖果?
2.价格问题:例如,一箱苹果的价格是24元,这箱苹果有8个,每个苹果的价格是多少?
四、混合运算应用题
1.组合问题:例如,小明有2个篮球和3个足球,篮球和足球一共有多少个?
2.优惠问题:例如,一件衣服原价50元,打8折后,小明还需要支付多少钱?
五、时间应用题
1.速度问题:例如,小明每分钟走50米,他走了10分钟,请问小明走了多少米?
2.等待问题:例如,小明等公交车,每辆公交车10分钟一趟,他等了3趟,请问小明等了多长时间?
总结:通过对一二年级的重点应用题进行分类总结,我们可以发现,这些应用题主要涉及加减乘除和混合运算,以及时间问题。
掌握这些类型的应用题,对于提高学生的数学解题能力具有重要意义。
小学数学典型应用题归类总结(30种)
小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
小学数学常考的10种应用题类型_考前必看
小学数学常考的10种应用题类型_考前必看今天小编给大家带来小学数学常考的10种应用题类型,希望可以帮助到大家。
一、归一问题1.含义在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
2.数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数3.解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
二、归总问题1.含义解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
小学11类典型应用题
小学11类典型应用题1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
■例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要192元■例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式:90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式:105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题含义】解题时,常常先找出“总数量然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量几小时行的总路程等。
整数小数应用题
11种简单应用题类型(一)部总关系:总数=部分数+部分数部分数=总数-部分数例1、二年一班有男生20人,女生15人,二年一班共有多少人?(求总数)例2、二年一班共有学生35人,其中女生15人,男生多少人?(求部分数)(二)差比关系:大的数=小的数+相差数相差数=大的数-小的数小的数=大的数-相差数例3:白萝卜20个,红萝卜比白萝卜多5个,红萝卜有多少个?(求大的数)例4:白萝卜有20个,红萝卜有25个,红萝卜比白萝卜多多少个?白萝卜比红萝卜少多少个?(求相差数)例5:红萝卜25个,红萝卜比白萝卜多5个,白萝卜有多少个?(求小的数)(三)份总关系:总数=每份数×份数每份数=总数÷份数份数=总数÷每份数例6、有9 个同学,每个做4件玩具,一共做了多少个玩具?(求总数)例7、有9个同学共做了36件玩具,平均每个同学做了多少件?(求每份数)例8、同学们做了36件玩具,每个做4件.做玩具的有多少人?(求份数)(四)倍数关系:几倍数=一倍数×倍数倍数=几倍数÷一倍数一倍数=几倍数÷倍数例9、动物园里有4只小熊猫,大熊猫的只数是小熊猫的2倍,有几只大熊猫?(求几倍数)例10、动物园里有4只小熊猫,8只大熊猫,大熊猫的只数是小熊猫的几倍?(求倍数)例11、动物园里有8只大熊猫,大熊猫的只数是小熊猫的2倍,有几只小熊猫?(求一倍数)———————-—————-——————-———————A#训练:1、食堂吃掉9袋大米后,还剩7袋,原来有多少袋大米?2、老师留作业20道,小明做了9道,还差多少道才能做完?3、一本书共有24页,第一天看了之后还剩下14页,第一天看了多少页?4、小东有5支铅笔,妈妈给他又买了些铅笔,现在他有14支铅笔,妈妈又买了几支?5、一篮菜,连篮重4千克,篮重1千克,菜重多少千克?6、一个商店卖掉了17只气球,还剩6只.原来商店有多少只气球?B#训练:7、河里有8只鹅,比鸭多2只,鸭有多少只?8、同学们做了11朵红花,做的黄花比红花多4朵,黄花有多少朵?9、学校有10个足球,16个篮球,足球比篮球少多少个?10、学校上个月的水电费是150元,这个月比上个月节约了15元,这个月的电费是多少?11、一项工程计划32天完成,实际比计划提前了4天,实际多少天完成?12、草地上有黑羊46只,比白羊少5只,有白羊多少只?C#训练:13、特快列车每小时可行160千米,30小时可行多少千米?14、学校共有576名学生,每18人组成一个环保小组,可以组成多少组?15、小英3天看27页书,平均每天看多少页?16、5箱蜜蜂一年可以酿375千克蜂蜜,平均每箱蜜蜂一年可以酿多少千克?17、有36只皮球,每6只放一盒,共可以放多少盒?18、张师傅每小时做零件20个,照这样计算,他4小时可加工零件多少个?D#训练:19、在我国的一个湖区越冬的有16只白鹤,176只天鹅。
人教版四年级数学上册:全册13大重点应用题类型整理大全,提升必练
四年级数学上册:全册13大重点应用题类型整理大全,提升必练【解释】:第一句:1.归一问题、2.归总问题、3.连乘问题、4.连除问题;第二句:5.路程问题、6.面积问题、7.够不够问题;第三句:8.和差问题、9.倍数问题、10.份数问题;第四句:11.价格问题、12.优惠类问题、13.求角度数问题;一、归一问题:1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?二、归总问题:1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?2、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?三、连乘问题:1、小东每天练2张毛笔字,每张上有16个字,小东一星期(7天)写了多少个字?2、一个方队,共8列,小明在第3列,小明前面有5个人,后面有6个人,这个方队共有多少人?3、一个方队有8列,小明在第6列,从前往后数,小明是第5个人,从后往前数,小明是第6个人,这个方队共有多少人?4、一学校为四川灾区捐款,学校共有6个年级,每个年级有3个班,平均每班捐款123元,他们一共捐了多少钱?5、每个书架有3层,每层可放书36本,学校有20个这样的书架。
一共可放书多少本?6、1只青蛙1天吃害虫98条,按这样计算,20只青蛙一个月(30天)能捉多少条害虫?7、三年级一班有38个同学,举行接力赛,每人跑2圈。
(操场长30米,宽20米)这个班的学生大约一共跑了多少米8、一本小说大约50页,每页大约有25行字,每行大约30个字,这本书大概有多少字?9、铅笔每盒有24支,每支9角,小明想买2盒,小明要付多少元钱?10、新兴小区一幢楼有16层,共3个单元,每个单元每层住2户,这幢楼住多少户人家?11、六一节,老师准备给每个同学准备2个香蕉,1个苹果,全班有36人,一共要准备多少个水果?12、每盒有16个鸡蛋,每箱有4盒,6箱共需要多少个鸡蛋?四、连除问题:1、4台织布机一周织布1568米,平均每台织布机每天织布多少米?2、360人排成4个方阵,每个方阵有5列,平均每列站多少人?3、服装店一天工卖出3箱衣服,每箱6件,一共收入3600元,平均每件衣服多少元?4、7头猪一星期喂245千克食料,平均1头猪1天喂多少食料?5、1盒月饼有2层,每层有4个,一个工厂一天生产了560个月饼,这个工厂一天生产了几盒月饼?6、奶奶家养了59只母鸡,125只公鸡,把这些鸡关在8只鸡笼里,平均每只鸡笼里关几只鸡?7、森林里有420张桌子,想摆成7个大组,每个大组摆6列,平均每列有几张桌子?8、128个梨,每盒装8个,2盒装一箱。
小学数学十一类基本应用题
十一类基本应用题加法1、把两个数(几个数)合并成1个数,用加法计算。
数学乐趣小组有男生8人,有女生12人,乐趣小组一共有学生多少人?求乐趣小组一共有学生多少人,也就是求8与12的和是多少。
乐趣小组一共有学生人次= 男生人次+女生人次2、求比1个数多几的数是多少,用加法计算。
数学乐趣小组有男生8人,女生比男生多2人,女生有多少人?求女生有多少人,也就是求比8多2的数是多少。
女生人次=男生人次+女生比男生多的人次减法3、求剩余用减法。
食堂有大米12袋,今天用去了8袋,还剩下多少袋?求还剩下多少袋大米,也就是求从12里面去掉8,还剩多少。
剩下的袋数=本来有的袋数-用去的袋数4、求相差数用减法计算数学乐趣小组有男生8人,有女生12人,乐趣小组女生比男生多多少人(男生比女生少多少人)?求女生比男生多多少人(男生比女生少多少人),也就是求12比8多多少(8比12少多少)。
女生比男生多的人次(男生比女生少的人次)=女生人次-男生人次5、求比1个数少几的数是多少,用减法计算。
数学乐趣小组有女生12人,男生比女生少4人,男生有多少人?求男生有多少人,就是求比12少4的数是多少。
男生人次=女生人次-男生比女生少的人次乘法6、求几个几是多少用乘法计算。
数学俱乐部有6个小组,每组有8人,数学俱乐部一共有学生多少人?求数学俱乐部一共有学生多少人,就是求6个8是多少。
数学俱乐部的人次=每组的人次×小组数7、求1个数的几倍是多少,用乘法计算。
数学俱乐部有学生8人,英语俱乐部的人次是数学俱乐部人次的6倍,英语俱乐部有学生多少人?求英语俱乐部有学生多少人,就是求8的6倍是多少。
英语俱乐部的人次=数学俱乐部的人次×倍数除法8、把1个数均等分成几份,求一份是多少用除法计算。
把12个桃子均等放在6个盘子里,均等每个盘子里有几个桃子?求均等每个盘子里有几个桃子,就是把12均等分成6份,求每份是多少。
均等每个盘子里有几个桃子=桃子总额÷盘子个数9、求1个数里面有几个另外1个数,用除法计算。
人教版小学四年级数学上册应用题类型总结
人教版小学四年级数学上册应用题类型总结一、归一问题:1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?二、归总问题:1、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?2、小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?三、连乘问题:1、小东每天练2张毛笔字,每张上有16个字,小东一星期(7天)写了多少个字?2、一个方队,共8列,小明在第3列,小明前面有5个人,后面有6个人,这个方队共有多少人?3、一个方队有8列,小明在第6列,从前往后数,小明是第5个人,从后往前数,小明是第6个人,这个方队共有多少人?4、一学校为四川灾区捐款,学校共有6个年级,每个年级有3个班,平均每班捐款123元,他们一共捐了多少钱?5、每个书架有3层,每层可放书36本,学校有20个这样的书架。
一共可放书多少本?6、1只青蛙1天吃害虫98条,按这样计算,20只青蛙一个月(30天)能捉多少条害虫?7、三年级一班有38个同学,举行接力赛,每人跑2圈。
(操场长30米,宽20米)这个班的学生大约一共跑了多少米?8、一本小说大约50页,每页大约有25行字,每行大约30个字,这本书大概有多少字?9、铅笔每盒有24支,每支9角,小明想买2盒,小明要付多少元钱?10、新兴小区一幢楼有16层,共3个单元,每个单元每层住2户,这幢楼住多少户人家?11、六一节,老师准备给每个同学准备2个香蕉,1个苹果,全班有36人,一共要准备多少个水果?12、每盒有16个鸡蛋,每箱有4盒,6箱共需要多少个鸡蛋?四、连除问题:1、4台织布机一周织布1568米,平均每台织布机每天织布多少米?2、360人排成4个方阵,每个方阵有5列,平均每列站多少人?3、服装店一天工卖出3箱衣服,每箱6件,一共收入3600元,平均每件衣服多少元?4、7头猪一星期喂245千克食料,平均1头猪1天喂多少食料?5、1盒月饼有2层,每层有4个,一个工厂一天生产了560个月饼,这个工厂一天生产了几盒月饼?6、奶奶家养了59只母鸡,125只公鸡,把这些鸡关在8只鸡笼里,平均每只鸡笼里关几只鸡?7、森林里有420张桌子,想摆成7个大组,每个大组摆6列,平均每列有几张桌子?8、128个梨,每盒装8个,2盒装一箱。
小学所有应用题类型100道附答案(完整版)
小学所有应用题类型100道附答案(完整版)类型一:加法应用题题目1:小明有5 个苹果,小红有3 个苹果,他们一共有几个苹果?答案:5 + 3 = 8(个)解析:将小明和小红的苹果数相加。
题目2:学校图书馆有20 本故事书,15 本科技书,一共有多少本书?答案:20 + 15 = 35(本)解析:故事书和科技书的数量相加。
类型二:减法应用题题目3:妈妈买了10 个梨,小明吃了3 个,还剩下几个梨?答案:10 - 3 = 7(个)解析:用总数减去吃掉的数量。
题目4:盒子里有18 颗糖,拿走了5 颗,盒子里还剩几颗糖?答案:18 - 5 = 13(颗)解析:原有的糖数量减去拿走的。
类型三:乘法应用题题目5:每个文具盒5 元,买3 个文具盒需要多少钱?答案:5 ×3 = 15(元)解析:单价乘以数量。
题目6:一行有6 个同学,5 行一共有多少个同学?答案:6 ×5 = 30(个)解析:每行的同学数乘以行数。
类型四:除法应用题题目7:把12 个苹果平均分成3 份,每份有几个苹果?答案:12 ÷ 3 = 4(个)解析:总数除以份数。
题目8:20 元钱可以买4 个笔记本,每个笔记本多少钱?答案:20 ÷ 4 = 5(元)解析:总价除以数量得到单价。
类型五:比较多少应用题题目9:小明有8 支铅笔,小红有12 支铅笔,小红比小明多几支铅笔?答案:12 - 8 = 4(支)解析:大数减小数。
题目10:果园里有15 棵苹果树,20 棵梨树,苹果树比梨树少几棵?答案:20 - 15 = 5(棵)解析:梨树数量减去苹果树数量。
类型六:倍数应用题题目11:小白兔有6 只,小灰兔的数量是小白兔的3 倍,小灰兔有几只?答案:6 ×3 = 18(只)解析:小白兔数量乘以倍数。
题目12:爸爸的年龄是小明的4 倍,小明8 岁,爸爸多少岁?答案:8 ×4 = 32(岁)解析:小明年龄乘以倍数。
应用题大全
应用题大全简介应用题是指在具体问题中应用数学知识进行解答的问题。
这类题目常常出现在数学考试和解决实际问题的过程中。
通过应用题的解答,可以训练学生将抽象的数学知识应用到具体问题中的能力,提高解决实际问题的能力。
本文将介绍一些常见的应用题类型,并给出相应的解析和解答方法。
题型一:比例问题比例问题是指在实际问题中涉及到两个或多个量之间的比例关系的问题。
比例问题常常出现在购物、食物配方、工程设计等方方面面。
解答方法1.确定比例关系:根据问题中的描述,确定具体的比例关系,如商店中商品的原价和折扣价之间的比例关系。
2.代入已知条件:将已知条件代入比例关系中,得到等式。
3.求解未知量:根据已知条件和等式,求解未知量。
示例问题某商店举办促销活动,某商品原价为$100,现在打折后售价为$80,请问打折力度是多少?解答1.确定比例关系:打折力度与原价和折扣价之间的比例关系。
2.代入已知条件:设打折力度为x,则有$80 = 100\\times (1-x)$。
3.求解未知量:解方程得x=0.2,即打折力度为20%。
题型二:利润问题利润问题是指在商业运作中涉及到成本、售价和利润之间的关系的问题。
利润问题常常出现在企业经营和投资决策中。
解答方法1.确定关系:根据问题中的描述,确定成本、售价和利润之间的关系,如售价减去成本等于利润。
2.代入已知条件:将已知条件代入关系式,得到等式。
3.求解未知量:根据已知条件和等式,求解未知量。
示例问题某企业生产一种产品,生产成本为$50,售价为$100,请问该产品的利润是多少?解答1.确定关系:利润等于售价减去成本。
2.代入已知条件:设利润为x,则有x=100−50。
3.求解未知量:计算得x=50,即该产品的利润为50。
题型三:速度问题速度问题是指在运动过程中涉及到速度、时间和距离之间的关系的问题。
速度问题常常出现在行驶、航行、奔跑等情境中。
解答方法1.确定关系:根据问题中的描述,确定速度、时间和距离之间的关系,如速度等于距离除以时间。
小学三年级11种常考应用题最全归类指导+例题
一归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次二归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
小学数学应用题类型
小学数学应用题类型小学数学应用题类型导语:应用题是指将所学知识应用到实际生活实践的题目。
在数学上,应用题分两大类:一个是数学应用。
另一个是实际应用。
数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系。
实际应用也就是有关于数学与生活题目。
以下是小编整理小学数学应用题类型汇总,以供参考。
小学数学应用题类型篇1一、简单应用题只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
1、加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
2、减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。
3、乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
4、除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
d已知一个数的几倍是多少,求这个数的应用题。
5、常见的数量关系:总价 = 单价×数量路程 = 速度×时间工作总量=工作时间×工效总产量=单产量×数量二、复合应用题有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。
1、含有三个已知条件的两步计算的应用题。
求比两个数的和多(少)几个数的应用题。
小学数学30种典型应用题
小学数学30种典型应用题小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。
任何一道应用题都由两部分构成。
第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。
应用题的条件和问题,组成了应用题的结构。
应用题可分为一般应用题与典型应用题。
没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。
题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。
高中数学网为大家归纳了以下30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、牛吃草问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量份数=1份数量1份数量所占份数=所求几份的数量另一总量(总量份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6 5=0.12(元)(2)买16支铅笔需要多少钱?0.12 16=1.92(元)列成综合算式0.6 5 16=0.12 16=1.92(元) 答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90 3 3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10 5 6=300(公顷)列成综合算式90 3 3 5 6=10 30=300(公顷) 答:5台拖拉机6 天耕地300公顷。
(完整版)小学数学应用题分类题型
小学数学典型应用题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1:买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?_________________(2)买16支铅笔需要多少钱? ____________________列成综合算式________________________________(元)答:需要______元。
2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1:服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做91套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? _______________________(米)(2)现在可以做多少套?_______________________(套)列成综合算式_______________________________(套)答:现在可以做______套。
3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
十一类简单应用题
以下是一些简单的应用题,涵盖了十一类不同的主题:
1. 加减法应用题:
小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?
2. 乘法应用题:
每只猴子每天吃3个香蕉,5只猴子一天要吃多少个香蕉?
3. 除法应用题:
有20个糖果,分给10个孩子,每个孩子能得到多少个糖果?
4. 长度和距离应用题:
小华走了50米,小红走了70米,谁走的距离更长?
5. 面积和体积应用题:
一个长方形长为6厘米,宽为4厘米,它的面积是多少?
6. 时间应用题:
现在时间是下午3点,再过5个小时是几点?
7. 重量应用题:
小熊比小兔子重20公斤,小熊重40公斤,小兔子重多少公斤?
8. 货币应用题:
一支铅笔售价为2元,一个书包售价为100元,书包比铅笔贵多少钱?
9. 百分比应用题:
一件衣服打9折后售价为90元,原价是多少元?
10. 图形和角度应用题:
一个三角形内角和为180度,其中一个角为45度,其他两个角分别是多少度?
11. 统计和概率应用题:
在一个班级中,有男生30人,女生20人,请问随机选取一个男生和女生的概率分别是多少?。
小学教学11种基本类型应用题
小学教学11种基本类型应用题在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。
现分述如下:一、加法的种类:(2种)1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
列式:8+4=12(只)答:(略)2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。
(灰兔的只数。
)列式:4+3=7(只)答:(略)二、减法的种类:(3种)1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)列式:12—8=4(只)2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。
养灰兔多少只?想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)列式:8-3=5(只)3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?想:已知大数(白兔8只)和小数(灰兔5只),求相差数。
(白兔比灰兔多多少只?)列式:8-5=3(只)三、乘法的种类:(2种)1.已知每份数和份数。
求总数。
例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。
不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
2.求一个数的几倍是多少?例:白兔有8只,灰兔的只数是白兔的2倍。
十一类简单应用题例析
第一部份:十一类简单应用题例析A、加法1、求两个数的和(求总数)是多少。
用加法计算。
例:我班有女生27人,男生36人,一共有多少人?2、求比一个数多几的数是多少。
用加法计算。
例:我班有女生27人,男生比女生多9人,男生有多少人?B、减法l、求还剩多少。
用减法计算。
例:妈妈买回40个核桃,我吃了24个,还剩多少个?2、求一个数比另一个数多多少(或少多少)。
用减法计算。
例:(1)红金鱼有50条,花金鱼有20条,花金鱼比红金鱼少多少条?(2)红墨水有30瓶,蓝墨水有40瓶,蓝墨水比红墨水多多少瓶?3、求比一个数少几的数是多少。
用减法计算。
例:爸爸今年36岁,妈妈比爸爸年轻5岁,妈妈今年多少岁?C、乘法1、求几个相同加数的和(几个几)。
用乘法计算。
例:每本练习本5角钱,买4本要多少钱?2、求一个数的几倍是多少。
用乘法计算。
例:小明今年9岁,妈妈的年龄是小明的4倍,妈妈今年多少岁?D、除法1、把一个数平均分成若干份,求每份是多少。
用除法计算。
例:24个同学做操,平均站成4行,每行站几人?2、把一个数按每几个分一份,求能分几份。
用除法计算。
例:有45个桃,每篮装5个,可以装几个篮子?3、已知一个数的几倍是多少,求这个数。
用除法计算。
例:爸爸今年36岁,是小明年龄的4倍,小明今年多少岁?4、求一个数是另一个数的几倍。
用除法计算。
例:爷爷今年72岁,小玲今年9岁,爷爷的年龄是小玲的几倍?第二部分:一步计算应用题的分析一、1、一条路长500米,已经修了400米,还剩多少米?要求还剩多少米?必须知道(这条路长多少米)和(已经修了多少米)。
关系式:还剩的米数=一共的米数-已经修的米数2、一条路长500米,修了一些后,还剩100米,修了多少米?要求修了多少米?必须知道(这条路长多少米)和(还剩多少米)。
关系式:修了的米数=一共的米数-还剩的米数3、一条路修了400米后还剩100米,这条路长多少米?要求这条路长多少米?必须知道(己经修了多少米)和(还剩多少米人)。
小学数学12种典型应用题
【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
【例题一】买5支铅笔要0.6元钱,买同样的铅笔16支需要多少钱??解:买1支铅笔多少钱?0.6÷5=0.12(元)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6+5×10-0.1216=1.9(元)答:需要1.92元。
【例题二】3 台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3+3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
小练习1、五个笔记本20元,买同样的笔记本,30个需要多少钱?2、六双袜子用了36元买,同样的袜子,42双要多少钱?3、买4张智能卡需要28元,买同样的智能卡32张需要多少元?4、4台机器4天做了80个零件照这样计算6台机器7天能做多少个?5、5台机床2天加工了200个零件照这样计算8台机床3天能加工多少个零件?6、2辆卡车5天能和100吨,照这样计算3辆卡车8天能运多少吨货物?【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学教学11种基本类型应用题
在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。
现分述如下:
一、加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。
一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。
求总数。
列式:8+4=12(只)
答:(略)
2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。
灰兔有多少只?
想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。
(灰兔的只数。
)
列式:4+3=7(只)
答:(略)
二、减法的种类:(3种)
1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)
列式:12—8=4(只)
2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。
养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)
列式:8-3=5(只)
3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。
白兔比灰兔多多少只?
想:已知大数(白兔8只)和小数(灰兔5只),求相差数。
(白兔比灰兔多多少只?)
列式:8-5=3(只)
三、乘法的种类:(2种)
1.已知每份数和份数。
求总数。
例:小利家养了6笼兔子,每笼4只。
一共养兔多少只?
想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少。
用乘法计算。
列式:4×6=24(只)
本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。
不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
2.求一个数的几倍是多少?
例:白兔有8只,灰兔的只数是白兔的2倍。
灰兔有多少只?
想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是
求2个8只是多少?
列式:8×2=16(只)
四、除法的种类:(4种)
1.已知总数和份数,求每份数。
例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?
想:已知总数(15个),份数(放3盘)。
求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。
列式:15÷3=5(个)
2.已知总数和每份数,求份数。
例:小强有15个苹果,每5个放一盘,可以放几盘?
想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?
列式:15÷5=3(盘)
3.求一个数是另一个数的几倍。
例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?
想:看苹果的个数里面有几个梨的个数,就是梨的几倍。
即求一个数是另一个数的几倍。
列式:15÷5=34.
4.已知一个数的几倍是多少,求这个数。
(用除法来计算。
)。