历年上海市中考数学试卷(解析版)(含答案)

合集下载

2024年上海市中考真题数学试卷含答案解析

2024年上海市中考真题数学试卷含答案解析

2024年上海市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如果x y >,那么下列正确的是( )A .55x y +<+B .55x y -<-C .55x y >D .55x y->-【答案】C【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2.函数2()3xf x x -=-的定义域是( )A .2x =B .2x ≠C .3x =D .3x ≠3.以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A .甲种类B .乙种类C .丙种类D .丁种类【答案】B【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5.四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A .菱形B .矩形C .直角梯形D .等腰梯形【答案】A【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积OBC OAD S S ∴= ,OC OB OA OD === 过A C 、作对角线BD 的垂线,过1122OBC OAD S S OC BF OB CH ∴==⋅=⋅ ∴CH BF AE DG ===,6.在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A .内含B .相交C .外切D .相离∴221417+=,二、填空题7.计算:()324x =.【答案】664x 【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8.计算()()a b b a +-= .【答案】22b a -【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.91=,则x = .【答案】1【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的倍.(用科学记数法表示)11.若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而 .(选填“增大”或“减小”)12.在菱形ABCD 中,66ABC ∠=︒,则BAC ∠= .13.某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.【答案】4500【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC =(结果用含a ,b的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有人.【答案】200017.在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠= .根据::1:3:7AC AB BC '=由翻折的性质知:FCD ∠=CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD '''∴∠+∠=∠根据::1:3:7AC AB BC '=,不妨设同理知:72CF BF C F '===,过F 作AB 的垂线交于E ,122BE BC '∴==,18.对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为.三、解答题20.解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.【答案】4x =,1y =或者6x =-,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y ⎧--=⎨+=⎩①②,由②得:62x y =-代入①中得:()()226236240y y y y ----=,()2223624418640y y y yy -+-+-=,2642360y y -+=,()26760y y -+=,()()6610y y --=解得:1y =或6y =,当1y =时,6214x =-⨯=,当6y =时,6266x =-⨯=-,∴方程组的解为4,1x y ==或者6,6x y =-=.21.在平面直角坐标系xOy 中,反比例函数ky x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.∵l x ∥轴,x 轴y ⊥轴,∴A 、C 、D 的纵坐标相同,均为把2y =代入24y x =-+解得1x =,∴()1,2C ,22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h.(1)求:①两个直角三角形的直角边(结果用h表示);②小平行四边形的底、高和面积(结果用h表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.如图2,DEF 为含则2EF h =,DE =综上,等腰直角三角板直角边为②由题意可知MNG NGH ∠=∠∴四边形MNGH 是矩形,由图可得,2323MN h h =-(2)解:如图,即为所作图形.23.如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC=⋅;(2)F为线段AE延长线上一点,且满足12EF CF BD==,求证:CE AD=.在矩形ABCD 中,ADE ∠ AE BD ⊥,∴90DAE ADB ∠+∠=ADB AED ∴∠=∠,FEC AED ∠=∠,24.在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.∴22114545333333PQ x x x x =-++=+,∵PQ 小于3,∴45333x +<,∴1x <,∵()0x m m =>,∴01m <<;由题意可得:P 在B 的右边,当BP '∴BP x '⊥轴,∴5P B x x '==,∴255,3P '⎛⎫ ⎪⎝⎭,由平移的性质可得:2552,33P ⎛⎫+- ⎪⎝⎭如图,当P Q BP '∥时,则P QT '∠=过P '作P S QP '⊥于S ,∴90P SQ BTP '∠=∠=︒,∴QS PTP S BT=',25.在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.∵AD BC∥,∴AE DE EB EG=,∵13AE AB=,13DF CD=∴12AEEB=,12DFFC=,∵AD BC ∥,∴PAD PBC ∽,∴14PA AD PB BC ==,由①知3AB =,∴134PA PA =+,。

中考数学试题及答案解析中考题考题考卷真题试题试卷沪教版.doc

中考数学试题及答案解析中考题考题考卷真题试题试卷沪教版.doc

2019-2020 年中考数学试题及答案解析中考题考题考卷真题试题试卷沪教版得分评卷人一、选择题(本大题共10 小题,每小题 4 分,满分 40 分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得 4 分,不选、 选错或选出的代号超过一个的(不论是否写在括号内)一律得0 分.1.( 2012 安徽, 1,4 分)下面的数中, 与 -3 的和为 0 的是.( )A.3B.-3C.1 1D.331. 解析:根据有理数的运算法则,可以把选项中的数字和- 3 相加,进行筛选只有选项 A符合,也可以利用相反数的性质,根据互为相反数的两数和为 0,必选- 3 的相反数 3.解答: A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础 .2. ( 2012 安徽, 2,4 分)下面的几何体中,主(正)视图为三角形的是()A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形.解答: C .点评: 此题是由立体图形到平面图形, 熟悉常见几何体的三视图, 如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. ( 2012 安徽, 3,4 分)计算 ( 2x 2 ) 3 的结果是( )A. 2x 5B.8x 6C. 2x6D.8x 53. 解析:根据积的乘方和幂的运算法则可得. 解答:解: ( 2x 2 ) 3 ( 2)3 (x 2 ) 38x 6故选 B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号, 这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义 .4. ( 2012 安徽, 4,4 分)下面的多项式中,能因式分解的是()A. m 2nB. m 2m 1C. m 2nD. m 22m 14. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项, 问哪个可以分解, 对照选项中的多项式, 试用所学的方法分解. 就能判断出只有 D 项可以 .解答:解: m 2 2m 1 (m 1)2 故选 D .点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以 .)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5. ( 2012 安徽, 5,4 分)某企业今年 3 月份产值为 a 万元, 4 月份比 3 月份减少了 10%,5 月份比 4 月份增加了 15%,则 5 月份的产值是()A. ( a -10%)( a +15%)万元B. a ( 1-10%)( 1+15%)万元C.( a -10% +15%)万元D. a ( 1-10% +15%)万元5. 解析:根据 4 月份比 3 月份减少 10﹪,可得 4 月份产值是( 1- 10﹪) a, 5 月份比 4 月份增加 15﹪,可得 5 月份产值是( 1- 10﹪)( 1+15﹪) a, 解答: A .点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位 1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.x 2 x 的结果是()6. ( 2012 安徽, 6,4 分)化简1 1 x xA. x +1B. x -1C.— xD. x6. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:x 2 x x 2 x x( x 1) x 故选 D .x 1x 1x1x1点评: 分式的一些知识可以类比着分数的知识学习, 分式的基本性质是关键, 掌握了分式的基本性质, 可以利用它进行通分、约分, 在进行分式运算时根据法则, 一定要将结果化成最简分式.7. ( 2012 安徽, 7,4 分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边 形与其内部小正方形的边长都为 a ,则阴影部分的面积为()A.2 a 2B. 3 a 2C. 4 a 2D.5 a 27. 解析:图案中间的阴影部分是正方形,面积是a 2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为 a 的正方形的一半,它的面积用对角线积的一半来计算. 解答:解: a 211 a2 4 2a 2 故选 A .2 2点评: 本题考查了正多边形的性质, 关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算 .8. ( 2012 安徽, 8, 4 分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()1 1 12 A.B.C.D.63238. 解析:第 1 个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一 个打电话给甲的概率是1.3解答: 故选 B .9.( 2012 安徽, 9, 4 分)如图, A 点在半径为 2 的⊙ O 上,过线段 OA 上的一点 P 作直线,与⊙ O 过 A 点的切线交于点 B ,且∠ APB=60 °,设 OP=x,则△ PAB 的面积 y 关于x的函数图像大致是()9.解析:利用 AB 与⊙ O 相切,△ BAP 是直角三角形,把直角三角形的直角边表示出来,从而用 x 表示出三角形的面积,根据函数解析式确定函数的图象.解答:解:∵ AB 与⊙ O 相切,∴∠ BAP=90 °,OP=x, AP= 2- x, ∠ BPA=60°,所以 AB= 3( 2 x),所以△ APB的面积y 3( 2 x) 2 ,( 0≤ x≤2)故选 D.2点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的 .再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值.10.( 2012 安徽, 10,4 分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、 4、 3,则原直角三角形纸片的斜边长是()A.10B. 4 5C. 10 或4 5D.10 或 2 1710. 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,(2 2)2 (4 4)2 4 5 , (2 3)2 (4 4)2 4 5 10故选 C.点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选 A 或 B;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.得分评卷人二、填空题(本大题共 4 小题,每小题 5 分,满分20 分)11. ( 2012 安徽, 11,5 分) 2011 年安徽省棉花产量约378000 吨,将 378000 用科学计数法表示应是 ______________.n11. 解析:科学记数法形式:a×10 ( 1≤|a< 10,n 为整数)中 n 的值是易错点,由于 378 000 有6 位,所以可以确定 n=6﹣ 1=5,所以 378 000=3.78 ×105答案: 3.78 ×10512. (2012 安徽, 12,5 分)甲乙丙三组各有7 名成员,测得三组成员体重数据的平均数都是58,方差分别为 2 36 ,乙 2 ,丙 2 ,则数据波动最小的一组是甲S S 25 S 16___________________.12.解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小 .丙组方差最小,波动最小.答案:丙组13.(2012 安徽, 13,5 分)如图,点 A 、 B、 C、D 在⊙ O 上, O 点在∠ D 的内部,四边形OABC 为平行四边形,则∠OAD+ ∠ OCD=_______________ ° .13.解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠ AOC=2∠D;又因为四边形OABC是平行四边形,所以∠B=∠ AOC;圆内接四边形对角互补,∠B+∠ D=180°,所以∠ D= 60°,连接OD,则 OA=OD,OD=OC,∠ OAD=∠ ODA,∠ OCD=∠ ODC,即有∠ OAD+∠ OCD=60° .答案: 60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合 .14.( 2012 安徽, 14, 5 分)如图, P 是矩形 ABCD内的任意一点,连接 PA、 PB、 PC、 PD,得到△ PAB 、△ PBC 、△ PCD、△PDA ,设它们的面积分别是 S1、S2、S3、S4,给出如下结论:① S1+S2=S3+S4 ② S2+S4= S1+ S3③若 S3=2 S1,则 S4=2 S2 ④若 S1= S2,则 P 点在矩形的对角线上其中正确的结论的序号是_________________ (把所有正确结论的序号都填在横线上).14.解析:过点 P 分别向 AD、BC作垂线段,两个三角形的面积之和S2S4等于矩形面积的一半,同理,过点P分别向 AB、CD作垂线段,两个三角形的面积之和S1S3等于矩形面积的一半 . S1S3 = S2 S4,又因为 S1 S2,则 S2 S3=S1S4 1S ABCD,所以④一定成2立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形. 不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可. 对于④这一选项容易漏选 .三、(本大题共 2 小题,每小题8 分,满分 16 分)15. ( 2012 安徽, 15, 8 分)计算:(a 3)(a 1) a(a2)15.解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式 =a2- a+3a- 3+a2- 2a=2a2- 316. ( 2012 安徽, 16, 8 分)解方程:x2 2x 2x 116.解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法 . 先将方程整理一下,可以考虑用配方法或公式法.22配方,得x - 4x+4=1+42整理,得( x- 2) =5∴ x- 2=5 ,即 x 2 5 , x2 25 .1四、(本大题共 2 小题,每小题8 分,满分 16 分)17.( 2012 安徽, 17, 8 分)在由 m× n( m× n> 1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,(1)当 m、 n 互质( m、 n 除 1 外无其他公因数)时,观察下列图形并完成下表:m n m n f1 2 3 21 3 4 32 3 5 42 4 73 5 7猜想:当m、 n 互质时,在m× n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与 m、 n 的关系式是 ______________________________ (不需要证明);解:(2)当 m、 n 不互质时,请画图验证你猜想的关系式是否依然成立,17:解析:( 1)通过题中所给网格图形,先计算出2× 5, 3× 4,对角线所穿过的小正方形个数 f,再对照表中数值归纳 f 与 m、 n 的关系式 .( 2)根据题意,画出当m、 n 不互质时,结论不成立的反例即可.解:( 1)如表:m n m n f1 2 3 21 3 4 32 3 5 42 4 7 63 5 7 6f=m+n-1(2)当 m、 n 不互质时,上述结论不成立,如图2×42× 418. ( 2012 安徽, 18, 8 分)如图,在边长为了格点△ ABC (顶点是网格线的交点)和点(1)画出一个格点△A1B1C1 ,并使它与△1 个单位长度的小正方形组成的网格中,给出A1.ABC 全等且 A 与 A1 是对应点;(2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作由 AB 绕 A 点经过怎样的旋转而得到的 .解:18.解析:( 1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出 AB、 AD、 BD的长度,再计算角度 .解:( 1)答案不唯一,如图,平移即可(2) 作图如上,∵AB= 10 , AD= 10 ,BD=2 5∴AB2+AD2=BD2新课标一网∴△ ABD是直角三角形,AD 可以看作由AB 绕 A 点逆时针旋转90°得到的 .点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大 .五、(本大题共 2 小题,每小题10 分,满分20 分)19.( 2012 安徽, 19, 10 分)如图,在△ ABC 中,∠ A=3 0°,∠ B=45 °, AC=2 3,求C45°30°A BAB的长,解:19.解析:本题在一个三角形中已知两个角和一边,求三角形的边. 不是直角三角形,要利用三角函数必须构筑直角三角形,过点 C作 CD⊥ AB于 D, 利用构造的两个直角三角形来解答. 解:过点 C作 CD⊥ AB于 D,在Rt △ ACD中,∠ A=30°, AC=2 3∴CD=AC× sinA= 23 ×0.5= 3 ,AD=AC× cosA= 2 3×3=3,2在Rt △ BCD中,∠ B=45°,则 BD=CD= 3,∴A B=AD+BD=3+ 3点评:解直角三角形中,除了直角外,还知道两个元素(至少有一个是边),就能求出其余的边和角 . 一般三角形中,知道三个元素(至少有一个是边),就能求出其余的边和角 . 这时将三角形转化为直角三角形时,注意尽量不要破坏所给条件.20. ( 2012 安徽, 20, 10 分)九( 1)班同学为了解2011 年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,频数 (户)月均用水量 x (t) 频数 (户 ) 频率0 x 5 6 0.12 165 x 10 0.24 1210 x 15 16 0.32 815 x 20 10 0.20 420 x 25 4O 5 10 15 20 25 3025 x 30 2 0.04第 20 题图月用水量 (t)请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过 15t 的家庭占被调查家庭总数的百分比;解:(3)若该小区有1000 户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户?解:20.本题考查了数据的统计中的频数分布表和不完整的频数分布直方图. 所有的频数和就是样本容量,所有频率和等于1,且有频率频数,数据总数 n频数 650 ,50×0.24=12 ,4÷ 50=0.08 ,(1)数据总数0.12频率(2)用水量不超过15 吨是前三组,(0.12+0.24+0.32)× 100﹪=68﹪(3)用样本来估计总体,根据抽取的样本超过20 吨的家庭数,来估计该小区的情况..解:( 1)统计中的频数分布表和不完整的频数分布直方图,补充如下(2)用水量不超过 15 吨是前三组,( 0.12+0.24+0.32 )× 100﹪ =68﹪(3) 1000×( 0.04+0.08 ) =120(户)六、(本题满分12 分)21. ( 2012 安徽, 21, 12 分)甲、乙两家商场进行促销活动,甲商场采用“慢200 减 100”的促销方式,即购买商品的总金额满200 元但不足400 元,少付100 元;满 400 元但不足600 元,少付200 元;,乙商场按顾客购买商品的总金额打 6 折促销。

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案

2023年上海市-数学中考试题及答案1. 选择题1.1. 题目:某公司的年利润为100万元,今年增长了20%,那么今年的年利润是多少万元?答案:今年的年利润为120万元。

1.2. 题目:若一个等边三角形的周长为18cm,那么它的边长是多少cm?答案:该等边三角形的边长为6cm。

1.3. 题目:已知函数y = ax + b,若当x = -1时,y = 4;当x = 2时,y = 13,求a和b的值。

答案:a = 3,b = 7。

2. 填空题2.1. 题目:已知a + b = 5,a - b = 1,求a的值。

答案:a的值为3。

2.2. 题目:设直线y = mx + n与直线y = 2x + 1平行,求m和n 的值。

答案:m的值为2,n的值为1。

2.3. 题目:若x的值满足|x + 3| = 5,求x的值。

答案:x的值为-8或2。

3. 解答题3.1. 题目:求下列各组数的最小公倍数和最大公约数(使用Euclidean Algorithm):3和6,10和15,12和18答案:最小公倍数:- 3和6的最小公倍数为6。

- 10和15的最小公倍数为30。

- 12和18的最小公倍数为36。

最大公约数:- 3和6的最大公约数为3。

- 10和15的最大公约数为5。

- 12和18的最大公约数为6。

3.2. 题目:已知两条平行线的斜率分别为m1 = 2和m2 = 2/3,求它们之间的夹角。

答案:两条平行线之间的夹角为0°。

3.3. 题目:一个三角形的三个内角分别为60°,70°,和50°,求其面积。

答案:该三角形的面积无法确定,因为只给出了三个角度,并未给出具体的边长信息。

以上为2023年上海市数学中考试题及答案,仅供参考。

上海 (2001-2013) 历年中考数学 试卷 试题(含答案)

上海  (2001-2013)  历年中考数学  试卷 试题(含答案)

2001年上海市数学中考试卷一、填空题(本题共14小题,每小题2分,满分28分) 1.计算:2²18=2.如果分式242--x x 的值为零,那么x =3.不等式7—2x >1的正整数解是 . 4.点A (1,3)关于原点的对称点坐标是 . 5.函数1-=x x y 的定义域是 .6.如果正比例函数的图象经过点(2,4),那么这个函数的解析式为 .7.如果x 1、x 2是方程x 2-3x +1=0的两个根,那么代数式(x 1+1)( x 2+1)的值是 .8.方程2+x =-x的解是 .9.甲、乙两人比赛飞镖,两人所得平均环数相同,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10.那么成绩较为稳定的是 (填“甲”或“乙”).10.如果梯形的两底之比为2∶5,中位线长14厘米,那么较大底的长为 厘米.11.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米.12.某飞机在离地面1200米的上空测得地面控制点的俯角为60°,此时飞机与该地面控制点之间的距离是 米.13.在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△AB'E,那么△AB'E与四边形AECD重叠部分的面积是.14.如图1,在大小为4³4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画一个△A1B1C1,使△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.二、多项选择题(本题共4小题,每小题3分,满分12分.每小题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣1分)15.下列计算中,正确的是().A.a3²a2=a6B.(a+b)(a-b)=a2-b2C.(a+b)2=a2+b2D.(a+b)(a-2b)=a2-ab -2b216.下列多项式中,能在实数范围内分解因式的是().A.x2+4 B.x2-2 C.x2-x-1 D.x2+x +117.下列命题中,真命题是().A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C .对角线互相平分且垂直的四边形是菱形D .对角线互相垂直且相等的四边形是正方形18.如果⊙O 1、⊙O 2的半径分别为4、5,那么下列叙述中,正确的是( ).A .当O 1 O 2=1时,⊙O 1与⊙O 2相切B .当O 1 O 2=5时,⊙O 1与⊙O 2有两个公共点C .当O 1 O 2>6时,⊙O 1与⊙O 2必有公共点D .当O 1 O 2>1时,⊙O 1与⊙O 2至少有两条公切线 三、(本题共4小题,每小题7分,满分28分) 1 9.计算12102)13(12)21()2(--⋅--+ 20.解方程:31066=+++x x x x .21.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图(如图2)和快餐公司盒饭年销量的平均数情况条形图(如图3).利用图2、图3共同提供的信息,解答下列问题:图2 图3(1)1999年该地区销售盒饭共万盒.(2)该地区盒饭销量最大的年份是年,这一年的年销量是万盒.(3)这三年中该地区每年平均销售盒饭多少万盒?22.如图4,在△ABC中,∠C=90°,点D3.求:在BC上,BD=4,AD=BC,cos∠ADC=5(1)DC的长;(2)sin B的值.四、(本题共4小题,每小题10分,满分40分)23.如图5,已知点A(4,m),B(-1,n)在反比例8的图象上,直线AB与x轴交于点函数y=C.如果点D在y轴上,且DA=DC,求点D的坐标.24.如图6,在Rt△ABC中,∠B=90°,∠A的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D.求证:(1)AC是⊙O的切线;(2)AB+EB=AC.25.某电脑公司2000年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%.该公司预计2002年经营总收入要达到2160万元,且计划从2000年到2002年,每年经营总收入的年增长率相同,问2001年预计经营总收入为多少万元?26.如图7,已知抛物线y=2x2-4x+m与x轴交于不同的两点A、B,其顶点是C,点D是抛物线的对称轴与x轴的交点.(1)求实数m的取值范围;(2)求顶点C的坐标和线段AB的长度(用含有m的式子表示);(3)若直线1y分别交x轴、y轴于点E、F,问△BDC=x2+与△EOF是否有可能全等,如果可能,请证明;如果不可能,请说明理由.五、(本题满分12分)27.已知在梯形ABCD中,AD∥BC,AD<BC,且AD =5,AB=DC=2.(1)如图8,P为AD上的一点,满足∠BPC=∠A.①求证;△ABP∽△DPC②求AP的长.(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC 于点Q,那么①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;②当CE=1时,写出AP的长(不必写出解题过程).答案一、填空题1.6 2.-2 3.1,2 4.(-1,-3)5.x >1 (题5中定义域的意思即指函数自变量的取值范围.)6.y =2x 7.5 8.x =-19.甲 10.20 11.2.5 12.800313.22—214.图略(画出一个符合要求的三角形)(题14的考查目标是阅读理解、计算、作图能力,单位正方形是指边长为1的正方形,4³4的正方形方格指边长为4的正方形,被分成16个单位正方形,再应用勾股定理计算出AC ,AB ,BC 的长,依相似三角形性质按比例扩大,画出适中的△A 1B 1C 1.) 二、多项选择题(本题共4小题,每小题3分,满分12分) (题二不是平时习以为常的“四选一”型单选题,而是多项选择题,读准原题括号中的提示后,解题时要逐个筛选,逐一排查.)15.B 、D 16.B 、C 17.A 、C 18.A 、B 、D三、(本题共4小题,每小题?分,满分28分) 19.解:12102)13(12)21()2(--⋅--+.33332133231311212-=--=+⋅-=-⋅-+=(题19中出现了分数指数,2112意义是12.) 20.解法一:设xx y 6+=,则原方程为3101=+yy ,整理,得3y 2-10y +3=0,解得y 1=31,y 2=3.当y =31时,316=+xx ,解得x =—9;当y =3时,36=+xx ,解得x =3.经检验,x 1=-9,x 2=3都是原方程的根.则原方程的根是x 1=-9,x 2=3.解法二:方程两边同乘3x (x +6),得3(x +6)2+3x 2=10x (x +6),整理得.x 2+6x -27=0,解得x 1=-9,x 2=3.经检验,x 1=-9,x 2=3都是原方程的根,所以原方程的根是x 1=-9,x 2=3.21.(1)118;(2)2000,1 20:(3)解:3518002590150...⨯+⨯+⨯=x =96(万盒).答:这三年中,该地区每年平均销售盒饭96万盒. (题21考查统计图表在实际生产、生活中的应用,两个图形既相互独立,又互相联系.单个图表的阅读可考查阅读能力,双图表则更体现了思维间的联系与综合能力.)22.解:∵ 在Rt △ACD 中,cos ∠ADC =53=ADCD ,设CD =3k ,∴ AD =5k .又∵ BC =AD ,∴ 3k +4=5k ,∴ k =2.∴ CD =3k=6.(2) ∵ BC =3k +4=6+4=10,AC =22CD AD -=4k =8,∴4121082222=+=+=BC AC AB . ∴ 414144128sin ==AB AC B . (题22考查解直角三角形知识,解题时依三角函数定义设参数,结合代数知识求解,应注意的是ACDC ADC =∠cos ,则设DC =3k ,AC =5k ,但不能把DC =3,AC =5当作已知量直接应用.)四、(本题共4小题,每小题10分,满分40分)23.解:由点A 、B 在y =x8的图象上,得m =2,n =-8,则点A 的坐标为(4,2),点B 的坐标为(-1,-8).设直线AB 的函数解析式为y =kx +b ,则⎩⎨⎧+-=-+=b k b k 842,解得⎩⎨⎧-==.,62b k 则直线AB 的函数解析式为y =2x -6.所以点C 坐标为(3,0).设D (0,y ),由DA =DC ,得(y -2)2+42=y 2+32.解得y =411.则点D 的坐标是(0,411). 24.证明:(1)过D 作DF ⊥AC ,F 为垂足.∵ AD 是∠BAC 的平分线,DB ⊥AB ,∴ DB =DF .∴ 点D 到AC 的距离等于圆D 的半径.∴ AC 是⊙D 的切线.(2) ∵ AB ⊥BD ,⊙D 的半径等于BD ,∴ AB是⊙O 的切线.∴ AB =AF .∵ 在Rt △BED 和Rt △FCD 中,ED =CD ,BD =FD ,∴ △BED ≌△FCD .∴ BE =FC .∴ AB +BE =AF +FC =AC .25.解:2000年的经营总收入为600÷40%=1500(万元).设年增长率为x ,则1500(1+x )2=2160,(1+x )2=1.44,1+x =±1.2(舍去1+x =—1.2),1500(1+x )=1500³1.2=1800(万元).答:2001年预计经营总收入为1800万元.26.解:(1) ∵ 抛物线y =2x 2-4x +m 与x 轴交于不同的两个点,∴ 关于x 的方程2x 2—4x +m =0有两个不相等的实数根.∴ △=(—4) 2—4²2m >0,∴ m <2.(2)由y =2x 2-4x +m =2(x —1)2+m -2,得顶点C 的坐标是(1,m -2).由2x 2—4x +m =0,解得,x 1=1+m 2421-或x 2=1—m 2421-.∴ AB =(1+m 2421-)—(1—m 2421-)=m 24-. (3)可能.证明:由y =2x +1分别交x 轴、y 轴于点E 、F ,得E (-22,0),F (0,1).∴ OE =22,OF =1.而BD =m 2421-,DC =2-m .当OE =BD ,得m 242122-=,解得m =1.此时OF =OC =1.又∵ ∠EOF =∠CDB =90°,∴ △BDC ≌△EOF .∴ △BDC 与△EOF 有可能全等.(题26是一元二次方程,二次函数与直线形的综合考查题,由图象可知,抛物线与x 轴有两个交点,则△>0;求AB 的长度可用简化公式a AB ∆=;(3)要求判断△BDC 与△EOF是否有可能全等,即指探索全等的可能性,本题已有∠CDB =∠EOF =90°,BD 与OE 或OF 都可能是对应边,证出其中一种情形成立即可,解题时要注意“有可能”这个关键词.)27.(1)①证明:∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴∠ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DC PD AP AB =,即252x x -=,解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴ DQ AP PD AB =.即y x x +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)上海市2002年中等学校高中阶段招生文化考试数学试卷(满分120分,考试时间120分钟)考生注意:除第一、二大题外其余各题如无特别说明,都必须写出证明或计算的主要步骤.一.填空题(本大题共14题,每题2分,满分28分)1.计算:221-⎪⎭⎫ ⎝⎛=__________.2.如果分式23-+x x 无意义,那么x =__________. 3.在张江高科技园区的上海超级计算中心内,被称为“神威1”的计算机运算速度为每秒384 000 000 000次,这个速度用科学记数法表示为每秒___________次.4.方程122-x =x的根是__________. 5.抛物线y =x 2-6x +3的顶点坐标是 __________.6.如果f (x )=kx ,f (2)=-4,那么k =__________.7.在方程x 2+x x 312-=3x -4中,如果设y =x 2-3x ,那么原方程可化为关于y 的整式方程是__________.8.某出租车公司在“五一”长假期间平均每天的营业额为5万元,由此推断5月份的总营业额约为5×31=155(万元)根据所学的统计知识,你认为这样的推断是否合理?答:__________.9.在△ABC中,点D、E分别在边AB、AC上,DE∥BC,如果AD=8,DB=6,EC=9,那么AE=__________.10.在离旗杆20米处的地方用测角仪测得旗杆顶的仰角为a,如果测角仪高为1.5米,那么旗杆的高为__________米,(用含a的三角比表示).11.在△ABC中,如果AB=AC=5cm,BC=8cm,那么这个三角形的重心G到BC的距离是__________cm.12.两个以点O为圆心的同心圆中,大圆的弦AB与小圆相切,如果AB的长为24,大圆的半径OA为13,那么小圆的半径为__________.13.在R t△ABC中,∠A<∠B,CM是斜边AB上的中线,将△A CM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于__________度.14.已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连结DE、DF,在不再连结其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条可以是__________.二、多项选择题(本大题4题,每题3分,满分12分)[每题列出的四个答案中,至少有一个是正确的,把所有正确答案的代号填入括号内,错选或不选得0分,否则每漏选一个扣1分,直至扣完为止]15.在下列各数中,是无理数的是()(A )π;(B )722; (C )9; (D )4. 16.在下列各组根式中,是同类二次根式的是 ( )(A )2和12; (B )2和21; (C )ab 4和3ab ; (D )1-a 和1+a .17.如果两个半径不相等的圆有公共点,那么这两个圆的公切线可能是 ( )(A )1条;(B )2条; (C )3条;(D )4条 18.下列命题中,正确的是 ( )(A )正多边形都是轴对称图形;(B )正多边形一个内角的大小与边数成正比例;(C )正多边形一个外角的大小随边数的增加而减少;(D )边数大于3的正多边形的对角线长相等.三、(大小题共4题,每题7分,满分28分)19.计算:96261212222-+---+-⋅-+x x x x x x x x .20.解不等式组:()⎪⎩⎪⎨⎧-≥-->+②①.356634,1513x x x x21.如图1,已知四边形ABCD 中,BC =CD =DB ,∠ADB =90°,cos ∠ABD =54,求S △ABD ︰S △BCD .图122.某校在六年级和九年级男生中分别随机抽取20名男生测量他们的身高,绘制的频数分布直方图如图2所示,其中两条点划线上端的数值分别是每个年级被抽20名男生身高的平均数,该根据该图提供的信息填空:图2(1)六年级被抽取的20名男生身高的中位数所在组的范围是__________厘米;九年级被抽取的20名男生身高的中位数所在组的范围是__________厘米.(2)估计这所学校九年级男生的平均身高比六年级男生的平均身高高__________厘米.(3)估计这所学校六、九两个年级全体男生中,身高不低于153厘米且低于163厘米的男生所占的百分比是__________.四、(本大题共4题,每题10分,满40分)23.已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数.(1)求证:不论m取何实数,这个二次函数的图象与x轴必有两个交点;(2)设这个二次函数的图象与x轴交于点A(x1,0).B(x2,0),且x1、x2的倒数和为32,求这个二次函数的解析式.24.已知:如图3,AB是半圆O的直径,弦CD∥AB,直线CM、DN分别切半圆于点C、D,且分别和直线AB相交于点M、N.图3(1)求证:MO=NO;(2)设∠M=30°,求证:NM=4CD.25.某班进行个人投篮比赛,受污损的下表记录了在规定时间内设进n个球的人数分布情况:同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个求,问投进3个球和4个求的各有多少人.1x+2分别交x、y轴于点A、C,26.如图4,直线y=2P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S=9.△ABP图4(1)求点P的坐标;(2)设点R与点P的同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT 与△AOC相似时,求点R的坐标.五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分)27.操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.图5 图6图7探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)上海市2002年中等学校高中阶段招生文化考试数学试卷答案要点与评分说明一.填空题(本大题共14题,每题2分,满分28分)1.4;2.2;3.3.84×1011;4.x=1;5.(3,-6);6.-2;7.y2+4y+1=0;8.不合理;9.12;10.20tan +1.5;11.1;12.5;13.30;14.AB=AC、∠B=∠C、AE=AF、AE=ED、DE∥AC、…中的一个二、多项选择题(本大题共4题,每题3分,满分12分)15.A、D;16.B、C 17.A、B、C18.A、C三、(本大题共4题,每题7分,满分28分)19.解:原式=()()()()()()3332231122-++-+--⋅-+x x x x x x x x ……………………(4分)=3231----x x x ……………………(2分)=33--x x =1. ……………………(1分) 20.解:由①解得 x <3 ……………………(3分)由②解得 x ≥83 ……………………(3分)∴ 原不等式组的解集是 83≤x <3 ……………………(1分)21.解:∵ cos ∠ABD =54 ∴ 设AB =5k BD =4k (k >0),得AD =3k ……………………(1分)于是S△ABC =21AD²BD=6k2……………………(2分)∴△BCD是等边三角形,∴S△BCD =43BD2=43k2……………………(2分)∴S△ABD ︰S△BCD=6k2︰43k2=3︰2……………………(2分)22.(1)148~153 ……………………(1分)168~173 ……………………(1分)(2)18.6……………………(2分)(3)22.5%……………………(3分)四、(本大题共4题,每题10分,满分40分)23.(1)证明:和这个二次函数对应的一元二次方程是x 2-2(m -1)x +m 2-2m -3=0Δ=4(m -1)2-4(m 2-2m -3) ……………………(1分)=4m 2-8m +4-4m 2+8m +12 ……………………(1分) =16>0. ……………………(1分)∵ 方程x 2-2(m -1)x +m 2-2m -3=0必有两个不相等的实数根.∴ 不论m 取何值,这个二次函数的图象与x 轴必有两个交点. ……………(1分)(2)解:由题意,可知x 1、x 2是方程x 2-2(m -1)x +m 2-2m -3=0的两个实数根,∴ x 1+x 2=2(m -1),x 1²x 2=m 2-2m -3. ……………………(2分)∵ 321121=+x x ,即 322121=⋅+x x x x ,∴ ()3232122=---m m m (*) …………(1分)解得 m =0或m =5 ……………………(2分)经检验:m=0,m=5都是方程(*)的解∴所求二次函数的解析是y=x2+2x-3或y=x2-8x +12.……………………(1分)24.证明:连结OC、OD.(1)∵OC=OD,∴∠OCD=∠ODC ……………………(1分)∵CD∥AB,∴∠COD=∠COM,∠ODC∠DON.∴∠COM=∠DON……………………(1分)∵CM、DN分别切半圆O于点C、D,∴∠O CM =∠ODN=90°.…(1分)∴△O CM≌△ODN.……………………(1分)∴OM=ON.……………………(1分)(2)由(1)△O CM≌△ODN可得∠M=∠N.∵∠M=30°∴∠N=30° ……………………(1分) ∴ OM =2OD ,ON =2OD ,∠COM =∠DON =60° ……………………(1分)∴ ∠COD =60° ……………………(1分)∴ △COD 是等边三角形,即CD =OC =OD . ……………………(1分)∴ MN =OM +ON =2OC +2OD =4CD . ……………………(1分)25.解:设投进3个球的有x 个人,投进4个球的有y 个人……………………(1分)由题意,得⎪⎪⎩⎪⎪⎨⎧=++++++⨯+⨯+⨯=++⨯++.5.272143722110,5.322543y x y x y x y x(*)……………………(4分)整理,得⎩⎨⎧=+=-183,6y x y x ……………………(2分)解得⎩⎨⎧==3,9y x ……………………(2分)经检验:⎩⎨⎧==3,9y x 是方程组(*)的解.答:投进3个球的有9个人,投进4个球的有3个人. ……………………(1分)26.解:(1)由题意,得点C (0,2),点A (-4,0). ……………………(2分)设点P 的坐标为(a ,21a +2),其中a >0. 由题意,得S △ABP =21(a +4)(21a +2)=9. ……………………(1分)解得a =2或a =-10(舍去) ……………………(1分) 而当a =2时,21a +2=3,∴ 点P 的坐标为(2,3). ……………………(1分)(2)设反比例函数的解析式为y =xk . ∵ 点P 在反比例函数的图象上,∴ 3=2k ,k =6 ∴ 反比例函数的解析式为y =x 6, ……………………(1分)设点R 的坐标为(b ,b 6),点T 的坐标为(b ,0)其中b >2,那么BT =b -2,RT =b6. ①当△RTB ~△AOC 时,CO BT AO RT =,即2==COAO BT RT , ………………(1分) ∴ 226=-b b ,解得b =3或b =-1(舍去). ∴ 点R 的坐标为(3,2). ……………………(1分)①当△RTB ∽△COA 时,AO BT CO RT =,即21==AO CO BT RT , ………………(1分) ∴ 2126=-b b ,解得b =1+13或b =1-13(舍去). ∴ 点R 的坐标为(1+13,2113-). ……………………(1分)综上所述,点R 的坐标为(3,2)或(1+13,2113-). 五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分)27.图1 图2 图3(1)解:PQ =PB ……………………(1分)证明如下:过点P作MN∥BC,分别交AB于点M,交CD于点N,那么四边形AMND和四边形BCNM都是矩形,△AMP和△CNP都是等腰直角三角形(如图1).∴NP=NC=MB.……………………(1分)∵∠BPQ=90°,∴∠QPN+∠BPM=90°.而∠BPM+∠PBM=90°,∴∠QPN=∠PBM.……………………(1分)又∵∠QNP=∠PMB=90°,∴△QNP≌△PMB.……………………(1分)∴PQ=PB.(2)解法一由(1)△QNP≌△PMB.得NQ=MP.∵AP=x,∴AM=MP=NQ=DN=x22,BM=PN=CN=1-x22,∴CQ=CD-DQ=1-2²x22=1-x2.得S△PBC =21BC²BM=21³1³(1-x22)=21-42x.………………(1分)S △PCQ =21CQ ²PN =21³(1-x 2)(1-x 22)=21-x 423+21x 2 (1分)S四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1.即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分)解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形.∴ PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN …(2分)=CN 2=(1-x 22)2=21x 2-x 2+1∴ y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形,此时x =0 ……………………(1分)②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3)……………………(1分)解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22. ∴ CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分)解法二 此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°,∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1. ……………………(1分)上海市2003年初中毕业高中招生统一考试数学试卷一、填空题1. 8的平方根是.1,4中,是最简二次根式的是。

2013-2019年上海市中考数学试题汇编(含参考答案与解析)

2013-2019年上海市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2019年上海市中考数学试题汇编(含参考答案与解析)1、2013年上海市中考数学试题及参考答案与解析 (2)2、2014年上海市中考数学试题及参考答案与解析 (22)3、2015年上海市中考数学试题及参考答案与解析 (40)4、2016年上海市中考数学试题及参考答案与解析 (58)5、2017年上海市中考数学试题及参考答案与解析 (75)6、2018年上海市中考数学试题及参考答案与解析 (92)7、2019年上海市中考数学试题及参考答案与解析 (113)2013年上海市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列式子中,属于最简二次根式的是( )A B C D 2.下列关于x 的一元二次方程有实数根的是( )A .x 2+1=0B .x 2+x+1=0C .x 2﹣x+1=0D .x 2﹣x ﹣1=03.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+34.数据 0,1,1,3,3,4 的中位数和平均数分别是( )A .2和2.4B .2和2C .1和2D .3和25.如图,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( )A .5:8B .3:8C .3:5D .2:56.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( )A .∠BDC=∠BCDB .∠ABC=∠DABC .∠ADB=∠DACD .∠AOB=∠BOC二、填空题(本大题共12小题,每小题4分,共48分)7.分解因式:a 2﹣1= .8.不等式组1023x x x-⎧⎨+⎩>>的解集是 .9.计算:23b a a b⨯= . 10.计算:()23a b b -+= .11.已知函数()231f x x =+,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.15.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.如图,在△ABC中,AB=AC,BC=8,tanC=32,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为.三、解答题(本大题共7小题,满分78分)19.(101011|2π-⎛⎫-+ ⎪⎝⎭. 20.(10分)解方程组:22220x y x xy y -=-⎧⎨--=⎩.21.(10分)已知平面直角坐标系xOy (如图),直线12y x b =+经过第一、二、三象限,与y 轴交于点B ,点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1.(1)求b 的值;(2)如果反比例函数k y x=(k 是常量,k≠0)的图象经过点A ,求这个反比例函数的解析式.22.(10分)某地下车库出口处“两段式栏杆”如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图2所示,其示意图如图3所示,其中AB ⊥BC ,EF ∥BC ,∠EAB=143°,AB=AE=1.2米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.24.(12分)如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.25.(14分)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC 于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列式子中,属于最简二次根式的是()A B C D【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.=,故A选项错误;【解答过程】解:A3B是最简二次根式,故B选项正确;C=C选项错误;D=D选项错误;故选:B.【总结归纳】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下列关于x的一元二次方程有实数根的是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【知识考点】根的判别式.【思路分析】计算出各项中方程根的判别式的值,找出根的判别式的值大于等于0的方程即可.【解答过程】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,。

2023年上海市中考数学真题(解析版)

2023年上海市中考数学真题(解析版)

2023年上海市初中学业水平考试考生注意:1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸指定位置填写姓名、报名号、座位号.将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上的作答一律不得分.4.选择题和作图题用2B 铅笔作答,其余题型用黑色字迹钢笔、水笔或圆珠笔作答.一、选择题:(本大题共6题,每题4分,共24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题卡的相应位置上】1.下列运算正确的是()A.523a a a ÷= B.336a a a += C.()235a a = D.a =【答案】A【解析】【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意;B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.2.在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++= B.2550y y -+= C.2510y y ++= D.2510y y -+=【答案】D【解析】【分析】设221x y x-=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x-=,则原方程可变形为15y y +=,即2510y y -+=;故选:D .【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.3.下列函数中,函数值y 随x 的增大而减小的是()A.6y x= B.6y x =- C.6y x = D.6y x=-【答案】B【解析】【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A 、6y x =,60k =>,y 随x 的增大而增大,不符合题意;B 、6y x =-,60k =-<,y 随x 的增大而减小,符合题意;C 、6y x =,60k =>,在每个象限内,y 随x 的增大而减小,不符合题意;D 、6y x =-,60k =-<,在每个象限内,y 随x 的增大而增大,不符合题意;故选:B .【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.4.如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【解析】【分析】根据折线统计图逐项判断即可得.【详解】解:A 、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B 、小车的车流量的平均数较大,则此项正确,符合题意;C 、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D 、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B .【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.5.在四边形ABCD 中,,AD BC AB CD =∥.下列说法能使四边形ABCD 为矩形的是()A.AB CDB.AD BC =C.A B∠=∠ D.A D ∠=∠【答案】C【解析】【分析】结合平行四边形的判定和性质及矩形的判定逐一分析即可.【详解】A : AB CD ,,AD BC AB CD=∥∴ABCD 为平行四边形而非矩形故A 不符合题意B : AD BC =,,AD BC AB CD=∥∴ABCD 为平行四边形而非矩形故B 不符合题意C : AD BC∥180A B ∴∠+∠=︒A B∠=∠∴90A B ∠=∠=︒AB CD= ∴ABCD 为矩形故C 符合题意D : AD BC∥180A B ∴∠+∠=︒A D∠=∠180D B ∴∠+∠=︒∴ABCD 不是平行四边形也不是矩形故D 不符合题意故选:C .【点睛】本题主要考查平行线的性质,平行四边形的判定和性质及矩形的判定等知识,熟练掌握以上知识并灵活运用是解题的关键.6.已知在梯形ABCD 中,连接AC BD ,,且AC BD ⊥,设,AB a CD b ==.下列两个说法:①()22AC a b =+;②AD =则下列说法正确的是()A.①正确②错误B.①错误②正确C.①②均正确D.①②均错误【答案】D【解析】【分析】根据已知及结论,作出图形,进而可知当梯形ABCD 为等腰梯形,即AD BC =,AB CD 时,①()22AC a b =+;②AD =,其余情况得不出这样的结论,从而得到答案.【详解】解:过B 作BE CA ∥,交BC 延长线于E ,如图所示:若梯形ABCD 为等腰梯形,即AD BC =,AB CD 时,∴四边形ACEB 是平行四边形,,CE AB AC BE ∴==,AB DC ∥,DAB CBA ∴∠=∠,AB AB =Q ,()SAS DAB CBA ∴△≌△AC BD ∴=,即BD BE =,又 AC BD ⊥,∴BE BD ⊥,在Rt BDE △中,BD BE =,,AB a CD b ==,则DE DC CE b a =+=+,)2222AC BE DE a b ∴====+,此时①正确;过B 作BF DE ⊥于F ,如图所示:在Rt BFC △中,BD BE =,,AB a CD b ==,DE b a =+,则()1122BF FE DE a b ===+,()()1122FC FE CE a b a b a =-=+-=-,BC ∴===,此时②正确;而题中,梯形ABCD 是否为等腰梯形,并未确定;梯形ABCD 是AB CD 还是AD BC ∥,并未确定,∴无法保证①②正确,故选:D .【点睛】本题考查梯形中求线段长,涉及梯形性质、平行四边形的判定与性质、全等三角形的判定性质、二、填空题:(本大题共12题,每题4分,共48分)【请将结果直接填入答题纸的相应位置上】7.分解因式:29n -=________.【答案】()()33n n -+【解析】【分析】利用平方差公式进行因式分解即可.【详解】解:()()29=33n n n --+,故答案为:()()33n n -+.【点睛】本题考查因式分解,熟练掌握平方差公式是解题的关键.8.化简:2211x x x---的结果为________.【答案】2【解析】【分析】根据同分母分式的减法计算法则解答即可.【详解】解:2211x x x ---()2122211x x x x--===--;故答案为:2.【点睛】本题考查了同分母分式减法计算,熟练掌握运算法则是解题关键.9.已知关于x2=,则x =________【答案】18【解析】【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.10.函数()123f x x =-的定义域为.【答案】23x ≠【解析】【分析】根据分式有意义的条件可进行求解.【详解】解:由()123f x x =-可知:230x -≠,∴23x ≠;故答案为23x ≠.【点睛】本题主要考查函数及分式有意义的条件,熟练掌握函数的概念及分式有意义的条件是解题的关键.11.已知关于x 的一元二次方程2610ax x ++=没有实数根,那么a 的取值范围是________.【答案】9a >【解析】【分析】根据一元二次方程根的判别式可进行求解.【详解】解:∵关于x 的一元二次方程2610ax x ++=没有实数根,∴243640b ac a ∆=-=-<,解得:9a >;故答案为:9a >.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.12.在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为________.【答案】25【解析】【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为42105P ==,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.13.如果一个正多边形的中心角是20︒,那么这个正多边形的边数为________.【答案】18【解析】【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷,则3602018n =÷=,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.14.一个二次函数2y ax bx c =++的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是________.【答案】21y x =-+(答案不唯一)【解析】【分析】根据二次函数2y ax bx c =++的顶点在y 轴正半轴上,且其对称轴左侧的部分是上升的,可确定a<0,对称轴02b x a=-=,0c >,从而确定答案.【详解】解:∵二次函数2y ax bx c =++的对称轴左侧的部分是上升的,∴抛物线开口向上,即a<0,∵二次函数2y ax bx c =++的顶点在y 轴正半轴上,∴02b a-=,即0b =,0c >,∴二次函数的解析式可以是21y x =-+(答案不唯一).【点睛】本题考查二次函数的性质,能根据增减性和二次函数图象与y 轴的交点确定系数的正负是解题的关键.15.如图,在ABC 中,点D ,E 在边AB ,AC 上,2,AD BD DE BC =∥,联结DE ,设向量AB a =,AC b = ,那么用a ,b 表示DE = ________.【答案】1133b a - 【解析】【分析】先根据向量的减法可得BC b a =- ,再根据相似三角形的判定可得ADE ABC ,根据相似三角形的性质可得13DE BC =,由此即可得.【详解】解:∵向量AB a = ,AC b = ,BC AC AB b a ∴=-=- ,2AD BD = ,13AD AB ∴=,DE BC ∥,ADE ABC ∴ ,13DE AD BC AB ∴==,13DE BC ∴=,111333DE BC b a ∴==- ,故答案为:1133b a - .【点睛】本题考查了向量的运算、相似三角形的判定与性质,熟练掌握向量的运算是解题关键.16.垃圾分类(Refuse sorting ),是指按照垃圾的不同成分、属性、利用价值以及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60吨,且全市人口约为试点区域人口的10倍,那么估计全市可收集的干垃圾总量为________.【答案】1500吨【解析】【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解.【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷---=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨);故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.17.如图,在ABC 中,35C ∠=︒,将ABC 绕着点A 旋转(0180)αα︒<<︒,旋转后的点B 落在BC 上,点B 的对应点为D ,连接AD AD ,是BAC ∠的角平分线,则α=________.【答案】1103⎛⎫︒⎪⎝⎭【解析】【分析】如图,AB AD =,BAD ∠=α,根据角平分线的定义可得CAD BAD α∠=∠=,根据三角形的外角性质可得35ADB α∠=︒+,即得35B ADB α∠=∠=︒+,然后根据三角形的内角和定理求解即可.【详解】解:如图,根据题意可得:AB AD =,BAD ∠=α,∵AD 是BAC ∠的角平分线,∴CAD BAD α∠=∠=,∵35ADB C CAD α∠=∠+∠=︒+,AB AD =,∴35B ADB α∠=∠=︒+,则在ABC 中,∵180C CAB B ∠+∠+∠=︒,∴35235180αα︒++︒+=︒,解得:1103α⎛⎫=︒ ⎪⎝⎭;故答案为:1103⎛⎫︒ ⎪⎝⎭【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形的外角性质以及三角形的内角和等知识,熟练掌握相关图形的性质是解题的关键.18.在ABC 中7,3,90AB BC C ==∠=︒,点D 在边AC 上,点E 在CA 延长线上,且CD DE =,如果B 过点A ,E 过点D ,若B 与E 有公共点,那么E 半径r 的取值范围是________.1010r <≤【解析】【分析】先画出图形,连接BE ,利用勾股定理可得294BE r =+,210AC =,从而可得1010r <≤,再根据B 与E 有公共点可得一个关于r 的不等式组,然后利用二次函数的性质求解即可得.【详解】解:由题意画出图形如下:连接BE,B 过点A ,且7AB =,B ∴e 的半径为7,E 过点D ,它的半径为r ,且CD DE =,2CE CD DE r ∴=+=,3,90BC C =∠=︒,BE ∴==,AC ==,D 在边AC 上,点E 在CA 延长线上,CD AC CE AC ≤⎧∴⎨>⎩,即2r r ⎧≤⎪⎨>⎪⎩r <≤B 与E 有公共点,AB DE BE AB DE ∴-≤≤+,即77r r ≤+-≤⎪⎩①,不等式①可化为2314400r r --≤,解方程2314400r r --=得:2r =-或203r =,画出函数231440y r r =--的大致图象如下:由函数图象可知,当0y ≤时,2023r -≤≤,即不等式①的解集为2023r -≤≤,同理可得:不等式②的解集为2r ≥或203r ≤-,则不等式组的解集为2023r ≤≤,又r <≤,半径r 的取值范围是r <≤,r <≤.【点睛】本题考查了勾股定理、圆与圆的位置关系、二次函数与不等式,根据圆与圆的位置关系正确建立不等式组是解题关键.三、解答题:(本大题共7题,共78分)19.2133-⎛⎫-+ ⎪⎝⎭【答案】6-【解析】【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=+-+-6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.20.解不等式组36152x x x x >+⎧⎪⎨<-+⎪⎩【答案】1033x <<【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:36152x x x x >+⎧⎪⎨<-+⎪⎩①②,解不等式①得:3x >,解不等式②得:103x <,则不等式组的解集为1033x <<.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.21.如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【解析】【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【小问1详解】解:如图,延长BC ,交O 于点D ,连接AD,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.【小问2详解】解:如图,过点C 作CE AB ⊥于点E,O 的半径为5,5OB ∴=,12OC OB = ,31522BC OB ∴==,4cos 5ABC ∠= ,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,92CE ==,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.22.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900(2)0.90.27y x =-(3)1.00【解析】【分析】(1)根据10000.9⨯,计算求解即可;(2)由题意知,()0.90.30y x =-,整理求解即可;(3)当7.30x =,则 6.30y =,根据优惠后油的单价比原价便宜()x y -元,计算求解即可.【小问1详解】解:由题意知,10000.9900⨯=(元),答:实际花了900元购买会员卡;【小问2详解】解:由题意知,()0.90.30y x =-,整理得0.90.27y x =-,∴y 关于x 的函数解析式为0.90.27y x =-;【小问3详解】解:当7.30x =,则 6.30y =,∵7.30 6.30 1.00-=,∴优惠后油的单价比原价便宜1.00元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.23.如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且=FAC ADE ∠∠,AC AD =(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据平行线的性质可得DAE ACF ∠=∠,再根据三角形的全等的判定可得DAE ACF ≅ ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得AFC DEA ∠=∠,从而可得AFB CED ∠=∠,再根据相似三角形的判定可得ABF CDE ,然后根据相似三角形的性质即可得证.【小问1详解】证明:AD BC ,DAE ACF ∴∠=∠,在DAE 和ACF △中,DAE ACF AD CA ADE CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA DAE ACF ∴≅ ,DE AF ∴=.【小问2详解】证明:DAE ACF ≅ ,AFC DEA ∴∠=∠,180180AFC DEA ∴︒-∠=︒-∠,即AFB CED ∠=∠,在ABF △和CDE 中,AFB CED ABF CDE ∠=∠⎧⎨∠=∠⎩,ABF CDE ∴ ,AF BF CE DE∴=,由(1)已证:DE AF =,AF BF CE AF∴=,2AF BF CE =∴⋅.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.24.在平面直角坐标系xOy 中,已知直线364y x =+与x 轴交于点A ,y 轴交于点B ,点C 在线段AB 上,以点C 为顶点的抛物线M :2y ax bx c =++经过点B .(1)求点A ,B 的坐标;(2)求b ,c 的值;(3)平移抛物线M 至N ,点C ,B 分别平移至点P ,D ,联结CD ,且CD x ∥轴,如果点P 在x 轴上,且新抛物线过点B ,求抛物线N 的函数解析式.【答案】(1)()8,0A -,()0,6B (2)32b =,6c =(3)(2316y x =-或(2316y x =+【解析】【分析】(1)根据题意,分别将0x =,0y =代入直线364y x =+即可求得;(2)设3,64C m m ⎛⎫+ ⎪⎝⎭,得到抛物线的顶点式为()2364y a x m m +-+=,将()0,6B 代入可求得34m a =-,进而可得到抛物线解析式为2362y ax x =++,即可求得b ,c ;(3)根据题意,设(),0P p ,3,64C m m ⎛⎫+ ⎪⎝⎭,根据平移的性质可得点B ,点C 向下平移的距离相同,即列式求得4m =-,316a =,然后得到抛物线N 解析式为:()2316y x p =-,将()0,6B 代入可得p =±即可得到答案.【小问1详解】解:∵直线364y x =+与x 轴交于点A ,y 轴交于点B ,当0x =时,代入得:6y =,故()0,6B ,当0y =时,代入得:8x =-,故()8,0A -,【小问2详解】设3,64C m m ⎛⎫+ ⎪⎝⎭,则可设抛物线的解析式为:()2364y a x m m +-+=,∵抛物线M 经过点B ,将()0,6B 代入得:23664am m ++=,∵0m ≠,∴34am =-,即34m a =-,∴将34m a =-代入()2364y a x m m +-+=,整理得:2362y ax x =++,故32b =,6c =;【小问3详解】如图:∵CD x ∥轴,点P 在x 轴上,∴设(),0P p ,3,64C m m ⎛⎫+ ⎪⎝⎭,∵点C ,B 分别平移至点P ,D ,∴点B ,点C 向下平移的距离相同,∴3366644m m ⎛⎫+=-+ ⎪⎝⎭,解得:4m =-,由(2)知34m a =-,∴316a =,∴抛物线N 的函数解析式为:()2316y x p =-,将()0,6B 代入可得:p =±∴抛物线N 的函数解析式为:(2316y x =-或(2316y x =+.【点睛】本题考查了求一次函数与坐标轴的交点坐标,求抛物线的解析式,平移的性质,二次函数的图象和性质等,解题的关键是根据的平移性质求出m 和a 的值.25.如图(1)所示,已知在ABC 中,AB AC =,O 在边AB 上,点F 边OB 中点,为以O 为圆心,BO 为半径的圆分别交CB ,AC 于点D ,E ,联结EF 交OD 于点G .(1)如果OG DG =,求证:四边形CEGD 为平行四边形;(2)如图(2)所示,联结OE ,如果90,,4BAC OFE DOE AO ∠=︒∠=∠=,求边OB 的长;(3)联结BG ,如果OBG 是以OB 为腰的等腰三角形,且AO OF =,求OG OD 的值.【答案】(1)见解析(2)1+(3)12【解析】【分析】(1)根据等边对等角得出B C ∠=∠,ODB B ∠=∠,等量代换得出C ODB ∠=∠,则OD AC ∥,根据F 是OB 的中点,OG DG =,则FG 是OBD 的中位线,则FG BC ∥,即可得证;(2)设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a ==,由(1)可得OD AC ∥则AEO DOE α∠=∠=,等量代换得出OFE AEO α∠=∠=,进而证明AEO AFE ∽,得出2AE AO AF =⋅,在Rt AEO △中,222AE EO AO =-,则22EO AO AO AF -=⨯,解方程即可求解;(3)OBG 是以OB 为腰的等腰三角形,分为①当OG OB =时,②当BG OB =时,证明BGO BPA ∽,得出2=3OG AP ,设2,3OG k AP k ==,根据OG AE ∥,得出FOG FAE ∽,可得24AE OG k ==,PE AE AP k =-=,连接OE 交PG 于点Q ,证明QPE QGO ∽在PQE V 与BQO △中,13PQ a =,28233BQ BG QG a a a =+=+=,得出14PQ QE OQ BQ ==,可得PQE OQB ∽,根据相似三角形的性质得出2a k =,进而即可求解.【小问1详解】证明:∵AC AB=∴ABC C∠=∠∵OD OB=∴ODB ABC ∠=∠,∴C ODB∠=∠∴OD AC ∥,∵F 是OB 的中点,OG DG =,∴FG 是OBD 的中位线,∴FG BC ∥,即GE CD ,∴四边形CEDG 是平行四边形;【小问2详解】解:∵,4OFE DOE AO ∠=∠=,点F 边OB 中点,设OFE DOE α∠=∠=,OF FB a ==,则2OE OB a==由(1)可得OD AC∥∴AEO DOE α∠=∠=,∴OFE AEO α∠=∠=,又∵A A∠=∠∴AEO AFE ∽,∴AE AO AF AE=即2AE AO AF =⋅,∵90A ∠=︒,在Rt AEO △中,222AE EO AO =-,∴22EO AO AO AF -=⨯,∴()()222444a a -=⨯+解得:12a =或12a -=(舍去)∴21OB a ==;【小问3详解】解:①当OG OB =时,点G 与点D 重合,舍去;②当BG OB =时,如图所示,延长BG 交AC 于点P ,∵点F 是OB 的中点,AO OF =,∴AO OF FB ==,设AO OF FB ==a =,∵OG AC∥∴BGO BPA ∽,∴2233OG OB a AP AB a ===,设2,3OG k AP k ==,∵OG AE∥∴FOG FAE ∽,∴122OG OF a AE AF a ===,∴24AE OG k ==,∴PE AE AP k =-=,连接OE 交PG 于点Q ,∵OG PE ∥,∴QPE QGO∽∴22GO QG OQ k PE PQ EQ k====,∴12,33PQ a QG a ==,24,33EQ a OQ a ==在PQE V 与BQO △中,13PQ a =,28233BQ BG QG a a a =+=+=,∴14PQ QE OQ BQ ==,又PQE BQO ∠=∠,∴PQE OQB ∽,∴14PE OB =,∴124k a =,∴2a k =,2,2OD OB a OG k === ,∴2122OG k k OD a a ===.【点睛】本题考查了平行四边形的性质,三角形中位线的性质,相似三角形的性质与判定,勾股定理,等腰三角形的定义,圆的性质,熟练掌握相似三角形的性质与判定,第三问中,证明PQE OQB ∽是解题的关键.。

上海市2019年中考数学试卷(解析版)

上海市2019年中考数学试卷(解析版)
, 故选 C. 2. 下列对一元二次方程 x2+x﹣3=0 根的情况的判断,正确的是( ) A. 有两个不相等实数根 B. 有两个相等实数根 C. 有且只有一个实数根 D. 没有实数根 【答案】A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程 x2+x﹣3=0 有两 个不相等的实数根. 【详解】∵a=1,b=1,c=﹣3, ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0, ∴方程 x2+x﹣3=0 有两个不相等的实数根, 故选 A. 【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有 两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 3. 下列对二次函数 y=x2﹣x 的图象的描述,正确的是( ) A. 开口向下 B. 对称轴是 y 轴 C. 经过原点 D. 在对称轴右侧部分是下降的 【答案】C 【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案. 【详解】A、∵a=1>0,∴抛物线开口向上,选项 A 不正确;
B、∵﹣ ,∴抛物线的对称轴为直线 x= ,选项 B 不正确;
1
上海市 2019 年中考数学试卷(解析版)
C、当 x=0 时,y=x2﹣x=0,∴抛物线经过原点,选项 C 正确; D、∵a>0,抛物线的对称轴为直线 x= ,
∴当 x> 时,y 随 x 值的增大而增大,选项 D 不正确, 故选 C. 【点睛】本题考查了二次函数的性质:二次函数 y=ax2+bx+c(a≠0),对称轴直线 x=- ,当 a>0 时,抛物线 y=ax2+bx+c(a≠0)的开口向上,当 a<0 时,抛物线 y=ax2+bx+c(a≠0)的开口向下, c=0 时抛物线经过原点,熟练掌握相关知识是解题的关键. 4. 据统计,某住宅楼 30 户居民五月份最后一周每天实行垃圾分类的户数依次是: 27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A. 25 和 30 B. 25 和 29 C. 28 和 30 D. 28 和 29 【答案】D 【解析】【分析】根据中位数和众数的定义进行求解即可得答案. 【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30, 处于最中间是数是 28, ∴这组数据的中位数是 28, 在这组数据中,29 出现的次数最多, ∴这组数据的众数是 29, 故选 D. 【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据 中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数 (或中间两数的平均数)是这组数据的中位数. 5. 已知平行四边形 ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A. ∠A=∠B B. ∠A=∠C C. AC=BD D. AB⊥BC 【答案】B 【解析】【分析】由矩形的判定方法即可得出答案. 【详解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形, 正确; B、∠A=∠C 不能判定这个平行四边形为矩形,错误;

2014-2020年上海市中考数学试题汇编(含参考答案与解析)

2014-2020年上海市中考数学试题汇编(含参考答案与解析)

【中考数学真题精析汇编】2014—2020年上海市中考数学试题汇编(含参考答案与解析)1、2014年上海市中考数学试题及参考答案与解析 (2)2、2015年上海市中考数学试题及参考答案与解析 (20)3、2016年上海市中考数学试题及参考答案与解析 (38)4、2017年上海市中考数学试题及参考答案与解析 (55)5、2018年上海市中考数学试题及参考答案与解析 (72)6、2019年上海市中考数学试题及参考答案与解析 (93)7、2020年上海市中考数学试题及参考答案与解析 (114)2014年上海市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1)A B C.D.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C. 6.08×1010D.6.08×10113.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)24.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠55.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和406.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍二、填空题(本大题共12小题,每小题4分,共48分)7.计算:a(a+1)=.8.函数11yx=-的定义域是.9.不等式组1228xx-⎧⎨⎩><的解集是.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.11.如果关于x 的方程x 2﹣2x+k=0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 12.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为 米.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 14.已知反比例函数ky x=(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个).15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB=3EB .设AB a =,BC b =,那么DE = (结果用a 、b 表示).16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是 .17.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a ﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y 表示的数为 . 18.如图,已知在矩形ABCD 中,点E 在边BC 上,BE=2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C′、D′处,且点C′、D′、B 在同一条直线上,折痕与边AD 交于点F ,D′F 与BE 交于点G .设AB=t ,那么△EFG 的周长为 (用含t 的代数式表示).三、解答题(本题共7题,满分78分)19.(10138|2-+. 20.(10分)解方程:2121111x x x x +-=--+. 21.(10分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.22.(10分)如图,已知Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH=2CH . (1)求sinB 的值;(2)如果BE 的值.23.(12分)已知:如图,梯形ABCD 中,AD ∥BC ,AB=DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且∠CDE=∠ABD . (1)求证:四边形ACED 是平行四边形; (2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.24.(12分)在平面直角坐标系中(如图),已知抛物线y=23x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.25.(14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1)A B C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的乘法运算法则进行运算即可.=,故选:B.【总结归纳】本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为()A.608×108B.60.8×109C. 6.08×1010D.6.08×1011【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:60 800 000 000=6.08×1010,故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【知识考点】二次函数图象与几何变换.【思路分析】先得到抛物线y=x2的顶点坐标为(0,0),再得到点(0,0)向右平移1个单位得到点的坐标为(1,0),然后根据顶点式写出平移后的抛物线解析式.【解答过程】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位得到点的坐标为(1,0),所以所得的抛物线的表达式为y=(x﹣1)2.故选C.【总结归纳】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5【知识考点】同位角、内错角、同旁内角.【思路分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答过程】解:∠1的同位角是∠2,故选:A.【总结归纳】此题主要考查了同位角,关键是掌握同位角的边构成“F“形.5.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【知识考点】众数;中位数.【思路分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答过程】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第5位是中位数.故选A.【总结归纳】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍【知识考点】菱形的性质.【思路分析】分别利用菱形的性质结合各选项进而求出即可.【解答过程】解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B、∵S△ABD=12S平行四边形ABCD,S△ABC=12S平行四边形ABCD,∴△ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的12,故此选项错误;故选:B.【总结归纳】此题主要考查了菱形的性质应用,正确把握菱形的性质是解题关键.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:a(a+1)=.【知识考点】单项式乘多项式.【思路分析】原式利用单项式乘以多项式法则计算即可得到结果.【解答过程】解:原式=a2+a.故答案为:a2+a【总结归纳】此题考查了单项式乘以多项式,熟练掌握运算法则是解本题的关键.8.函数11yx=-的定义域是.【知识考点】函数自变量的取值范围.【思路分析】根据分母不等于0列式计算即可得解.【解答过程】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.【总结归纳】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.不等式组1228xx-⎧⎨⎩><的解集是.【知识考点】解一元一次不等式组.【思路分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答过程】解:1228xx-⎧⎨⎩>①<②,解①得:x>3,解②得:x<4.则不等式组的解集是:3<x<4.故答案是:3<x<4【总结归纳】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔支.【知识考点】有理数的混合运算.【思路分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答过程】解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.【总结归纳】此题考查有理数的混合运算,理解题意,列出算式解决问题.11.如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.【知识考点】根的判别式.【思路分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即(﹣2)2﹣4×1×k >0,然后解不等式即可.【解答过程】解:∵关于x的方程x2﹣3x+k=0(k为常数)有两个不相等的实数根,∴△>0,即(﹣2)2﹣4×1×k>0,解得k<1,∴k的取值范围为k<1.故答案为:k<1.【总结归纳】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.【知识考点】解直角三角形的应用-坡度坡角问题.【思路分析】首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.【解答过程】解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.【总结归纳】此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 . 【知识考点】概率公式.【思路分析】由从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,直接利用概率公式求解即可求得答案.【解答过程】解:∵从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛, ∴恰好抽到初三(1)班的概率是:. 故答案为:.【总结归纳】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 14.已知反比例函数ky x=(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大,那么这个反比例函数的解析式是 (只需写一个). 【知识考点】反比例函数的性质.【思路分析】首先根据反比例函数的性质可得k <0,再写一个符合条件的数即可. 【解答过程】解:∵反比例函数ky x=(k 是常数,k≠0),在其图象所在的每一个象限内,y 的值随着x 的值的增大而增大, ∴k <0, ∴2y x=-, 故答案为:2y x=-. 【总结归纳】此题主要考查了反比例函数的性质,关键是掌握对于反比例函数ky x=,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.15.如图,已知在平行四边形ABCD 中,点E 在边AB 上,且AB=3EB .设AB a =,BC b =,那么DE = (结果用a 、b 表示).【知识考点】*平面向量.【思路分析】由点E在边AB上,且AB=3EB.设=,可求得,又由在平行四边形ABCD中,=,求得,再利用三角形法则求解即可求得答案.【解答过程】解:∵AB=3EB.=,∴==,∵平行四边形ABCD中,=,∴==,∴=﹣=﹣.故答案为:﹣.【总结归纳】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则与平行四边形法则的应用,注意掌握数形结合思想的应用.16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是.【知识考点】方差;折线统计图.【思路分析】根据方差的意义数据波动越小,数据越稳定即可得出答案.【解答过程】解:根据图形可得:乙的成绩波动最小,数据最稳定,则三人中成绩最稳定的是乙;故答案为:乙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为.【知识考点】规律型:数字的变化类.【思路分析】根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.【解答过程】解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.【总结归纳】此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.18.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).【知识考点】翻折变换(折叠问题).【思路分析】根据翻折的性质可得CE=C′E,再根据直角三角形30°角所对的直角边等于斜边的一半判断出∠EBC′=30°,然后求出∠BGD′=60°,根据对顶角相等可得∠FGE=∠∠BGD′=60°,根据两直线平行,内错角相等可得∠AFG=∠FGE,再求出∠EFG=60°,然后判断出△EFG是等边三角形,根据等边三角形的性质表示出EF,即可得解.【解答过程】解:由翻折的性质得,CE=C′E,∵BE=2CE,∴BE=2C′E,又∵∠C′=∠C=90°,∴∠EBC′=30°,∵∠FD′C′=∠D=90°,∴∠BGD′=60°,∴∠FGE=∠∠BGD′=60°,∵AD∥BC,∴∠AFG=∠FGE=60°,∴∠EFG=(180°﹣∠AFG)=(180°﹣60°)=60°,∴△EFG是等边三角形,∴AB=t,∴EF=t÷=t,∴△EFG的周长=3×t=2t.故答案为:2t .【总结归纳】本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半,等边三角形的判定与性质,熟记性质并判断出△EFG 是等边三角形是解题的关键. 三、解答题(本题共7题,满分78分)19.(10138|2-+. 【知识考点】实数的运算;分数指数幂.【思路分析】本题涉及绝对值、二次根式化简两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答过程】解:原式=2﹣﹣8+2﹣=.【总结归纳】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(10分)解方程:2121111x x x x +-=--+. 【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答过程】解:去分母得:(x+1)2﹣2=x ﹣1, 整理得:x 2+x=0,即x (x+1)=0, 解得:x=0或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=0.【总结归纳】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.(10分)已知水银体温计的读数y (℃)与水银柱的长度x (cm )之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.【知识考点】一次函数的应用.【思路分析】(1)设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;(2)当x=6.2时,代入(1)的解析式就可以求出y的值.【解答过程】解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.【总结归纳】本题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键.22.(10分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果BE的值.【知识考点】解直角三角形;直角三角形斜边上的中线.【思路分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAH,由AH=2CH,可得出CH:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=2,得AC=2,则CE=1,从而得出BE.【解答过程】解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=90°,∴∠B=∠CAH,∵AH=2CH,∴由勾股定理得AC=CH,∴CH:AC=1:,∴sinB;(2)∵sinB,∴AC:AB=1:,∵CD=,∴AB=2,由勾股定理得AC=2,则CE=1,在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC﹣CE=3.【总结归纳】本题考查了解直角三角形,以及直角三角形斜边上的中线,注意性质的应用.23.(12分)已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E 是边BC延长线上一点,且∠CDE=∠ABD.(1)求证:四边形ACED是平行四边形;(2)联结AE,交BD于点G,求证:DG DF GB DB.【知识考点】相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定.【思路分析】(1)证△△BAD≌≌△CDA,推出∠ABD=∠ACD=∠CDE,推出AC∥DE即可;(2)根据平行得出比例式,再根据比例式的性质进行变形,即可得出答案.【解答过程】证明:(1)∵梯形ABCD,AD∥BC,AB=CD,∴∠BAD=∠CDA,在△BAD和△CDA中∴△BAD≌△CDA(SAS),∴∠ABD=∠ACD,∵∠CDE=∠ABD,∴∠ACD=∠CDE,∴AC∥DE,∵AD∥CE,∴四边形ACED是平行四边形;(2)∵AD∥BC,∴=,=,∴=,∵平行四边形ACED,AD=CE,∴=,∴=,∴=,∴=.【总结归纳】本题考查了比例的性质,平行四边形的判定,平行线的判定的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.24.(12分)在平面直角坐标系中(如图),已知抛物线y=23x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.【知识考点】二次函数综合题.【思路分析】(1)根据待定系数法可求抛物线的表达式,进一步得到对称轴;(2)分两种情况:当AC∥EF时;当AF∥CE时;两种情况讨论得到点F的坐标;(3)△BDP和△CDP的面积相等,可得DP∥BC,根据待定系数法得到直线BC的解析式,根据两条平行的直线k值相同可得直线DP的解析式,进一步即可得到t的值.【解答过程】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点C(0,﹣2),∴,解得.故抛物线的表达式为:y=x2﹣x﹣2=(x﹣1)2﹣,对称轴为直线x=1;(2)由(1)可知,点E(1,0),A(﹣1,0),C(0,﹣2),当AC∥EF时,直线AC的解析式为y=﹣2x﹣2,∴直线EF的解析式为y=﹣2x+2,当x=1时,y=0,此时点F与点E重合;当AF∥CE时,直线CE的解析式为y=2x﹣2,∴直线AF的解析式为y=2x+2,当x=1时,y=4,此时点F的坐标为(1,4).综上所述,点P的坐标为(1,4);(3)点B(3,0),点D(1,﹣),若△BDP和△CDP的面积相等,则DP∥BC,则直线BC的解析式为y=x﹣2,∴直线DP的解析式为y=x﹣,当y=0时,x=5,∴t=5.【总结归纳】考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的表达式,待定系数法求直线的解析式,两条平行的直线之间的关系,三角形面积,分类思想的运用,综合性较强,有一定的难度.25.(14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=45,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.(1)当圆C经过点A时,求CP的长;(2)联结AP,当AP∥CG时,求弦EF的长;(3)当△AGE是等腰三角形时,求圆C的半径长.【知识考点】圆的综合题.【思路分析】(1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)当∠AEG=∠B时,A、E、G重合,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可.【解答过程】解:(1)如图1,设⊙O的半径为r,当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,∴BH=AB•cosB=4,∴AH=3,CH=4,∴AC==5,∴此时CP=r=5;(2)如图2,若AP∥CE,APCE为平行四边形,∵CE=CP,∴四边形APCE是菱形,连接AC、EP,则AC⊥EP,∴AM=CM=,由(1)知,AB=AC,则∠ACB=∠B,∴CP=CE==,∴EF=2=;(3)如图3:过点C作CN⊥AD于点N,∵cosB=,∴∠B<45°,∵∠BCG<90°,∴∠BGC>45°,∵∠AEG=∠BCG≥∠ACB=∠B,∴当∠AEG=∠B时,A、E、G重合,∴只能∠AGE=∠AEG,∵AD∥BC,∴△GAE∽△GBC,∴=,即=,解得:AE=3,EN=AN﹣AE=1,∴CE===.【总结归纳】此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键.2015年上海市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,是有理数的为()A B C.πD.02.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.1221 aa=3.下列y关于x的函数中,是正比例函数的为()A.y=x2B.2yx=C.2xy=D.12xy+=4.如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4 B.5 C.6 D.75.下列各统计量中,表示一组数据波动程度的量是()A.平均数B.众数C.方差D.频率6.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A .AD=BDB .OD=CDC .∠CAD=∠CBD D .∠OCA=∠OCB 二、填空题(本大题共12小题,每小题4分,共48分) 7.计算:|﹣2|+2= .82=的解是 . 9.如果分式23xx +有意义,那么x 的取值范围是 . 10.如果关于x 的一元二次方程x 2+4x ﹣m=0没有实数根,那么m 的取值范围是 . 11.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y=95x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是 ℉. 12.如果将抛物线y=x 2+2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 . 13.某校学生会提倡双休日到养老院参加服务活动,首次活动需要7位同学参加,现有包括小杰在内的50位同学报名,因此学生会将从这50位同学中随机抽取7位,小杰被抽到参加首次活动的概率是 .14.已知某校学生“科技创新社团”成员的年龄与人数情况如下表所示:年龄(岁) 11 12 13 14 15 人数 5 5 16 15 12那么“科技创新社团”成员年龄的中位数是 14 岁.15.如图,已知在△ABC 中,D 、E 分别是边AB 、边AC 的中点,AB m =,AC n =,那么向量DE 用向量m ,n 表示为 .16.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.17.在矩形ABCD 中,AB=5,BC=12,点A 在⊙B 上,如果⊙D 与⊙B 相交,且点B 在⊙D 内,那么⊙D 的半径长可以等于 .(只需写出一个符合要求的数) 18.已知在△ABC 中,AB=AC=8,∠BAC=30°,将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处,延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于 .三、解答题(本大题共7小题,满分78分)19.(10分)先化简,再求值:2214422x x x x x x x -÷-++++,其中1x =. 20.(10分)解不等式组:4261139x x x x -⎧⎪-+⎨⎪⎩>≤,并把解集在数轴上表示出来.21.(10分)已知:如图,在平面直角坐标系xOy 中,正比例函数43y x =的图象经过点A ,点A 的纵坐标为4,反比例函数my x=的图象也经过点A ,第一象限内的点B 在这个反比例函数的图象上,过点B 作BC ∥x 轴,交y 轴于点C ,且AC=AB .求: (1)这个反比例函数的解析式; (2)直线AB 的表达式.22.(10分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼,已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H ,如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米))23.(12分)已知,如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE=OB ,连接DE . (1)求证:DE ⊥BE ;(2)如果OE ⊥CD ,求证:BD•CE=CD•DE .。

2022年上海市中考数学真题(解析版)

2022年上海市中考数学真题(解析版)

2022年上海中考数学真题一.选择题1.8的相反数是()A.8-B.8C.18 D.18-【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:8的相反数是8-,故选A.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.下列运算正确的是……()A.a²+a³=a6B.(ab)2=ab2C.(a+b)²=a²+b²D.(a+b)(a-b)=a²-b2【答案】D【解析】【分析】根据整式加法判定A;运用积的乘方计算关判定B;运用完全平方公式计算并判定C;运用平方差公式计算并判定D.【详解】解:A.a²+a³没有同类项不能合并,故此选项不符合题意;B.(ab)2=a2b2,故此选项不符合题意;C.(a+b)²=a²+2ab+b²,故此选项不符合题意D.(a+b)(a-b)=a²-b2,故此选项符合题意故选:D.【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.3.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(-2,3)C.(3,0)D.(-3,0)【答案】B【解析】【分析】根据反比例函数性质求出k<0,再根据k=xy,逐项判定即可.【详解】解:∵反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,,∴k=xy<0,A、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B.【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.4.我们在外卖平台点单时会有点餐用的钱和外卖费6元,我们计算了点单的总额和不计算外卖费的总额的数据,则两种情况计算出的数据一样的是()A.平均数B.中位数C.众数D.方差【答案】D【解析】【分析】根据平均数,中位数,众数和方差的特点,这组数据都加上6得到一组新的数据,方差不变,平均数,中位数改变,众数改变,即可得出答案.【详解】解:将这组数据都加上6得到一组新的数据,则新数据的平均数改变,众数改变,中位数改变,但是方差不变;故选:D.【点睛】本题主要考查平均数、中位数、众数、方差的意义.理解求解一组数据的平均数,众数,中位数,方差时的内在规律,掌握“新数据与原数据之间在这四个统计量上的内在规律”是解本题的关键.5.下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题【答案】A【解析】【分析】根据命题的定义和定理及其逆定理之间的关系,分别举出反例,再进行判断,即可得出答案.【详解】解:A、命题一定有逆命题,故此选项符合题意;B、定理不一定有逆定理,如:全等三角形对应角相等没有逆定理,故此选项不符合题意;C、真命题的逆命题不一定是真命题,如:对顶角相等的逆命题是:相等的两个角是对顶角,它是假命题而不是真命题,故此选项不符合题意;D、假命题的逆命题定不一定是假命题,如:相等的两个角是对顶角的逆命题是:对顶角相等,它是真命题,故此选项不符合题意.故选:A.【点睛】本题考查了命题与定理,掌握好命题的真假及互逆命题的概念是解题的关键.把一个命题的条件和结论互换就得到它的逆命题,所有的命题都有逆命题;正确的命题叫真命题,错误的命题叫假命题.6.有一个正n边形旋转90 后与自身重合,则n为()A.6B.9C.12D.15【答案】C【解析】【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90 一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90 是30 的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C .【点睛】本题考查正多边形中心角与旋转的知识,解决本题的关键是求出中心角的度数并与旋转度数建立关系.二.填空题7.计算:3a -2a =__________.【答案】a 【解析】【详解】根据同类项与合并同类项法则计算:3a -2a=(3-2)a=a 8.已知f (x )=3x ,则f (1)=_____.【答案】3【解析】【分析】直接代入求值即可.【详解】解:∵f (x )=3x ,∴f (1)=3×1=3,故答案为:3【点睛】本题主要考查了求函数值,直接把自变量的值代入即可.9.解方程组2213x y x y +=⎧⎨-=⎩的结果为_____.【答案】21x y =⎧⎨=-⎩【解析】【分析】利用平方差公式将②分解因式变形,继而可得3x y -=④,联立①④利用加减消元法,算出结果即可.【详解】解:2213x y x y +=⎧⎨-=⎩①②由②,得:()()3x y x y +-=③,将①代入③,得:()13x y ⨯-=,即3x y -=④,①+②,得:24=x ,解得:2x =,①−②,得:22y =-,解得:1y =-,∴方程组2213x y x y +=⎧⎨-=⎩的结果为21x y =⎧⎨=-⎩.【点睛】本题考查解二元二次方程组,与平方差公式分解因式,能够熟练掌握平方差公式分解因式是解决本题的关键.10.已知x 2-+m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】m <3【解析】【分析】根据方程有两个不相等的实数根,则Δ>0,即2-4m >0,求解即可.【详解】解:∵x-x +m =0有两个不相等的实数根,∴Δ2-4m >0解得:m <3,故答案为:m <3.【点睛】本题考查一元二次方程根的判别式,熟练掌握“当方程有两个不相等的实数根,Δ>0;当方程有两个相等的实数根,Δ=0;当方程没有实数根,Δ<0”是解题的关键.11.甲、乙、丙三人参加活动,两个人一组,则分到甲和乙的概率为_____.【答案】13【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与分到甲和乙的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图如下:由树形图可知所有可能情况共6种,其中分到甲和乙的情况有2中,所以分到甲和乙的概率为21=63,故答案为:13【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.12.某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.【答案】20%【解析】【分析】根据该公司5、6两个月营业额的月均增长率为x 结合5月、7月营业额即可得出关于x 的一元二次方程,解此方程即可得解.【详解】解:设该公司5、6两个月营业额的月均增长率为x ,根据题意得,225(1)36x +=解得,120.2, 2.2x x ==-(舍去)所以,增长率为20%故答案为:20%【点睛】本题考查了由实际问题抽象出一元二次方程,根据数量关系列出关于x 的一元二次方程是解题的关键.13.为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(0-1小时4人,1-2小时10人,2-3小时14 人,3-4 小时 16 人,4-5 小时 6 人),若共有 200 名学生,则该学校六年级学生阅读时间不低于 3小时的人数是_____.【答案】88【解析】【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.【详解】解:该学校六年级学生阅读时间不低于3小时的人数是1662220020088,4101416650+´=´=++++故答案为:88【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.14.已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线:_____.【答案】2y x =-+(答案不唯一)【解析】【分析】直接根据一次函数的图象与系数的关系即可得出结论.【详解】∵直线y kx b =+过第一象限且函数值随着x 的增大而减小,∴0k <,0b,∴符合条件的一条直线可以为:2y x =-+(答案不唯一).【点睛】本题考查一次函数的图象与系数的关系,熟知一次函数y kx b =+(0k ≠),当0k <,0b时,函数图象过第一象限且函数值随着x 的增大而减小.15.如图所示,在口ABCD 中,AC ,BD 交于点O ,,,BO a BC b == 则DC=_____.【答案】2a b-+r r 【解析】【分析】利用向量相减平行四边形法则:向量相减时,起点相同,差向量即从后者终点指向前者终点即可求解.【详解】解:∵四边形ABCD 是平行四边形,AC ,BD 交于点O ,又BO a = ,BC b =,∴22BD BO a ==,∴2DC BC BD b a =--= ,故答案为:2a b -+r r.【点睛】本题考查平行四边形的性质,向量相减平行四边形法则,解题的关键是熟练掌握向量相减平行四边形法则.16.如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为_____.(结果保留π)【答案】400π【解析】【详解】解:过点O 作OD ⊥AB 于D ,连接OB ,如图,∵AC =11,BC =21,∴AB =AC +BC =32,∵OD ⊥AB 于D ,∴AD =BD =12AB =16,∴CD =AD -AC =5,在Rt △OCD 中,由勾股定理,得OD 2222135OC CD -=-=12,在Rt △OBD 中,由勾股定理,得OB 22221612BD CD +=+=20,∴这个花坛的面积=202π=400π,故答案为:400π.【点睛】本题考查垂径定理,勾股定理,圆的面积,熟练掌握垂径定理与勾股定理相结合求线段长是解题的关键.17.如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AEAC =_____.【答案】12或14【解析】【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE 1E 2是等边三角形,求出E 1E 2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB 中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE 1E 2=60°,∴△DE 1E 2是等边三角形,∴DE 1=DE 2=E 1E 2=12BC ,∴E 1E 2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.18.定义:有一个圆分别和一个三角形的三条边各有两个交点,截得的三条弦相等,我们把这个圆叫作“等弦圆”,现在有一个斜边长为2的等腰直角三角形,当等弦圆最大时,这个圆的半径为_____.【答案】2222-【解析】【分析】如图,当等弦圆O 最大时,则O 经过等腰直角三角形的直角顶点C ,连接CO 交AB 于F ,连接OE ,DK ,再证明DK 经过圆心,CF AB ⊥,分别求解AC ,BC ,CF ,设O 的半径为,r 再分别表示,,,EF OF OE 再利用勾股定理求解半径r 即可.【详解】解:如图,当等弦圆O 最大时,则O 经过等腰直角三角形的直角顶点C ,连接CO 交AB 于F ,连接OE ,DK ,,90,CD CK EQ ACB ==Ð=°Q 90,COD COK \Ð=Ð=°DK 过圆心O ,CF AB ⊥,,90,2,AC BC ACB AB =Ð=°=Q 12,1,2AC BC AF BF CF AB \======设O 的半径为,r ∴222,1,,CD r r r EQ OF r OE r =+===-=,CF AB ⊥ 2,2EF QF \==()22221,2r r 琪\=-+琪桫整理得:2420,r r -+=解得:1222r r ==-,OC CF <Q 2r \=不符合题意,舍去,∴当等弦圆最大时,这个圆的半径为2故答案为:2【点睛】本题考查的是等腰直角三角形的性质,直角三角形斜边上的中线的性质,弦,弧,圆心角之间的关系,圆周角定理的应用,勾股定理的应用,一元二次方程的解法,掌握以上知识是解本题的关键.三.解答题19.计算:11221||()123--+【答案】1【解析】【分析】原式分别化简|,121()3-,1212,再进行合并即可得到答案.【详解】解:11221|()123--+-+-=1-【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.20.解关于x 的不等式组34423x x x x >-⎧⎪+⎨>+⎪⎩【答案】-2<x<-1【解析】【分析】分别求出不等式组中每一个不等式的解集,再确定出公共部分,即可求解.【详解】解:34423x xx x>-⎧⎪⎨+>+⎪⎩①②,解①得:x>-2,解②得:x<-1,∴-2<x<-1.【点睛】本题考查解一元一次不等式组,熟练掌握根据“大取较大,小小取较小,大小小大中间找,大大小小无处找”的原则性确定不等式组的解集是解题的关键.21.一个一次函数的截距为1,且经过点A(2,3).(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC 的值.【答案】(1)y=x+1(2【解析】【小问1详解】解:设这个一次函数的解析式y=kx+1,把A(2,3)代入,得3=2k+1,解得:k=1,∴这个一次函数的解析式为y=x+1;【小问2详解】解:如图,设反比例函数解析式为y =m x ,把A (2,3)代入,得3=2m ,解得:m =6,∴反比例函数解析式为y =6x ,当x =6时,则y =66=1,∴B (6,1),∴AB 22(62)(13)5-+-=∵将点B 向上平移2个单位得到点C ,∴C (6,3),BC =2,∵A (2,3),C (6,3),∴AC ∥x 轴,∵B (6,1),C (6,3),∴BC ⊥x 轴,∴AC ⊥BC ,∴∠ACB =90°,∴△ABC 是直角三角形,∴cos ∠ABC =25525BC AB ==.【点睛】本题考查待定系数法求函数解析式,点的平移,解三角形,坐标与图形,求得AC ⊥BC 是解题的关键.22.我们经常会采用不同方法对某物体进行测量,请测量下列灯杆AB 的长.(1)如图1所示,将一个测角仪放置在距离灯杆AB底部a米的点D处,测角仪高为b米,从C 点测得A点的仰角为α,求灯杆AB的高度.(用含a,b,a的代数式表示)(2)我国古代数学家赵爽利用影子对物体进行测量的方法,在至今仍有借鉴意义图2所示,现将一高度为2米的木杆CG放在灯杆AB前,测得其影长CH为1米,再将木杆沿着BC方向移动1.8米至DE的位置,此时测得其影长DF为3米,求灯杆AB的高度【答案】(1)a tanα+b米(2)3.8米【解析】【分析】(1)由题意得BD=a,CD=b,∠ACE=α,根据四边形CDBE为矩形,得到BE=CD=b,BD=CE=a,在Rt∆ACE中,由正切函数tanα=AECE,即可得到AB的高度;(2)根据AB∥ED,得到∆ABF~∆EDF,根据相似三角形的对应边成比例得到ED ABDF BF=,又根据AB∥GC,得出∆ABH~∆GCH,根据相似三角形的对应边成比例得到AB GCBH CH=联立得到二元一次方程组解之即可得;【小问1详解】解:如图由题意得BD =a ,CD =b ,∠ACE =α∠B =∠D =∠CEB =90°∴四边形CDBE 为矩形,则BE =CD =b ,BD =CE =a ,在Rt ∆ACE 中,tan α=AE CE,得AE =CE =CE ×tan α=a tan α而AB =AE +BE ,故AB =a tan α+b答:灯杆AB 的高度为a tan α+b 米【小问2详解】由题意可得,AB ∥GC ∥ED ,GC =ED =2,CH =1,DF =3,CD =1.8由于AB ∥ED ,∴∆ABF ~∆EDF ,此时ED AB DF BF =即2=3 1.83AB BC ++①,∵AB ∥GC∴∆ABH ~∆GCH ,此时AB GC BH CH=,211AB BC =+②联立①②得24.8321AB BC AB BC ⎧=⎪⎪+⎨⎪=⎪+⎩,解得: 3.80.9AB BC =⎧⎨=⎩答:灯杆AB 的高度为3.8米【点睛】本题考查了相似三角形的应用,锐角三角函数的应用,以及二元一次方程组,解题的关键是读懂题意,熟悉相似三角形的判定与性质.23.如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE²=AQ·AB 求证:(1)∠CAE=∠BAF;(2)CF·FQ=AF·BQ【答案】(1)见解析(2)见解析【解析】【分析】(1)利用SAS证明△ACE≌△ABF即可;(2)先证△ACE∽△AFQ可得∠AEC=∠AQF,求出∠BQF=∠AFE,再证△CAF∽△BFQ,利用相似三角形的性质得出结论.【小问1详解】证明:∵AB=AC,∴∠B=∠C,∵CF=BE,∴CE=BF,在△ACE和△ABF中,AC AB C B CE BF=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;【小问2详解】证明:∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE ²=AQ ·AB ,AC =AB ,∴AE AB AQ AE =,即AE AC AQ AF=,∴△ACE ∽△AFQ ,∴∠AEC =∠AQF ,∴∠AEF =∠BQF ,∵AE =AF ,∴∠AEF =∠AFE ,∴∠BQF =∠AFE ,∵∠B =∠C ,∴△CAF ∽△BFQ ,∴CF AF BQ FQ=,即CF ·FQ =AF ·BQ .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定和性质,熟练掌握相关判定定理和性质定理是解题的关键.24.已知:212y x bx c =++经过点()21A --,,()03B -,.(1)求函数解析式;(2)平移抛物线使得新顶点为(),P m n (m >0).①倘若3OPB S =△,且在x k =的右侧,两抛物线都上升,求k 的取值范围;②P 在原抛物线上,新抛物线与y 轴交于Q ,120BPQ ∠= 时,求P 点坐标.【答案】(1)2132y x =-(2)①k ≥2②P 的坐标为(3)或(,3)【解析】【分析】(1)把()21A --,,()03B -,代入212y x bx c =++,求解即可;(2)①由2132y x =-,得顶点坐标为(0,-3),即点B 是原抛物线的顶点,由平移得抛物线向右平移了m 个单位,根据1332OPB S m =⨯=△,求得 m =2,在 x =k 的右侧,两抛物线都上升,根据抛物线的性质即可求出k 取值范围;②把P (m ,n )代入2132y x =-,得n =2132m -,则P (m ,2132m -),从而求得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3,则Q (0,m 2-3),从而可求得BQ =m 2,BP 2=2222411(33)24m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m +---=+,即可得出BP =PQ ,过点P 作PC ⊥y 轴于C ,则PC =|m |,根据等腰三角形的性质可得BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,再根据tan ∠BPC =tan60°=212||m BC PC m ==m 值,从而求出点P 坐标.【小问1详解】解:把()21A --,,()03B -,代入212y x bx c =++,得1223b c c -=-+⎧⎨-=⎩,解得:03b c =⎧⎨=-⎩,∴函数解析式为:2132y x =-;【小问2详解】解:①∵2132y x =-,∴顶点坐标为(0,-3),即点B 是原抛物线的顶点,∵平移抛物线使得新顶点为(),P m n (m >0).∴抛物线向右平移了m 个单位,∴1332OPB S m =⨯=△,∴m =2,∴平移抛物线对称轴为直线x =2,开口向上,∵在x k =的右侧,两抛物线都上升,又∵原抛物线对称轴为y 轴,开口向上,∴k ≥2,②把P (m ,n )代入2132y x =-,得n =2132m -,∴P (m ,2132m -)根据题意,得新抛物线解析式为:y =12(x -m )2+n =12x 2-mx +m 2-3,∴Q (0,m 2-3),∵B (0,-3),∴BQ =m 2,BP 2=2222411(33)24m m m +-+=+,PQ 2=22222411[(3)(3)]24m m m m m +---=+,∴BP =PQ ,如图,过点P 作PC ⊥y 轴于C ,则PC =|m |,∵BP =PQ ,PC ⊥BQ ,∴BC =12BQ =12m 2,∠BPC =12∠BPQ =12×120°=60°,∴tan ∠BPC =tan60°=212||m BC PC m ==解得:m=±2∴n =2132m -=3,故P 的坐标为(3)或(,3)【点睛】本题考查待定系数法求抛物线解析式,抛物线的平移,抛物线的性质,解直角三角形,等腰三角形的性质,本题属抛物线综合题目,属中考常考试题目,难度一般.25.平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE .(1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F ,且CE =.若F 在直线CE 上,求ABBC 的值.【答案】(1)①见解析;②(2)105【解析】【分析】(1)①连接AC 交BD 于O ,证△AOE ≌△COE (SSS),得∠AOE =∠COE ,从而得∠COE =90°,则AC ⊥BD ,即可由菱形的判定定理得出结论;②先证点E 是△ABC 的重心,由重心性质得BE =2OE ,然后设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在Rt △AOB 中,由勾股定理,得OA2=AB 2-OB 2=52-(3x )2=25-9x 2,从而得9-x 2=25-9x 2,解得:x =,即可得OB =3x ,再由平行四边形性质即可得出BD 长;(2)由⊙A 与⊙B 相交于E 、F ,得AB ⊥EF ,点E 是△ABC 的重心,又F 在直线CE 上,则CG 是△ABC 的中线,则AG =BG =12AB ,根据重心性质得GE =12CE =22AE ,CG =CE +GE =322AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GE E =AE 2-(22AE )2=12AE 2,则AG =22AE ,所以AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC2=BG 2+CG 2=12AE 2+(2AE )2=5AE 2,则BC AE ,代入即可求得AB BC的值.【小问1详解】①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD ,∴OA =OC ,∵AE =CE ,OE =OE ,∴△AOE ≌△COE (SSS),∴∠AOE =∠COE ,∵∠AOE +∠COE =180°,∴∠COE =90°,∴AC ⊥BD ,∵平行四边形ABCD ,∴四边形ABCD 是菱形;②∵OA =OC ,∴OB 是△ABC 的中线,∵P 为BC 中点,∴AP 是△ABC 的中线,∴点E 是△ABC 的重心,∴BE =2OE ,设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在 Rt △AOB 中,由勾股定理,得 OA 2=AB 2-OB 2=52-(3x )2=25-9x 2,∴9-x 2=25-9x 2,解得:x = 2 ,∴OB =3x =,∵,∴BD =2OB =6 2 ;【小问 2解:如图,∵⊙A 与⊙B 相交于 E 、F ,∴AB ⊥EF ,由(1)②知点 E 是△ABC 的重心,又 F 在直线CE 上,∴CG 是△ABC 的中线,∴AG =BG = 12 AB ,GE = 12 CE ,∵CE = 2 AE ,∴GE =22AE ,CG =CE +GE =322AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GE E =AE 2-(22AE )2=12AE 2,∴AG =2AE ,∴AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC 2=BG 2+CG 2=12AE 2+(322AE )2=5AE 2,∴BC ,∴5AB BC ==.【点睛】本题考查平行四边形的性质,菱形的判定,重心的性质,勾股定理,相交两圆的公共弦的性质,本题属圆与四边形综合题目,掌握相关性质是解题的关键,属是考常考题目.。

2019-2020上海市数学中考试卷含答案

2019-2020上海市数学中考试卷含答案

2019-2020上海市数学中考试卷含答案一、选择题1.如图A,B,C是上的三个点,若,则等于()A.50°B.80°C.100°D.130°2.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.3.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数41216171关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是25.-2的相反数是()A.2B.12C.-12D.不存在6.下列命题中,真命题的是()A .对角线互相垂直的四边形是菱形B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形7.不等式x+1≥2的解集在数轴上表示正确的是( )A .B .C .D .8.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .92 9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内的图象大致为( )A .B .C .D . 10.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠12.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____. 15.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.16.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.13≈1.73).17.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.20.分解因式:2x2﹣18=_____.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 24.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.25.材料:解形如(x+a )4+(x+b )4=c 的一元四次方程时,可以先求常数a 和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.6.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.A解析:A【解析】试题解析:∵x+1≥2,∴x ≥1.故选A .考点:解一元一次不等式;在数轴上表示不等式的解集.8.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.9.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0, ∵对称轴为直线02b x a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故 解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.y2>y1>y3【解析】【分析】根据图象上的点(xy)的横纵坐标的积是定值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y2>y1>y3.【解析】【分析】根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.【详解】解:∵函数y=-3x的图象上有三个点(-2,y1),(-1,y2),(12,y3),∴-2y1=-y2=12y3=-3,∴y1=1.5,y2=3,y3=-6,∴y2>y1>y3.故答案为y2>y1>y3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.16.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.17.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 20.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x +3)(x ﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.(1)证明见解析;(2)BH =. 【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB 是⊙O 的直径,点C 是的中点,∴∠AOC =90°,∵OA =OB ,CD =AC ,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD 是⊙O 的切线;(2)由(1)知,OC ∥BD ,∴△OCE ∽△BFE ,∴, ∵OB =2,∴OC =OB =2,AB =4,, ∴, ∴BF =3,在Rt △ABF 中,∠ABF =90°,根据勾股定理得,AF =5,∵S △ABF =AB•BF =AF•BH ,∴AB•BF =AF•BH ,∴4×3=5BH , ∴BH =.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a b m n +=+,∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 24.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)25.(1)4,4,1,1;(2)x=2或x=﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.。

历年上海市中考数学试卷(解析版)(含答案)

历年上海市中考数学试卷(解析版)(含答案)

2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,无理数是()A.0 B.C.﹣2 D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:0,﹣2,是有理数,数无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2aa2=2a3.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2aa2=2×1aa2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.不等式组的解集是x>3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.方程=1的解是x=2.【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】解:,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【分析】根据增长率问题的关系式得到算式50×(1﹣10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.,∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是120万元.【分析】利用一月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),则该企业第一季度月产值的平均值是×360=120(万元).故答案是:120.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为+2.【分析】根据=+,只要求出即可解决问题.【解答】解:∵AB∥CD,∴==,∴ED=2AE,∵=,∴=2,∴=+=+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,只要证明△BEC 是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴=cos30°=,∴λ6=,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.解方程:﹣=1.【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;(2)由EF∥AD,BE=2AE,可得===,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【分析】(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A (2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值;(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,可以证明△ABC是等边三角形即可解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=ACCD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1S3,∵S2=ADOH,S1=S△OAC=ACOH,S3=CDOH,∴(ADOH)2=ACOH CDOH,∴AD2=ACCD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.【点评】本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。

上海市中考数学试卷(含答案解析)

上海市中考数学试卷(含答案解析)

上海市中考数学试卷一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:由a与3互为倒数,得a是,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab【考点】同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选C.【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.4.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次B.3.5次C.4次D.4.5次【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷2080÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣【考点】*平面向量.【分析】由△ABC中,AD是角平分线,结合等腰三角形的性质得出BD=DC,可求得的值,然后利用三角形法则,求得答案.【解答】解:如图所示:∵在△ABC中,AB=AC,AD是角平分线,∴BD=DC,∵=,∴=,∵=,∴=+=+.故选:A.【点评】此题考查了平面向量的知识,注意掌握三角形法则的应用是解题关键.6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8【考点】圆与圆的位置关系;点与圆的位置关系.【分析】连接AD,根据勾股定理得到AD=5,根据圆与圆的位置关系得到r>5﹣3=2,由点B在⊙D外,于是得到r<4,即可得到结论.【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选B.【点评】本题考查了圆与圆的位置关系,点与圆的位置关系,设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a=a2.【考点】同底数幂的除法.【专题】计算题.【分析】根据同底数幂相除,底数不变指数相减进行计算即可求解.【解答】解:a3÷a=a3﹣1=a2.故答案为:a2.【点评】本题考查了同底数幂的除法的运算性质,熟记运算性质是解题的关键.8.函数y=的定义域是x≠2.【考点】函数自变量的取值范围.【分析】直接利用分式有意义的条件得出答案.【解答】解:函数y=的定义域是:x≠2.故答案为:x≠2.【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键.9.方程=2的解是x=5.【考点】无理方程.【分析】利用两边平方的方法解出方程,检验即可.【解答】解:方程两边平方得,x﹣1=4,解得,x=5,把x=5代入方程,左边=2,右边=2,左边=右边,则x=5是原方程的解,故答案为:x=5.【点评】本题考查的是无理方程的解法,正确利用两边平方的方法解出方程,并正确进行验根是解题的关键.10.如果a=,b=﹣3,那么代数式2a+b的值为﹣2.【考点】代数式求值.【专题】计算题;实数.【分析】把a与b的值代入原式计算即可得到结果.【解答】解:当a=,b=﹣3时,2a+b=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.11.不等式组的解集是x<1.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.【考点】根的判别式;解一元一次方程.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.【解答】解:∵关于x的方程x2﹣3x+k=0有两个相等的实数根,∴△=(﹣3)2﹣4×1×k=9﹣4k=0,解得:k=.故答案为:.【点评】本题考查了根的判别式以及解一元一次方程,解题的关键是找出9﹣4k=0.本题属于基础题,难度不大,解决该题型题目时,根据方程解的情况结合根的判别式得出方程(不等式或不等式组)是关键.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k>0.【考点】反比例函数的性质.【分析】直接利用当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x 的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【解答】解:∵反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,∴k的取值范围是:k>0.故答案为:k>0.【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【专题】计算题.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.【考点】三角形中位线定理.【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以=()2,由此即可证明.【解答】解:如图,∵AD=DB,AE=EC,∴DE∥BC.DE=BC,∴△ADE∽△ABC,∴=()2=,故答案为.【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是6000.【考点】条形统计图;扇形统计图.【分析】根据自驾车人数除以百分比,可得答案.【解答】解:由题意,得4800÷40%=12000,公交12000×50%=6000,故答案为:6000.【点评】本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.【考点】旋转的性质;矩形的性质;锐角三角函数的定义.【分析】设AB=x,根据平行线的性质列出比例式求出x的值,根据正切的定义求出tan∠BA′C,根据∠ABA′=∠BA′C解答即可.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.【点评】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.【考点】实数的运算;负整数指数幂.【分析】利用绝对值的求法、分数指数幂、负整数指数幂分别化简后再加减即可求解.【解答】解:原式=﹣1﹣2﹣2+9=6﹣【点评】本题考查了实数的运算及负整数指数幂的知识,解题的关键是了解相关的运算性质及运算法则,难度不大.20.解方程:﹣=1.【考点】解分式方程.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.【解答】解:去分母得,x+2﹣4=x2﹣4,移项、合并同类项得,x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x=2是增根,舍去;x=﹣1是原方程的根,所以原方程的根是x=﹣1.【点评】本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE ⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【考点】解直角三角形;勾股定理.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?【考点】一次函数的应用.【分析】(1)设设y B关于x的函数解析式为y B=kx+b(k≠0),将点(1,0)、(3,180)代入一次函数函数的解析式得到关于k,b的方程组,从而可求得函数的解析式;(2)设y A关于x的解析式为y A=k1x.将(3,180)代入可求得y A关于x的解析式,然后将x=6,x=5代入一次函数和正比例函数的解析式求得y A,y B的值,最后求得y A与y B的差即可.【解答】解:(1)设y B关于x的函数解析式为y B=kx+b(k≠0).将点(1,0)、(3,180)代入得:,解得:k=90,b=﹣90.所以y B关于x的函数解析式为y B=90x﹣90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得:3k1=180.解得:k1=60.所以y A=60x.当x=5时,y A=60×5=300(千克);x=6时,y B=90×6﹣90=450(千克).450﹣300=150(千克).答:若果A、B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.【点评】本题主要考查的是一次函数的应用,依据待定系数法求得一次函数的解析式是解题的关键.23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.【考点】三角形的外接圆与外心;全等三角形的判定与性质;平行四边形的判定;圆心角、弧、弦的关系.【分析】(1)根据等弧所对的圆周角相等,得出∠B=∠ACB,再根据全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;(2)连接AO并延长,交边BC于点H,由等腰三角形的性质和外心的性质得出AH⊥BC,再由垂径定理得BH=CH,得出CG与AE平行且相等.【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.【点评】本题考查了三角形的外接圆与外心以及全等三角形的判定和性质,平行四边形的判定,圆心角、弧、弦之间的关系,把这几个知识点综合运用是解题的关键.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.【考点】二次函数综合题.【分析】(1)先得出C点坐标,再由OC=5BO,得出B点坐标,将A、B两点坐标代入解析式求出a,b;(2)分别算出△ABC和△ACD的面积,相加即得四边形ABCD的面积;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,过C作AB边上的高CH,利用等面积法求出CH,从而算出tan∠ABC,而BO是已知的,从而利用tan∠BEO=tan∠ABC可求出EO长度,也就求出了E点坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).∵抛物线经过点A(4,﹣5)和点B(﹣1,0),∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.(2)由y=x 2﹣4x ﹣5,得顶点D 的坐标为(2,﹣9).连接AC ,∵点A 的坐标是(4,﹣5),点C 的坐标是(0,﹣5),又S △ABC =×4×5=10,S △ACD =×4×4=8,∴S 四边形ABCD =S △ABC +S △ACD =18.(3)过点C 作CH ⊥AB ,垂足为点H .∵S △ABC =×AB ×CH=10,AB=5,∴CH=2,在RT △BCH 中,∠BHC=90°,BC=,BH==3,∴tan ∠CBH==.∵在RT △BOE 中,∠BOE=90°,tan ∠BEO=,∵∠BEO=∠ABC ,∴,得EO=,∴点E 的坐标为(0,).【点评】本题为二次函数综合题,主要考查了待定系数法求二次函数解析式、三角形面积求法、等积变换、勾股定理、正切函数等知识点,难度适中.第(3)问,将角度相等转化为对应的正切函数值相等是解答关键.25.如图所示,梯形ABCD 中,AB ∥DC ,∠B=90°,AD=15,AB=16,BC=12,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且∠AGE=∠DAB . (1)求线段CD 的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.。

历年上海市中考数学试卷含答案

历年上海市中考数学试卷含答案

历年上海市中考数学试卷含答案一、2019年上海市中考数学试卷第一部分选择题(40分)1.下列不等式 3y-5> y -7、y-3y+5 > 7-y 的解集为().A. {y | y > 0 }B. {y | y > 6 }C. {y | 3 < y < 6 }D. {y | 0 < y < 3 }2. 已知正比例函数 y = kx (k >0) 的图象上,点(2,3)和(4,9). 则此函数的解析式为().A. y = 2x + 1B. y = 2x - 1C. y = 2x + 3D. y = 2x - 33. 在不等式组x + 2y ≤ 4 (1)2x - y ≥ 2 (2)中,表示其解集的示意图是().(符号“^”代表导数)A.图1 B.图2C.图3D.图44.已知两条直线 3x + y -2 = 0 和 kx -6y + 4 = 0 互相垂直,则实数k的值为().A. $\dfrac{3}{2}$B. 2C. $-\dfrac{3}{2}$D. -25. 在长方形ABCD中,若AB=2BC,则 $\vartriangle ABD$ 面积是 $\vartriangle ABC$ 面积的().A. $\dfrac{1}{2}$B. 1C. 2D. 46. 当 $0< a < b$,a,b为正整数时,$$\dfrac{x+a}{x+b}= \dfrac{3}{4}$$ 的解集x的个数是().A.0B. 1C. 2D. 无穷多个7. 直线 2x-3y+6=0 与圆 $$(x-2)^2 + y^2= 9$$ 的交点坐标中,y 坐标较大的点坐标是().A. (3,0)B. (1,0)C. (2, \sqrt{5})D. (2, -\sqrt{5})8. 如图所示的等腰梯形 $ABCD$ ,点 $E$ 是 $AC$ 边的中点,则 $\vartriangle ABE$ 的面积是 $\vartriangle ECD$ 面积的().A. $\dfrac{1}{2}$B. 2C. $\dfrac{3}{2}$D. 39.曲线 $y=4\log_2x -x$ 的图象在第一象限内交圆$${{(x-3)}^2} + {{(y-4)}^2} = 4$$ 的点的个数是().A. 0B. 1C. 2D. 无穷多个.10.如图所示的菱形 ABCD 中,从点 B 到对角线 AC 的垂足 E 的距离是 6, BD的长是5,则这个菱形的面积是().A. 24B. 30C. 36D. 3811. 如图, $\triangle ABC$ 的内角 $\angle C=90\degree $, $BC =4 $,点 $E$ 在 $AB$ 上, $AE=2,\angle EDC = 90\degree$ ,则AC 的长为().A. 4B. 2\sqrt{5}C. \sqrt{21}D. \sqrt{15}12.如图所示的 $Rt\triangle ABC$ 中,点 $D,F,E$ 分别在 $BC,AB,AC$ 上,若 $\angle BDE = \angle DAF =\angle ECF$,则此三角形是().A.等边B.直角且等腰C.等腰且 $\angle C =120\degree$ D.锐角且等腰13.已知一个圆方程为 $${{(x-2)}^2} + {{(y+1)}^2} = 1$$ 。

历年上海市中考数学试卷(含答案)

历年上海市中考数学试卷(含答案)

历年上海市中考数学试卷(含答案)由于历年上海市中考数学试卷数量较多,无法全部列举,以下仅以数年为例,为大家提供参考。

2018年上海市中考数学试卷一、选择题1.已知函数$f(x)=\begin{cases}x^2-2x & ,x\leq 0\\2x+1 & ,x>0\end{cases}$ ,则$f(-2)+f(1)$ 的值是( A )A. -1B. 0C. 1D. 22.若$\log_3(x+2)+\log_3(y-1)=2$,$\log_3(x+2)-\log_3(y-1)=0$,则$\frac{x}{y}$ 的值是( D )A. $\frac{1}{2}$B. $\frac{2}{3}$C.$\frac{3}{2}$ D. $\frac{4}{3}$二、填空题1.已知数列$\{a_n\}$满足$a_1=3$,$a_{n+1}=a_n+2n$,则$a_{20}=$__________。

2.已知$\triangle ABC$中,$\angle C=90^\circ$,并且$BC=1$,$AC=\sqrt{3}$,则$\sin A+\cos B=$__________。

三、解答题1.如图,$\triangle ABC$中,$BC=8$,$AB=10$,$\angle B=60^\circ$。

点$O$为$BC$的中点,$D$为$AC$上一点,连接$OD$交$AB$于点$E$。

求$\overline{OE}$的长度。

(此处省略图片)2.如图,在矩形$ABCD$中,$AE=3$,$AC=2$,连接$AD$。

又在$\triangle ACD$中取一点$F$,满足$\angle FCD=\angle AEC$。

连接$BF$,交$DE$于点$G$。

求$\overline{DG}$的长度。

(此处省略图片)2019年上海市中考数学试卷一、选择题1.下列图形中,可以恰好排成一个面积为6的长方形的是( C )A.(此处省略图片)B.(此处省略图片)C.(此处省略图片)D.(此处省略图片)2.若$f(2x+1)=2-x$,则$f(\frac{1}{2})=$( C )A. $\frac{3}{2}$B. $\frac{1}{2}$C. 0D. -1二、填空题1.如图,对于凸五边形$ABCDE$,$\angle A+\angleC+\angle D=270^\circ$,$\overline{AB}=\overline{BC}=\overline{DE}=\overline{E A}=1$。

2024年上海市中考数学试卷正式版含答案解析

2024年上海市中考数学试卷正式版含答案解析

绝密★启用前2024年上海市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共6小题,每小题4分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如果x>y,那么下列正确的是( )A. x+5≤y+5B. x−5<y−5C. 5x>5yD. −5x>−5y的定义域是( )2.函数f(x)=2−xx−3A. x=2B. x≠2C. x=3D. x≠33.以下一元二次方程有两个相等实数根的是( )A. x2−6x=0B. x2−9=0C. x2−6x+6=0D. x2−6x+9=04.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )A. 甲种类B. 乙种类C. 丙种类D. 丁种类5.四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形6.在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )A. 内含B. 相交C. 外切D. 相离第II 卷(非选择题)二、填空题:本题共12小题,每小题4分,共48分。

7.计算:(4x 2)3= ______. 8.计算(a +b)(b −a)= ______. 9.已知√ 2x −1=1,则x = ______.10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的______倍.(用科学记数法表示)11.若正比例函数y =kx 的图象经过点(7,−13),则y 的值随x 的增大而______.(选填“增大”或“减小”) 12.在菱形ABCD 中,∠ABC =66°,则∠BAC = ______°.13.某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为______万元.14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有______个绿球.15.如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC ⃗⃗⃗⃗⃗ =a ⃗ ,BE ⃗⃗⃗⃗⃗ =b ⃗ ,若AE =2EC ,则DC ⃗⃗⃗⃗⃗ = ______(结果用含a ,b ⃗ 的式子表示).16.博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR 增强讲解的人数约有______人.17.在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cos∠ABC=______.18.对于一个二次函数y=a(x−m)2+k(a≠0)中存在一点P(x′,y′),使得x′−m=y′−k≠0,则称2|x′−m|为该抛物线的“开口大小”,那么抛物线y=−12x2+13x+3“开口大小”为______.三、解答题:本题共7小题,共78分。

2024年上海市中考数学真题卷含答案解析

2024年上海市中考数学真题卷含答案解析

2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B.290x -=C. 2660x x -+= D. 2690x x -+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯.形6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7 计算:()324x =___________.8 计算()()a b b a +-=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a =,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b的式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人...17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为__________.三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|124(1-++.20. 解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②.21. 在平面直角坐标系xOy 中,反比例函数ky x=(k 常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠值.22.同学用两幅三角板拼出了如下的平行四边形,且内部留白部分也是平行四边形(直角三为的角板互不重叠),直角三角形斜边上的高都为h .(1)求:①两个直角三角形的直角边(结果用h 表示);②小平行四边形的底、高和面积(结果用h 表示);(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =.24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.2024年上海市初中学业水平考试数学试卷1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A 55x y +<+ B. 55x y -<- C. 55x y> D.55x y->-【答案】C 【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2. 函数2()3xf x x -=-的定义域是( )A. 2x = B. 2x ≠ C. 3x = D. 3x ≠【答案】D 【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可.得到答案,熟练掌握求函数定义域的方法是解决问题的关键.【详解】解:函数2()3xf x x -=-的定义域是30x -≠,解得3x ≠,故选:D .3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -= B.290x -=C. 2660x x -+= D. 2690x x -+=【答案】D 【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的.种类甲种类乙种类丙种类丁种类平均数 2.3 2.3 2.8 3.1方差1.050.781.050.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B【解析】【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形 B. 矩形C. 直角梯形D. 等腰梯形【答案】A 【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBC OAD S S ∴= ,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBC OAD S S OC BF OB CH OD AE OA DG∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形,故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含 B. 相交C. 外切D. 相离【答案】B 【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切,∴圆A 含在圆P 内,即312PA =-=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x =___________.【答案】664x 【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8. 计算()()a b b a +-=______.【答案】22b a -【解析】【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9. 1=,则x =___________.【答案】1【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示)【答案】3810⨯【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键.【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍,故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =-,结合正比例函数的性质,即可得出y 的值随x 的增大而减小.【详解】解: 正比例函数y kx =的图象经过点(7,13)-,137k ∴-=,解得:137k =-,又1307k =-< ,y ∴的值随x 的增大而减小.故答案为:减小.12. 菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 菱形,∴AB BC =,∴()()11180180665722BAC ACB ABC ∠=∠=︒-∠=︒-︒=︒,在是故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩,解得50500k b =⎧⎨=⎩,∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球.【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个,∵摸到绿球的概率是35,∴球的总数为3355x x ÷=个,∴白球的数量为532x x x -=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 为正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r,若2AE EC =,则DC = ___________(结果用含a ,b 的式子表示).【答案】23a b - 【解析】【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+ .【详解】解: 四边形ABCD 是平行四边形,DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=-=- ,∴23DC a b =-,故答案为:23a b - .16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解,∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=,由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=,∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人),故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.【答案】27或47##47或27【解析】【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折性质知:FCD FC D ''∠=∠,CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。

上海市中考数学试题及详细答案

上海市中考数学试题及详细答案

20XX 年上海市初中毕业生统一学业考试数学试卷一、填空题(本大题共14题,满分42分) 1、 计算:()22x=2、 分解因式:22a a -= 3、计算:)11=4、函数y =的定义域是5、 如果函数()1f x x =+,那么()1f =6、 点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是7、 如果将二次函数22y x =的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是8、 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程) 9、 如果关于x 的方程240x x a ++=有两个相等的实数根,那么a = 10、 一个梯形的两底长分别为6和8,这个梯形的中位线长为 11、 在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC ,如果AD =2,DB =4,AE =3,那么EC = 12、 如图1,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为 米(结果用含α的三角比表示).13、 如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是 14、 在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE 的长为二选择题:(本大题共4题,满分12分) 15、 在下列实数中,是无理数的为 ( ) A 、0 B 、-3.5 C D 16、 六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为 ( )A 、3B 、4C 、5D 、6 17、 已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )图1A 、2sin 3B =B 、2cos 3B =C 、23tgB =D 、23ctgB = 18、 在下列命题中,真命题是 ( )A 、两个钝角三角形一定相似B 、两个等腰三角形一定相似C 、两个直角三角形一定相似D 、两个等边三角形一定相似 三、(本大题共3题,满分24分) 19、 (本题满分8分) 解不等式组:()315216x xx x+>-⎧⎨+-<⎩,并把解集在数轴上表示出来.20、(本题满分8分)解方程:228124x x x x x +-=+--21、 (本题满分8分,每小题满分各为4分)(1)在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为 ;关于坐标原点O 对称的两个三角形的编号为 ; (2)在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1x-5-4-3-2-15432O1四、(本大题共4题,满分42分) 22、 (本题满分10分,每小题满分各为5分)在直角坐标平面中,O 为坐标原点,二次函数2y x bx c =++的图象与x 轴的负半轴相交于点C (如图5),点C 的坐标为(0,-3),且BO =CO (1) 求这个二次函数的解析式; (2) 设这个二次函数的图象的顶点为M ,求AM 的长.23、 (本题满分10分)已知:如图6,圆O 是△ABC 的外接圆,圆心O 在这个三角形的高CD 上,E 、F 分别是边AC 和BC 的中点,求证:四边形CEDF 是菱形.24、 (本题满分10分,第(1)、(2)、(3)小题满分各为2分,第(4)小题满分4分) 小明家使用的是分时电表,按平时段(6:00-22:00)和谷时段(22:00-次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里20XX 年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图7),同时将前4个月的用电量和相应电费制成表格(如表1) 根据上述信息,解答下列问题:(1) 计算5月份的用电量和相应电费,将所得结果填入表1中; (2) 小明家这5个月的月平均用电量为 度;(3) 小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4) 小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25、 (本题满分12分,每小题满分各为4分)在△ABC 中,∠ABC =90°,AB =4,BC =3,O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E ,作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.下列实数中,无理数是()A.0 B.C.﹣2 D.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:0,﹣2,是有理数,数无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0【分析】分别计算各方程的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0【分析】根据一次函数的性质得出即可.【解答】解:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.【点评】本题考查了一次函数的性质和图象,能熟记一次函数的性质是解此题的关键.4.数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.5.下列图形中,既是轴对称又是中心对称图形的是()A.菱形B.等边三角形C.平行四边形D.等腰梯形【分析】根据轴对称图形和中心对称图形对各选项分析判断即可得解.【解答】解:A、菱形既是轴对称又是中心对称图形,故本选项正确;B、等边三角形是轴对称,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称,是中心对称图形,故本选项错误;D、等腰梯形是轴对称,不是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.【点评】本题考查了矩形的判定、平行四边形的性质、菱形的判定;熟练掌握矩形的判定是解决问题的关键.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:2aa2=2a3.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2aa2=2×1aa2=2a3.故答案为:2a3.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.不等式组的解集是x>3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>6,得:x>3,解不等式x﹣2>0,得:x>2,则不等式组的解集为x>3,故答案为:x>3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.方程=1的解是x=2.【分析】根据无理方程的解法,首先,两边平方,解出x的值,然后,验根解答出即可.【解答】解:,两边平方得,2x﹣3=1,解得,x=2;经检验,x=2是方程的根;故答案为x=2.【点评】本题考查了无理方程的解法,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法,解无理方程,往往会产生增根,应注意验根.10.如果反比例函数y=(k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而减小.(填“增大”或“减小”)【分析】先根据题意得出k的值,再由反比例函数的性质即可得出结论.【解答】解:∵反比例函数y=(k是常数,k≠0)的图象经过点(2,3),∴k=2×3=6>0,∴这个函数图象所在的每个象限内,y的值随x的值增大而减小.故答案为:减小.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.11.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是40.5微克/立方米.【分析】根据增长率问题的关系式得到算式50×(1﹣10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】解:依题意有50×(1﹣10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【点评】考查了有理数的混合运算,关键是熟练掌握增长率问题的关系式.12.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【分析】由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.【解答】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.13.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是y=2x2﹣1.,∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是120万元.【分析】利用一月份的产值除以对应的百分比求得第一季度的总产值,然后求得平均数.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),则该企业第一季度月产值的平均值是×360=120(万元).故答案是:120.【点评】本题考查了扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.15.如图,已知AB∥CD,CD=2AB,AD、BC相交于点E,设=,=,那么向量用向量、表示为+2.【分析】根据=+,只要求出即可解决问题.【解答】解:∵AB∥CD,∴==,∴ED=2AE,∵=,∴=2,∴=+=+2.【点评】本题考查平面向量、平行线的性质等知识,解题的关键是熟练掌握三角形法则求向量,属于基础题.16.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是45.【分析】分两种情形讨论,分别画出图形求解即可.【解答】解:①如图1中,EF∥AB时,∠ACE=∠A=45°,∴旋转角n=45时,EF∥AB.②如图2中,EF∥AB时,∠ACE+∠A=180°,∴∠ACE=135°∴旋转角n=360°﹣135°=225°,∵0<n°<180,∴此种情形不合题意,故答案为45【点评】本题考查旋转变换、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是8<r<10.【分析】先计算两个分界处r的值:即当C在⊙A上和当B在⊙A上,再根据图形确定r的取值.【解答】解:如图1,当C在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AC=AD=4,⊙B的半径为:r=AB+AD=5+3=8;如图2,当B在⊙A上,⊙B与⊙A内切时,⊙A的半径为:AB=AD=5,⊙B的半径为:r=2AB=10;∴⊙B的半径长r的取值范围是:8<r<10.故答案为:8<r<10.【点评】本题考查了圆与圆的位置关系和点与圆的位置关系和勾股定理,明确两圆内切时,两圆的圆心连线过切点,注意当C在⊙A上时,半径为3,所以当⊙A半径大于3时,C在⊙A内;当B在⊙A上时,半径为5,所以当⊙A半径小于5时,B在⊙A外.18.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6=.【分析】如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,只要证明△BEC 是直角三角形即可解决问题.【解答】解:如图,正六边形ABCDEF中,对角线BE、CF交于点O,连接EC.易知BE是正六边形最长的对角线,EC的正六边形的最短的对角线,∵△OBC是等边三角形,∴∠OBC=∠OCB=∠BOC=60°,∵OE=OC,∴∠OEC=∠OCE,∵∠BOC=∠OEC+∠OCE,∴∠OEC=∠OCE=30°,∴∠BCE=90°,∴△BEC是直角三角形,∴=cos30°=,∴λ6=,故答案为.【点评】本题考查正多边形与圆、等边三角形的性质、锐角三角函数等知识,解题的关键是理解题意,学会添加常用辅助线,构造特殊三角形解决问题.三、解答题(本大题共7小题,共78分)19.计算: +(﹣1)2﹣9+()﹣1.【分析】根据负整数指数幂和分数指数幂的意义计算.【解答】解:原式=3+2﹣2+1﹣3+2=+2.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.解方程:﹣=1.【分析】两边乘x(x﹣3)把分式方程转化为整式方程即可解决问题.【解答】解:两边乘x(x﹣3)得到3﹣x=x2﹣3x,∴x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,∴x=3或﹣1,经检验x=3是原方程的增根,∴原方程的解为x=﹣1.【点评】本题考查解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意解分式方程必须检验.21.如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;(2)由EF∥AD,BE=2AE,可得===,求出EF、DF即可利用勾股定理解决问题;【解答】解:(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB===3,∴sinB===.(2)∵EF∥AD,BE=2AE,∴===,∴==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE===5.【点评】本题考查解直角三角形的应用,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【分析】(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;【解答】解:(1)设y=kx+b,则有,解得,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.【点评】本题主要考查一次函数的应用.此题属于图象信息识别和方案选择问题.正确识图是解好题目的关键.23.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【分析】(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180×=45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.【点评】本题主要考查了正方形与菱形的判定及性质定理,熟练掌握定理是解答此题的关键.24.已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A (2,2),对称轴是直线x=1,顶点为B.(1)求这条抛物线的表达式和点B的坐标;(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示∠AMB的余切值;(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.【分析】(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值;(2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可;(3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【解答】解:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即=1,解得b=2.∴y=﹣x2+2x+c.将A(2,2)代入得:﹣4+4+c=2,解得:c=2.∴抛物线的解析式为y=﹣x2+2x+2.配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3).(2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2).∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2.(3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上,∴抛物线向下平移了3个单位.∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3.∵OP=OQ,∴点O在PQ的垂直平分线上.又∵QP∥y轴,∴点Q与点P关于x轴对称.∴点Q的纵坐标为﹣.将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x=或x=.∴点Q的坐标为(,﹣)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、锐角三角函数的定义、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.25.如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△OAD∽△ABD;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD 的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.【分析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可证明△OAD∽△ABD;(2)如图2中,当△OCD是直角三角形时,可以证明△ABC是等边三角形即可解决问题;(3)如图3中,作OH⊥AC于H,设OD=x.想办法用x表示AD、AB、CD,再证明AD2=ACCD,列出方程即可解决问题;【解答】(1)证明:如图1中,在△AOB和△AOC中,,∴△AOB≌△AOC,∴∠C=∠B,∵OA=OC,∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,∴△OAD∽△ABD.(2)如图2中,∵BD⊥AC,OA=OC,∴AD=DC,∴BA=BC=AC,∴△ABC是等边三角形,在Rt△OAD中,∵OA=1,∠OAD=30°,∴OD=OA=,∴AD==,∴BC=AC=2AD=.(3)如图3中,作OH⊥AC于H,设OD=x.∵△DAO∽△DBA,∴==,∴==,∴AD=,AB=,∵S2是S1和S3的比例中项,∴S22=S1S3,∵S2=ADOH,S1=S△OAC=ACOH,S3=CDOH,∴(ADOH)2=ACOH CDOH,∴AD2=ACCD,∵AC=AB.CD=AC﹣AD=﹣,∴()2=(﹣),整理得x2+x﹣1=0,解得x=或,经检验:x=是分式方程的根,且符合题意,∴OD=.【点评】本题考查圆综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.。

相关文档
最新文档