2018-2019乌鲁木齐市小学毕业数学总复习小升初模拟训练试卷3-5(共3套)附详细试题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷3
一、填空题:
1.用简便方法计算下列各题:
(2)1997×19961996-1996×19971997=______;
(3)100+99-98-97+…+4+3-2-1=______.
2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).
3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.
4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.
5.在乘积1×2×3×…×98×99×100中,末尾有______个零.
6.如图中,能看到的方砖有______块,看不到的方砖有______块.
7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.
8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.
9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.
10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲
后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.
二、解答题:
1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸
(1)若P点在岸上,则A点在岸上还是水中?
(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的
次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.
2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.
3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?
4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.
答案
一、填空题:
1.(1)(24)
(2)(0)
原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0
(3)(100)
原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=100
2.(1、0、9、8)
由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.
3.(28)
(65-9)÷2=28
4.(50、150)
40O÷8=50,8÷2-1=3
3×50=150
5.(24)
由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.
6.(36,55)
由图观察发现:第一层能看到:1块,第二层能看到:
2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.
而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.
7.(25)
8.(5)
考虑已失分情况。
要使平均成绩达到95分以上,也就是每次平均失分不多于5分.
(100-90)×4÷5=8(次)8-4=4次,即再考4次满分平均分可达到95,要达到95以上即需4+1=5次.
9.(280)
第一堆中钱数必为5+2=7元的倍数;第二堆钱必为20元的倍数(因至少需5个贰元与2个伍元才能有相等的钱数).但两堆钱数相等,所以两堆钱数都应是7×20=140元的倍数.所以至少有2×140=280元.
10.(25)
转换一个角度思考:当甲、乙相会时,甲、乙和狗走路的时间都是一样的.
30÷(3.5+2.5)=5(小时)
5×5=25(千米)
二、解答题:
1.
(1)在水中.
连结AP,与曲线交点数是奇数.
(2)在岸上.
从水中经过一次岸进到水中,脱鞋与穿鞋次数和为2.由于A点在水中,所以不管怎么走,走在水中时,穿鞋、脱鞋次数和为偶数,则B点必在岸上.
2.1997不可能,2160不可能.2142能.
这样框出的九个数的和一定是被框出的九个数的中间的那个数的9倍,即九个数的和能被9整除.但1997数字和不能被9整除,所以(1)不可能.
又左右两边两列的数不能作为框出的九个数的中间一个数,即能被15整除或被15除余数是1的数,不能作为中间一个数.2160÷9=240,又240÷15=16,余数是零.所以(2)不可能.3.(0场)
四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场.若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以只可能是甲、乙、丙各胜2场,此时丁三场全败.也就是胜0场.
4.只切两刀,分成三块重新拼合即可.
正方形面积为(2R)2=(2×3)2=36(cm2)
小升初数学综合模拟试卷4
一、填空题:
1.41.2×8.1+11×9.25+537×0.19=______.
2.在下边乘法算式中,被乘数是______.
3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.
4.图中多边形的周长是______厘米.
5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.
7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4
只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.
8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.
9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.
10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.
二、解答题:
1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.
2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.
3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?
4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?
(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?
(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?
答案
一、填空题
1.(537.5)
原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25
=412×(0.81+0.19)+1.25×19+11×(1.25+8)
=412+1.25×(19+11)+88=537.5
2.(5283)
从*×9,尾数为7入手依次推进即可.
3.(6年)
爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).
4.(14厘米).
2+2+5+5=14(厘米).
5.(225,150)
因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.
6.(45,15)
假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90
(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)
由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是
(78+94+86+77+92+80)÷(2+1)=169(只)
∴169-77=92(只)
8.(8分)
紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速
度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即
10×4×步行速度÷(5×步行速度)=8(分)
9.(44)
10.(16)
满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那
仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,
二、解答题:
EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.
2.(5)
连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.
3.(14,10,35)
用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.
甲齿∶乙齿=7∶5=14∶10,
乙齿∶丙齿=2∶7=10∶35,所以
甲齿∶乙齿∶丙齿=14∶10∶35
由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.
4.(1)三面红色的小方块只能在立方体的角上,故共有8块.
两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.
一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.
(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.
(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.
小升初数学综合模拟试卷5
一、填空题:
1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.
2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:
□+□=□
□-□=□
□×□=□□
3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.
4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.
5.图中有______个梯形.
6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.
8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为
______.
9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.
10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.
二、解答题:
1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:
A B C D E 1 9 9 7
B C D E A 9 9 7 1(第一次变动)
C D E A B 9 7 1 9(第二次变动)
D E A B C 7 1 9 9(第三次变动)
……
问最少经过几次变动后ABCDE1997将重新出现?
2.把下面各循环小数化成分数:
3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?
4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?
答案
一、填空题:
1.(5)
500÷10÷10=5
2.(1+7=8,9-3=6,4×5=20)
首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.
3.(56)
96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.
5.(210)
梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=210
6.(中午12点40分)
3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.
7.(58)
画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).
8.(36)
长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.
9.(10∶9)
10.(13)
考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即
10+2+1=13(只).
二、解答题:
1.(20)
由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)
3.(15千米)
4.(56个)
本题可列表解.除终点,我们将车站编号列表:
共需座位:
14+12+10+8+6+4+2=56(个)。