信号检测实验六

合集下载

信号与系统实验

信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。

2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。

二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。

)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。

滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。

通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。

2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。

系统的线性表现在可加性与齐次性上。

齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。

四、预习要求1、复习安全操作的知识。

2、学习或复习示波器的使用方法。

3、复习典型周期信号的波形及其性质。

4、复习线性系统、滤波器的性质。

5、撰写预习报告。

五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。

(2)测试信号源2的各种信号参数,并填入表1-2。

3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。

观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。

),并将相应数据计入表1-3中。

4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。

信号检测论_实验报告

信号检测论_实验报告

一、实验目的1. 理解信号检测论的基本原理和概念。

2. 掌握信号检测论实验方法,包括实验设计、数据收集和分析。

3. 分析信号检测论在心理学研究中的应用,探讨其在不同领域中的价值。

二、实验背景信号检测论(Signal Detection Theory,简称SDT)是心理学中一种重要的理论和方法,主要研究个体在感知和判断过程中的心理机制。

该理论认为,人们在感知外界刺激时,总是受到噪声的干扰,而信号检测论旨在研究个体在噪声中如何识别和判断信号。

三、实验方法1. 实验设计实验采用2(刺激类型:信号与噪音)× 2(判断标准:接受信号、拒绝信号)的混合设计。

2. 实验材料实验材料包括信号、噪音、判断标准等。

3. 实验程序(1)被试随机分为两组,每组10人。

(2)实验开始前,主试向被试讲解实验目的、实验流程及注意事项。

(3)被试依次进行信号和噪音的判断,主试记录被试的判断结果。

(4)实验结束后,主试向被试表示感谢。

四、实验结果1. 数据收集根据实验记录,统计被试对信号和噪音的判断次数。

2. 数据分析(1)计算被试的辨别力指数(d'):d' = Z(SN) - Z(N),其中Z(SN)为信号判断的Z得分,Z(N)为噪音判断的Z得分。

(2)计算被试的判断标准(C):C = Z(SN) - Z(N),其中Z(SN)为信号判断的Z 得分,Z(N)为噪音判断的Z得分。

五、讨论1. 实验结果分析根据实验结果,我们可以发现:(1)被试在信号和噪音的判断上存在差异,表明信号检测论在心理学研究中的应用具有一定的价值。

(2)被试的辨别力指数和判断标准在不同刺激类型和判断标准下存在差异,表明信号检测论可以揭示个体在感知和判断过程中的心理机制。

2. 信号检测论的应用信号检测论在心理学研究中具有广泛的应用,例如:(1)认知心理学:研究个体在感知、记忆、思维等认知过程中的心理机制。

(2)临床心理学:评估个体的认知功能,为心理疾病的诊断和治疗提供依据。

信号检验论实验报告(3篇)

信号检验论实验报告(3篇)

第1篇一、实验背景信号检测论(Signal Detection Theory,SDT)是心理学中用于研究个体在噪声环境中对信号的识别和判断的理论。

该理论强调个体在感知和决策过程中的主观因素,并通过对信号和噪声的辨别能力进行量化分析,揭示个体在感知过程中的心理机制。

本次实验旨在探讨信号检测论在心理学研究中的应用,通过模拟信号和噪声环境,考察被试在不同条件下的信号识别能力和决策倾向。

二、实验目的1. 了解信号检测论的基本原理和实验方法。

2. 探讨信号和噪声对被试识别能力的影响。

3. 分析被试在不同先验概率下的决策倾向。

三、实验方法1. 实验设计本实验采用2(信号与噪声)× 2(先验概率)的混合实验设计,即信号与噪声两个因素各分为两个水平,先验概率因素也分为两个水平。

实验流程如下:(1)向被试介绍实验目的和规则;(2)展示信号和噪声样本,并要求被试判断样本是否为信号;(3)记录被试的判断结果,包括击中、虚报、漏报和正确否定。

2. 实验材料(1)信号样本:随机生成的具有一定频率和振幅的正弦波;(2)噪声样本:随机生成的白噪声;(3)先验概率:信号出现的概率和噪声出现的概率。

3. 被试招募20名年龄在18-25岁之间的志愿者,男女比例均衡。

四、实验结果1. 信号检测指标(1)击中率(Hit Rate):被试正确识别信号的概率;(2)虚报率(False Alarm Rate):被试错误地将噪声识别为信号的概率;(3)漏报率(Miss Rate):被试错误地将信号识别为噪声的概率;(4)正确否定率(Correct Rejection Rate):被试正确否定噪声的概率;(5)似然比(Likelihood Ratio):信号与噪声的似然比,用于衡量被试对信号的识别能力。

2. 先验概率对信号检测指标的影响结果表明,先验概率对被试的信号检测指标有显著影响。

当信号先验概率较高时,被试的击中率和正确否定率显著提高,虚报率和漏报率显著降低;当信号先验概率较低时,被试的击中率和正确否定率显著降低,虚报率和漏报率显著提高。

实验6-传感器之火焰篇

实验6-传感器之火焰篇

火焰是由各种燃烧生成物、中间物、高温气体、碳氢物质以及无机物质为主体的高温固体微粒构成的。

火焰的热辐射具有离散光谱的气体辐射和连续光谱的固体辐射。

不同燃烧物的火焰辐射强度、波长分布有所差异,但总体来说,其对应火焰温度的 1 ~ 2 μ m 近红外波长域具有最大的辐射强度。

例如汽油燃烧时的火焰辐射强度的波长。

火焰传感器是机器人专门用来搜寻火源的传感器,当然火焰传感器也可以用来检测光线的亮度,只是本传感器对火焰特别灵敏。

火焰传感器利用红外线对对火焰非常敏感的特点,使用特制的红外线接受管来检测火焰,然后把火焰的亮度转化为高低变化的电平信号,输入到中央处理器中,中央处理器根据信号的变化做出相应的程序处理。

火焰传感器是探测在物质燃烧时,产生烟雾和放出热量的同时,也产生可见的或大气中没有的不可见的光辐射。

火焰传感器又称感光式火灾传感器,它是用于响应火灾的光特性,即探测火焰燃烧的光照强度和火焰的闪烁频率的一种火灾传感器。

火焰传感器实验简介6.1讯方公司传感器实验2 1、通过该实验项目,学生能够了解火焰传感器的硬件电路和工作原理;2、通过该实验项目,学生能够学会编写火焰传感器的程序。

1、编写一个读取火焰传感器输出电平信号的程序;2、将火焰检测状态做简单的处理显示,正常无火焰状态为0,检测到火焰状态为1;3、用按键KEY1控制ZIGBEEN是否发送数据。

6.4.1硬件部分1、ZIGBEE调试底板一个;图6-1 ZIGBEE调试底板2、20PIN转接线一条和带USB的J-Link仿真器一个;图6-2 J-Link仿真器实验内容6.3实验目的6.2实验设备6.4电源开关电源传感器C端口指示灯 2J-LINK接口ZigBee_DEBUG复位键节点按键拨码开关ZigBe按键红外发射指示灯1ZigBee复位键可调电阻传感器A端口传感器B端口方口USB线,另一端连接电上电指示灯20PIN转接线,另一端接转接板实验六 传感器之火焰篇33、转接板一个;图 6-3 转接板4、9~12V 电源适配器2个;图6-4 电源适配器5、带普通USB 线的ZIGBEE 仿真器一个;图6-5 ZIGBEE 仿真器普通USB 线10PIN 转接线20PIN 转接线接口10PIN 转接线接口串口接口电源(上)和状态指示灯讯方公司 传感器实验4 6、智能网关一台;图6-6 智能网关7、ZIGBEE 模块两个;图 5-7 ZIGBEE 模块8、火焰传感器一个;图 6-8 火焰传感器ZigBee 模块组合接口电源及开关开关按钮显示屏SD 卡USB 下载数据线+5V 输入 TTL 信号输出 GND 输入输出信号指示灯,低有效火焰感应探头模拟信号输出灵敏度调节旋钮,顺时针增大实验六 传感器之火焰篇59、10PIN 转接线和传感器连接线各一条。

实验六、示波器的调整和使用

实验六、示波器的调整和使用

实验六、示波器的调整和使用示波器是一种用来检测观察信号的常用仪器,其规格和型号很多,但主要组成部分基本相同。

可将信号衰减或放大,可观测信号的波形,测量电压和频率等。

预习要点1、示波器的主要结构和显示波形的基本原理2、示波器的校准和测量3、什么是李萨如图形?一、实验目的1.了解示波器的主要结构和显示波形的基本原理。

2.学会使用信号发生器。

3.学会正确使用示波器观察波形以及测量电压、周期和频率。

二、实验原理示波器是一种能观察各种电信号波形并可测量其电压、频率等的电子测量仪器。

示波器还能对一些能转化成电信号的非电量进行观测,因而它还是一种应用非常广泛的、通用的电子显示器。

1.示波器的基本结构示波器的型号很多,但其基本结构类似。

示波器主要是由示波管、X轴与Y轴衰减器和放大器、锯齿波发生器、整步电路、和电源等几步分组成。

其框图如图1所示。

(1) 示波管示波管由电子枪、偏转板、显示屏组成。

电子枪:由灯丝H、阴极K、控制栅极G、第一阳极A1、第二阳极A2组成。

灯丝通电发热,使阴极受热后发射大量电子并经栅极孔出射。

这束发散的电子经圆筒状的第一阳极A1和第二阳极A2所产生的电场加速后会聚于荧光屏上一点,称为聚焦。

A1与K之间的电压通常为几百伏特,可用电位器W2调节,A1与K之间的电压除有加速电子的作用外,主要是达到聚焦电子的目的,所以A1称为聚焦阳极。

W2即为示波器面板上的聚焦旋钮。

A2与K之间的电压为1千多伏以上,可通过电位器W3调节,A2与K之间的电压除了有聚焦电子的作用外,主要是达到加速电子的作用,因其对电子的加速作用比A1大得多,故称A2为加速阳极。

在有的示波器面板上设有W3,并称其为辅助聚焦旋钮。

在栅极G 与阴极K 之间加了一负电压即U K ﹥U G ,调节电位器W 1可改变它们之间的电势差。

如果G 、K 间的负电压的绝对值越小,通过G 的电子就越多,电子束打到荧光屏上的光点就越亮,调节W 1可调节光点的亮度。

信号检测实验报告

信号检测实验报告

一、实验目的1. 理解信号检测论的基本原理和概念。

2. 掌握信号检测实验的方法和步骤。

3. 分析信号检测实验结果,了解信号检测论在心理学研究中的应用。

二、实验背景信号检测论(Signal Detection Theory,简称SDT)是现代心理物理学的重要组成部分,起源于20世纪50年代。

它主要研究人类在感知和判断过程中,如何从含噪声的信号中提取有效信息。

信号检测论的核心观点是:人们在感知信号时,不仅受到信号本身的制约,还受到噪声和个体主观因素的影响。

三、实验方法1. 实验对象:选取10名身心健康、年龄在18-25岁之间的志愿者作为实验对象。

2. 实验材料:JGWB心理实验台操作箱、100克、104克、108克、112克的重量各一个。

3. 实验步骤:(1)准备工作:将实验器材准备好,确保实验环境安静、光线适宜。

(2)实验过程:实验者随机抽取四个重量(100克、104克、108克、112克)进行判断。

每个重量呈现3次,共计12次。

实验者需要判断每个重量的重量大小,并报告是否为“重”。

(3)数据记录:实验者对每个重量的判断结果进行记录,包括“重”和“轻”两种情况。

4. 实验数据分析:运用信号检测论的相关指标,对实验数据进行统计分析。

四、实验结果1. 辨别力(d'):辨别力是反映个体对信号与噪声差异敏感程度的指标。

在本实验中,10名志愿者的辨别力平均值约为2.3。

2. 判断标准(C):判断标准是反映个体在判断过程中所采用决策规则的指标。

在本实验中,10名志愿者的判断标准平均值约为0.7。

3. 先验概率:先验概率是指实验者在判断前对信号出现的概率估计。

在本实验中,设定信号出现的概率为0.5。

五、实验分析1. 辨别力分析:实验结果显示,志愿者的辨别力平均值约为2.3,说明志愿者在判断过程中能够较好地识别信号与噪声的差异。

2. 判断标准分析:实验结果显示,志愿者的判断标准平均值约为0.7,说明志愿者在判断过程中倾向于宽松的决策规则。

光电检测与显示实验六 面阵CCD应用实验:总结 计划 汇报 设计 可编辑

光电检测与显示实验六 面阵CCD应用实验:总结 计划 汇报 设计 可编辑
(一)面阵CCD原理及驱动实验
一、实验目的
1.掌握面阵CCD实验仪的基本操作和各个部件的功能;
2.掌握隔列转移型面阵CCD的基本工作原理;
3.掌握面阵CCD各路驱动脉冲波形及其所涉及部分的功能;
4.掌握面阵CCD输出的视频信号与PAL电视制式的关系。
二、实验仪器
1.带宽50MHz以上双踪迹(或四踪迹)同步示波器一台;
实验6面阵CCD应用技术实验
面阵CCD图像传感器主要用于采集物体图像信息。它所包含的内容很多,其中能够按PAL电视制式(或其他电视制式)形成视频电视信号的常被称为面阵CCD摄像头。面阵CCD实验指导主要针对面阵CCD摄像头展开的,通过对它的驱动波形分析使学生掌握面阵CCD的基本工作原理和特性。然后展开它的应用实验和如何与现代的计算机技术结合起来为机器安装“眼睛”与“大脑”。为达到利用面阵CCD完成“电眼”功能,还需要掌握有关《图像数字处理》方面的有关内容,为此实验指导增设了一些图像数字处理最为基础的实验内容。通过这些内容的学习能够使学生大体了解如何将面阵CCD摄像头输出的视频信号转变为数字图像,又如何从数字图像中提取出有用的信息。
2.YHACCD-Ⅲ型彩色面阵CCD多功能实验仪一台。
三、实验内容及步骤
1、开机过程
1)将被测的标准图片如图3-1所示,安装在“被测物夹持架”上,将USB接口线正确连接到计算机上;
2)打开计算机的电源开关,并确认YHACCD-Ⅲ型彩色面阵CCD实验仪的“面阵CCD尺寸测量实验”软件已经安装;
3)将外置面阵CCD摄像机的镜头盖打开;
3.面阵CCD行、场自扫描电视制式的测量;
4.视频输出信号的测量。
四、实验步骤
1)实验准备
①首先将示波器地线与实验仪上的地线连接好,并确认示波器的电源和实验仪的电源插头均已插在交流220V插座上;

实验六鉴频器实验报告

实验六鉴频器实验报告

5. 鉴频电路 ①斜率鉴频器Fra bibliotek风 优点:电路简单 缺点:鉴频特性受回路 Q 值影响 Q 值大,灵敏度高,线性范围窄; Q 值小,线性范围宽,但灵敏度低。
②相位鉴频器
耦合回路有电感耦合和电容耦合两种,本实验采用电容耦合方式。 鉴相器有叠加型和乘积型两种 , 本实验采用两个并联二极管构成的叠加型鉴相电
路。
实验六 鉴频器
——PB12210187 魏劲松,PB12210235 李炎
一、实验目的
1、了解鉴频器的基本原理。 2、掌握用频谱仪测量鉴频特性曲线的方法。
二、实验仪器、设备
1. 《ZKDFXD-Ⅰ》条幅与调频接收模块 2.GPD-3303D 直流稳压源 3.SDG5112 函数/任意波形发生器 4.DSO-X 2014A 数字存储示波器 5.SA1010 频谱分析仪
2、分析鉴频器输出波形出现失真的原因,实验中应如何保证鉴频输出不失 真?
答: 频率偏移超过了鉴频带宽时会发生波形失真。 在实验中要先测量鉴频带宽和中 心频率,然后合理的选择鉴频带宽
uo K d (U R1 U R 2 ) 0
I jC 3 U 1
U R 1 K r U1 U 2 / 2

f > fc 时,
uo K d (U R1 U R 2 ) 0
U R 2 K r U1 U 2 / 2


f < fc 时:
uo K d (U R1 U R 2 ) 0
从上倒下看图: 第一条为限幅放大输出波形 第二条为 分频输出波形
第三条为整型输出波形
/KHz /
50 0.28
100 0.51
150 0.77

(实验六 随机信号功率谱分析)

(实验六 随机信号功率谱分析)

实验报告实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期实验名称:随机信号功率谱分析实验时间: 2020年9月30日星期三学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋一、实验预习实验目的要求深刻理解随机信号的特性,掌握随机信号功率谱估计的基本原理,灵活运用各种随机信号功率谱估计的基本方法。

实验仪器用具装有Matlab的计算机一台实验原理功率谱估计是随机信号处理中的一个重要的研究和应用领域.功率谱估计基本上可以非参数估计的经典方法和参数估计的近代方法.典型功率谱估计是基于FFT 算法的非参数估计,对足够长的记录数据效果较好。

在工程实际中,经典功率谱估计法获得广泛应用的是修正期图发。

该方法采取数据加窗处理再求平均的办法。

通过求各段功率谱平均,最后得到功率谱计P(m),即:式中:为窗口函数ω[k]的方差。

K表示有重叠的分数段。

由于采用分段加窗求功率谱平均,有效地减少了方差和偏差,提高了估计质量,使修正周期图法在经典法中得到普遍应用。

但在估计过程存在两个与实际不符的假设,即(1)利用有限的N个观察数据进行自相关估计,隐含着在已知N个数据之外的全部数据均为零的假设。

(2)假定数据是由N个观察数据以N为周期的周期性延拓。

同时在计算过程中采用加窗处理,使得估计的方差和功率泄露较大,频率分辨率较低,不适用于短系列的谱分析和对微弱信号的检测。

近代谱估计是建立在随机信号参数模型的基础上,通过信号参数模型或预测误差滤波器(一步预测器)参数的估计,实现功率谱估计。

由于既不需要加窗,又不需要对相关函数的估计进行如经典法那样的假设,从而减少公里泄露,提高了频谱分辨率。

常用的参数模型有自回归(AR)模型、滑动平均(MA)模型、自回归滑动平均(ARMA)模型。

其中AR模型是基本模型,求解AR模型的参数主要有L—D算法和Burg算法。

1.某随机信号由两余弦信号与噪声构成x(t)=cos(20*pi*t)+cos(40*pi*t)+s(t)式中:s(t)是均值为0、方差为1的高斯白噪声。

信号与测试实验一报告

信号与测试实验一报告

电气工程施工方案1资料一、项目概述本电气工程施工方案旨在对某项目的电气工程施工进行详细规划和安排,确保施工过程顺利进行,工程质量达标。

本工程位于某地区的工业园区,主要包括供电系统、配电线路、照明系统等。

二、施工内容1. 供电系统•主要设备:选用厂家为XX公司的变压器和配电柜,带电压稳定器。

•供电方式:由当地供电局进行供电,备有应急发电机组。

•供电线路:采用金属电缆敷设,经过耐电压测试。

2. 配电线路•线路布置:根据施工图纸,设计良好的线路布置方案,确保线路合理,避免交叉。

•线路材料:选用优质电缆,符合国家相关标准。

3. 照明系统•照明布置:根据场地要求,设计合理的照明方案,确保照明充足、均匀。

•照明设备:选择能效高、寿命长的LED灯具,符合国家能效标准。

三、施工工艺1.施工准备:–检查施工图纸和材料,做好施工计划。

–安排施工人员,确保人员到位。

2.施工过程:–按照图纸要求铺设线路、安装设备,保证工程质量。

–注意施工安全,加强现场管理。

3.施工验收:–完成施工后的功能测试,保证设备正常运行。

–进行电气检测,确保符合规范。

四、施工进度安排根据施工计划,工程预计总时长为XX天,具体进度安排如下:•第一阶段:供电系统施工,预计耗时XX天。

•第二阶段:配电线路铺设,预计耗时XX天。

•第三阶段:照明系统安装,预计耗时XX天。

•最后阶段:整体验收,预计耗时XX天。

五、施工注意事项1.施工现场要求整洁,确保施工安全。

2.施工人员要做好个人防护,遵守工艺规范。

3.施工过程中要遵循相关法规标准,不得擅自更改设计方案。

以上为电气工程施工方案1资料,具体施工实施过程中,如有变更需及时调整计划,确保工程顺利完成。

实验六)

实验六)

实验报告课程名称:高频电子电路实验题目:检波电路实验班级学号:1803030123姓名: 蔡域虎成绩:沈阳理工大学2020年 6 月16 日实验内容:1.掌握用包络检波器实现AM 波解调的方法。

了解滤波电容数值对AM 波解调影响;2.理解包络检波器只能解调m ≤100%的AM 波,而不能解调m> 100%的AM 波以及DSB 波的概念;3.掌握用MC1496模拟乘法器组成的同步检波器来实现AM 波和DSB 波解调的方法:4.理解同步检波器能解调各种AM 波以及DSB 波的概念。

实验目的:1.用示波器观察包络检波器解调AM 波、DSB 波时的性能:2.用示波器观察同步检波器解调AM 波、DSB 波时的性能:3.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。

实验仪器、设备:集成乘法器调幅·混频与同步解调(A6);中放AGC 与二极管检波模块A5;示波器;高频信号源;低频信号源简单原理:解调过程是调制的反过程,即把低频信号从高频载波上搬移下来的过程。

解调过程在收信端,实现解调的装置叫解调器。

一.普通调幅波的解调振幅调制的解调被称为检波,其作用是从调幅波中不失真地检出调制信号。

由于普通调幅波的包络反映了调制信号的变化规律,因此常用非相干解调方法。

非相干解调有两种方式,即小信号平方律检波和大信号包络检波。

我们只介绍大信号包络检波器。

1.大信号检波基本工作原理大信号检波电路与小信号检波电路基本相同。

由于大信号检波输入信号电压幅值一般在500mV 以上,检波器的静态偏置就变得无关紧要了。

下面以图6-1所示的简化电路为例进行分析。

图6-1大信号检波电路大信号检波和二极管整流的过程相同。

图6-2表明了大信号检波的工作原理。

输入信号()i u t 为正并超过C和LR 上的()o u t 时,二极管导通,信号通过二极管向C充电,此时()o u t 随图6-2 大信号检波原理2.检波失真检波输出可能产生三种失真:第一种是由于检波二极管伏安特性弯曲引起的失真;第二种是由于滤波电容放电慢引起的失真,它叫对角线失真(又叫对角线切割失真);第三种是由于输出耦合 电容上所充的直流电压引起的失真,这种失真叫割底失真(又叫底部切割失真)。

信号检测论

信号检测论

信号检测论江苏师范大学1 引言信号检测论不仅测定人对信号的反应,也测定人对噪音的反应,因而能将人的感受性与其判断标准区分开,并且分别用不同的数量来表达,这是它优于古典心理物理法的地方。

信号检测论有两个相关假设:1.当人们去检测信号时,噪音总是存在的,重复呈现同一刺激并不产生相同的感觉量,而是呈正态分布;2.知觉有两个内部过程:①接受者对信号或刺激的感觉;②接受者判断是否收到信号或刺激的决策过程。

信号检测论有三个基础实验程序,即有无法、迫选法和评价法。

本次实验使用的是有无法,目的是检验当信号和噪音的先验概率发生变化时,对被试的辨别力(d')和判断标准(β)是否都有影响,并学习绘制ROC曲线。

2 方法2.1 被试本次试验的被试是一名某高校的大二女生,20岁,视力正常。

2.2 材料两个数字总体(SN和N)卡片正面写有1或2位的数字。

二个数字总体分布表见表1。

表1 数字分布表A(N) B(SN)数字 f 数字 f20 1 24 119 1 23 118 3 22 317 6 21 616 12 20 1215 17 19 1714 20 18 2013 17 17 1712 12 16 1211 6 15 610 3 14 39 1 13 18 1 12 1n 100 100 平均数14 18标准差 2 22.3 实验程序1.确定五种SN呈现的先验概率,顺序为10%、30%、50%、70%和90%。

2. 主试将P(SN)=0.1,P(N)=0.9分别从总体SN 和N 中随机取样,形成一个n=50的样本。

※抽取方法:将总体SN 洗匀,顺次取出5张,再将总体N 洗匀,顺次取出45张,最后将取出的50张卡片洗匀就可以用了。

3. 将A 和B 数字分布表(表1)给被试看,并对他说:“这是两个数字分布表,B 分布中的一部分和A 分布中的一部分是相同的。

实验时我每一次给你看一个数字,要你判断它是来自哪一个分布。

信号检测论的应用

信号检测论的应用

信号检测论在内隐记忆研究中的应用举例
研究题目:有关内隐学习规律的研究 实验设计:两因素多水平设计。第一个自变量是“有无回忆”, 为被试内变量,分成两个系列:A系列要求被试在记忆字母 串后做三次连减“3”的心算题目,当屏幕上出现“A”时, 回忆出整个字符串,每次回忆后有正确答案进行核对,以 保证记忆效果;B系列也要求被试在记忆字母串后做连减 “3”的心算题目,当屏幕上出现“B”时,要求回答算术答 案。第二个自变量为“信号与噪音的比例大小”。信号是 指含有“SCT”的字符串;噪音为不含有“SCT”的字符串。 该自变量有六个水平,即A、B两个系列中所含的“SCT”的 比例有6种,为被试间变量,所以有6个被试组。研究的主 要问题是A、B系列的再认指标d’是否与SCT的含量有关。
中国部分城市地震危险度排名

(UERDI值,指数越高风险越大) 1.石家庄0.35 6.南昌0.22 11.南京0.18 15.太原0.16 19.贵阳0.13 2.合肥0.25 7.杭州0.21 12.兰州0.17 16.西安0.15 20.南宁0.13 24.昆明0.11
—— 先定概率
4.海口0.23 9.成都0.18 5.长沙0.22 10.郑州0.18
信号检测论在再认研究中的应用举例
研究题目:识记材料类型对再认效果的影响 研究方法:信号检测论的有无法或评价法(讨论:具体如何实 施?),把学过的词或图形,即“旧”的刺激作为信号, 把没学过的词或图形,即“新”的刺激作为噪音。 实验设计:采用单因素完全随机设计。自变量为识记材料的类 型,分三个水平:具体事物图形,抽象图形,具体事物的 名词。 实验材料:包括各种类型的新旧图形各25张。(如果采用有 无法,考虑先定概率,实验材料可做如何安排?)
实验过程:首先呈现指导语。然后进行练习。接着进行 正式实验:以具体图形材料的实验为例,先呈现25张 旧图片,每张持续5秒钟,两张图片之间间隔2秒;呈 现完一遍后,把新旧图片混合,要求被试判断哪些是 新的,哪些是旧的,记录反应结果。 预期结果:根据记录的反应,计算出三个实验组每个被 试的P(y/SN) 和P(y/N);然后求出三个实验组每 个被试的d’和β;最后用单因素方差分析检验识记材 料类型的主效应是否显著,并用多重检比较三种类型 识记材料的识记效果的差别。

计算机控制系统实验

计算机控制系统实验

K PTD 0.36 K PU T
实验三 数字PID算法实验
(4)根据PID参数不同的控制作用,适当加以调 整,重复做几次,直至超调量小于20%、调节时间 小于1s。记录实验数据。
5. 实验报告内容
(1)编制应用软件程序实现数字PID控制器。给 出程序流程图和程序清单。 (2)给出PID参数整定的详细实验步骤。 (3)记录实验数据,分析实验结果。
2. 实验仪器
(1) (2) (3) (4) (5) 示波器 一台 MCS-51单片机开发系统 一套 直流稳压电源(±5V) 一台 个人PC机 一台 函数发生器(也可用程序自行编制)一台
实验五 最小拍无纹波控制算法实验
3. 实验原理
(1)过程原理 以 8 9 C51 单 片 机 为 核 心 , 将 8 位 A / D 转 换 器 ADC0809和DAC0832作为模/数和数/模转换环节, 针对阶跃输入,利用单片机系统实现最小拍无纹波 控制算法。借助示波器观测系统输出和控制器输出 来观察最小拍无纹波算法对控制系统的作用效果及 不同输入信号作用下的算法的适应性。记录实验数 据,分析最小拍无纹波控制算法的作用。
实验六 大林算法实验
(2)算法原理
1 eTs 10eTs 广义被控对象传递函数为 G( s) s s( s 1) 广义目标传递函数为
1 eTs eTs ( s) , T 0.2s, τ 0.1s s τs 1 则大林算法对应的数字控制器可表为
实验三 数字PID算法实验
(2)算法原理 数字PID控制算法可表述为
简记为
其中e(k)和u(k)分别为第k时刻的控制器的输入和 输出。
实验三 数字PID算法实验
4. 实验步骤
(1)按原理图E3.1连接实验电路。 (2)设定采样周期为50ms,参考输入为单位阶 跃输入,编制应用软件实现数字PID控制算法。 (3)利用临界比例带法整定PID参数:先去掉微 分和积分作用,增大KP,用示波器观测系统输出, 直至系统出现等幅振荡,记下振荡周期TU 和此时 的比例值KPU,按以下公式整定PID参数。 ① 用比例环节:KP=P=0.5KPU ② 用比例、积分调节(T取 1 TU ): 5 比例 KP=P=0.36KPU

信号监测论实验报告(3篇)

信号监测论实验报告(3篇)

第1篇一、实验目的本实验旨在通过信号监测论的研究方法,探讨被试者在不同噪声水平下对信号识别的能力,以及先验概率对判断标准的影响。

通过本实验,我们希望能够了解被试者的感知能力、判断标准和反应倾向,为后续相关研究提供理论依据。

二、实验方法1. 实验材料本实验采用文字材料作为信号,以随机生成的文字作为噪声。

实验材料分为信号和噪声两种,每种各50个。

2. 实验被试选取20名大学生作为实验被试,男女各半,年龄在18-22岁之间。

3. 实验仪器本实验采用信号监测论实验系统进行实验,包括电脑、显示器、键盘和鼠标。

4. 实验程序(1)实验开始前,向被试者说明实验目的、实验流程和注意事项。

(2)实验过程中,被试者需要根据电脑屏幕上显示的文字,判断其为信号或噪声。

每次判断后,系统会给出正确与否的反馈。

(3)实验分为两个阶段,第一阶段为信号识别阶段,第二阶段为噪声识别阶段。

(4)每个阶段分为5个难度等级,难度等级越高,噪声水平越高。

(5)每个难度等级下,被试者需要完成50次判断。

5. 实验数据收集实验过程中,记录被试者的判断结果、正确率、反应时间和先验概率。

三、实验结果与分析1. 信号识别阶段(1)随着噪声水平的增加,被试者的正确率逐渐降低。

(2)在低噪声水平下,被试者的正确率较高;在高噪声水平下,正确率较低。

(3)先验概率对被试者的判断标准有一定影响。

当先验概率较高时,被试者更倾向于判断为信号;当先验概率较低时,被试者更倾向于判断为噪声。

2. 噪声识别阶段(1)随着噪声水平的增加,被试者的正确率逐渐降低。

(2)在低噪声水平下,被试者的正确率较高;在高噪声水平下,正确率较低。

(3)先验概率对被试者的判断标准有一定影响。

当先验概率较高时,被试者更倾向于判断为噪声;当先验概率较低时,被试者更倾向于判断为信号。

四、讨论本实验结果表明,被试者在信号识别和噪声识别过程中,都受到噪声水平、先验概率和判断标准等因素的影响。

在低噪声水平下,被试者能够较好地识别信号和噪声;在高噪声水平下,正确率较低。

第六单元弱信号测量技术

第六单元弱信号测量技术

第六单元 弱信号测量技术 实验6-1 锁相放大实验随着科学技术和生产的发展,需要测量许多物理量的微小变化,例如:微弱电压、电流、磁场的变化,微小温度的变化,微小的电感,微小的电容,微小的位移、振动等,特别是极端条件下的微弱信号的测量,成为深化认识自然,开拓新材料、创造新器件的基础。

对上述微小变化的测量通常我们可以用传感器将其转化为相应的电信号,然后对这些电信号进行放大,再被我们显示和记录。

但由于这些微小的变化通过传感器转换成的电信号十分微弱,各种条件下的噪声和干扰很可能将这些微弱信号淹没,因此单纯的使用放大器将其放大,并不能将这些信号检测出来,因为一般放大器将噪声和干扰一起放大,而且由于放大器本身的噪声会将我们需要的信号淹没得更深。

由上述原因我们发现对于弱信号的检测用一般检测工具无能为力,但同样我们发现噪声和干扰是问题的关键。

如何在检测过程中将噪声和干扰去掉,只保留信号本身是解决弱信号的基本思路,从信号和噪声本身特性出发目前人们可以使用的基本方法有:a. 同步积累: 这种方法的要点在于将信号多次重复。

由于信号是周期性的重复,噪声不具有这一特性,每个周期的信号受到的噪声干扰不同,只要把这些受到不同干扰的信号多次重复,互相对照,就可以识别信号的原形,积累后的信噪比提高n 倍。

R XX (τ)=⎰-∞→-TTT dt t x t x T)()(21lim τb . 相关接收: 信号在时间轴上前后的相关性这一特点是利用作为微弱信号检测的基础,相关函数是线性相关的度量。

R XX (τ)=⎰-∞→-TTT dt t x t x T)()(21lim τ是自相关函数,它是度量一个随机过程在时间t 和t-τ两时刻线性相关的统计参数,当函数x(t)不包含周期性的分量,自相关函数R XX (τ)将从τ=0的最大值随τ的增大单调下降,到τ→∞,趋近于函数x(t)平均值的平方,与此相似Rxy(τ)=⎰-∞→-TTT dt t y t x T)()(21lim τ表示互相关函数,如果两个随机过程的发生完全没有关系(例如信号和随机噪声)互相关函数将是一个常数。

信号产生实验实验报告

信号产生实验实验报告

信号产生实验实验报告信号产生实验实验报告引言:在现代科学技术的发展中,信号产生是一项十分重要的实验。

无论是通信领域、电子工程还是生物医学等领域,信号产生都扮演着至关重要的角色。

本实验旨在通过实际操作,探索信号产生的原理和方法,以及对信号的性质和特点进行分析和研究。

一、实验目的本实验的主要目的是掌握信号产生的基本原理和方法,了解信号的性质和特点,并能够运用所学知识进行实际应用。

二、实验器材和原材料1. 信号发生器2. 示波器3. 电阻、电容、电感等元件4. 电源5. 连接线等三、实验步骤1. 准备工作:检查实验器材的正常工作状态,确保实验环境安全。

2. 连接信号发生器和示波器:使用连接线将信号发生器和示波器连接起来,确保信号的输出能够被示波器正确地接收和显示。

3. 选择信号类型:在信号发生器上选择所需的信号类型,如正弦波、方波、三角波等。

4. 调节信号参数:通过调节信号发生器上的频率、幅度等参数,改变信号的特性,观察示波器上信号的变化。

5. 添加电阻、电容等元件:通过在信号发生器和示波器之间添加电阻、电容等元件,改变信号的波形,观察信号的变化。

6. 记录观察结果:根据实验过程中的观察结果,记录信号的特性和变化规律,分析信号产生的原理和机制。

四、实验结果和分析通过实验观察和记录,我们发现信号的产生与频率、幅度、波形等参数密切相关。

当我们改变信号发生器上的频率时,示波器上的信号波形也会相应地发生变化。

当频率较低时,信号呈现出较为缓慢的变化,而当频率较高时,信号则呈现出较为快速的变化。

此外,当我们改变信号发生器上的幅度时,示波器上的信号振幅也会相应地发生变化。

通过添加电阻、电容等元件,我们还可以改变信号的波形,例如将正弦波转换为方波或三角波。

五、实验总结通过本次实验,我们深入了解了信号产生的原理和方法,掌握了信号的性质和特点。

信号产生在现代科学技术中具有广泛的应用,例如在通信领域中,信号的产生和传输是实现信息交流的基础;在电子工程中,信号的产生和处理是实现电路功能的关键;在生物医学领域中,信号的产生和检测是实现生物信号分析和诊断的重要手段。

实验心理学信号检测论

实验心理学信号检测论
如:假设有三个色子,其中两个是正常的,六面分别是1、2、3、4、5、6。第三个色子则不同,其中三个面是“3”,另三个面是“0”。三个色子抛完一次后,只告诉三个色子的总点数,要求根据总点数的数值判断第三个色子出现的是“3”还是“0”。猜对给予奖励,猜错则予以惩罚。 总点数T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 “0”的次数 1 2 3 4 5 6 5 4 3 2 1 0 0 0 “3”的次数 0 0 0 1 2 3 4 5 6 5 4 3 2 1 “0”的概率f(0) 100 100 100 80 71 67 56 44 33 29 20 0 0 0 “3”的概率f(3) 0 0 0 20 29 33 44 56 67 71 80 100 100 100信号检测论就是通过信号和噪音的两个概率分布来求被试的反应偏向和辨别能力的。 其他类似分布: 考试成绩(某得分的人数-通过率)
3. 优点:由于信号检测论能把感受性或心理辨别力的测量和被试的动机、态度等主观因素引起的反应偏向区分开,它能解决很多传统心理学方法不能解决的问题。 如:(1)精神分裂症患者大小恒常性的研究。在排除反应偏向后,比正常人低得多;(2)指导语对感觉阈限影响的实质的研究(Clark)。研究发现,阈限的变化由判断标准的变化造成。对于特定被试的诊断有重要意义。精神分裂症患者16名;32Hz信号,42Hz噪音;1600次;指导语1:“见到闪光就报告” ——促进性指导语指导语2:“确实有把握见到闪光再报告” ——抑制性指导语恒定刺激法结果:促进条件 36Hz; 抑制条件 33.3Hz信号检测论结果:促进条件 d’1.2 β1.3; 抑制条件 d’1.2 β2.14.适用条件:一般用于信号引起的感觉和干扰信号检测的噪音所引起的感觉不易分清的研究,或者主观倾向对实验结果影响较强的研究中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六LMS自适应滤波器设计仿真
专业:电子信息科学与技术学号:201200804053 姓名:王桂玲成绩
一、实验原理
1、自适应滤波原理
由Widrow B等提出的自适应滤波理论,是在维纳滤波、卡尔曼滤波等线性滤波基础上发展起来的一种最佳滤波方法。

由于它具有更强的适应性和更优的滤波性能,从而广泛应用于通信、系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测和自适应天线阵等诸多领域。

自适应滤波器最大的优点在于不需要知道信号和噪声的统计特性的先验知识就可以实现信号的最佳滤波处理。

自适应滤波原理图,如图1所示。

图1自适应滤波原理图
在自适应滤波器中,参数可调的数字滤波器一般为FIR数字滤波器,IIR数字滤波器或格型数字滤波器。

自适应滤波分2个过程。

第一,输入信号x(n)通过参数可调的数字滤波器后得输出信号y(n),y(n)与参考信号d(n)进行比较得误差信号e(n);第二,通过一种自适应算法和x(n)和e(n)的值来调节参数可调的数字滤波器的参数,即加权系数,使之达到最佳滤波效果。

2、 LMS算法及相关参数的选择
end;LMS算法是基于最小均方误差准则的自适应滤波算法,最核心的思想是用平方误差代替均方误差。

因此该算法简化了计算量。

在自适应噪音抵消系统中,如自适应滤波器参数选择不当,就达不到应有的滤波效果,而且还可能得到适得其反的效果。

因此针对不同的信号和噪声应选择相应的参数。

可见,参数的选择对滤波效果是至关重要的。

下面仅以L阶加权自适应横向滤波器为例,推导LMS 算法的公式。

L阶加权自适应横向滤波器,如图2所示。

图2 L 阶加权自适应横向滤波器
LMS 算法公式推导:
设()()()()1......x T
n x n x n x n L =--⎡⎤⎣⎦;
()()()()01......w T
L n w n w n w n =⎡⎤⎣⎦;
其中()x n 为输入信号,()w n 为加权系数(滤波器的冲激响应)。

滤波器输出信号:y(n)=()()n n T x w =()()n n T w x
误差信号:()()()()()()()()()e n d n y n d n n n d n n n =-=-=-T T x w w x (1) 公式(1)中d (n )为参考信号,y(n) 为输出信号。

误差信号均方值:()()2n E e n ξ⎡⎤=⎣⎦
(2)
由公式(1)和公式(2)得: 均方误差性能曲面的梯度:
()()()()()()()ˆˆ22x w w
n e n n n e n e n n ξ∂∂∇≈∇===-∂∂ (3) 而最陡下降法迭代计算全矢量公式:()()()1w w n n n μ+=-∇ (4) 公式(4)中μ为控制稳定性和收敛速度的参数。

由公式(3)和公式(4)得:
()()()()12w w x n n e n n μ+=+ (5)
公式(5)说明了LMS 算法的核心是用每次迭代的粗略估计值代替了实际的
精确值,这样大大简化了计算量,但是不可否认,加权系数不可能准确的沿着理想的最陡下降路径来调整自身的参数,而加权系数与µ有着密切的关系。

因此,适当的选择自适应滤波器性能参数µ显得格外重要。

二、实验任务:
通过设计一个二阶加权系数自适应横向FIR滤波器,对一正弦信号加噪声信号进行滤波。

1、首先生成一个标准正弦波信号s(n)=sin(2πn)和一个均值为0,方差为0.6
的高斯白噪声信号n(n),然后将s(n)与n(n)相加就得到了加噪后的正弦信号x(n)
要求:时间长度1s,时间点数10000(即迭代次数)
2、再依照由LMS算法推导出来的公式(5),设计自适应滤波算法,对噪声干扰
信号进行滤波,最后得到滤波后的信号e(n)。

要求:绘图(1)加噪声后的正弦信号波形(2)自适应滤波后的信号波形
3、改变二阶加权系数再观察自适应滤波后的信号波形
W(n)=[0,0]、W(n)=[0,0.5]、W(n)=[0,1]、W(n)=[0.5,0]、W(n)=[0.5,0.5] 、W(n)=[0.5,1]。

4、改变不同的µ值:0.000026、µ=0.26、µ=1,观察滤波结果。

二阶加权系数和µ值对滤波效果的影响?
参考程序如下:
w=[0,0.5];%初始2阶加权系数
u=0.00026;%最佳参数
for i=1:9999;%自适应算法
y(i+1)=n(i:i+1)*w';
e(i+1)=x(i+1)-y(i+1);
w=w+2*u*e(i+1)*n(i:i+1);
µ取0.00026时的滤波效果图
三、实验程序及结果
clear;
close all;
clf;
N=5000;%输入信号抽样点数
t=0:6/(N-1):6;
s=sin(2*pi*t);%标准正弦信号
n=sqrt(1)*randn(size(t));%与时间t等长随机信号
x=s+n;%加噪信号
k=100;%滤波器阶数
pp=zeros(k,N-k);%均方误差的初值
u=0.00026;%迭代步长
for q=1:k
yn1=zeros(1,N);%output signal初值
yn1(1:k)=x(1:k);%将输入信号s的前k个值作为输出信号的前k个值
w=zeros(1,k);%设置自适应滤波器的权系数初值
e=zeros(1,N);%误差信号
%用LMS算法迭代滤波
for i=k+1:N
xn=x((i-k+1):i);
yn1(i)=w*xn';
e(i)=s(i)-yn1(i);
w=w+2*u*e(i)*xn;
end
pp(q,:)=(e(k+1:N)).^2;%均方误差
end
subplot(211),plot(t,x);title('被噪声污染的正弦信号');
subplot(212),plot(t,s,'r',t,yn1,'g'); % 对消噪声后,误差信号即为对原始信号的估计
legend('原始正弦信号','自适应滤波后的信号');
title('滤波效果');
0123456
-5
5
被噪声污染的正弦信号
1
2
3
4
5
6
-4-2024滤波效果
clear all; clc; delta = 1/100;
t = 0:delta:10; % 转换成列向量 s = sin(2*pi*t); sigma_n0 =1;
n0 = sigma_n0*randn(size(t));
x = s + n0; % 原始输入端的输入信号,为被噪声污染的正弦信号 m=length(t); rxx=xcorr(x); for i=1:100 for j=1:100
mrxx(i,j)=rxx(m-i+j); end end xd=s;
%产生维纳滤波中x 方向上观测信号与期望信号的互相关矩阵 rxd=xcorr(x,xd); for i=1:100
mrxd(i)=rxd(m-1+i); end
hoptx=inv(mrxx)*mrxd';%由维纳-霍夫方程得到的x 方向上的滤波器最优解 fx=conv(x,hoptx);%滤波后x 方向上的输出
% 图像化仿真效果
subplot(211),plot(t,x);title('被噪声污染的正弦信号');
subplot(212),plot(fx); % 对消噪声后,误差信号即为对原始信号的估计 legend('维纳滤波后效果'); title('维纳滤波后效果');
012345678910
-5
5
被噪声污染的正弦信号
1
2
3
4
5
6
7
8
9
10
-10-50510滤波效果
四、实验结论
1、通过做该实验,我掌握了自适应滤波原理以及LMS 算法及相关参数的选择。

2、做该实验可以改变其参数,例如改变迭代步长u 的值改成0.004结果如下
012345678910
-5
5
被噪声污染的正弦信号
012345678910
-5
5
滤波效果
3、做该实验要认真的按照实验要求做,认真仔细的写出程序。

4、做实验过程中,经常会出现程序错误,应当仔细认真的寻找出错误修改,通过与同学讨论或向老师请教得出了正确的结果。

、。

相关文档
最新文档