机械设计基础蜗杆传动机构
机械设计基础之蜗杆传动
机械设计基础之蜗杆传动蜗杆传动是一种高效率的变速传动方式,广泛应用于机械制造、重工业、冶金工业、矿山机械等多个领域。
本文将由以下几个方面来谈论蜗杆传动的基本概念、工作原理以及应用。
一、蜗杆传动的基本概念蜗杆传动是由一对蜗杆与蜗轮组成,通过蜗杆扭转蜗轮的齿轮来实现工作的。
其中蜗轮的斜齿线与蜗杆的螺旋线成一定角度,因此蜗轮只能通过蜗杆旋转而不能回转,同时在传动过程中,蜗轮的速度是滞后于蜗杆的速度,因此能够实现较大的减速比。
蜗杆传动的减速比是由蜗杆设计参数所决定的,包括螺旋角、蜗杆齿数、蜗杆直径等,不同的传动比可以根据具体需要来进行设计。
通常情况下,蜗杆传动的减速比在5-100之间,但也有特殊情况下减速比高达1000以上。
二、蜗杆传动的工作原理蜗杆传动的工作原理是由蜗杆带动蜗轮来实现传动,蜗杆的螺旋线与蜗轮的斜线齿之间的紧密配合可以实现传动功能。
因为蜗杆的螺旋线的斜度比蜗轮的齿线的斜度小很多,所以在传动过程中,螺旋线的每次旋转只能推动蜗轮前进一颗齿,因此能实现大的减速比。
同时由于蜗杆传动的特有设计,使其具有良好的自锁性,可以起到防止倒车的作用。
这种自锁性的原理是钢制蜗杆和铜制蜗轮的制作材料不同,钢的硬度比铜高,蜗杆在向前旋转时,铜制蜗轮受力对硬度较小的钢制蜗杆产生摩擦,并将其牢固紧密地压在一起。
由于钢制蜗杆的硬度高于铜制蜗轮,所以传动的不平衡力可以被牢固地锁住,从而保证了高效稳定的传动效果。
三、蜗杆传动的应用蜗杆传动具有很多优点,如紧凑的结构、高效率、高扭矩、稳定性等。
同时也有一些缺点,如制造难度较大、制造成本高、传动效率低等。
因此,在选择使用蜗杆传动时,需要全面考虑其优缺点和应用情况。
一个常见的应用场景是纺织机械,在制造纤维纺纱机时,采用蜗杆传动来传递较大的扭矩,实现布带收卷以及其他布料加工链环中的转动。
同时,由于蜗杆传动的复杂性,目前也在工业机器人、汽车和液压泵等领域得到广泛应用,也可以用于电动自行车、自行车和其他迷你设备,因其噪声小,结构紧凑等特点。
《机械设计基础》第7章蜗杆传动
2023REPORTING 《机械设计基础》第7章蜗杆传动•蜗杆传动概述•蜗杆传动的工作原理•蜗杆传动的参数设计•蜗杆传动的性能分析•蜗杆传动的结构设计•蜗杆传动的应用实例与优缺点分析目录20232023REPORTINGPART01蜗杆传动概述有自锁性,但效率低。
传动平稳,噪声小。
结构紧凑,传动比较大。
定义:蜗杆传动是由蜗杆和蜗轮组成的一种交错轴间的传动,通常两轴交错角为90°。
特点定义与特点普通圆柱蜗杆传动阿基米德蜗杆(ZA型)、法向直廓蜗杆(ZN型)、渐开线蜗杆(KI型)等。
圆弧圆柱蜗杆传动轴向圆弧圆柱蜗杆(86型)、法向圆弧圆柱蜗杆(68型)等。
环面蜗杆传动一次包络环面蜗杆、二次包络环面蜗杆等。
用于需要自锁的场合,如卷扬机、起重机等。
特殊应用一般应用:用于传递两交错轴之间的运动和动力,通常用于减速传动。
用于分度机构或增速机构。
用于需要较大传动比的场合,如机床、汽车等。
01030204052023REPORTINGPART02蜗杆传动的工作原理蜗杆与蜗轮在传动过程中,通过螺旋面的紧密配合实现动力传递。
配合关系蜗杆和蜗轮的螺旋角、导程角、中心距等参数需满足一定的匹配关系,以确保传动的平稳性和效率。
配合条件适当的配合间隙对蜗杆传动的性能至关重要,过紧或过松的配合间隙都会影响传动的精度和寿命。
配合间隙蜗杆与蜗轮的配合蜗杆传动的传动比等于蜗轮齿数与蜗杆头数的比值,传动比较大,可实现较大的减速效果。
传动比计算转速与转矩关系传动效率在蜗杆传动中,输入转速与输出转矩成反比关系,即输入转速越高,输出转矩越小。
由于蜗杆传动存在滑动摩擦,其传动效率相对较低,一般不超过50%。
030201轴向力分析轴向力主要由蜗杆的螺旋线方向和角度决定,轴向力过大会导致轴承过早损坏和轴向窜动。
径向力分析蜗杆传动中,径向力主要由蜗杆的螺旋角和导程角决定,径向力的大小直接影响轴承的寿命和传动的稳定性。
摩擦力分析蜗杆传动中的摩擦力主要来源于蜗杆和蜗轮之间的滑动摩擦,摩擦力的大小直接影响传动的效率和寿命。
蜗轮蜗杆传动详解
§蜗杆传动的特点和类型 §圆柱蜗杆传动的主要参数 §蜗杆传动的失效形式、材料和结构 §圆柱蜗杆传动的效率、润滑
《机械设计基础 》
Northwest A&F University
第一节 蜗杆传动的特点和类型
蜗杆传动是由蜗杆和蜗轮组成的,用于传,蜗轮是从动件。
第三节蜗杆传动的失效形式、材料和结构
二、蜗杆和蜗轮的结构
由于蜗杆的直径不大,所以常和轴做成一个整体(蜗杆 轴),当蜗杆的直径较大时,可以将轴与蜗杆分开制作。
无退刀槽,加工螺旋部分时只能用铣制的办法。
有退刀槽,螺旋部分可用车制,也可用铣制加工,但该结构
的刚度 较前一种差。
Northwest A&F University
蜗杆导程角
蜗轮螺旋角 径向间隙 标准中心距
第十二章 蜗杆传动
符号
d ha
hf da
df
c
a
计算公式
蜗杆
蜗轮
d1 mq
d2 mz
ha m h f 1.2m
d a1 (q 2)m da2 (Z2 2)m
d f 1 (q 2.4)m arctg Z1
q
d f 2 (Z 2 2.4)m
第十二章 蜗杆传动
第六节圆柱蜗杆传动的效率、润滑和热平衡计算
二、蜗杆传动的润滑
➢ 目的:减摩、散热。 ➢ 润滑油的粘度和给油方法可参照表11-5选取。 ➢ 一般根据相对滑动速度选择润滑油的粘度和给油方法。
蜗杆下置时,浸油深度应为蜗杆的一个齿高; 给油方法: 油池润滑: 蜗杆上置时,浸油深度约为蜗轮外径的 1/6~1/3。
圆弧圆柱蜗杆传动
环面蜗杆传动 蜗杆的外形是圆弧回转面,同时啮合的齿数多,传动平稳; 齿面利于润滑油膜形成,传动效率较高;
机械设计基础讲义第八章蜗杆传动
(a )圆柱蜗杆传动 (b )环面蜗杆传动 (c )锥面蜗杆传动图8.2 蜗杆传动的类型机械设计基础讲义第八章蜗杆传动具体内容 蜗杆传动特点与类型;蜗杆传动的基本参数与几何尺寸计算;蜗杆传动的效率、热平衡计算及润滑;蜗杆传动受力分析与计算载荷;蜗杆传动失效形式与设计准则;蜗杆传动材料与许用应力;蜗杆强度计算;蜗杆刚度计算;蜗杆传动的结构设计。
重点 蜗杆传动的基本参数与几何尺寸计算;蜗杆传动受力分析;蜗杆强度计算;蜗杆刚度计算。
难点 蜗杆传动受力分析。
第一节 蜗杆传动的特点与类型蜗杆传动由蜗杆与蜗轮构成(图8.1),用于传递交错轴之间的运动与动力,通常两轴间的交错角︒=∑90。
通常蜗杆1为主动件,蜗轮2为从动件。
一、蜗杆传动的特点1、优点传动比大;工作平稳,噪声低,结构紧凑;在一定条件下可实现自锁。
2、缺点发热大,磨损严重,传动效率低(通常为0.7~0.9);蜗轮齿圈常使用铜合金制造,成本高。
二、蜗杆传动的类型根据蜗杆形状的不一致,蜗杆传动可分为圆杆蜗杆传动、环面蜗杆传动与锥面蜗杆传动三种类型,如图8.2所示。
图8.1 蜗杆传动 1-蜗杆,2-蜗轮根据加工方法不一致,圆柱蜗杆传动又分为阿基米德蜗杆传动(ZA型)、法向直廓蜗杆传动(ZN型)、渐开线蜗杆传动(ZI型)与圆弧圆柱蜗杆传动(ZC型)等。
前三种称之普通圆柱蜗杆传动,见图8.3所示。
(a)阿基米德蜗杆(b)法向直廓蜗杆(c)渐开线蜗杆图8.3 普通蜗杆的类型第二节圆柱蜗杆传动的基本参数与几何尺寸计算在普通圆柱蜗杆传动中,阿基米德蜗杆传动制造简单,在机械传动中应用广泛,而且也是认识其他类型蜗杆传动的基础,故本节将以阿基米德蜗杆传动为例,介绍蜗杆传动的一些基本知识与设计计算问题。
一、蜗杆传动的基本参数通过蜗杆轴线并垂直于蜗杆轴线的平面称之中间平面,见图6.4。
在中间平面内,蜗杆与蜗轮的啮合相当于齿条与齿轮的啮合。
因此,设计圆柱蜗杆传动时,均取中间平面上的参数与几何尺寸作为基准。
机械设计基础第12章蜗轮蜗杆
机械设计基础第12章蜗轮蜗杆蜗轮蜗杆是一种常见的传动机构,广泛应用于机械设备中。
蜗轮蜗杆传动具有体积小、传动比大、传动平稳等特点,在机械设计中有着重要的应用价值。
蜗轮蜗杆传动是一种通用型的不可逆传动,典型的结构包括蜗轮和蜗杆两个部分。
蜗轮是一种螺旋状的齿轮,其齿面与蜗杆的蜗杆螺旋面相配合。
蜗杆是一种具有螺旋线形状的轴,其作为传动元件,通过旋转运动驱动蜗轮。
蜗轮齿与蜗杆螺旋线的位置关系使得蜗轮只能顺时针旋转,而无法逆时针旋转。
这种结构特点决定了蜗轮蜗杆传动是一种不可逆传动。
蜗轮蜗杆传动的主要工作原理是靠蜗杆的螺旋面与蜗轮的齿轮面的啮合来实现传动。
在传动过程中,蜗杆通过旋转带动蜗轮转动,从而实现动力传递。
由于蜗杆的螺旋面与蜗轮的齿轮面接触面积小,所以传动效率相对较低。
为了提高传动效率,降低摩擦损失,需要在蜗轮齿面和蜗杆螺旋面之间添加润滑油。
蜗轮蜗杆传动具有很高的传动比,可达到1:40以上,因此在机械设备中常常使用蜗轮蜗杆传动来实现大速比的传动。
例如在起重机构中,通常采用蜗轮蜗杆传动来提高起重高度。
此外,蜗轮蜗杆传动还可以实现两个轴的不同速度传动,例如在机械车床中使用蜗轮蜗杆传动来实现工件的不同转速。
在机械设计中,蜗轮蜗杆传动的设计需要根据实际应用情况确定传动比、工作环境要求等参数。
首先需要确定传动比,在确定传动比的同时要考虑传动效率和传动正反转的能力。
其次,需要根据工作环境来选择蜗杆和蜗轮的材料,以提高传动的可靠性和耐用性。
还需要注意蜗杆和蜗轮的几何尺寸和配合精度,以保证传动的准确性和稳定性。
此外,在设计过程中还需要进行强度校核、轴承选择等工作,以确保传动的安全可靠。
总之,蜗轮蜗杆传动在机械设计中具有重要的应用价值。
它的特点是传动比大、传动平稳,适用于需要大速比、不可逆传动的场合。
在设计蜗轮蜗杆传动时,需要根据实际应用情况,确定传动比、材料、尺寸、配合精度等参数,以保证传动的稳定性和可靠性。
国家精品课程课件-机械设计基础(完整版8-15)
0.024 0.020
6.84˚
5.14˚
3.72˚
3.15˚ 2.58˚ 2˚ 1.78˚ 1.66˚
1.49˚
1.37˚ 1.15˚
0.18
0.13
0.09
0.07 0.055 0.045 0.04 0.035
0.03
10.2˚ 7.4˚ 5.14˚ 4˚ 3.15˚ 2.58˚ 2.29˚ 2˚ 1.72˚
* 蜗杆未经淬火时需将表中[σH]值降低20%。
24
§8-5 蜗轮蜗杆传动的效率、润滑和热平衡计算
一、蜗轮蜗杆传动的效率 功率损耗:啮合损耗、轴承摩擦损耗、搅油损耗。
蜗杆主动时,总效率计算公式为:
η=(0.95~0.97)
tanγ tan(γ+ρ’
)
式中:
γ为蜗杆导程角;
ρ’称为当量摩擦角, ρ’=arctan f ’
m、d1应选取标准值确定。
21
表8-5 蜗杆分度圆直径与其模数的匹配标准系列 mm
m
d1
m
d1
m
1 18
(22.4)
1.2 20
2.5 28
4
(35.5)
1.6 22.4
45
20
28
(28)
5
3.15 35.5
(18)
(45)
22.4
56
2 (28) 35.5
4 (31.5) 6.3
d1
m
d1
40 6.3 (80)
5
(18) 2 22.4
(28) 35.5
(45) 56
4 (31.5) 6.3
d1
m
d1
机械设计基础:蜗杆机构
二、蜗杆蜗轮传动的方向判断
蜗轮的转向不仅与蜗杆的转向有关,而且与其螺旋线方向有关 蜗杆同螺旋相似,分为左旋和右旋。为了在车床上加工的方便, 尽可能使用右旋蜗杆。 顺时针旋转时旋入的螺纹,称为右旋螺纹; 逆时针旋转时旋入的螺纹,称为左旋螺纹。
右旋蜗杆
右手法则:四指弯曲方向同螺纹 转动方向一致,拇指 指向螺杆相对螺母的 运动方向。
机械设计基础
蜗杆机构
一、蜗轮蜗杆的形成
蜗杆传动由蜗杆和蜗轮组成,用于传递空间两交错轴间的运动 和动力,通常蜗杆为主动。两轴线的交错角Σ可为任意值,一 般采用Σ=90°
圆弧圆柱蜗杆机构
ห้องสมุดไป่ตู้
蜗杆:
齿数z1特别少(一般 z1=1~4),它的齿可以 绕圆柱一周以上,变成 一个螺旋。
传动比:
i z2 z1
蜗轮回转方向
右旋蜗杆:
右手法则:书P75
左手法则:以左手握住蜗杆, 四指指向蜗杆的转向, 则拇指的指向为啮合 点处蜗轮的线速度方 向。
左旋蜗杆:
左手法则:书P75
右手法则:以右手握住蜗杆, 四指指向蜗杆的转向, 则拇指的指向为啮合 点处蜗轮的线速度方 向。
例题:P86 习题5-1
左旋蜗杆
左手法则:四指弯曲方向同螺纹 转动方向一致,拇指 指向螺杆相对螺母的 运动方向。
两类问题:
1. 已知蜗杆、蜗轮的轮齿旋向和二者之一的转向,确定另一个 的转向;
2. 已知蜗轮、蜗杆的转向,确定二者轮齿的转向。
蜗杆蜗轮机构转向的箭头标注
右旋蜗杆
蜗杆回转方向
蜗杆上一点 线速度方向
机构运 动简图
机械设计基础 第七版 第8章 蜗杆传动
(4)蜗杆分度圆直径d1和直径系数q 在切制蜗轮轮齿时,所用滚刀的直径和齿形参数必须与该蜗轮相啮合 的蜗杆一致。 而蜗杆分度圆直径d1不仅与模数有关,还随z1/tanλ的数值而变化。即 使m相同,也会有许多不同直径的蜗杆。 为了限制滚刀的数目以及便于滚刀的标准化,对于每一种模数的蜗杆, 国家标准制定了蜗杆分度圆直径d1的标准值,并把d1 与m的比值称为蜗杆 直径系数q,即
对开式蜗杆传动,通常以保证齿根弯曲疲劳强度作为主要 设计准则。当蜗杆直径较小而跨距较大时,还应作蜗杆轴的刚 度验算。
8.2.2 蜗杆传动的常用材料及选择
蜗杆一般用碳钢或合金钢制成。高速重载蜗杆常用低碳合金 钢,如15Cr、20Cr、20CrMnTi等,经渗碳淬火,表面硬度56~ 62HRC。 中速中载蜗杆可用优质碳素钢或合金结构钢,如45、 40Cr等。经表面淬火,表面硬度40~55HRC。
8.1.2 蜗杆传动的基本参数和尺寸
通过蜗杆轴线并垂直于蜗轮轴 线的剖面称为中间平面。
该平面为蜗杆的轴面或为蜗轮 的端面。
在中间平面内蜗杆与蜗轮的啮 合相当于渐开线齿轮与齿条的啮合。 因此,该平面内的参数为标准值。
阿基米德蜗杆传动
8.1.2 蜗杆传动的基本参数和尺寸
1 蜗杆传动的主要参数及其选择
第8章 蜗杆传动
8.1 蜗杆传动的类型、特点、参数和尺寸 8.2 蜗杆传动的失效形式、设计准则和常用材料 8.3 蜗杆传动的受力分析及强度计算 8.4 蜗杆传动的效率、润滑和热平衡计算 8.5 蜗杆和蜗轮的结构 8.6 蜗杆传动的安装与维护
8.1 蜗杆传动的类型、特点、参数和尺寸
学习要点
•掌握蜗杆传动的类型、特点、基本参数及正确啮合条件。 •掌握蜗杆直径系数的概念及几何尺寸计算。
(专升本)机械设计基础之蜗杆传动习题与答案
(专升本)机械设计基础之蜗杆传动习题与答案Sunny smile一、选择题1 与齿轮传动相比较,不能作为蜗杆传动的优点。
A. 传动平稳,噪声小B. 传动效率高C. 可产生自锁D. 传动比大2 阿基米德圆柱蜗杆与蜗轮传动的模数,应符合标准值。
A. 法面B. 端面C. 中间平面3 蜗杆直径系数q=。
A. q=d l/mB. q=d l mC. q=a/d lD. q=a/m4 在蜗杆传动中,当其他条件相同时,增加蜗杆直径系数q,将使传动效率。
A. 提高B. 减小C. 不变D. 增大也可能减小z,则传动效率。
5 在蜗杆传动中,当其他条件相同时,增加蜗杆头数1A. 提高B. 降低C. 不变D. 提高,也可能降低z,则滑动速度。
6 在蜗杆传动中,当其他条件相同时,增加蜗杆头数1A. 增大B. 减小C. 不变D. 增大也可能减小z,则。
7 在蜗杆传动中,当其他条件相同时,减少蜗杆头数1A. 有利于蜗杆加工B. 有利于提高蜗杆刚度C. 有利于实现自锁D. 有利于提高传动效率8 起吊重物用的手动蜗杆传动,宜采用的蜗杆。
A. 单头、小导程角B. 单头、大导程角C. 多头、小导程角D. 多头、大导程角9 蜗杆直径d1的标准化,是为了。
A. 有利于测量B. 有利于蜗杆加工C. 有利于实现自锁D. 有利于蜗轮滚刀的标准化10 蜗杆常用材料是。
A. 40CrB. GCrl5C. ZCuSnl0P1D. L Y1211 蜗轮常用材料是。
A. 40Cr B.GCrl5C. ZCuSnl0P1D. L Yl212 采用变位蜗杆传动时 。
A. 仅对蜗杆进行变位B. 仅对蜗轮进行变位C. 同时对蜗杆与蜗轮进行变位13 采用变位前后中心距不变的蜗杆传动,则变位后使传动比 。
A. 增大B. 减小C. 可能增大也可能减小。
14 蜗杆传动的当量摩擦系数f v 随齿面相对滑动速度的增大而 。
A. 增大B. 减小C. 不变D. 可能增大也可能减小15 提高蜗杆传动效率的最有效的方法是 。
《机械设计基础》第7章 蜗杆传动
tanγ= z1/q d1 = q m q是d1与m的比值,不一定是整数。 m一定时,q越小(或d1越小)导程角γ越大,传动效率 越高,但蜗杆的强度和刚度降低。 设计蜗杆传动,在刚度准许的情况下,要求传动效率高 时q选小值;要求强度和刚度大时q选大值。
蜗杆直径系数q
q = d1/m
P1----蜗杆传动输入功率,kW;ks----为散热系数,根据箱体周围通风 条件,一般取ks =10~17[w/(m2·℃)];自然通风良好地方取大值,反 之取小值; η----传动效率;A----散热面积m2。 t0----周围空气温 度℃ 通常取20℃; [t1]----许可的工作温度,通常取70~90℃。
齿圈与轮芯用铰制孔螺栓联接。由于装拆方便,常用尺寸较大或磨损后 需要更换蜗轮齿圈的场合.
浇铸式:(图7-10c) 该型式仅用于成批生产的蜗轮。齿圈最小厚度c=2m,但不小于10 mm
§7-4 蜗杆传动的强度 计算 蜗杆传动的受力分析
蜗轮旋转方向的判定
蜗轮旋转方向,按照蜗杆的螺旋线旋向和旋转方
蜗杆传动的特 点
§7-2 蜗杆传动的主要参数和几何尺 寸 概念(图7-6)
连心线:蜗杆轴线与蜗轮轴线的公垂线。 中间平面:圆柱蜗杆轴线和连心线构成的平面。 所以中间平面内蜗杆与蜗轮的啮合相当于渐开线 齿轮与齿条(直线)的啮合
规定:设计计算以中间平面参数及其几何尺寸关系为准。 主要参数
1.模数m和压力角α;2.传动比i,蜗杆头数z1和蜗 轮齿数z2 ; 3.蜗杆导程角γ; 4.蜗杆分度圆直径d1和蜗杆直径系数q ;5.中心距a。
5.中心距a。
标准蜗杆传动其中心距计算公式:
a=
d1+d2 2
= m (q+z2) 2
《机械设计基础》第12章 蜗杆传动
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。
机械设计基础-蜗杆传动设计
蜗杆传动设计
2. 蜗杆传动的滑动速度 蜗杆蜗轮传动时,在蜗杆蜗轮的啮合面间会产生很大的 滑动速度 vs 。滑动速度 vs 的大小对齿面之间的润滑情况、 齿面的失效形式、发热以及传动效率等都有很大的影响。滑 动速度vs的方向沿蜗杆螺旋线方向,见图 5-6 ,其大小可用下 式计算
蜗杆传动设计
图 5-6 蜗杆传动的滑动速度
蜗杆传动设计
图 5-3 蜗杆蜗轮的螺旋方向
蜗杆传动设计
二、 蜗杆传动的基本参数 蜗杆传动的基本参数与基本尺寸计算是以中间平面上的
参数与尺寸为基准的。如图 5-4 所示,通过蜗杆的轴线,且垂 直于蜗轮的轴线的平面称为蜗杆传动的中间平面。
蜗杆传动设计
图 5-4 蜗杆传动的几何尺寸
蜗杆传动设计
1. 模数和压力角 与齿轮传动一样,蜗杆传动的几何尺寸计算也以模数 m 作为主要参数。我国规定的模数 m 的标准值见表 5-1 ,阿基 米德蜗杆蜗轮的压力角标准值为 α =20° 。
蜗杆传动设计
蜗杆传动设计
蜗杆传动设计
3 )蜗杆轴的刚度验算 蜗杆通常为细长轴,过大的弯曲变形将导致啮合区域接 触不良,因此当蜗杆轴的支承跨距较大时,应根据刚度计算准 则校核其刚度。
蜗杆传动设计
三、 蜗杆传动的效率、 润滑和热平衡计算 1. 蜗杆传动的效率 闭式蜗杆传动的总效率通常包括三部分:啮合齿面间摩
蜗杆传动设计 3. 蜗杆蜗轮的中心距 蜗杆传动的中心距是指蜗杆与蜗轮轴线之间的垂直距离。
标准蜗杆传动的中心距为
一般蜗杆传动的中心距 a 按表 5-5-中的数值选取。
蜗杆传动设计
蜗杆传动设计 4. 蜗杆蜗轮的传动比 设蜗杆的转速为 n1 ,蜗轮的转速为 n2 ,其传动比 i 为
机械设计基础第五章 齿轮传动与蜗杆传动
第十节 轮系
一、轮系及其分类 1 轮系的概念----由一系列齿轮组成的传动系统称之。
2 轮系的分类----定轴轮系和行星轮系两大类。
二、定轴轮系的传动比计算
包含传动比大小的计算和转向的确定。 1 一对 圆柱齿轮啮合的传动比
2 定轴轮系的传动比:
1)轴线平行的定轴轮系(以图5--30为例分析) 2)轴线不平行的定轴轮系(以图5--32为例分析)。 三、简单行星轮系传动比计算 四、轮系的功用 1 传递相距较远的两轴间的运动和动力;2 实现分路传 动;3 实现变速传动;4 获得大传动比;5 用做运动的合 成和分解。 作业:32、33、34、36
四、径节制齿轮简介
英、美等国的标准制度;
径节——齿数与分度圆直径(英寸)的比值。DP
第四节 渐开线齿轮的啮合
一、渐开线齿轮可以保证定传动比传动 二、渐开线齿轮传递的压力方向不变 三、渐开线齿轮中心距具有可分性
(以上三点为:渐开线齿轮传动的特点)源自四、渐开线齿轮正确啮合的条件
五、直齿轮的标准中心距
六、连续传动条件
蜗
轮
pa
2 基本参数:
1)模数m和压力角; 2)蜗杆分度圆直径和导程角(如右图);
d 1
蜗 杆 加 工
蜗 轮 加 工
3)蜗杆头数和蜗轮齿数;
4)标准中心距和传动比 3 蜗杆传动的几何尺寸(表5--10)
p z(导程)=z 1p a
三、蜗杆传动的失效和常用材料 1 蜗杆传动的失效形式 主要是蜗轮,和齿轮失效形式相似-------磨 损、胶合、疲劳点蚀和轮齿折断。 闭式传动中:胶合和点蚀; 开式传动:主要是磨损。 2 蜗杆、蜗轮的常用材料 1)蜗杆传动的相对滑动速度Vs 2)蜗杆材料 3)蜗轮材料
《机械设计基础(活页式教材)》电子教案 蜗杆传动
3.锥蜗杆传动
如图所示,蜗杆为一等导程的锥形螺纹,故称锥蜗杆。涡轮像一个曲线齿圆锥齿轮,故称锥轮。他们的轴线在空间交错,交错角通常为90°。锥蜗杆传动的特点是:啮合齿数多,重合度大,故传动平稳,承载能力高,涡轮能用淬火钢制造,可节省有色金属。
12.1 蜗杆传动的类型和特点
12.2.1 蜗杆传动的主要参数及其选择
12.2 普通圆柱蜗杆传动的主要参数和几何尺寸
式中 、 为标准值。ZA型蜗杆 ,ZI、ZN型蜗杆的法向压力角 。
2.蜗杆分度圆直径d1和蜗杆直径系数q
由于蜗轮是用与蜗杆尺寸相同的蜗轮滚刀配对加工而成的,为了限制 滚刀的数目,国家标准对每一标准模数规定了一定数目的标准蜗杆分度圆 直径d1。
12.1 蜗杆传动的类型和特点
③ 法向直廓圆柱蜗杆(ZN型)
如图所示,亦称延伸渐开线蜗杆。蜗杆的法向剖面N-N上具有直线齿廓,轴向剖面I-I具有外凸曲线。端面齿廓为延伸渐开线。蜗杆可以车制,车削时刀具法向放置,有利于车削 >15°的多头蜗杆,还可以磨削加工。这种蜗杆加工简单,加工精度容易保证,常用于机床的多头精密蜗杆的传动。
阿基米德蜗杆(ZA型)渐开线蜗杆( ZI型) 法向直廓蜗杆(ZN型)锥面包络圆柱蜗杆 (ZK型)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
普通圆柱蜗杆传动
圆弧圆柱蜗杆传动
其蜗杆的螺旋面是用刃边为凸圆弧形 的车刀切制而成的。
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高;
在中间平面内蜗杆与蜗轮的啮合就相当于渐开线齿条与齿轮的啮合。在蜗杆传动的设计计算中,均以中间平面上的基本参数和几何尺寸为基准 。
机械设计基础 蜗杆传动
山东农业大学机电学院
——蜗杆材料
若按材料分类,主要有碳钢和合金钢。若蜗轮直径很大,可采 用青铜蜗杆,同时蜗轮用铸铁。
若按热处理不同分:硬面蜗杆和调质蜗杆。 •首先应考虑选用硬面蜗杆。渗碳钢淬火或碳钢表面/整体淬火 +磨削;氮化钢渗氮处理+抛光,用于要求持久性高的传动 中。 •只有在缺乏磨削设备时才选用调质蜗杆。受短时冲击的蜗杆, 不宜用渗碳钢淬火,最好用调质钢。铸铁蜗轮与镀铬蜗杆配 对时有利于提高传动的承载能力和滑动速度。
——凑中心距时变位蜗杆传动的中心距
(13.4)
a
1 d1 2xm d 2 2 a a x m
(13.5) (13.6)
由此可以求出变位系数
蜗轮变位系数的常用范围为-0.5 ≦ x ≦+0.5。为了有利于蜗 轮轮齿强度的提高,最好取 x 为正值。
2013-7-13
17
山东农业大学机电学院
12.2.4 蜗杆分度圆直径d1
亦称蜗杆中圆直径。为了蜗杆刀具规定尺寸的标准化、系列化,将 蜗杆分度圆直径d1 定为标准值。参看表12.1。
2013-7-13 12
山东农业大学机电学院
12.2.5 蜗杆直径系数q q d1 / m 12.2.6 蜗杆导程角γ
tan z1 p x z m zm z d 1 1 1 2 d1 d1 d1 q d1
按蜗杆头数 不同分类
单头
主要用于传动比较大的场合,要求自锁的传动必须采用单头。
多头
主要用于传动比不大和要求效率较高的场合。
2013-7-13
9
山东农业大学机电学院
12.1.3 精度等级的选择
蜗杆的制造 蜗杆可以在车床上切制,也可在特种铣床上 用圆盘铣刀或指形铣刀铣制。为了保证正确的啮合, 蜗轮要用与蜗杆同样大小的滚刀来切制。 蜗杆的等级选择 由于蜗杆传动啮合轮齿的刚度较齿轮传 动大,所以制造等级对它的影响比齿轮传动的更显著。 蜗杆传动规定了12个精度等级,对于动力传动要按照 6~9级精度制造。V<7.5m/s,7级精度;v<3m/s,8级精 度;v<1.5m/s,9级精度。 对于测量、分度等要求运动精度高的传动要按照5级或5 级以上的精度制造。
机械设计基础课件第六章蜗杆传动
例如,齿形为A、齿形角α为20°、模数为10 mm、 分度圆直径为90 mm、头数为2的右旋圆柱蜗杆;齿数 为80的蜗轮以及由它们组成的圆柱蜗杆传动的标记如下。 蜗杆标记为:蜗杆
ZA10 90 R2
蜗轮标记为:蜗轮
ZA10 80
蜗杆传动标记为: ZA10 90 R 2 / 80
6.3
6.3.1
6.4.2
蜗杆传动的强度计算
蜗轮齿面接触疲劳强度计算与斜齿轮相似,由赫 兹公式可得,蜗杆传动接触强度校核公式
中间平面
2、传动比 i 、蜗杆头数Z1、蜗轮齿数Z2 传动比——从动轮齿数比主动轮齿数
n i 1
n2
Z 2
Z1
u
蜗杆头数Z1 一般Z1=1、2、4, 单头,i大,易自锁,效率低, 但精度好;多头杆,η↑,但加工困难,精度↓ 蜗轮齿数Z2 为避免根切, Z2 26 动力传动, Z2 80 具体应用传动比 i 、蜗杆头数Z1、蜗轮齿数Z2, 可以参考教材表6-1、6-2。
蜗杆传动的失效形式、材料和结构
蜗杆传动的滑动速度
在蜗杆传动中,蜗杆蜗轮的啮合齿面间 会产生很大的相对滑动速度 s 如图所示。
s
cos
1
sin
2
式中: 1 2 ——蜗杆和蜗轮 分度圆上的圆周速度.
6.3.2
蜗杆传动的失效形式和设计Байду номын сангаас则
和齿轮传动一样,蜗杆传动的失效形式主要 有:胶合、磨损、疲劳点蚀和轮齿折断等。由于 蜗杆传动啮合面间的相对滑动速度较大,效率低, 发热量大,在润滑和散热不良时,胶合和磨损为 主要失效形式。 蜗杆传动的设计准则为:闭式蜗杆传动按蜗 轮轮齿的齿面接触疲劳强度进行设计计算,按齿 根弯曲疲劳强度校核,并进行热平衡验算;开式 蜗杆传动,按保证齿根弯曲疲劳强度进行设计。
机械设计基础复习精要:第12章 蜗杆传动
154第12章 蜗杆传动12.1 考点提要12.1.1 重要的术语和概念蜗杆的传动特点和分类、蜗杆的效率、蜗杆的头数、导程角、直径系数、12.1.2蜗杆传动的滑动速度和效率蜗杆主动时的机构效率为:)(v tg tg ϕγγη+-=)96.095.0( (12-1) 蜗杆的功率损耗一般由啮合摩擦,轴承损耗及零件搅油和飞溅损耗。
计算效率时,需要用到当量摩擦角v ϕ,其数值可通过arctgf v =ϕ算出,再结合相对滑动速度查表确定。
增加蜗杆的头数会使导程角增大,从而使效率增大,同时滑动速度也增大;如果增大蜗杆的分度圆直径将使导程角减小,从而使效率下降,而蜗杆的刚度提高。
蜗轮主动的效率为)(’v tg tg ϕγγη-= (12-2) 显然若v ϕγ≤,则0≤‘η,机构自锁,显然,如果反行程(蜗轮主动)自锁,正行程的效率(蜗杆主动)一定不大于50O O /。
蜗杆机构总的效率为啮合效率与轴承效率及搅油效率的乘积。
在设计之初,为近似求出蜗轮的转矩2T ,η数值可按表14-1数值估计。
表14-1 效率与蜗杆头数关系1Z 12 3 4 总效率0.7 0.8 0.85 0.9 影响蜗杆传动啮合效率的几何因素有:蜗杆的头数Z1,蜗杆的直径系数q﹑蜗杆分度圆直径〔或模数﹑Z1﹑q〕。
由于传动多是减速传动,所以蜗杆多处于高速级。
当蜗杆头数较少时,反行程效率低,机构自锁。
只有蜗杆头数多时才有较高的效率,反行程不自锁(可以蜗轮为主动件),但蜗轮和蜗杆的滑动速度过大,对材料要求很高,易出现磨损和胶合,因此很少采用。
12.1.3普通圆柱蜗杆传动的主要参数和几何尺寸计算蜗杆蜗轮的正确啮合条件有:1)蜗杆的轴向模数ma1=蜗轮的端面模数mt2且等于标准模数;2)杆的轴向压力角αa1=蜗轮的端面压力角αt2且等于标准压力角;3)蜗杆的导程角γ=蜗轮的螺旋角β且均可用γ表示,蜗轮与蜗轮的螺旋线方向相同。
通过蜗杆轴线并与涡轮端面垂直的平面称中间平面。
机械设计基础复习精要:第12章 蜗杆传动
154第12章 蜗杆传动12.1 考点提要12.1.1 重要的术语和概念蜗杆的传动特点和分类、蜗杆的效率、蜗杆的头数、导程角、直径系数、12.1.2蜗杆传动的滑动速度和效率蜗杆主动时的机构效率为:)(v tg tg ϕγγη+-=)96.095.0( (12-1) 蜗杆的功率损耗一般由啮合摩擦,轴承损耗及零件搅油和飞溅损耗。
计算效率时,需要用到当量摩擦角v ϕ,其数值可通过arctgf v =ϕ算出,再结合相对滑动速度查表确定。
增加蜗杆的头数会使导程角增大,从而使效率增大,同时滑动速度也增大;如果增大蜗杆的分度圆直径将使导程角减小,从而使效率下降,而蜗杆的刚度提高。
蜗轮主动的效率为)(’v tg tg ϕγγη-= (12-2) 显然若v ϕγ≤,则0≤‘η,机构自锁,显然,如果反行程(蜗轮主动)自锁,正行程的效率(蜗杆主动)一定不大于50O O /。
蜗杆机构总的效率为啮合效率与轴承效率及搅油效率的乘积。
在设计之初,为近似求出蜗轮的转矩2T ,η数值可按表14-1数值估计。
表14-1 效率与蜗杆头数关系1Z 12 3 4 总效率0.7 0.8 0.85 0.9 影响蜗杆传动啮合效率的几何因素有:蜗杆的头数Z1,蜗杆的直径系数q﹑蜗杆分度圆直径〔或模数﹑Z1﹑q〕。
由于传动多是减速传动,所以蜗杆多处于高速级。
当蜗杆头数较少时,反行程效率低,机构自锁。
只有蜗杆头数多时才有较高的效率,反行程不自锁(可以蜗轮为主动件),但蜗轮和蜗杆的滑动速度过大,对材料要求很高,易出现磨损和胶合,因此很少采用。
12.1.3普通圆柱蜗杆传动的主要参数和几何尺寸计算蜗杆蜗轮的正确啮合条件有:1)蜗杆的轴向模数ma1=蜗轮的端面模数mt2且等于标准模数;2)杆的轴向压力角αa1=蜗轮的端面压力角αt2且等于标准压力角;3)蜗杆的导程角γ=蜗轮的螺旋角β且均可用γ表示,蜗轮与蜗轮的螺旋线方向相同。
通过蜗杆轴线并与涡轮端面垂直的平面称中间平面。
机械设计基础 第12章 蜗杆传动
d1 mq
pz z1 px
tan pz z1 px z1m z1 d1 d1 d1 q
蜗杆导程 蜗杆轴向齿距
蜗杆导程角
d1越小(或q越小), 越大,传动效率越高,但蜗杆的刚度
和强度越低。 通常,转速高的蜗杆可取较小的d1值,蜗轮齿 数z2较大时可取较大的d1值。
当导程角 小于当量摩擦角时,蜗轮为主动时则发生自锁。
蜗杆材料:20Cr渗碳淬火;40Cr、35CrMo淬火;45调质
蜗轮材料:ZCuSn10P1 ZCuAl10Fe3
vs 25 m/s 耐磨性好、抗胶合
vs 6 m/s 价格便宜
HT200
vs 2 m/s 经济、低速
二、 蜗杆和蜗轮的结构 蜗杆结构:通常与轴为一体,蜗杆轴
蜗轮结构:整体式(铸铁蜗轮或尺寸很小的青铜蜗轮) 组合式(有色金属齿圈+钢或铸铁轮芯)
二、 蜗杆传动的类型 因蜗轮是用形状与蜗杆相同的滚刀加工而成,故蜗杆传动 的类型是按蜗杆的不同进行分类。
按蜗杆形状分:圆柱蜗杆和环面蜗杆。
圆柱蜗杆用直线刀刃的车刀车削成形,根据刀具安装位置 的不同,可加工出阿基米德蜗杆和渐开线蜗杆等。
圆柱蜗杆传动
环面蜗杆传动
阿基米德蜗杆:刀具两刃与蜗杆轴线共面;轴面内相当于 直线齿条,端面齿形为阿基米德螺线。 渐开线蜗杆:用两把车刀,其刀刃顶面切于蜗杆基圆柱; 端面齿廓为渐开线,在切于蜗杆基圆柱的剖面内,齿廓的 一侧为直线,轴面内为凸廓曲线。 蜗杆有左、右旋之分,常用的是右旋蜗杆。
蜗轮径向力
各力方向的确定: 类似于斜齿轮
【例】图示蜗杆传动,蜗杆1主动,转向如图。试指出蜗轮2、 3轮齿旋向及转向,并画出蜗杆1上啮合处的作用力三个分力 方向。
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.齿面磨损
• 原因:1.啮合过程中存在相对滑动。 • 2.杂物进入轮齿间引起磨损 • 危害:使渐开线齿廓破坏,齿厚减小,降低强 度, 齿隙增大而引起冲击和振动。
• 防止措施:●提高齿面硬度; • ●降低表面粗糙度; • ●降低滑动系数; • ●润滑油定期清洁和更换;(闭式) • ●变开式为闭式。
• 弯曲疲劳强度校核: KFt 2 KTY 1 FaYsa F YFaYsa [ F ] bm bd1m
• 设计公式: (取标准值) 2 KT1 YFaYsa m 3 2 d Z1 [ ]F
5.8.3.3 软齿面齿轮(锻钢)
• 软齿面齿轮的齿面硬度<350HBS,常用中碳钢 和中碳合金钢,如45钢.40Cr,35SiMn等材 料,进行调质(280-300HBW)或正火处理。 这种齿轮适用于强度、精度要求不离的场合, 轮坯经过热处理后进行插齿或滚齿加工(7-8 级),生产便利、成本较低。 • 在确定大、小齿轮硬度时应注意使小齿轮的 齿面硬度比大齿轮的齿面硬度高30一50HBS, 这是因为小齿轮受载荷次敷比大齿轮多,且小 齿轮齿根较薄.为使两齿轮的轮齿接近等强度, 小齿轮的齿面要比大齿轮的齿面硬一些。
1.轮齿折断
●弯曲疲劳折断——闭式硬齿面齿轮传动最主要的失效 形式 ●过 载 折 断——载荷过大或脆性材料 ●齿根整体折断——直齿,b较小时 ●局 部 折 断——斜齿或偏载,b较大时 • 提高轮齿抗折断能力的措施: ●减小齿根应力集中,增加齿根过渡圆角,降低齿根表 面粗糙度; ●提高安装精度及支承刚性,避免轮齿偏载; ●改善热处理,使其有足够的齿芯韧性和齿面硬度; ●齿根部分进行表面强化处理(喷丸、滚压)。
• 5.8.3.3 软齿面齿轮 • 5.8.3.4 硬齿面齿轮
5.8.3.1 齿轮材料的基本要求
• 由轮齿的失效分析可知,对齿轮材料的基本要 求为: • (1)齿面应有足够的硬度,以抵抗齿面磨损、点 蚀、胶合以及塑性变形等; • (2)齿芯应有足够的强度和较好的韧性,以抵抗 齿根折断和冲击载荷: • (3)应有良好的加工工艺性能及热处理性能.使 之便于加工且便于提高其力学性能。最常用的 齿轮材料是钢.此外还有铸铁及一些非金属材 料等。
2
2.直齿齿轮齿根弯曲疲劳强度计算
• • • • • • • 计算目的:防止轮齿因弯曲疲劳折断 计算假设: 1.只考虑弯曲应力; 2.单齿对啮合; 3.载荷作用于齿顶; 4.计算模型为悬臂梁; 5.用重合度系数考虑齿顶啮合时非单齿对啮合 影响。
2.直齿齿轮齿根弯曲疲劳强度计算
• 弯曲疲劳强度:
M Fca hF cos F 6KFt hF cos F F 2 1 2 W bs cos F bsF 6
5.8.3.2 齿轮材料
• 首先是优质碳素钢和合金结构钢(锻钢)——其次是 铸钢和铸铁——再其次是非铁金属和工程塑料 。 • 大多数采用锻钢——形状复杂、直径较大、不易锻造 的:铸钢或球墨铸铁——传递功率不大、低速、无冲 击、开式齿轮传动:灰铸铁。 • 锻钢 因具有强度高、韧性好、便于制造、便于热处 理等优点,大多数齿轮都用锻钢制造。 • 铸钢 当齿轮的尺寸较大(大于400一600mm)而不便 于锻造时.可用铸造方法制成铸钢齿坯,再进行正火 处理以细化晶粒 • 铸铁 低速、轻载场合的齿轮可以制成铸铁齿坯。当尺 寸大于500mmm时可制咸大齿圈,或制成轮辐式齿轮。
本节完
谢谢观赏^_^
5.8齿轮传动的失效、常 用材料及润滑
5.8.1 齿轮轮齿的失效形式 5.8.2 齿轮的设计准则 5.8.3 齿轮的材料与热处理 5.8.4 齿轮的润滑
5.8.1齿轮轮齿的失效形式
• 1.轮齿折断 • 2.齿面疲劳点蚀 • 3.齿面磨损
• 4.齿面胶合 • 5.齿面塑性变形
2 1 2
KT2
mdz
2
2 1 2
[ ]
•
设计公式:
3.25Z E 2 m d1 KT2 ( ) [ H ]z2
2
5.7.3蜗杆传动设计——效率、润滑和热平衡
一、蜗杆传动的效率
1 2 3 (0.95 ~ 0.96)tg / tg ( V )
• η1 ——由啮合摩擦损耗所决定的效率 • η2 ——轴承的效率 • η3 ——蜗杆或蜗轮搅油引起的效率 二、蜗杆传动的润滑 • 目的:1)提高效率2)降低温升,防止磨损和胶合 • 方法: ●蜗杆上置式浸油润滑:润滑效果较差,但 搅油损失小;●蜗杆下置式浸油润滑:润滑效果较 好,但搅油损失大。 三、蜗杆传动热平衡t t 1000P(1 ) (C ) [t ] 80C 0 Kd S t>80°时措施
5.8.3.4 硬齿面齿轮(锻钢)
• 硬齿面齿轮的齿面硬度>350HBS • 常用的材料为中碳钢或中碳合金钢 • 经调质——切齿——表面淬火处理——(磨 齿)。
5.8.4 齿轮的润滑
• 为什么要润滑——啮合齿存在相对滑动:齿面 摩擦和磨损。 • 闭式齿轮: • v<12m/s——浸油润滑,10mm<浸入深度 <h;(转动阻力和润滑油的温升) • V>12m/s——喷油润滑
5.7.2.1 主要参数
• 模数和压力角:蜗轮、蜗杆在中间平面的模数 和压力角为标准值α=20°。 • 正确啮合条件: ma1=mt2=m αa1 =αt2= α γ 1 =β 2 • 蜗杆头数z1和蜗轮齿数z2: • 蜗杆分度圆直径标准化:蜗杆直径系数 • 蜗杆导程角: pa1=pt2=πm
• 中心距:
• 小齿轮的螺旋角很大、 齿数很小、直径很小、 齿宽很大——完整螺旋 线——杆状——蜗杆
旋向判断
旋向判断
• 蜗杆的旋向根据螺旋线的方向判断 • 蜗轮如下判断: • 1)蜗轮的转向应与蜗轮所受切向力的方向一 致,而蜗轮所受切向力的方向与蜗杆轴向力的 方向相反 • 2)蜗杆轴向力的方向采用主动轮(蜗杆)左 右手定则判断:蜗杆左旋用左手,四指抓向与 蜗杆旋转方向一致,则大拇指指向即是蜗杆所 受轴向力的方向。如果蜗杆右旋用右手,判断 方法同左手。左右手定则同时适用于斜齿轮传 动主动轮轴向力的确定。
4.齿面胶合
• 原因:油膜破坏——齿面高温粘接或压力粘接。 • 防止措施:●采用抗胶合能力强的润滑油; • ●采用角度变位齿轮传动; • ●减小m和齿高h,降低滑动速度 • ●提高齿面硬度; • ●配对齿轮有适当的硬度差; • ●改善润滑与散热条件。
5.齿面塑性变形
• 齿面材料在过大的摩擦力作用下处于屈服状态, 产生沿摩擦力方向的塑性流动,从而使齿面正 确轮廓曲线被损坏。 • 防止措施: ●提高齿面硬度; ●采用高粘度的润滑油或加极压添加剂。
5.8.2齿轮的设计准则
• 5.8.2.1 闭式传动
• 5.8.2.2开式传动
5.8.2.1 闭式传动
• 失效形式:齿面点蚀、轮齿弯曲疲劳折断。 • 1)软齿面(≤350HBS)齿轮主要失效形式是 齿面点蚀,故可按齿面接触疲劳强度进行设计, 确定齿轮尺寸后按齿根弯曲疲劳强度校核。 • 2)硬齿面(>350HBS)或铸铁齿轮,由于抗 点蚀能力较高,轮齿折断的可能性较大,故可 按齿根弯曲疲劳强度进行设计计算,确定齿轮 尺寸后按齿面接触疲劳强度校核。
第五章 机械传动
5.7蜗杆传动机构
目录
5.7.1 概述
5.7.2 蜗杆蜗轮机构的主要参数和尺寸计算
5.7.1 概述
5.7.1.1蜗杆蜗轮的形成
5.7.1.2蜗杆传动机构的类型
5.7.1.3蜗杆蜗轮机构的特点和应用
5.7.1.1蜗杆蜗轮的形成
• 蜗杆传动由蜗轮和蜗杆 组成,用来传递空间两 交叉轴之间的运动和动 力。通常交错角为90。, 蜗杆位主动件。 • 形成——由一对交错斜 齿圆柱齿轮演化而来的。
5.7.1.2蜗杆传动机构的类型
• 根据蜗杆的形状可分 为:圆柱蜗杆传动和 环面蜗杆传动。
• 圆柱蜗杆按螺旋面形 状的不同可分为渐开 线蜗杆和阿基米德蜗 杆。由于阿基米德蜗 杆加工方便,所以应 用广泛。
5.7.1.3蜗杆蜗轮机构的特点和应用
1.传动比大。单级传动比i=8—80,在分度机构 中传动比可达1000。 2.传动平稳、噪声小。蜗杆齿为连续不断的螺 旋齿,逐渐进入啮合和退出啮合。 3.在一定条件下(导程角<当量摩擦角),可 实现自锁。 4.效率较低。η=0.7——0.8。 啮合处有较大的 相对滑动,发热大。 5.蜗轮造价较高:青铜制造—减轻磨损、胶合
2.齿面(疲劳)点蚀
• 齿面点蚀:接触应力(脉动循环应力)>接触疲劳强 度——齿面裂纹——扩展使表面微粒脱落。 • 发生位置:节线附近,闭式齿轮 • 原 因:●单齿对啮合接触应力较大; ●节线处相对滑动速度较低,不易形成润滑油膜; ●润滑油渗入微裂纹,接触应力挤压使裂纹扩展至金 属剥落。 • 防止措施: ●提高齿面硬度; ●降低表面粗糙度; ●采用角度变位; ●选用较高粘度的润滑油; ●提高加工、安装精度; ●改善散热。
旋向判断
5.7.1.1蜗杆蜗轮的形成
• 大齿轮的螺旋角很大、齿 数很多、直径较大、齿宽 较短——轮状——蜗轮 • 为改善啮合状况——将蜗 轮沿齿宽方向做成弧形将 蜗杆部分包住。 • 蜗杆加工——车床,与车 螺纹相似。
• 蜗轮加工——用蜗杆状滚 刀按展成原理加工。 • 蜗杆有左右旋单双头,常 用右旋,导程角γ =90-β
1.直齿齿轮齿面接触疲劳强度计算
• 计算目的:防止轮齿因齿面接触疲劳而出现疲 劳点蚀,要求齿面的最大接触应力不超过接触 疲劳极限应力。 • 计算依据:赫其公式(弹性力学) 1 1 Fnc ( ) • 齿面最大接触应力:
ZE 1
H
2 1 12 1 2 [( )( )] E1 E2
5.8.2.2开式传动
• 对于开式齿轮传动中的齿轮,齿面磨损为其主 要失效形式,故通常按照齿根弯曲疲劳强度进 行设计计算,确定齿轮的模数,考虑磨损因素, 再将模数增大10%——20%,而无需校核接触 强度。