Two dimensional speckle tracking echocardiography basic principles

合集下载

超声生物力学技术及指标评价高血压左室收缩功能的新进展

超声生物力学技术及指标评价高血压左室收缩功能的新进展

超声生物力学技术及指标评价高血压左室收缩功能的新进展摘要:组织多普勒成像(TDI)及由其衍生而出的心肌作功指数(MPI)和斑点追踪超声波心动描技术(STE)是近年来逐渐用于超声心动图评价左室功能的新技术和新指标,明确它们的优缺点并根据需要结合使用有助于提高诊断效能。

故将上述超声生物力学技术及指标在评价高血压患者左室收缩功能方面进行综述。

关键词:组织多普勒成像;心肌作功指数;斑点追踪技术;左室收缩功能;高血压【中图分类号】R614.8【文献标识码】A【文章编号】 1001-5213(2016)09-0169-02目前在全球影响心血管疾病的发病率、致残率及死亡率的一个主要危险因素就是高血压。

长期的高血压会导致左心室肥厚,进而诱发和加重左室功能恶化,最终导致充血性心力衰竭。

而左室收缩功能是高血压预后重要的预测因素,因此,在高血压患者中尽可能早的发现左室收缩功能的改变并及时给予对症治疗,可显著降低发生心力衰竭的风险率,对改善高血压的预后至关重要。

现将有助于辅助临床对高血压患者早期心脏功能评价及治疗的一些与超声生物力学相关的方法及指标作一综述。

一、组织多普勒成像(Tissue Doppler Imaging,TDI)是在1992年由McDick-en等[1]率先提出,利用的则是著名的多普勒现象。

它从心肌运动的角度来计算心肌应变和应变率,进一步拓展了评价心功能的视角。

心肌应变是指心肌收缩和舒张过程中发生相对变形的能力和程度,可直接用于评价心肌的收缩和舒张功能,是反映心肌收缩性的客观指标。

它在心肌发生明显结构改变之前就表现出运动能力的变化,有助于早期评价心脏功能。

心肌应变能比其它常规超声心动图参数更早检测到亚临床器官损害。

Kang et al. [2]报道,左室收缩功能正常的高血压患者的纵向应变是下降的,并且与基质金属蛋白酶-1组织抑制剂的血清水平相关,它是一个心肌纤维化的指标。

TDI可以测量二尖瓣环运动,在射血分数正常的高血压患者二尖瓣环运动速度减低[3],可用于检测亚临床左室收缩功能障碍[4]。

超声新技术评估心房颤动患者心室结构和功能的应用进展

超声新技术评估心房颤动患者心室结构和功能的应用进展

·综述·心房颤动(以下简称房颤)是最常见的室上性心律失常,我国35岁以上的房颤患者超过487万例,其中75岁以上老年人患病率约3%[1]。

既往研究[2]表明,房颤不仅可对左房结构和功能产生较大影响,同时也会损害心室结构和功能。

因此,准确、有效地评估房颤患者心室结构和功能变化具有十分重要的临床意义。

本文就经食管超声心动图(transesophageal echocardiography ,TEE )、实时三维超声心动图(real-time three-dimensional echocardiography ,RT-3DE )、斑点追踪超声心动图(speckle tracking echocardiography ,STE )和超声心肌做功技术评估房颤患者心室结构和功能的应用进展进行综述。

一、与房颤相关的心室结构和功能改变由于房颤患者长期不能有效地控制心室率,肾素-血管紧张素系统及交感神经系统被激活,心肌细胞结构发生异常,进而导致心室重构。

包括电重构和结构重构,其中心室结构重构主要表现为心肌纤维化及心腔扩大[3]。

房颤引起患者心脏泵血功能减退,左室结构发生改变,最终导致左室功能减低,且左室纤维化程度越高,其死亡率也越高[4]。

与左室壁相比,右室壁更薄,房颤导致心室超负荷代偿,其协调性和代偿能力均减弱,容量负荷持续增大,最终造成右室扩大及功能减低。

二、超声新技术评估房颤患者心室结构和功能的应用进展(一)TEE 评估房颤患者心室结构和功能经胸超声心动图成像受多种因素干扰,而TEE 检查更贴近心脏、干扰更少,可更清晰地显示心室结构。

TEE 评估房颤患者心室结构和功能的常用指标包括:心室舒张末期容积、心室基金项目:国家自然科学基金项目(82071926);重庆医科大学附属第二医院卓越创新临床研究项目(2022ZYLCYJ002)作者单位:400010重庆市,重庆医科大学附属第二医院超声科超声分子影像重庆市重点实验室通讯作者:刘丹妮,*******************超声新技术评估心房颤动患者心室结构和功能的应用进展黄璇冉海涛刘丹妮摘要心房颤动(以下简称房颤)是最常见的室上性心律失常,不仅影响心房功能,还会导致心室结构和功能异常,因此早期准确地评估房颤患者心室结构和功能变化对治疗方案制定及预后评估均具有重要的临床意义。

二维斑点追踪技术对缺血性与非缺血性扩张型心肌病的鉴别诊断价值

二维斑点追踪技术对缺血性与非缺血性扩张型心肌病的鉴别诊断价值

•临床研究•二维斑点追踪技术对缺血性与非缺血性扩张型心肌病的鉴别诊断价值左后娟张焱马飞李瑞段全炉王红摘要目的探讨二维斑点追踪(2D-STE)技术鉴别缺血性扩张型心肌病(IDCM)与非缺血性扩张型心肌病(NIDCM)的临床应用价值。

方法选取我院经冠状动脉造影证实的41例IDCM患者(IDCM组)和43例NIDCM患者(NIDCM组),另选24例健康者为对照组。

行常规超声检测各组左室射血分数(LVEF)、左室舒张末期内径、室间隔厚度及左室后壁厚度;2D-STE检测两组左室整体纵向应变(GLS)、环向应变(GCS)、径向应变(GRS)。

比较各组上述各参数差异。

绘制受试者工作特征(ROC)曲线分析LVEF及2D-STE参数鉴别NIDCM与IDCM的诊断效能。

结果NIDCM组LVEF较IDCM组明显减低(P<0.05),余常规超声参数两组比较差异均无统计学意义。

NIDCM组与IDCM组GLS比较差异无统计学意义,但两组GLS均显著低于对照组(均P<0.05);NIDCM组GCS和GRS均显著低于IDCM组[(-5.4±2.6)%vs.(-7.0±2.5)%,(7.5±4.5)%vs.(10.7±4.7)%],差异均有统计学意义(均P<0.05)。

ROC曲线分析结果显示,LVEF截断值为33.5%时,鉴别NIDCM与IDCM的曲线下面积为0.620,敏感性为51%,特异性为72%;GLS截断值为-10.1%时,鉴别NIDCM与IDCM的曲线下面积为0.525,敏感性为51%,特异性为63%;GCS截断值为-6.7%时,鉴别NIDCM与IDCM的曲线下面积为0.688,敏感性为65%,特异性为68%;GRS截断值为8.5%时,鉴别NIDCM与IDCM的曲线下面积最大,为0.701,敏感性为66%,特异性为74%。

结论IDCM患者和NIDCM患者左室心肌各节段应变值均明显减低;2D-STE可用于鉴别IDCM与NIDCM,其中GRS检测可用于临床对IDCM与NIDCM的初步分层。

实时三维超声心动图和二维斑点追踪成像技术评价高血压病患者左心房功能

实时三维超声心动图和二维斑点追踪成像技术评价高血压病患者左心房功能

实时三维超声心动图和二维斑点追踪成像技术评价高血压病患者左心房功能陈斌;周丽英;林东;郭薇;戴莹;叶振盛【摘要】目的探讨实时三维超声心动图(RT-3DE)和二维斑点追踪成像技术(2D-STI)评价高血压病患者左心房功能的价值.方法收集健康对照组33例,高血压组56例.应用RT-3DE分别测量左心房最大容积(LAVmax)、左心房收缩前容积(LAVpre)及左心房最小容积(LAVmin),经体表面积(BSA)矫正后,计算出左心房最大容积指数(LAVImax)、左心房收缩前容积指数(LAVIpre)及左心房最小容积指数(LAVImin),并计算左心房每搏量(LASV)、左心房射血分数(LAEF)、左心房被动射血分数(LAPEF)及左心房主动射血分数(LAAEF).应用2D-STI测得左心房各壁中间段心肌长轴方向运动的应变率曲线,测量左心室收缩期左心房各壁中间段峰值应变率(SRs)、左心室舒张早期和舒张晚期即心房收缩期左心房峰值应变率(SRe和SRa),计算其平均值(即mSRs, mSRe及mSRa),代表左心房整体应变率,并行LAEF与mSRs、LAAEF与mSRa、LAPEF与mSRe的相关性分析.结果高血压组的LAVImax,LAVImin,LAVIpre及LASV均大于对照组,而LAEF及LAPEF均小于对照组(P<0. 05), 2组的LAAEF差别则无统计学意义(P>0. 05);高血压组的mSRs及mSRe均小于对照组(P<0. 05),2 组的 mSRa 差别则无统计学意义(P>0.05);mSRe 与 LAPEF、mSRa 与 LAAEF、mSRs 与 LAEF 之间呈正相关关系(P<0.01). 结论高血压病患者左心房的储蓄及管道功能减弱,可利用RT-3DE联合2D-STI技术从不同角度综合评价患者的左心房功能.%Objective To evaluate the value of real-time three-dimensional echocardiography (RT-3DE) and two-dimensional speckle tracking imaging (2D-STI) for the left atrial function in patients with hypertension. Methods 33 healthy volunteers as normalcontrol group and 56 hypertension patients were enrolled. By using RT-3DE the left atrial maximal volume (LAVmax), left atrial presystolic volume(LAVpre),and left atrial minimal volume (LAVmin) were measured. The left atrial maximal volume index (LAVImax), left atrial presystolic volume index (LAVIpre),and left atrial minimal volume index(LAVImin) were calculated by dividing the body surface area (BSA). Then the left atrial stroke volume(LASV),left atrial total ejection fraction (LAEF),left atrial passive ejection fraction(LAPEF),and left atrial active ejection fraction (LAAEF) were calculated. The strain rate curves of the long axis of the middle wall of the left atrium (septal, lateral,anterior, inferior and posterior) were acquired by 2D-STI. The left ventricular systolic peak strain rate (SRs),left ventricular early diastolic peak strain rate(SRe),and late diastolic that was left atrial systolic peak strain rate (SRa) were measured. Average strain rate was calculated (mSRs,mSRe, mSRa),which represented the overall strain rate of the left atrium. Finally, the correlation analysis between LAEF and mSRs,LAAEF and mSRa, LAPEF and mSRe were performed. Results Compared with normal group, LAVImax, LAVImin, LAVIpre and LASV were increased in hypertensive group, while LAPEF and LAEF were reduced. The mSRs and mSRe were decreased in comparison to those in the normal group. The above results were statistically significant(P<0.05). There were no significant differences in mSRa or LAAEF between the two groups(P>0.05). There was a positive correlation between mSRe and LAPEF, mSRa and LAAEF, mSRs and LAEF (P<0.01). Conclusions In patients with hypertension, the conduit function and reservoir functionwere weakened. RT-3DE combined with 2D-STI technique can evaluate the left atrial function in hypertensive patients from different angles, which had good clinical value.【期刊名称】《福建医科大学学报》【年(卷),期】2018(052)001【总页数】5页(P24-28)【关键词】超声心动描记术;高血压;左心房功能【作者】陈斌;周丽英;林东;郭薇;戴莹;叶振盛【作者单位】福建医科大学省立临床医学院,福建省立医院心内科,福州 350001;福建医科大学省立临床医学院,福建省立医院心内科,福州 350001;福建医科大学省立临床医学院,福建省立医院超声科,福州 350001;福建医科大学省立临床医学院,福建省立医院超声科,福州 350001;福建医科大学省立临床医学院,福建省立医院超声科,福州 350001;福建医科大学省立临床医学院,福建省立医院超声科,福州350001【正文语种】中文【中图分类】R331.31;R540.45;R541;R44.1既往左心房功能主要通过二维超声心动图测量左心房的大小及多普勒血流显像技术测量二尖瓣和肺静脉血流频谱等来评价[1],但前者受左心房几何形态的影响,后者受测量角度、心脏前后负荷状态以及房室间压力梯度等诸多因素的影响,因此测量结果存在一定的误差。

二维斑点追踪技术评估呼吸窘迫综合征早产儿左室心肌功能

二维斑点追踪技术评估呼吸窘迫综合征早产儿左室心肌功能

•临床研究•二维斑点追踪技术评估呼吸窘迫综合征早产儿左室心肌功能庞虹江岚廖剑艺陈智毅摘要目的应用二维斑点追踪(2D-STI)技术评估呼吸窘迫综合征(NRDS)早产儿左室心肌功能。

方法选取在我院岀生的新生儿41例,其中NRDS早产儿20例(NRDS早产组),非NRDS早产儿10例(非NRDS早产组),足月正常新生儿11例(足月对照组)。

应用2D-STI技术获取各组不同切面左室整体纵向峰值应变(LV-GLPS)及各室壁应变测值;并收集左室常规超声参数,包括左室射血分数(LVEF)、二尖瓣舒张早期和晚期血流速度峰值(MV-E和MV-A)、二尖瓣环收缩期组织运动速度(MV-S')、二尖瓣环收缩期位移(MAPSE)和左室Tei指数,并对各组上述参数进行比较分析。

结果各组MV-S'、MAPSE、左室Tei指数比较差异均有统计学意义(均P<0.05)。

NRDS早产组MV-S'减低、MAPSE减低,左室Tei指数增高,与非NRDS早产组和足月对照组比较差异均有统计学意义(均P<0.05)。

各组左室纵向峰值应变(除心尖四腔心切面LV-GLPS和后壁应变外)及组间比较差异均有统计学意义(均P<0.05);NRDS早产组除四腔心切面LV-GLPS、下壁、后壁应变外,左室纵向峰值应变均较非NRDS早产组和足月对照组减低,差异均有统计学意义(均P<0.05);非NRDS早产组与足月对照组除下壁应变比较差异有统计学意义外,余应变参数比较差异均无统计学意义。

结论2D-STI技术可早期发现NRDS早产儿左室心肌受损情况;NRDS早产儿左室心肌功能较非NRDS早产儿及正常新生儿减低。

关键词超声心动描记术;斑点追踪;新生儿呼吸窘迫综合征;早产儿;心功能,左[中图法分类号]R540.45;R542.2[文献标识码]AEvaluation of the left ventricular myocardial function in preterm infants with neonatal respiratory distress syndrome by two-dimensionalspeckle tracking imagingPANG Hong,JIANG Lan,LIAO Jianyi,CHEN ZhiyiDepartment of Ultrasound Medicine,the Third Affiliated Hospital of Guangzhou Medical University,Guangzhou510150,ChinaABSTRACT Objective To evaluate left ventricular myocardial function in neonatal respiratory distress syndrome (NRDS)by two-dimensional speckle tracking imaging(2D-STI).Methods Forty-one newborns were selected in our hospital, including20NRDS premature infants(NRDS premature group),10cases of non-NRDS premature infants(non-NRDS premature group),and11cases of full-term normal newborns(full-term control group). 2D-STI were used to obtain the global longitudinal peak strain(LV-GLPS)and wall strain measurements of the left ventricle in the three groups.Left ventricular ejection fraction(LVEF),peak values of early and late diastolic blood flow velocity of mitral valve(MV-E,MV-A)and tissue velocity of mitral annulus during systole(MV-S'),mitral annular plane systolic excusion(MAPSE)and left ventricular Tei index of the three group were collected and compared.Results MV-S',MAPSE and left ventricular Tei index were significant difference among three groups(all P<0.05).Compared with non-NRDS premature group and full-term control group,MV-S'and MAPSE were decreased and left ventricular Tei index was increased in NRDS premature group,the differences were statistically significan(t allP<0.05). Except LV-GLPS-A4C and posterior wall,the longitudinal peak strain of left ventricle in each group were significant difference,the differences were statistically significant(all P<0.05).Except LV-GLPS-A4C,inferior wall and posterior wall strain,the longitudinal peak strain of left ventricle in NRDS premature group were lower than that in non-NRDS premature group基金项目:2019年广州医科大学开放实验室项目(C195015026);广东省教育厅普通高校人工智能重点领域专项(2019KZDZX1032);广州市卫生健康科技项目(2019A011086)作者单位:510150广州市,广州医科大学附属第三医院超声医学科通讯作者:陈智毅,Email:********************.cnand full-term control group,the differences were statistically significant(all P<0.05).Except inferior wall strain in non-NRDS premature group and full-term control group,there was no significant difference of rest strain parameters between the two groups. Conclusion2D-STI technology can early detect the left ventricular myocardial damage of premature infants with NRDS.The left ventricular myocardial function of premature infants with NRDS is lower than that of non-NRDS and normal neonates .KEY WORDS Echocardiography;Speckle tracking;Neonatal respiratory distress syndrome;Preterm infant;Cardiac function,left近年来,由于高龄孕妇的增加,伴随着妊娠并发症导致的早产率也随之增多。

二维斑点追踪技术在心血管疾病中的应用

二维斑点追踪技术在心血管疾病中的应用
2 二维斑点追踪技术在缺血性心脏病左心室功能分 析上的应用
流行病调查显示全球每年死亡率为 230/10 万,我国 106/10 万。二维
斑点追踪技术通过较高时间和空间分辨率测量心肌应变来评估左 心室功能。这是一个相对独立的参数,不受心脏运动的影响,可以 沿三维集合(纵向、径向和周向)轴同时评估整个心肌。斑点追踪 技术同时还可以分析左室扭转情况。对于左室收缩功能的量化来 说,心 肌 应 变 是 一 个 良 好 的 定 量 指 标,现 在 这 同 样 适 用 于 斑 点 追 踪 技 术 超 声 检 测 。 最 好 的 应 变 参 数 评 估 是 整 体 纵 向 应 变( G l o b a l Longitudinal Strain,GLS),这是比常规测量左室射血分数(LVEF) 收缩功能更敏感的指标,应变可以用来诊断心肌缺血,作为早期诊 断 IHD 的无创性检查方法。
别是 1.8% 和 2.2%。在感兴趣区(ROC)分析 GLS 显示在预测重 度狭窄的冠心病上呈低阳性预测值 0.73(95% 可信区间 0.57-0.86)和阴性预测值为 0.63(95% 可信区间 0.75--0.92)。与 GLS 和 RLS 相比,收缩延长时间的曲线下面积为 0.83(95% 可信区间 0.75-0.92),其诊断重度冠脉狭窄的准确性更高。
3 二维斑点追踪技术在冠心病患者左心功能中的应用
冠心病是由于冠脉脂质斑块形成所致管腔狭窄,导致心肌缺 血缺氧。虽然目前临床中诊断冠心病的诊断金标准仍为冠状动脉 造影,但是冠脉造影前先 STI 检测仍有重大意义。STI 在心肌缺 血方面的临床价值非常显著,尤其是局部缺血的心功能定量评价。 研究显示二维斑点追踪技术能够在静息状态下定量检测出重度冠 脉狭窄所引发的左心室壁节段性运动异常 [4],常规超声心动图则 无法检测出,这可能隐匿已经存在的病变而导致诊断延迟。冠脉 血管低灌注最易侵犯心内膜下心肌,Gjesdalo 等 [5] 通过研究冠脉 血管狭窄 >70% 的患者,在心脏收缩期,心肌缺血区的长轴应变率 明 显 低 于 正 常 区 域 心 肌,其 特 异 度 达 93%,敏 感 度 93%。BjorkIngul 等 [6] 应用多巴酚丁胺负荷超声心动图分析室壁运动与应变 对缺血心肌的预测价值。充分证明了二维斑点追踪技术克服了 TDI 的角度依赖性。Choi 等 [7] 研究表明,或许左室收缩期 LS 将 成为筛选静息状态下重度冠脉狭窄节段性运动异常的重要指标。 Smedsrud 等 [8] 调查了 86 例冠心病患者,基于负向收缩峰值应变 值,从 3 个顶端视图模型上测量了整体纵向应变,GLS 和 RLS 之 间预测重度冠状动脉狭窄和轻度冠状动脉狭窄之间的平均差异分

二维斑点追踪技术评价急性心肌梗死合并心力衰竭患者主动脉球囊反搏治疗前后左心室收缩功能变化

二维斑点追踪技术评价急性心肌梗死合并心力衰竭患者主动脉球囊反搏治疗前后左心室收缩功能变化

中华实用诊断与治疗杂志2021年1月第35卷第1期J Chin Pract Diagn Ther,Jan.2021,Vol.35,No.1・63・•论著.二维斑点追踪技术评价急性心肌梗死合并心力衰竭患者主动脉球囊反搏治疗前后左心室收缩功能变化马玉磊I,李亚琼I,颜宁I,郑磊I,周琦I,曹雪明2,张静2,田新桥I1.河南省人民医院超声科华中阜外医院,河南郑州450003;2.河南省人民医院心脏中心华中阜外医院冠心病重症医学科,河南郑州450003摘要:目的观察急性心肌梗死合并心力衰竭患者主动脉球囊反搏(intra-aortic balloon pump,IABP)治疗前、后左心室收缩功能变化,探讨二维斑点追踪技术评价IABP治疗效果的应用价值。

方法33例急性心肌梗死合并心力衰竭患者均采用IABP治疗。

应用二维斑点追踪技术检测治疗前、后左心室整体收缩期纵向峰值应变(global longitudinal peak strain,GLS),包括四腔观GLS、三腔观GLS、两腔观GLS、平均GLS和左心室峰值纵向应变离散度;比较治疗前、后左心室舒张末期容积、左心室收缩末期容积、左心室搏出量、左室射血分数。

结果IABP治疗后,33例患者左室射血分数[(43.27+10.71)%]、四腔观GLS[(9.53±3.87)%]、三腔观GLS[(9.41±4.30)%]、两腔观GLS[(9.6O±3.32)%]、平均GLSE(9.00±3.60)%]均高于治疗前[(37.03士12.95)%、(7.28士3.21)%、(6.81±2.99)%、(7.35±3.15)%、(7.15±2.77)%](P<0.05),左心室峰值纵向应变离散度[(5&12±19.89)s]低于治疗前[(75.27±26.85)s](P<0.05).左心室舒张末期容积[(114.03士30.61)mLL左心室搏出量[(48.48+16.33)mb]和左心室收缩末期容积[(65.42士25.15)mL]与治疗前[(113.76±31.77),(40.94+17.68),(72.88±29.67)mL]比较差异均无统计学意义(P>0.05)o结论IABP可改善急性心肌梗死合并心力衰竭患者左心室收缩功能。

二维斑点追踪超声心动图评价非缺血性心肌病和缺血性心肌病的左心室功能

二维斑点追踪超声心动图评价非缺血性心肌病和缺血性心肌病的左心室功能

[收稿日期]㊀2020-01-26[修回日期]㊀2021-02-07[基金项目]㊀国家自然科学基金项目(81873535)[作者简介]㊀朱慧,硕士,医师,研究方向为胸部心脏影像学,E-mail 为huizhu8623@㊂通信作者张焱,硕士,医师,研究方向为冠状动脉血管成像,E-mail 为hrcelery@㊂[文章编号]㊀1007-3949(2021)29-07-0595-05㊃临床研究㊃二维斑点追踪超声心动图评价非缺血性心肌病和缺血性心肌病的左心室功能朱慧1,左后娟2,马飞2,李瑞2,王红2,张焱2(华中科技大学同济医学院附属同济医院1.放射科,2.心血管内科,湖北省武汉市430030)[关键词]㊀二维斑点追踪超声心动图;㊀非缺血性心肌病;㊀缺血性心肌病;㊀左心室功能;㊀整体纵向应变;㊀局部纵向应变[摘㊀要]㊀目的㊀应用二维斑点追踪超声心动图(2D-STE )评价非缺血性心肌病(NICM )和缺血性心肌病(ICM )的左心室功能变化㊂方法㊀选择2014年9月 2017年2月华中科技大学同济医学院附属同济医院心血管内科收治的心脏扩大且合并左心室收缩功能降低的84例患者,根据冠状动脉造影结果分为NICM 组43例和ICM 组41例㊂行常规超声心动图及2D-STE 分析NICM 和ICM 患者的左心室功能㊂结果㊀NICM 组左心室射血分数(LVEF )较ICM 组明显减低(P <0.05),但两组间左心室舒张期末内径㊁室间隔厚度及左心室后壁厚度差异均无统计学意义㊂2D-STE 结果显示NICM 组和ICM 组整体纵向应变值之间无显著性差异,NICM 组心尖段局部纵向应变值(RLS )增高(P <0.05),基底段RLS 降低(P <0.01)㊂受试者工作特征曲线结果显示,基底段RLS /(中间段RLS +心尖段RLS )比值区别NICM 与ICM 的价值最高,其曲线下面积为0.792,截断值为0.47,灵敏度为63.4%,特异度为88.4%㊂结论㊀NICM 和ICM 患者具有不同的二维应变超声特点;2D-STE 应变分析有助于NICM 和ICM 的鉴别诊断㊂[中图分类号]㊀R54[文献标识码]㊀AEvaluation of left ventricular function in patients with non-ischemic cardiomyopathy and ischemic cardiomyopathy by two-dimensional speckle tracking echocardiographyZHU Hui 1,ZUO Houjuan 2,MA Fei 2,LI Rui 2,WANG Hong 2,ZHANG Yan 2(1.Department of Radiology ,2.Department of Cardiology ,Tongji Hospital ,Tongji Medical College ,Huazhong University of Science and Technology ,Wuhan ,Hubei 430030,China )[KEY WORDS ]㊀two-dimensional speckle tracking echocardiography;㊀non-ischemic cardiomyopathy;㊀ischemic car-diomyopathy;㊀left ventricular function;㊀global longitudinal strain;㊀regional longitudinal strain[ABSTRACT ]㊀㊀Aim ㊀To evaluate left ventricular function in patients with non-ischemic cardiomyopathy (NICM)and ischemic cardiomyopathy (ICM)by two-dimensional speckle tracking echocardiography (2D-STE).㊀㊀Methods ㊀From September 2014to February 2017,84patients with enlarged hearts and reduced left ventricular systolic function admitted to the Department of Cardiology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology were selected.㊀According to the results of coronary angiography,the patients were divided into NICM group (n =43)andICM group (n =41).㊀Routine echocardiography and 2D-STE were performed to analyze left ventricular function in patients with NICM and ICM.㊀㊀Results ㊀The left ventricular ejection fraction (LVEF)in NICM group was significantly lower than that in ICM group (P <0.05),but there was no significant difference in left ventricular end-diastolic diameter,inter-ventricular septum thickness and left ventricular posterior wall thickness between the two groups.㊀2D-STE results showed that there was no significant difference in global longitudinal strain value between NICM group and ICM group.㊀In NICM group,regional longitudinal strain value (RLS)in apical segment increased (P <0.05),while RLS in basal segment de-creased (P <0.01).㊀The results of receiver operating characteristic curve showed that the basal RLS /(middle RLS +apicalRLS)ratio had the highest value in distinguishing NICM from ICM,and the area under the curve was0.792,the cut-off value was0.47,the sensitivity was63.4%,the specificity was88.4%.㊀㊀Conclusions㊀Patients with NICM and ICM have different characteristics of two-dimensional strain ultrasound.㊀2D-STE strain analysis is helpful in the differential di-agnosis of NICM and ICM.㊀㊀缺血性心肌病(ischemic cardiomyopathy,ICM)是指由冠状动脉粥样硬化引起长期心肌缺血,导致心肌弥漫性纤维化,引起心肌逐步变形㊁坏死,导致左心室射血分数(left ventricular ejection fraction, LVEF)严重降低的心血管疾病[1-2]㊂ICM产生的临床综合征与原发性扩张型心肌病类似,尤其在没有心肌梗死或血运重建病史的情况下,临床上很难分辨出扩张型心肌病是ICM还是非缺血性心肌病(non-ischemic cardiomyopathy,NICM)[2]㊂但是, NICM和ICM的区分对于临床治疗策略的选择和预后判断很重要㊂基于斑点追踪成像技术的二维斑点追踪超声心动图(two-dimensional speckle tracking echocardiography,2D-STE)能早期㊁无创㊁定量评价各节段心肌变形程度,尤其在评价局部及整体心肌功能方面具有更高的诊断价值[3-4]㊂2D-STE在冠心病㊁糖尿病心肌病㊁微血管病变方面能够发现相应的改变,但是在NICM和ICM的左心室收缩功能评价上是否有区别还不清楚㊂本研究应用2D-STE定量分析NICM和ICM的左心室功能变化㊂1㊀资料和方法1.1㊀研究对象选取2014年9月 2017年2月华中科技大学同济医学院附属同济医院心血管内科收治并诊断为左心力衰竭的84例患者㊂纳入标准:①窦性心律;②常规超声心动图检查提示左心扩大,左心室舒张期末内径(left ventricular end-diastolic diameter, LVEDD)>55mm;③LVEF<45%;④入院后行冠状动脉造影(coronary angiography,CAG)检查明确冠状动脉病变㊂排除标准:先天性心脏病㊁瓣膜病㊁风湿性心脏病等导致左心扩大㊁左心室功能降低的患者;急性心肌梗死或已行血运重建手术㊁超声心动图图像质量差等干扰图像分析以及拒绝治疗的患者㊂所有患者均于行CAG前完成常规超声心动图㊁2D-STE检查㊂该研究得到同济医院研究伦理委员会的批准,所有患者均获知该研究并签署书面同意书㊂共有84例患者行CAG后,符合纳入标准入选该研究㊂心肌病患者CAG结果提示冠状动脉左主干狭窄ȡ50%和/或3条心外膜下冠状动脉及其大分支任何一段直径狭窄ȡ75%的则被定义为ICM㊂根据该标准,本研究中NICM患者43例,ICM患者41例㊂1.2㊀仪器与方法采用美国通用公司Vivid E9彩色多普勒超声显像仪,M4S探头,探头频率3.5MHz,帧频70~80帧/s㊂患者取左侧卧位,平静呼吸,采用双平面辛普森法测量LVEF,检测LVEDD㊁室间隔厚度(interven-tricular septum thickness,IVST)㊁左心室后壁厚度(left ventricular posterior wall thickness,LVPWT)㊁二尖瓣口血流速度与舒张早期二尖瓣环运动速度的比值(E/e )㊂连接心电图,获得心尖左心室四腔心㊁两腔心㊁心尖长轴切面的动态图像及左心室心尖五腔采集的主动脉血流频谱静态图像,存盘以备分析㊂应用彩色多普勒超声显像仪应变数据分析软件,按照提示依次选取3个点(二尖瓣水平的2个点和心尖1个点)的心内膜,应用自动功能成像程序跟踪取样点勾画出心内膜轮廓,调节感兴趣区宽度使其与心肌厚度一致,勾画满意后进行分析,软件自动得出追踪结果,获得左心室心尖四腔㊁二腔㊁长轴切面纵向应变值及左心室整体纵向应变值(global longitudinal strain,GLS)和局部纵向应变值(regional longitudinal strain,RLS),并以 牛眼图 呈现(图1)㊂计算相应的6个节段应变值(心尖RLS包括4个节段应变值)的平均值为相应区域纵向应变值,即包括基底段RLS㊁中间段RLS和心尖段RLS㊂图1.NICM和ICM患者的心肌应变 牛眼图Figure1. Bull s eye diagram of myocardial strainin NICM and ICM patients1.3㊀统计学处理采用SPSS19.0软件进行统计学分析㊂具有非正态分布的连续变量以xʃs表示,分类变量用百分比表示㊂根据分布,使用Mann-Whitney检验或Student s t检验比较连续变量㊂使用χ2检验或Fisher精确检验进行分类变量的分析㊂用受试者工作特征曲线(receiver operating characteristic curve, ROC)分析每个应变参数的准确性,以区分NICM和ICM;使用曲线下面积(area under curve,AUC)对诊断准确性进行比较,AUC值为0.50表示无准确性, 1.00表示最大准确性;确定区别NICM与ICM最大灵敏度和特异度的最佳诊断截断值㊂以P<0.05为差异有统计学意义㊂2㊀结㊀果2.1㊀临床资料及常规超声心动图参数比较NICM和ICM患者的临床特点见表1㊂NICM 患者入院时的舒张压高于ICM患者,但两组患者收缩压㊁性别㊁体质量均没有显著差异;两组间血脂各指标如总胆固醇㊁低密度脂蛋白㊁高密度脂蛋白等无显著性差异㊂与NICM组比较,ICM组糖尿病患者更多,但高血压患者两组间无显著性差异㊂常规超声心动图参数比较见表1,NICM组与ICM组之间LVPWT㊁IVST㊁E/e 及LVEDD比较,差异无统计学意义(P>0.05)㊂但是,NICM患者的LVEF明显低于ICM患者(P<0.05)㊂2.2㊀两组患者2D-STE参数比较NICM和ICM组间GLS无显著性差异(-9.9%ʃ3.4%比-9.6%ʃ3.3%,P>0.05)㊂进一步分析RLS数据,NICM患者与ICM患者相比,心尖段RLS 较高(-11.8%ʃ5.4%比-9.3%ʃ4.9%,P<0.05),但基底段RLS较低(-6.8%ʃ3.7%比-9.1%ʃ3.8%,P<0.01),即呈现出 心尖段保留 和 基底段受损 改变(图1)㊂然而在ICM组中各节段RLS (心尖段㊁中间段及基底段的RLS应变值)差异不显著,未见心尖段增高和基底段减少改变㊂对RLS系列数据进行比值处理后,NICM组基底段RLS/心尖段RLS㊁基底段RLS/(中间段RLS+心尖段RLS)低于ICM组(P<0.01)㊂见表2㊂2.3㊀ROC曲线分析对常规超声心动图参数㊁2D-STE参数进行ROC曲线分析,评价这些参数在区分NICM和ICM 方面的价值,包括LVEF㊁心尖段RLS㊁基底段RLS㊁基底段RLS/心尖段RLS㊁心尖段RLS/(中间段RLS +基底段RLS)㊁基底段RLS/(中间段RLS+心尖段RLS)(表3和图2)㊂LVEF㊁基底段RLS㊁心尖段RLS区别NICM与ICM的AUC较低;而RLS数据采用比值后AUC显著增大,尤以基底段RLS/(中间段RLS+心尖段RLS)的AUC最大,为0.792,其最佳诊断截断值为0.47,灵敏度为63.4%,特异度为88.4%㊂表1.患者临床特征和常规超声心动图基线值Table1.Clinical characteristics and baseline value of conventional echocardiography in patients项目NICM组(n=43)ICM组(n=41)P值年龄/岁53.1ʃ10.858.9ʃ10.30.015男性/[例(%)]33(76.7)33(80.5)0.792体质量/kg68.8ʃ13.468.0ʃ11.60.793收缩压/mmHg129.5ʃ22.5126.6ʃ20.30.531舒张压/mmHg85.3ʃ15.578.0ʃ12.20.019高血压/[例(%)]19(44.2)26(63.4)0.086糖尿病/[例(%)]4(9.3)16(39.0)0.002甘油三酯/(mmol/L) 1.5ʃ0.9 1.6ʃ0.90.662总胆固醇/(mmol/L) 4.0ʃ0.8 4.0ʃ1.00.870低密度脂蛋白/(mmol/L) 2.5ʃ0.8 2.7ʃ1.20.504高密度脂蛋白/(mmol/L) 1.0ʃ0.30.9ʃ0.20.054 LVPWT/mm 1.0ʃ0.20.9ʃ0.10.405 IVST/mm 1.0ʃ0.20.9ʃ0.10.372 LVEDD/cm 6.6ʃ0.9 6.4ʃ0.50.094 E/e 24.1ʃ15.525.6ʃ14.60.662 LVEF/%29.0ʃ5.033.0ʃ9.00.024表2.NICM患者和ICM患者2D-STE参数分析Table2.Analysis of2D-STE parameters in NICMpatients and ICM patients参数NICM组(n=43)ICM组(n=41)P值GLS/%-9.9ʃ3.4-9.6ʃ3.30.691基底段RLS/%-6.8ʃ3.7-9.1ʃ3.80.007中间段RLS/%-8.6ʃ4.1-9.0ʃ4.00.657心尖段RLS/%-11.8ʃ5.4-9.3ʃ4.90.027基底段RLS/心尖段RLS0.62ʃ0.29 1.24ʃ0.77<0.001心尖段RLS/(中间段RLS+基底段RLS)0.88ʃ0.440.56ʃ0.33<0.001基底段RLS/(中间段RLS+心尖段RLS)0.34ʃ0.120.53ʃ0.19<0.001表3.ROC 曲线分析各参数在区分NICM 和ICM 方面的价值Table 3.Value of each parameter in distinguishing NICM from ICM analyzed by ROC curve参数截断值灵敏度/%特异度/%AUC(95%CI)P 值LVEF 40%29.382.00.603(0.482~0.729)0.085基底段RLS -5.25%39.787.80.650(0.542~0.774)0.013心尖段RLS-7.15%41.588.40.630(0.514~0.753)0.035基底段RLS /心尖段RLS0.9456.188.40.779(0.680~0.877)<0.001心尖段RLS /(中间段RLS +基底段RLS)0.7058.173.20.753(0.649~0.857)<0.001基底段RLS /(中间段RLS +心尖段RLS)0.4763.488.40.792(0.696~0.888)<0.001图2.各参数区别NICM 和ICM 的ROC 曲线Figure 2.ROC curve of each parameter distinguishing NICM from ICM3㊀讨㊀论缺血性心肌病是由于冠状动脉多支病变或高度狭窄或完全闭塞从而导致心肌细胞长期缺血,进而出现心肌顿抑㊁弥漫性心肌纤维化或心肌梗死[1]㊂不符合上述标准的扩张型心肌病患者则诊断NICM,包括特发性㊁遗传性㊁病毒性或免疫性心肌病等[5-6]㊂两者的治疗方案不一致,预后也不一样[7-10]㊂根据这些研究结果,血运重建仍然是ICM 患者重要治疗措施㊂从本研究临床数据上看,ICM 组糖尿病患者更多,其舒张压明显低于NICM 组,这与冠心病的高危因素是类似的[10]㊂虽然ICM 的诊断需要CAG 作为金标准,但是明确ICM 和NICM 患者心功能变化特征,寻找在临床中能常规使用㊁非侵入性的初筛手段从而指导临床诊疗显得尤为重要㊂从常规超声心动图上看,ICM 和NICM 左心室的改变均为心脏扩大㊁左心室收缩功能减低[10-11]㊂部分ICM 患者可见节段性室壁运动异常,但是NICM 也存在室壁运动异常[12],故不宜用此区别两者㊂2D-STE 在冠心病㊁心肌病等疾病出现LVEF 下降前可检测到GLS 下降,提示左心室功能的早期收缩受损[3,13]㊂因此纵向应变用于左心室功能受损的评价更敏感[3]㊂在本研究中,所有患者均有左心室扩张和收缩功能受损,包括LVEF 和GLS 明显降低㊂但是NICM 和ICM 两组之间LVEDD 和GLS 均无显著性差异㊂通过比较NICM 和ICM 中的RLS,结果发现NICM 患者的心肌应变呈现出 心尖段保留 和基底段受损 等特征变化㊂NICM患者与ICM患者相比心尖段RLS较高而基底段RLS较低㊂有学者研究报道,纵向应变的呈现 心尖段保留 已被认为是检测心肌淀粉样变性病的特征性表现[14-15]㊂在本研究中,NICM的 心尖段保留 与心肌淀粉样变相似;但心肌淀粉样变的患者心脏还有其他特征性表现,如左心室壁增厚且左心室大小正常或减小[14-15]㊂因此,提出 心尖段保留 和 基底段受损 是支持左心室扩大且LVEF降低的NICM临床诊断的特征之一㊂进一步探讨各参数是否可用于区分NICM和ICM㊂通过ROC分析发现尽管NICM中的LVEF低于ICM,但是单纯从LVEF方面区别NICM和ICM 的诊断价值较低㊂而基底段RLS/(中间段RLS+心尖段RLS)比值的截断值为0.47,具有最大AUC (0.792),灵敏度㊁特异度分别为63.4%㊁88.4%㊂这些结果再次表明左心室纵向应变的 心尖段保留 和 基底段受损 模式在预测NICM方面具有重要价值㊂需要指出的是,2D-STE不能替代血管造影术,其最大价值在于能够对患者进行分层,对于倾向NICM患者减少行CAG的概率㊂总之,本研究通过对NICM和ICM进行常规超声心动图和2D-STE超声分析,结果表明在NICM患者存在左心室纵向应变的 心尖段保留 和 基底段受损 的特征性应变改变㊂2D-STE超声应变分析有助于对心脏扩大的心肌病患者进行NICM和ICM 鉴别诊断㊂[参考文献][1]MARON B J,TOWBIN J A,THIENE G,et al.Contempo-rary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology,heart failure and transplanta-tion committee;quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups;and council on epidemiology and prevention [J].Circulation,2006,113(14):1807-1816. [2]曹慧晓,徐怡,祝因苏,等.双心室心肌应变分析在缺血性和非缺血性扩张型心肌病的临床应用[J].磁共振成像,2019,10(9):667-673.[3]ZUO H J,YANG X T,LIU Q G,et al.Global longitudinal strain at rest for detection of coronary artery disease in pa-tients without diabetes mellitus[J].Curr Med Sci,2018, 38(3):413-421.[4]左后娟,周宁,蒋建刚,等.二维斑点追踪技术评价轻型心肌炎和暴发性心肌炎左心功能[J].内科急危重症杂志,2018,24(6):451-455.[5]ELLIOTT P,ANDERSSON B,ARBUSTINI E,et al.Clas-sification of the cardiomyopathies:a position statement from the european society of cardiology working group on myocar-dial and pericardial diseases[J].Eur Heart J,2008,29 (2):270-276.[6]LUK A,AHN E,SOOR G S,et al.Dilated cardiomyopa-thy:a review[J].J Clin Pathol,2009,62(3):219-225.[7]MARK D B,KNIGHT J D,VELAZQUEZ E J,et al.Quali-ty-of-life outcomes with coronary artery bypass graft surgery in ischemic left ventricular dysfunction:a randomized trial [J].Ann Intern Med,2014,161(6):392-399. [8]VELAZQUEZ E J,LEE K L,JONES R H,et al.Coronary-artery bypass surgery in patients with ischemic cardiomyopathy [J].N Engl J Med,2016,374(16):1511-1520. [9]VELAZQUEZ E J,LEE K L,DEJA M A,et al.Coronary-artery bypass surgery in patients with left ventricular dys-function[J].N Engl J Med,2011,364(17):1607-1616.[10]陈纯娟,王伟,余伟.扩张型心肌病与缺血性心肌病患者冠心病危险因素㊁血脂及心脏超声特征对比分析[J].中华临床医师杂志,2018,12(8):440-444.[11]罗田田,张萍,任建丽,等.实时三维超声和二维斑点追踪成像对不同时期心房颤动患者左房结构和功能的评价[J].临床心血管病杂志,2016,32(5): 475-479.[12]WALLIS D E,O C ONNELL J B,HENKIN R E,et al.Segmental wall motion abnormalities in dilated cardiomy-opathy:a common finding and good prognostic sign[J].J Am Coll Cardiol,1984,4(4):674-679. [13]刘滨月,王俊芳,贾保霞,等.斑点追踪成像技术评价糖尿病肾功能不全患者左室收缩功能的研究[J].临床超声医学杂志,2018,20(11):759-762. [14]SHAH K B,MANKAD A K,CASTANO A,et al.Transt-hyretin cardiac amyloidosis in black americans[J].Circ Heart Fail,2016,9(6):e002558.[15]PHELAN D,COLLIER P,THAVENDIRANATHAN P,et al.Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloid-osis[J].Heart,2012,98(19):1442-1448.(此文编辑㊀曾学清)。

超声心动图评估右房结构及功能的应用进展

超声心动图评估右房结构及功能的应用进展

·综述·右房作为右心系统不可或缺的一部分,对维持右室充盈至关重要。

大多数右心疾病的病理生理过程中常发生右房结构及功能改变,因此准确评估其变化对患者的诊断、治疗和预后评估均有重要意义。

本文就超声心动图在右房结构及功能评估中的应用进展进行综述。

一、右房的解剖结构和生理功能解剖学上,右房主要由上下腔静脉口、冠状窦口、界嵴、右心耳及三尖瓣口等组成;其中界嵴和右心耳是右房的明显标志,当两者出现变化时,右房的电生理和应变特性均会随之变化。

病变的界嵴可影响右房应变,是局灶性右房心律失常的常见来源[1];右心耳易发生纤维化,导致心房颤动(以下简称房颤),同时右心耳也是右房电极导线的常用植入部位。

右房壁薄、腔大,具有较强的扩张能力,既可应对右室舒张压的急剧升高,为心房充盈不规律提供缓冲,也可通过增加血流量提高势能,以维持右室充盈。

生理学上,右房通过3个时相功能的相互作用调节右室充盈,包括:①体循环血液的“储存库”;②腔静脉血液流入右室的“管道”;③心房收缩促进右室充盈的“助力泵”。

当右室后负荷增加时,右室壁增厚,收缩功能增强,右室收缩牵拉右房被动扩张的能力增强。

随着后负荷持续增加,右室收缩功能有所下降,但右房容量性心腔的特点使其有较强的松弛扩张能力,弥补了右室收缩功能下降对右房储存功能的影响。

而右室后负荷增加使舒张功能受损,右室主动舒张时抽吸作用减弱,使右房管道功能减低[2]。

由于右房储存功能增强、管道功能减低使右房收缩前容积增加,根据Frank-Starling定律,右房容积增加导致心肌初长度增加,主动收缩功能增强,因此右房助力泵功超声心动图评估右房结构及功能的应用进展孙振云(综述)李巧(审校)摘要右房是临床上最易被低估的心腔,但其在心脏的电生理传导、内分泌和压力调节中均具有关键作用。

右房扩张及功能障碍往往发生于右室扩张或肥厚之前,右房压力升高可以反映右室功能障碍和体循环淤血的程度,因此准确评估右房结构及功能变化对临床诊断、治疗和预后评估至关重要。

斑点追踪技术评估糖尿病患者左心功能的应用进展

斑点追踪技术评估糖尿病患者左心功能的应用进展

·综述·糖尿病患者长期高血糖状态导致全身大血管和微血管受损,造成心肌组织不同程度的损害,并逐步发展为糖尿病心肌病(diabetes cardiomyopathy,DCM)。

DCM是独立于冠心病、高血压性心脏病及其他心脏病变的心肌疾病,也是导致糖尿病患者不良预后的主要原因之一[1]。

糖尿病前期和DCM早期心肌病理改变主要表现为心肌细胞超微结构的改变包括心肌细胞的肌丝变形断裂或排列紊乱、线粒体变形或断裂、胞质面积和含量增加等,进而导致心肌运动功能的变化,表现为左室射血分数(LVEF)保留的心脏结构和功能异常,其中以左室舒张功能障碍为主要特征,因此对左室心肌功能进行准确评估有助于检测糖尿病前期和DCM早期患者心脏细微变化[2]。

随着病程的延长,心肌细胞能量代谢障碍加重,内皮细胞进一步损伤,逐步形成DCM,引起心肌重塑、凋亡和纤维化及心肌微血管病变,左室质量增加及左室壁增厚,早期表现为舒张功能障碍,进展到中晚期时左心舒缩功能同时受损,最终引起以LVEF降低为主要表现的左心衰竭[3-4]。

同时由于心脏循环过程中左房功能与左室功能密切相关,左室结构和功能动态变化会直接影响左房,因此同时进行左房、左室结构和功能的定量评估将有助于全面分析糖尿病和DCM患者左心功能[5]。

斑点追踪(speckletracking imaging,STI)技术通过测量心肌纵向、径向和周向应变及应变率,获得上述多个方位的心肌运动信息,能较为全面、准确地定量评估各种心脏疾病患者心肌功能,在定量分析和评估左室和左房局部及整体心肌力学变化方面具有重要的临床价值。

目前STI技术包括基于二维超声心动图的斑点追踪(two-斑点追踪技术评估糖尿病患者左心功能的应用进展王逸轩代杨沈迎摘要糖尿病前期或糖尿病心肌病早期患者的心肌可出现不同程度损害,及时发现患者心脏结构和功能改变对糖尿病的有效治疗及糖尿病心肌病的预防具有重要意义。

斑点追踪(STI)技术能在常规超声心动图的基础上更灵敏、准确地评估糖尿病患者左心功能。

2D-STE及RT-3DE评价左心疾病相关性肺高血压患者右心室功能

2D-STE及RT-3DE评价左心疾病相关性肺高血压患者右心室功能

目录英汉缩略语名词对照 (1)中文摘要 (2)英文摘要 (4)论文正文:2D-STE与RT-3DE评价左心疾病相关性肺高血压患者右心室功能 (7)前言 (7)1.资料与方法 (8)2.结果 (11)3.讨论 (16)全文总结 (19)参考文献 (20)附图 (25)文献综述:超声新技术评估肺高血压患者右心功能的研究进展 (31)致谢 (40)攻读学位期间发表的学术论文及学术交流情况 (41)英汉缩略语名词对照英文缩写2D-STEapiA TbasEDVEFESVETFACfwLHD-PHLSmidMPI PVRPHRT-3DES'sPAP SV EDV index ESV index 英文全称Two-dimensional speckle trackingechocardiographyApical segmentAcceleration timeBasal segmentEnd-diastolic volumeEjection fractionEnd-systolic volumeEjection timeFractional area changeFree wallPulmonary hypertension due to left heartdiseaseLongitudinal peak systolic strainMiddle segmentMyocardial performance indexPulmonary vascular resistancePulmonary hypertensionReal time three-dimensionalechocardiographySystolic velocity of tricuspid annulusSystolic pulmonary arterial pressureStroke volumeEnd-diastolic volume indexEnd- systolic volume index中文名称二维斑点追踪超声心动图心尖段加速时间基底段舒张末期容积射血分数收缩末期容积射血时间面积变化分数游离壁左心疾病相关性肺高血压纵向峰值收缩应变中间段心肌做功指数肺血管阻力肺高血压实时三维超声心动图三尖瓣环收缩期运动速度肺动脉收缩压每搏量舒张末期容积指数收缩末期容积指数2D-STE与RT-3DE评价左心疾病相关性肺高血压患者右心室功能摘要目的:应用二维斑点追踪心动图(2D-STE)与实时三维超声心动图(RT-3DE)评价左心疾病相关性肺高血压(LHD-PH)患者的右心室功能,初步探讨其鉴别被动性PH与反应性PH的临床价值。

超声心动图诊断成人永存动脉干1例

超声心动图诊断成人永存动脉干1例

患者女,39岁,因进展期直肠癌来我院就诊。

自诉既往外院诊断法洛四联症,未治疗。

现我院心电图检查:窦性心律,电轴右偏,肢体导联低电压,不完全性右束支阻滞。

超声心动图检查:心房正位,心室右袢,右房血液进入右室,左房血液进入左室;见单一动脉干连接于心室,骑跨于室间隔上方,收缩期可见左、右心室血流经半月瓣(三瓣)共同流入骑跨其上的动脉干;肺动脉主干及左、右分支均显示不清,主动脉弓及降主动脉向右后下方走行,显示段未见明显异常分支(图1);②动脉干瓣下的室间隔连续中断,可探及双向分流血流信号,左向右分流峰值流速4.7m/s,压差55mm Hg (1mm Hg=0.133kPa),右向左分流峰值流速2.3m/s,压差21mm Hg;③舒张期半月瓣见反流血流信号达二尖瓣腱索水平,反流缩流颈宽约4mm;三尖瓣上可探及反流血流信号到达右房中部,反流速度4.7m/s,跨瓣压差88mm Hg。

胸部CT示:室间隔基底段局部缺损,主动脉增粗并骑跨于左右心室,右室壁增厚,右位主动脉弓(图2)。

胸部CTA示:升主动脉、主动脉弓及降主动脉上段均增粗,右侧颈总动脉及锁骨下动脉单独发出,左侧颈总动脉、锁骨下动脉共干并增粗,左下肺动脉源于增粗的共干动脉,右肺动脉及左上肺动脉源于降主动脉(图3)。

综合上述检查提示:①永存动脉干Ⅲ型;②右位主动脉弓。

临床会诊建议:复杂性先天性心脏病:永存动脉干(失去手术根治机会),心功能Ⅱ级。

患者后行直肠癌根治手术,术后恢复可。

讨论:永存动脉干是一种少见的先天性心脏病,由带有一组半月瓣的单一大动脉起源于心底部,供应冠状动脉、肺动脉和周围动脉。

该畸形是胎儿发育过程中原始动脉干分离失败的结果,与染色体22q11缺失有关[1]。

永存动脉干通常分为4型[2]:Ⅰ型最常见,肺动脉主干自共同动脉干发出,分出左、右肺动脉;spectroscopic detection of DNA-damage effects at high and lowfrequencies[J].Methods Mol Biol,2011,682(4):165-187.[12]王志刚.多功能超声分子探针显像与增效高强度聚焦超声治疗[J].临床超声医学杂志,2017,19(9):577-579.[13]孙阳.超声分子探针围绕精准医学的发展及展望[J].临床超声医学杂志,2020,22(1):49-51.[14]Rybczynska AA,Boersma HH,de Jong S,et al.Avenues to molecular imaging of dying cells:focus on cancer[J].Med Res Rev,2018,38(6):1713-1768.[15]Min PK,Lim S,Kang SJ,et al.Targeted ultrasound imaging of apoptosis with Annexin A5microbubbles in acute Doxorubicin-inducedcardiotoxicity[J].J Cardiovasc Ultrasound,2010,18(3):91-97.[16]Wei X,Li Y,Zhang S,et al.Ultrasound targeted apoptosis imaging in monitoring early tumor response of trastuzumab in a murine tumorxenograft model of her-2-positive breast cancer(1.)[J].TranslOncol,2014,7(2):284-291.[17]Zhou T,Cai WB,Yang HL,et al.Annexin V conjugated nanobubbles:a novel ultrasound contrast agent for in vivo assessment of theapoptotic response in cancer therapy[J].J Control Release,2018,276(8):113-124.[18]Zhang DJ,Jin QM,Jiang CH,et al.Imaging cell death:focus on earlyevaluation of tumor response to therapy[J].Bioconjug Chem,2020,31(4):1025-1051.[19]Tawakol A,Abohashem S,Zureigat H.Imaging apoptosis in atherosclerosis:from cell death,aray of light[J].J Am Coll Cardiol,2020,76(16):1875-1877.[20]Chaudhry F,Kawai H,Johnson KW,et al.Molecular imaging of apoptosis in atherosclerosis by targeting cell membrane phospholipidasymmetry[J].J Am Coll Cardiol,2020,76(16):1862-1874.[21]Lee Y,Kim S,Kim D,et al.A histone H1-binding-aptide-based apoptosis imaging probe for monitoring tumor responses to cancertherapy[J].Medchemcomm,2017,8(2):390-393.[22]Jung HK,Wang K,Jung MK,et al.In vivo near-infrared fluorescence imaging of apoptosis using histone H1-targeting peptide probe afteranti-cancer treatment with cisplatin and cetuximab for early decisionon tumor response[J].PLoS One,2014,9(6):e100341.[23]赵萍,马晓菊,杨恒丽,等.携ApoPep-1纳米微泡靶向成像评价活体内肿瘤凋亡的实验研究[J].中国医学影像学杂志,2020,28(12):901-906.[24]Li J,Yuan J.Caspases in apoptosis and beyond[J].Oncogene,2008,27(48):6194-6206.(收稿日期:2021-01-03)·病例报道·Echocardiographic diagnosis of persistent truncus arteriosus in adult:a case report超声心动图诊断成人永存动脉干1例唐茂玲唐晶李玲顾鹏[中图法分类号]R540.45[文献标识码]B作者单位:637000四川省南充市,川北医学院(唐茂玲、唐晶);川北医学院附属医院超声科(李玲、顾鹏)通讯作者:顾鹏,Email:******************(下转第460页)[19]Upshaw JN ,Finkelman B ,Hubbard RA ,et prehensiveassessment of changes in left ventricular diastolic function with contemporary breast cancer therapy [J ].JACC :Cardiovascular Imaging ,2020,13(1Pt 2):198-210.[20]Nagueh SF ,Smiseth OA ,Appleton CP ,et al.Recommendations for theevaluation of left ventricular diastolic function by echocardiography :an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J ].Eur Heart JCardiovasc Imaging ,2016,17(12):1321-1360.[21]Timóteo AT ,Moura Branco L ,Filipe F ,et al.Cardiotoxicity in breastcancer treatment :what about left ventricular diastolic function andleft atrial function?[J ].Echocardiography ,2019,36(10):1806-1813.[22]Abdel-Qadir H ,Thavendiranathan P ,Fung K ,et al.Association ofearly-stage breast cancer and subsequent chemotherapy with risk ofatrial fibrillation [J ].JAMA Netw Open ,2019,2(9):2739-2746.[23]Calleja A ,Poulin F ,Khorolsky C ,et al.Right ventricular dysfunctionin patients experiencing cardiotoxicity during breast cancer therapy[J ].J Oncol ,2015,8(3):609194.[24]Keramida K ,Farmakis D ,Bingcang J ,et al.Longitudinal changes ofright ventricular deformation mechanics during trastuzumab therapy in breast cancer patients [J ].Eur J Heart Fail ,2019,21(4):529-535.[25]Arciniegas Calle MC ,Sandhu NP ,Xia H ,et al.Two-dimensional speckletracking echocardiography predicts early subclinical cardiotoxicity associated with anthracycline-trastuzumab chemotherapy in patientswith breast cancer [J ].Bmc Cancer ,2018,18(1):1037.[26]Cheng KH ,Handschumacher MD ,Assuncao BMBL ,et al.Contraction timing patterns in patients treated for breast cancer before and after anthracyclines therapy [J ].J Am Soc Echocardiogr ,2017,30(5):454-460.[27]Li H ,Liu C ,Zhang G ,et al.The early alteration of left ventricularstrain and dys-synchrony index in breast cancer patients undergoing anthracycline therapy using layer-specific strain analysis [J ].Echocardiography ,2019,36(9):1675-1681.(收稿日期:2020-05-08)Ⅱ型,无肺动脉主干,左、右肺动脉分别从共同动脉干的后壁发出;Ⅲ型,无肺动脉主干,左、右肺动脉分别从共同动脉干的侧壁发出;Ⅳ型,无肺动脉主干及左、右肺动脉,肺循环的血供来源于支气管动脉或其他动脉。

超声心动图二维斑点追踪联合多普勒技术评估新生儿心功能

超声心动图二维斑点追踪联合多普勒技术评估新生儿心功能

doi:10.3969/j.issn.1009-881X.2020.03.028超声心动图二维斑点追踪联合多普勒技术评估新生儿心功能王辉1,丁粤粤1,吕海涛2,李晴晴2,徐秋琴1,侯翠1(1.苏州大学附属儿童医院心超室,江苏苏州 215025;2.苏州大学附属儿童医院心内科,江苏苏州 215025)摘要:目的采用二维斑点追踪技术联合多普勒超声探讨正常及合并左向右分流型先天性心脏病(CHD)新生儿左室整体及局部功能。

方法选取2018年9月—2019年2月于苏州大学附属儿童医院心超室检查非CHD的新生儿36 例为正常组,另选取同期患左向右分流型CHD的新生儿58 例(PDA 14 例、VSD 11 例、ASD 33 例)为CHD组。

获取左室射血分数(EF)、短轴缩短率(FS)、二尖瓣环收缩期位移(MAPSE)、TDI-Tei指数,并获得左室心肌收缩期峰值纵向应变(LS)、收缩期峰值径向应变(RS)及平均收缩期峰值径向应变(aRS)、平均收缩期峰值纵向应变(aLS)。

研究正常新生儿左室整体功能及局部心肌径向、纵向应变的超声表现,并对PDA、ASD、VSD患儿分别建立对照组,使其与对照组之间保持年龄、胎龄、出生体重、BSA上差异无统计学意义,比较CHD组与其对照组之间心室整体功能及心肌应变的差异。

结果 (1)左心室心肌aRS、aLS从基底段到心尖段梯度增加,aRS数值变化更大。

(2)正常新生儿中足月儿LVDd、LVSd、FS较早产儿高,左心室aRS-bas、aRS-mid、aRS-api较早产儿高,差异有统计学意义(P<0.05)。

(3)VSD影响新生儿左心室整体功能及局部心肌运动,TDI-Tei及2D-STI是早期发现新生儿心功能异常的有效手段。

(4)该组PDA、ASD对新生儿左室整体心功能及局部心肌应变无明显影响。

结论二维斑点追踪技术联合多普勒超声在评估新生儿左室整体及局部功能中具有重要作用。

关键词:2D-STI;TDI-Tei指数;新生儿;心功能中图分类号:R445.1 文献标识码:A 文章编号:1009-881X(2020)03-0373-06Evaluation of Cardiac Function in Neonates with Two-Dimensional Speckle Tracking Imaging Combined with Doppler EchocardiographyWANG Hui1, DING Yue-yue1, LV Hai-tao2, LI Qing-qing2, XU Qiu-qin1, HOU Cui1(1.Department of Cardiac Ultrasound, 2.Department of Pediatric Cardiology, Children's Hospital of SoochowUniversity, Suzhou, Jiangsu, 215025, China)Abstract:Objective To investigate the global and regional left ventricular function in normal and left-to-right shunt congenital heart disease (CHD) neonates by two-dimensional speckle tracking technique combined with Doppler echocardiography. Methods From Sept 2018 to Feb 2019 in Children's Hospital of Soochow University, 36 cases of non-CHD newborns were selected as normal group, and 58 cases of left-to-right shunt CHD (14 cases of PDA, 11 cases of VSD, 33 cases of ASD) were selected as CHD group. The left ventricular ejection fraction (EF), fractional shortening (FS), mitral annular systolic displacement (MAPSE) and TDI-Tei index were obtained. The peak systolic longitudinal strain (LS) and peak systolic radial strain (RS) of each segment of the left ventricle were obtained and the mean peak systolic radial strain (aRS) and mean peak systolic longitudinal strain (aLS) of the basal, middle, and apical segments of the left ventricle were calculated by QLAB software analysis to study the left ventricular global function and regional myocardial radial and longitudinal strain in normal newborns. The normal control group was established for children with PDA, ASD, and VSD, 收稿日期:2020-06-12 作者简介:王辉(1982—),男,安徽淮南人,学士,主治医师,研究方向:儿童心血管超声。

无创左室压力-应变环定量评估经皮冠状动脉介入治疗患者心肌做功情况

无创左室压力-应变环定量评估经皮冠状动脉介入治疗患者心肌做功情况

·临床研究·无创左室压力-应变环定量评估经皮冠状动脉介入治疗患者心肌做功情况张鹏英薛婷陈允安任斐袁春苗于明赵静张洁摘要目的探讨无创左室压力-应变环(LV-PSL)定量评估冠状动脉粥样硬化性心脏病(CAD)患者经皮冠状动脉介入治疗(PCI)前后心肌做功的应用价值。

方法前瞻性选取在我院择期行PCI的CAD患者30例(病例组)和同期健康体检者30例(对照组),应用改良双平面Simpson法测量两组左室舒张末期容积(LVEDV)、左室收缩末期容积(LVESV)及左室射血分数(LVEF),于二维斑点追踪超声心动图(2D-STE)心肌自动功能成像模式下评估左室整体纵向应变(GLS),无创LV-PSL评估左室整体做功指数(GWI)、整体有效做功(GCW)、整体无效做功(GWW)和整体做功效率(GWE),比较对照组与病例组PCI术前、术后3d各参数差异;分析GWI、GCW、GWW、GWE与LVEF和GLS的相关性。

结果与对照组比较,病例组PCI术前、术后3d LVEDV、LVESV、GWW均明显升高,LVEF、GLS、GWI、GCW、GWE均明显降低,差异均有统计学意义(均P<0.05);与病例组PCI术前比较,术后3d GWW明显降低,GWE明显升高,差异均有统计学意义(均P<0.05),而LVEDV、LVESV、LVEF、GLS、GWI、GCW均无明显变化。

GWI、GCW、GWW、GWE与LVEF和GLS 均显著相关(均P=0.00)。

结论无创LV-PSL技术可定量评估CAD患者PCI前后左室心肌做功,为准确评价CAD对心肌功能的影响,以及PCI术后短期内心肌功能的恢复效果提供了一种新方法。

关键词左室压力-应变环;心肌做功;冠状动脉粥样硬化性心脏病;经皮冠状动脉介入治疗[中图法分类号]R445.1;R825.4[文献标识码]AQuantitative assessment of myocardial work in patients undergoing percutaneous coronary intervention by non-invasive left ventricularpressure-strain loopZHANG Pengying,XUE Ting,CHEN Yun’an,REN Fei,YUAN Chunmiao,YU Ming,ZHAO Jing,ZHANG JieDepartment of Ultrasound,the Affiliated Lianyungang Hospital of Xuzhou Medical University,Jiangsu222000,ChinaABSTRACT Objective To explore the application value of non-invasive left ventricular pressure-strain loop(LV-PSL)in quantitative assessment of myocardial work before and after percutaneous coronary intervention(PCI)in patients with coronary artery disease(CAD).Methods Thirty CAD patients(case group)who underwent PCI in our hospital and30healthy subjects(control group)were prospectively selected.The left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV)and left ventricular ejection fraction(LVEF)were calculated by modified biplane Simpson method. The left ventricular global longitudinal strain(GLS)was measured by the two-dimensional speckle tracking echocardiography (2D-STE)myocardial automated functional imaging.The left ventricular global myocardial work index(GWI),global myocardial constructive work(GCW),global myocardial wasted work(GWW)and global myocardial work efficiency(GWE)were assessed by non-invasive LV-PSL.The differences of those parameters were compared between the control group and the case group before and3d after surgery.And the correlations of GWI,GCW,GWW,GWE with LVEF and GLS were analyzed.Results Compared with the control group,the LVEDV,LVESV and GWW of the case group were significantly increased before基金项目:连云港市卫生计生科技项目(201805);连云港市第一人民医院医疗技术扶持项目作者单位:222000江苏省连云港市,徐州医科大学附属连云港医院超声科(张鹏英、薛婷、陈允安、于明、赵静、张洁),心血管内科(任斐);连云港市第一人民医院灌南院区超声科(袁春苗)通讯作者:张洁,Email:**************冠状动脉粥样硬化性心脏病(coronary artery disease,CAD)一直是全球非传染性疾病死亡的主要原因[1]。

二维超声斑点追踪显像技术在心血管危险分层中的应用价值

二维超声斑点追踪显像技术在心血管危险分层中的应用价值

•论著 •二维超声斑点追踪显像技术在心血管危险分层中的应用价值石秀英1,米佳2作者单位:1 716000 延安,陕西省延安大学附属医院超声诊断科 通讯作者:米佳,E-mail:mjia214@ doi:10.3969/j.issn.1674-4055.2018.05.19【摘要】目的 探讨分析二维超声斑点追踪显像技术在心血管危险分层中的应用价值。

方法 选择因胸痛就诊于陕西省延安大学附属医院心内科患者157例,按照Framingham危险评分(FRS)将其分为低危组72例、中危组52例、高危组33例。

采用二维超声斑点追踪显像技术检测患者颈动脉整体圆周应变(CS)、使用肱动脉压差(PP)校正后获得CS/PP,以及颈动脉内中膜厚度(IMT),比较各组患者上述检测指标差异,并采用ROC曲线分析各指标对高危型患者预测价值。

结果 不同心血管危险分层患者CS、CS/PP及IMT差异有统计学意义(P <0.05),其中随着患者心血管危险风险程度的增加,CS、CS/PP 水平显著降低(P <0.05),而IMT水平显著升高(P <0.05)。

采用ROC曲线分析相关检测指标对高危型患者的预测价值,CS对高危组预测曲线下面积为0.868,CS/PP对高危型预测曲线下面积为0.858,IMT对高危型预测曲线下面积为0.771。

结论 二维超声斑点追踪显像技术能够有效反应患者颈动脉弹性情况,并对心血管事件危险度进行评估和预测,具有重要的临床价值。

【关键词】 二维超声斑点追踪显像技术;心血管危险分层;动脉粥样硬化【中图分类号】R540.45 【文献标志码】 A 【文章编号】1674-4055(2018)05-0585-03Application value of two-dimensional speckle tracking imaging in cardiovascular risk stratification Shi Xiuying *, Mi Jia. *Department of Ultrasound, Affiliated Hospital of Yan'an University, Yanan 71600, China.Corresponding author: Mi Jia, E-mail: mjia214@[Abstract ] Objective To investigate the application of two-dimensional speckle tracking imaging in cardiovascular risk stratification. Methods 157 patients in Department of Cardiology, Affiliated Hospital of Yan'an University, Shaanxi, were selected according to Framingham risk score (FRS). They were divided into low risk group (72 cases), middle risk group (52 cases) and high-risk group (33 cases). By two-dimensional ultrasound speckle tracking imaging technique for the detection of carotid artery in patients with circumferential strain (CS), brachial artery pressure (PP) after correction for CS/PP, and carotid artery intima-media thickness (IMT), the difference with the detection indexes of each group, and the ROC curve is divided into value of each index prediction of high-risk patients the. Results The levels of CS, CS / PP and IMT in patients with different cardiovascular risk stratification were significantly different (P <0.05). The levels of CS and CS / PP were significantly decreased as the risk of cardiovascular risk increased (P <0.05) , While the IMT level increased significantly (P <0.05). Using ROC curve to analyze the predictive value of relevant test indexes for high-risk patients, the area under the predicted curve of CS for high-risk patients was 0.868, and the area under the predicted curve of CS / PP for high-risk patients was 0.858. The area under the predicted curve of IMT for high risk patients was 0.771. Conclusion Two dimensional speckle tracking imaging can effectively reflect the situation of carotid artery in patients, and assess and predict the risk of cardiovascular events, which has important clinical value.[Key words ] Two-dimensional ultrasound speckle tracking imaging; Cardiovascular risk stratification; Atherosclerosis动脉粥样硬化性疾病,包括脑卒中、冠状动脉粥样硬化性心脏病(冠心病)等,是临床常见的威胁人类健康的主要疾病之一,准确预测患者心脑血管事件发生风险对于临床监护级别、治疗方式以及临床预后判断均有重要的临床价值[1,2]。

超声心动图二维斑点追踪成像与心脏核磁共振钆延迟增强对心肌淀粉样变性检测的比较

超声心动图二维斑点追踪成像与心脏核磁共振钆延迟增强对心肌淀粉样变性检测的比较

超声心动图二维斑点追踪成像与心脏核磁共振钆延迟增强对心肌淀粉样变性检测的比较冀晋;方理刚;方全;朱文玲【摘要】目的:比较心脏核磁共振(CMR)钆延迟增强与超声心动图二维斑点追踪成像(2D-STE)对心肌淀粉样变性的检测价值.方法:回顾性比较分析10例心肌淀粉样变性CMR钆延迟显像与2D-STE测定的心室收缩期长轴峰值应变.结果:10例患者中CMR均有心室延迟强化,而2D-STE显示9例存在心室收缩期长轴峰值应变减低.两种技术对心肌淀粉样变性左心室受累的诊断一致性为90%.4例患者同时存在双心室的应变异常与CMR延迟强化,4例患者CMR未提示右心室受累但右心室收缩期长轴峰值应变已出现异常,1例CMR提示室间隔延迟强化,左、右心室收缩期长轴峰值应变均下降.结论:2D-STE和CMR对诊断心肌淀粉样变性左心室受累有很好的一致性,2D-STE对右心室心肌淀粉样变性的诊断可能较CMR更敏感.%Objective: To compare the efficiency of two-dimensional speckle tracking echocardiography (2D-STE) and late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) for detecting cardiac amyloidosis. Methods: Systolic longitudinal peak strain by 2D-STE and LGE by CMR were retrospectively analyzed in 10 patients with cardiac amyloidosis. Results: CMR showed 10 patients with LGE and 2D-STE showed 9 patients with ventricular systolic longitudinal peak strain decreasing, the diagnostic consistency of CMR and 2D-STE was 90%. There were 4 patients having both strain abnormality and LGE at meanwhile, 4 patients without CMR presented right ventricular involvement while with 2D-STE indicated abnormal right ventricular systolic longitudinal peak strain, 1 patient withCMR presented LGE in ventricular sepatum while 2D-STE indicated systolic longitudinal peak strain decreasing in both ventricles. Conclusion: 2D-STE and CMR had good consistency for diagnosing left ventricular involvement in patients with cardiac amyloidosis; 2D-STE may have better sensitivity for diagnosing right ventricular amyloidosis.【期刊名称】《中国循环杂志》【年(卷),期】2018(033)001【总页数】5页(P87-91)【关键词】磁共振成像;超声心动描记术,二维;淀粉样变性【作者】冀晋;方理刚;方全;朱文玲【作者单位】100730 北京市,中国医学科学院北京协和医学院北京协和医院心内科;北京大学第三医院老年病内科;100730 北京市,中国医学科学院北京协和医学院北京协和医院心内科;100730 北京市,中国医学科学院北京协和医学院北京协和医院心内科;100730 北京市,中国医学科学院北京协和医学院北京协和医院心内科【正文语种】中文【中图分类】R54心肌淀粉样变性的患者心脏核磁共振(CMR)表现为心肌透壁性或心内膜下的钆延迟增强显像,最常见的表现为心肌弥漫受累,也可表现为颗粒状或条带状增强[1],其在心肌淀粉样变性中具有很高的诊断价值[2],超声心动图二维斑点追踪成像(2D-STE)技术可评估心室壁各个节段的心肌功能[3]。

二维斑点追踪技术测量高血压病患者房间隔厚度及其与左房功能的关系

二维斑点追踪技术测量高血压病患者房间隔厚度及其与左房功能的关系

·临床研究·基金项目:安徽省中央引导地方科技发展专项(2017070802D151);芜湖市科技计划项目(2020ms3-5)作者单位:241001安徽省芜湖市,皖南医学院第一附属医院弋矶山医院超声科通讯作者:张霞,Email :**************二维斑点追踪技术测量高血压病患者房间隔厚度及其与左房功能的关系昌禹豪胡国兵朱向明叶彩宏沈忠兵张霞摘要目的应用二维斑点追踪(2D-STI )技术评价原发性高血压病患者房间隔厚度与左房功能的关系。

方法选取原发性高血压病患者41例,根据左房容积指数分为左房重构组20例和左房非重构组21例,另选健康体检者25例为正常对照组,应用2D-STI 技术测得各组左房收缩期、舒张早期、舒张晚期的左房平均应变率(mSRs 、mSRe 、mSRa );应用实时三维容积成像技术(RT-3DE )结合心电图时相获取左房最大容积(LAVmax )、左房收缩前容积(LAVpre )、左房最小容积(LAVmin ),并计算左房被动排空指数(LAEFp )、左房主动排空指数(LAEFa )及左房总排空分数(LAEF );M 型超声测量收缩期房间隔厚度(IASTs )及舒张期房间隔厚度(IASTd ),计算房间隔增厚率(ASTDF )。

比较各组上述参数的差异,分析ASTDE 与左房各功能参数间的相关性。

结果与正常对照组比较,左房非重构组和左房重构组mSRs 、mSRe 、LAEFp 、LAEF 均减低,mSRa 、LAEFa 及ASTDF 均增高,差异均有统计学意义(均P <0.05);与左房非重构组比较,左房重构组的mSRs 、mSRe 、LAEFp 、LAEF 均减低,mSRa 、LAEFa 、IASTs 、IASTd 、ASTDF 均增高,差异均有统计学意义(均P <0.05)。

相关性分析显示,ASTDF 与LAEFa 、mSRa 、LAEF 均呈正相关(r =0.568、0.249、0.266,均P <0.05)。

二维斑点追踪成像评价尿毒症患者左房功能的研究

二维斑点追踪成像评价尿毒症患者左房功能的研究

二维斑点追踪成像评价尿毒症患者左房功能的研究李英涛;刘伟刚;马兰;李荣;朱艳;孙冬梅;章蓉【摘要】目的应用二维斑点追踪成像(2D-STl)评价尿毒症患者左房功能的早期改变,探讨其临床应用价值.方法选取我院收治的左室射血分数正常的尿毒症患者60例,根据其左房容积指数(LAVl)分为两组:LAVl≤32 ml/m2为A组(30例),LAVl>32 ml/m2为B组(30例),另选与其性别年龄相匹配的健康成人30例为正常对照组.应用2D-STl测量各组纵向心室收缩期左房峰值应变、心室舒张早期左房峰值应变及心房收缩期左房峰值应变,并比较上述参数的差异.结果与正常对照组比较,A组和B 组心室收缩期左房峰值应变、心室舒张早期左房峰值应变和心房收缩期左房峰值应变均减低,差异均有统计学意义(均P<0.05).与A组比较,B组心室收缩期左房峰值应变和心室舒张早期左房峰值应变均减低,心房收缩期左房峰值应变增加,差异均有统计学意义(均P<0.05).结论 2D-STl可以早期检出左室射血分数正常的尿毒症患者左房收缩功能障碍,为临床治疗提供有价值的信息,具有较好的临床应用价值.【期刊名称】《临床超声医学杂志》【年(卷),期】2019(021)002【总页数】4页(P115-118)【关键词】斑点追踪成像,二维;应变;心房功能,左;尿毒症【作者】李英涛;刘伟刚;马兰;李荣;朱艳;孙冬梅;章蓉【作者单位】266000 山东省青岛市,青岛大学附属医院心脏超声科;266000 山东省青岛市,青岛大学附属医院心脏超声科;青岛市海慈医疗集团功能检查科;266000 山东省青岛市,青岛大学附属医院心脏超声科;266000 山东省青岛市,青岛大学附属医院心脏超声科;266000 山东省青岛市,青岛大学附属医院心脏超声科;266000 山东省青岛市,青岛大学附属医院心脏超声科【正文语种】中文【中图分类】R540.45;R692.5左房容积增大是尿毒症患者常见的并发症状,增加了患者心房颤动及脑梗死发生的风险[1],因此准确评价尿毒症患者左房功能具有重要的临床意义。

房颤患者左心耳功能评估和血栓识别超声学进展

房颤患者左心耳功能评估和血栓识别超声学进展

房颤患者左心耳功能评估和血栓识别超声学进展庄文娟【期刊名称】《中国心血管病研究》【年(卷),期】2017(015)012【总页数】5页(P1061-1065)【关键词】应变;应变率;变形;血流速度;组织运动速度;左心耳基底部;血栓;房颤【作者】庄文娟【作者单位】100038 北京市,首都医科大学附属北京世纪坛医院心血管内科【正文语种】中文【中图分类】R541.7房颤患者由于心房电活动不同步,导致心房收缩杂乱无章[1-3]。

左心耳(LAA)是心房的一个壁薄有盲端的袋状结构,很容易受心房异常收缩的影响形成血栓和导致动脉栓塞,其中缺血性卒中最为严重[1,2]。

LAA是房颤患者最常见心源性血栓的来源[1,3]。

在某些情况下LAA很容易形成血栓,而高出血风险则要求选择非侵入性治疗[4],此时,可以通过二维超声或三维超声成像来检测LAA血栓。

不幸的是,直接评估LAA功能的可能性非常有限,特别是通过超声心动图。

超声心动图是一种用于诊断心血管疾病的简单且广泛可用的工具。

自20世纪70年代末首次用于临床以来,超声心动图已经发展壮大,包括M型和2维(2D)超声心动图、经食管和压力超声心动图等[1]。

近年来,房间隔和心房壁的运动最常应用经胸超声心动图(TTE)进行动态分析[5-10]。

随着心肌速度和变形定量技术(脉冲组织多普勒、彩色组织多普勒、应变、应变率、组织跟踪、组织同步成像、斑点跟踪、旋转和扭转)的出现,LAA血栓诊断能力得到了进一步提高。

左心房机械参数最初通过组织多普勒成像(TDI)直接评估,后又通过斑点跟踪超声心动图(STE)评估,均有助于TTE对左心耳血栓的判断。

联合二维TTE及三维TTE可以较精确地评估左心房及左心耳的血栓形成,并准确区分左心耳血栓与左心耳内粗大梳状肌[11]。

脉冲组织多普勒超声显像(PW-TDI)用频谱图显示声束方向上取样容积范围内的组织运动,其测量受帧频、角度和增益的影响;而STE不受多普勒角度限制,2D或3D评价室壁运动,D→S→SR,D→V,临床用于评价心肌应变、应变率、速度和幅度以及室壁运动的同步性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

doi: 10.1136/hrt.2007.1410022010 96: 716-722HeartHermann Blessberger and Thomas Binderechocardiography: basic principlesTwo dimensional speckle tracking/content/96/9/716.full.html Updated information and services can be found at: These include:References/content/96/9/716.full.html#ref-list-1This article cites 36 articles, 12 of which can be accessed free at:serviceEmail alertingbox at the top right corner of the online article.Receive free email alerts when new articles cite this article. Sign up in the Notes/cgi/reprintform To order reprints of this article go to:/subscriptions go to: Heart To subscribe toNON-INVASIVE IMAGINGTwo dimensional speckle tracking echocardiography:basic principles Hermann Blessberger,1Thomas Binder2T wo dimensional(2D)speckle tracking echocardi-ography(STE)is a promising new imagingmodality.Similar to tissue Doppler imaging(TDI),it permits offline calculation of myocardial veloci-ties and deformation parameters such as strain andstrain rate(SR).It is well accepted that theseparameters provide important insights into systolicand diastolic function,ischaemia,myocardialmechanics and many other pathophysiologicalprocesses of the heart.So far,TDI has been the onlyechocardiographic methodology from which theseparameters could be derived.However,TDI hasmany limitations.It is fairly complex to analyseand interpret,only modestly robust,and frame rateand,in particular,angle dependent.Assessment ofdeformation parameters by TDI is thus onlyfeasible if the echo beam can be aligned to thevector of contraction in the respective myocardialsegment.In contrast,STE uses a completelydifferent algorithm to calculate deformation:bycomputing deformation from standard2D greyscale images,it is possible to overcome many of thelimitations of TDI.The clinical relevance of defor-mation parameters paired with an easy mode ofassessment has sparked enormous interest withinthe echocardiographic community.This is alsoreflected by the increasing number of publicationswhich focus on all aspects of STE and which testthe potential clinical utility of this new modality.Some have already heralded STE as‘the nextrevolution in echocardiography’.This reviewdescribes the basic principles of myocardialmechanics and strain/SR imaging which forma basis for the understanding of STE.It explainshow speckle tracking works,its advantages totissue Doppler imaging,and its limitations. BACKGROUNDDeformation parameters d strain and strain rate Strain is a dimensionless quantity of myocardialdeformation.The so-called Langrangian strain(e)is mathematically defined as the change of myocar-dialfibre length during stress at end-systolecompared to its original length in a relaxed state atend-diastole¼(l-l0)/l0(figure1).1Strain is usuallyexpressed in per cent(%).The change of strain perunit of time is referred to as strain rate(SR).Negative strain indicatesfibre shortening ormyocardial thinning,whereas a positive valuedescribes lengthening or thickening.As SR(1/s)is the spatial derivative of tissuevelocity(mm/s),and strain(%)is the temporal integral of SR,all of these three parameters are mathematically linked to each other(figure2).12 Basically,strain measures the magnitude of myocardialfibre contraction and relaxation.In contrast to TDI,it only reflects active contraction since the STE derived deformation parameters are not influenced by passive traction of scar tissue by adjacent vital myocardium(tethering effect)or cardiac translation.3Since contraction is three dimensional and myocardialfibres are oriented differ-ently throughout the myocardial layers,deformation can also be described with respect to the different directional components of myocardial contraction.T o truly understand deformation it is therefore essential to consider myocardial mechanics.Basics of myocardial mechanicsThe sophisticated myocardialfibre orientation of the left ventricular(LV)wall provides an equal distribution of regional stress and strains.4In healthy subjects,the left ventricle undergoes a twisting motion which leads to a decrease in the radial and longitudinal length of the LV cavity. During isovolumetric contraction the apex initially performs a clockwise rotation.During the ejection phase the apex then rotates counterclockwise while the base rotates clockwise when viewed from the apex.5In diastole relaxation of myocardialfibres and subsequent recoiling(clockwise apical rotation) contributes to active suction.5Thus,the contrac-tion of the heart is similar to the winding(and unwinding)of a towel.From a mathematical point of view several parameters of myocardial mechanics can be described(figure3):<Rotation(degrees)¼angular displacement ofa myocardial segment in short axis view aroundthe LV longitudinal axis measured in a single plane.<T wist or torsion(degrees)which is the net difference between apical and basal rotation (calculated from two short axis cross-sectional planes of the LV).67<T orsional gradient(degrees/cm)which is defined as twist/torsion normalised to ventricular length from base to apex and accounts for the fact thata longer ventricle has a larger twist angle.8LV twist can be quantified in short axis views by measuring both apical and basal rotation with the help of STE(figure4).In addition,it is possible to calculate time intervals of contraction/relaxation with respect to torsion or rotation and therefore measure the speed of ventricular winding and unwinding.In particular,the speed of apical recoil1AKH Linz,Department of Internal Medicine I-Cardiology, Krankenhausstrasse,Austria2Department of Cardiology, Medical University of Vienna, Internal Medicine II,AKH, Waehringerguertel,Vienna, AustriaCorrespondence to Professor Dr Thomas Binder, Department of Cardiology, Medical University of Vienna, Internal Medicine II,AKH, Waehringerguertel18-20,1090 Vienna,Austria;thomas. binder@meduniwien.ac.atduring early diastole seems to re flect diastolic dysfunction.910Several studies have demonstrated that disturbed rotational mechanics can be found in many cardiac disease states and that speci fic patterns describe speci fic pathologies.9e 14While these parameters are assessed with the help of STE derived deformation parameters and describe the ‘mechanics ’of the entire heart,defor-mation parameters can also be calculated for indi-vidual segments and speci fic vectors of direction.Three different components of contraction havebeen de fined:radial,longitudinal,and circumferen-tial (figure 5).<Longitudinal contraction represents motion from the base to the apex.<Radial contraction in the short axis is perpen-dicular to both long axis and epicardium.Thus,radial strain represents myocardial thickening and thinning.<Circumferential strain is de fined as the change of the radius in the short axis,perpendicular to the radial and long axes.Longitudinal deformation is assessed from the apical views while circumferential and radial defor-mation are assessed from short axis views of the left ventricle.The description of these three aforemen-tioned ‘normal strains ’d which can be measured using current STE technology d allows a good approximation of active cardiac motion.However,they still represent a simpli fication.When consid-ering myocardial deformation during contraction in three dimensional space,six more ‘shear strains ’can be de fined in addition to the normal strains.1Normal strains are caused by forces that act perpendicular to the surface of a virtual cylinder within the myocar-dial wall,resulting in en bloc stretching or contrac-tion without skewing of the volume.Conversely,forces causing shear strain act parallel to the surface of such a myocardial block and lead to a shift of volume borders relative to one another as delineated by a shear angle a (figure 6).Reference values for segmental strain were established for the left ventricle and the left atrium.15e 19Normal paediatric strain values are also available.18However,clear cut-offs for peak systolic strain to de fine pathologic conditions are still missing.Marwick et al enrolled 242healthy individuals without cardiovascular risk factors or a history of cardiovascular disease in their multi-centre study and de fined normal LV longitudinal strain values as displayed in table 1.19Global reference values (mean 6SEM)for the longitudinal peak systolic strain (GLPSS:À18.660.1%),peak systolic SR (À1.1060.01/s),early diastolic SR (1.5560.01/s),as well as for the global late diastolic SR (1.0260.01/s)were also established.19Circum-ferential and radial LV strain reference values were determined by Hurlburt et al (table 2).15It appears that longitudinal strain values in the basal segments are less than in the mid and apical segments.It remains unclear if this truly re flects less contractility or if it is a methodological issue.According to current data,it does not seem neces-sary to adjust STE based strain or SR parameters for sex or indices of LV morphology.Studies investi-gating this issue only found a weak relationship or yielded con flicting results.1519e 21However,it has been shown that with age,LV twisting motion increases,whereas diastolic untwisting is delayed and reduced when compared to young individ-uals.22Possibly this is caused by the higher inci-dence of diastolic dysfunction with age.Strain and SR change throughout the cardiac cycle.T o describe systolic myocardial function,it is best to use peak systolic strain (which re flectsFigure 1Elastic deformation properties.Strain ¼change of fibre length compared to original length,strain rate ¼difference of tissue velocities at two distinctive points related to their distance.ΔL,change of length;L o ,unstressed original length;L,length at the end of contraction;blue arrow,direction of contraction;v 1,velocity point 1;v 2,velocity point 2;d,distance.Figure 2Mathematical relationship between different deformation parameters and mode of calculation for speckle tracking echocardiography (STE)and tissue Doppler imaging (TDI).STE primarily assesses myocardial displacement,whereas TDI primarily assesses tissue velocity.Modified from Pavlopoulos et al .1systolic shortening fraction)and peak systolic SR.23For timing of contraction the time to peak systolic strain and SR have been used (beginning of QRS complex to max peak of strain/SR curve,see figure 7).By de fining the time of aortic valve closure it is also possible to determine if peak strain in certain regions occurs before or after the end of systole.This may be particularly important for the assess-ment of dyssynchrony.24Such computations can be made for radial,circumferential,and longitudinal function,either for individual segments,a cut plane or the entire ventricle (using averaged values).Thus,strain and SR provide valuable information on both global and regional systolic and diastolic function and their timing.How does 2D speckle tracking work?STE was introduced by Reisner,Leitman,Friedman,and Lysyansky in 2004.2526It is performed as an of fline analysis from digitally recorded and ECG triggered cine loops.The algorithm uses speckle artefacts in the echo image which are generated at random due to re flections,refraction,and scattering of echo beams.Such speckles in the LV wall are tracked throughout the cardiac cycle.Some of these speckles stay stable during a part of the heart cycle and can be used as natural acoustic markers for tagging the myocardial motion during the cardiac cycle.The post-processing software de fines a ‘cluster of speckles ’(called a ‘kernel ’)and follows this cluster frame to frame (figure 8).1Detection of spatial movement of this ‘fingerprint ’during the heart cycle now allows direct calculation of Langrangian strain.Tissue velocity is estimated from the shift of the individual speckles divided by the time between successive frames.Strain rate can be calculated from tissue velocity as well (figure 2).Before strain analysis can be performed,it is essen-tial to correctly track the endocardial and epicardial borders of the left ventricle,and thereby correctly de fine the region of interest (ROI)(figure 9).After de finition of ROI in the long or short axis view,the post-processing software automatically divides the ventricle into six equallydistributedFigure 3Rotation of left ventricular apex and base during the heart cycle.Rot,rotation;l,length;diast,diastole;syst,systole;ap,apical;diff,difference.Figure 4Apical and basal rotation during heart cycle.Ordinate,rotation in degrees;abscissa,time.Figure 5Different types of left ventricular myocardial wallstrains.segments.Several different approaches and varying degrees of user interaction are required depending on the scanner type and the echocar-diographic view(parasternal vs apical).Endocar-dial tracking also allows computation of LV area changes during the cardiac cycle and can,thus, also be used to define end-systole and end-dias-tole.The raw data arefiltered and mathematical algo-rithms are applied to generate values.Several different display formats have been used to represent the data both using strain and SR curves and graphical colour encoded displays.STE proved to be highly robust and reproducible.27Intra-as well as inter-observer variability between skilled echo examiners were negligible.27From a practical point it is essential to choose a sector width and transducer position which provides visibility of the apical and lateral segments,but which still guarantees frame rates above30Hz,ideally around50Hz.Speckle tracking versus tissue Doppler imaging and MRISTE has several important advantages compared to other modalities which are able to measure defor-mation.In contrast to MRI,STE is much more available,cost efficient,can be used‘bedside’,and has a shorter procedure and post-processing time. In comparison to TDI,STE is insonation angle independent and does not require such high frame rates,is not subjected to the tethering effect,and allows straightforward measurement of radial and circumferential strain in addition to longitudinal strain.2The‘tethering effect’is a phenomenon encountered when TDI is used to assess strain.Scar tissue which is unable to contract is‘dragged’by adjacent viable myocardium during systole.Since TDI strain is calculated on the basis of tissue velocities,this motion is falsely assigned with a negative strain value,and thus assumed to be actively contracting tissue.In STE,this effect does not occur as strain is directly calculated from the frame to frame motion of speckle patterns and not from myocardial velocities.Strain and systolic functionWhile both strain and LV ejection fraction(LVEF) measure LV function,there is a fundamental difference between the two:strain calculates the contractility of the myocardium,while LVEF is a surrogate parameter that describes myocardial pump function.Even if contractility is reduced, compensatory mechanisms(ie,ventricular dilata-tion,geometry changes)can still assure that stroke volume remains normal(at least at rest).Thus,STE is especially suited for the assessment of global and regional systolic function in patients with heart failure and apparently normal ejection fraction (HFNEF).28Furthermore,regional dysfunction is not as apparent when using a global parameter such as LVEF.In addition,exact calculation of LVEF requires good image quality,operator experience, and has a large error of measurement.LVEF is also much more load dependent than strain.29Hooke’s law30summarises the relationship between the forces contributing to tissue deformation: Passive wall stressðtÞÀcontractile forceðtÞ¼elasticity3deformationðtÞAccording to this law,passive wall stress and elasticity both interfere with direct translation of segmental contractile force into deformation (strain).Passive wall stress is influenced by LV loading conditions(LV pressure),ventricle geom-etry,and segment to segment interaction,whereas elasticity is defined by tissue properties.In summary,strain could be an important parameter for LV function which can display cardiac dysfunction on a more fundamental level in an early stage of disease.STE longitudinal strain and EF correlate well in healthy individuals;however,in ST elevation myocardial infarction survivors and heart failure patients,for example,the correlation is lessstrong. Figure6Shear strain.A,surface area;F,force;Δx,border shift;L,height;a,shear angle.Table1Reference values for segmental longitudinal peak systolic strainLV segment (apical4 chamber view)Mean peak systoliclongitudinal strain(%)±SD*Mean peak systoliclongitudinal strain(%)±SD yLV segment(apical2chamber view)Mean peak systoliclongitudinal strain(%)±SD*LV segment(apical3chamber view)Mean peaksystolic longitudinalstrain(%)±SD*Basal septalÀ13.764.0À1764Basal anteriorÀ20.164.0Basal anteroseptalÀ18.363.5Mid septalÀ18.763.0À1964Mid anteriorÀ18.863.4Mid anteroseptalÀ19.463.2Apical septalÀ22.364.8À2366Apical anteriorÀ19.465.4Apical anteroseptalÀ18.865.9Apical lateralÀ19.265.4À2167Apical inferiorÀ22.564.5Apical posteriorÀ17.766.0Mid lateralÀ18.163.5À1966Mid inferiorÀ20.463.5Mid posteriorÀ16.865.0Basal lateralÀ17.865.0À1966Basal inferiorÀ17.163.9Basal posteriorÀ14.667.4*Mean left ventricular longitudinal peak systolic segmental strain values calculated from242healthy subjects aged51612years(between18and80years)by Marwick et al.19Scanner:Vivid 7,GE Medical Systems,Horten,Norway.Software:EchoPAC PC,version6.0.0,GE Healthcare,Chalfont St Giles,UK.y Mean left ventricular longitudinal peak systolic segmental strain values calculated from60healthy subjects aged39615years by Hurlburt et al.15Scanner:Vivid7,GE Medical Systems, Milwaukee,Wisconsin,USA.Software:EchoPac Advanced Analysis Technologies,GE Medical Systems.LV,left ventricular.This suggests that EF and STE strain re flect different parameters of systolic LV function.Thus,STE strain provides information on top of LVEF .31Deformation and diastolic functionDiastolic dysfunction in patients with normal systolic function results in impaired myocardial relaxation and reduced filling of the left ventricle during early diastole.This state is re flected by a change of the early diastolic LV (un-)twist pattern.9A decrease of early diastolic apical untwisting rate (rotR)as well as a shortening or negativity of time from peak apical diastolic untwist to mitral valve opening (t rotR to MVO )can be observed (figure 10).10Thereby,rotR and t rotR to MVO both become less as diastolic dysfunction progresses.RotR correlates well with established parameters of diastolic dysfunction like early diastolic tissue velocity of septal mitral annulus (e ’)and ratio of early diastolic mitral in flow to tissue velocity of septal mitral annulus (e:e ’).10LIMITATIONS OF 2D STRAIN<Image quality:Even though 2D STE is fairlyrobust,image quality is still an issue.In young healthy subjects,approximately 6%of all LV segments cannot be analysed due to poor image quality.15<Out of plane motion caused by movement of the heart during the cardiac cycle:It is unclear how out of plane motion of speckles andframeFigure 7Longitudinal strain curve with peak longitudinal strain occurring in early diastole.AVC,aortic valve closure;N,peak systolic longitudinalstrain.Figure 8Displacement of acoustic markers from frame to frame.Green dots represent the initial position and red the final position of thespeckles.Table 2Mean left ventricular circumferential and radial peak systolic segmental strain values calculated from 60healthy subjects aged 39615years by Hurlburt et al 15LV segment (short axis view at a basal level,just below mitral valve)Mean peak systolic circumferential strain (%)±SD Mean peak systolic radial strain (%)±SD Anterior À246639616Lateral À226737618Posterior À216737617Inferior À226637617SeptalÀ246637619AnteroseptalÀ2661139615Scanner:Vivid 7,GE Medical Systems.Software:EchoPac Advanced Analysis Technologies,GE Medical Systems.rate affect the accuracy of STE.This short-coming could be overcome by the use of 3D speckle tracking technology.<Unknown software algorithms:T o track speckles and compute strain and SR values,filtering algorithms are used.The effect of this filtering on the results represents a ‘black box ’and may vary from vendor to vendor.It is,thus,unclear how values from different scanners and software versions compare.Cross platform comparisons and a clear de finition of global and regional norm values are essential for a broad application of STE.<Correct tracing of myocardial region of interest:One of the major limitations is the exact detection of borders.Even though speckle tracking itself seems to enhance the capabilities of endocardial delineation,it is still necessary to correct contours manually.In addition,assess-ment of strain and SR also requires de finition of the epicardial borders.In most software versions a uniform thickness of the myocardium is assumed d an assumption which is not true.<Size of left ventricle:A further limitation,encountered in large ventricles,is that it is often dif ficult to image the entire myocardium,especially the apical segments.FUTURE PERSPECTIVESSTE is rapidly evolving both on the investigational and the technological front.It will be necessary to clearly de fine normal values and clinical settings where STE is useful.A primary goal will be the de finition of cut-off values for medical decision making and to correlate these with hard end points.This will also require standardisation among different scanners to assure cross platform repro-ducibility and clear guidelines for the integration of STE into routine echocardiography.Optimisation of the algorithms for strain and SR assessment will certainly occur.This will include a more flexible endo-and epicardial border detec-tion algorithm that accounts for differences in myocardial thickness and enhanced mathematical models and filtering techniques.Three dimensional STE applications will help to improve the understanding of myocardial motion.The current practice of just measuring longitudinal,radial,and circumferential strain is a simpli fication of the complex myocardial fibre contraction pattern,and neglects ‘shear strains ’and out-of-plane motion.These problems may be overcome with three dimensional technology.32e 35Finally,more advanced technologies will allow LV rotation/torsion and strain/SR measurement of the endocardial,midwall,and epicardial myocardial layers and thus deliver a deeper insight into the physiology of myocardial mechanics,and permit the study of global and local processes within the LV wall.36CONCLUSIONSTE has developed rapidly from a research tool to a technique which is on the verge of becoming an important part of routine echocardiography.STE uses the 2D image to calculate deformation parameters and is in many aspects superior to TDI.STE is easy to use,robust and provides a multitude of new insights into the mechanics and deforma-tion processes of the myocardium.In particular,STE could provide important information on regional and global systolic and diastolicfunctionFigure 9Semi-automated definition of left ventricular endocardial and epicardial borders (ROI)in an apical four chamberview.Figure 10Speckle tracking derived apical rotation rate of a subject with normal diastology (A)and with pseudonormal filling pattern.White lines indicate mitral valve opening,arrows indicate peak rotation rate during early diastole.Reproduced with permission from Perry et al .10which could translate into improved diagnostics of heart disease.Competing interests In compliance with EBAC/EACCME guidelines, all authors participating in Education in Heart have disclosed potential conflicts of interest that might cause a bias in the article.The authors have no competing interests.Provenance and peer review Commissioned;not externally peer reviewed.REFERENCES1.Pavlopoulos H,Nihoyannopoulos P.Strain and strain ratedeformation parameters:from tissue Doppler to2D speckletracking.Int J Cardiovasc Imaging2008;24:479e91.<This paper delivers a good insight into the physical basics of speckle tracking echocardiography.2.Marwick TH.Measurement of strain and strain rate byechocardiography:ready for prime time?J Am Coll Cardiol2006;47:1313e27.3.Behar V,Adam D,Lysyansky P,et al.The combined effect ofnonlinearfiltration and window size on the accuracy of tissuedisplacement estimation using detected echo signals.Ultrasonics 2004;41:743e53.4.Vendelin M,Bovendeerd PH,Engelbrecht J,et al.Optimizingventricularfibers:uniform strain or stress,but not ATPconsumption,leads to high efficiency.Am J Physiol Heart CircPhysiol2002;283:H1072e81.5.Sengupta PP,Krishnamoorthy VK,Korinek J,et al.Left ventricularform and function revisited:applied translational science tocardiovascular ultrasound imaging.J Am Soc Echocardiogr2007;20:539e51.6.Takeuchi M,Nishikage T,Nakai H,et al.The assessment of leftventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging.J Am Soc Echocardiogr2007;20:36e44.7.Notomi Y,Lysyansky P,Setser RM,et al.Measurement ofventricular torsion by two-dimensional ultrasound speckle tracking imaging.J Am Coll Cardiol2005;45:2034e41.8.Henson RE,Song SK,Pastorek JS,et al.Left ventricular torsion isequal in mice and humans.Am J Physiol Heart Circ Physiol2000;278:H1117e23.9.Park SJ,Miyazaki C,Bruce CJ,et al.Left ventricular torsion bytwo-dimensional speckle tracking echocardiography in patientswith diastolic dysfunction and normal ejection fraction.J Am Soc Echocardiogr2008;21:1129e37.10.Perry R,De Pasquale CG,Chew DP,et al.Assessment of earlydiastolic left ventricular function by two-dimensionalechocardiographic speckle tracking.Eur J Echocardiogr2008;9:791e5.<The article demonstrates the role of STE in assessing diastolic dysfunction.11.Ng AC,Tran da T,Newman M,et parison of leftventricular dyssynchrony by two-dimensional speckle trackingversus tissue Doppler imaging in patients with non-ST-elevationmyocardial infarction and preserved left ventricular systolicfunction.Am J Cardiol2008;102:1146e50.12.Saito M,Okayama H,Nishimura K,et al.Determinants of leftventricular untwisting behaviour in patients with dilatedcardiomyopathy:analysis by two-dimensional speckle tracking.Heart2009;95:290e6.13.Wang J,Nagueh SF,Mathuria NS,et al.Left ventricular twistmechanics in a canine model of reversible congestive heart failure:a pilot study.J Am Soc Echocardiogr2009;22:95e8.14.Sun JP,Stewart WJ,Yang XS,et al.Differentiation ofhypertrophic cardiomyopathy and cardiac amyloidosis from othercauses of ventricular wall thickening by two-dimensional strainimaging echocardiography.Am J Cardiol2009;103:411e15. 15.Hurlburt HM,Aurigemma GP,Hill JC,et al.Direct ultrasoundmeasurement of longitudinal,circumferential,and radial strainusing2-dimensional strain imaging in normal adults.Echocardiography2007;24:723e31.<Reference values for longitudinal,circumferential,and radial strain in adults.16.Teske AJ,Prakken NH,De Boeck BW,et al.Echocardiographictissue deformation imaging of right ventricular systolic function in endurance athletes.Eur Heart J2009;30:969e77.17.Cameli M,Caputo M,Mondillo S,et al.Feasibility and referencevalues of left atrial longitudinal strain imaging by two-dimensional speckle tracking.Cardiovasc Ultrasound2009;7:6.18.Bussadori C,Moreo A,Di Donato M,et al.A new2D-basedmethod for myocardial velocity strain and strain rate quantification in a normal adult and paediatric population:assessment ofreference values.Cardiovasc Ultrasound2009;7:8.19.Marwick TH,Leano RL,Brown J,et al.Myocardial strainmeasurement with2-dimensional speckle-trackingechocardiography:definition of normal range.JACC CardiovascImaging2009;2:80e4.<Reference values for longitudinal strain and strain rate in adults.20.Ng AC,Tran da T,Newman M,et al.Left ventricular longitudinaland radial synchrony and their determinants in healthy subjects.J Am Soc Echocardiogr2008;21:1042e8.21.Oxborough D,Batterham AM,Shave R,et al.Interpretation of two-dimensional and tissue Doppler-derived strain(epsilon)and strainrate data:is there a need to normalize for individual variability in left ventricular morphology?Eur J Echocardiogr2009;10:677e82. 22.Takeuchi M,Nakai H,Kokumai M,et al.Age-related changes inleft ventricular twist assessed by two-dimensional speckle-tracking imaging.J Am Soc Echocardiogr2006;19:1077e84.23.Sutherland GR,Di Salvo G,Claus P,et al.Strain and strain rateimaging:a new clinical approach to quantifying regional myocardial function.J Am Soc Echocardiogr2004;17:788e802.24.Suffoletto MS,Dohi K,Cannesson M,et al.Novel speckle-trackingradial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiacresynchronization therapy.Circulation2006;113:960e8.<STE derived radial strain was proven useful to assess dyssynchrony and predict response to cardiacresynchronisation therapy.25.Leitman M,Lysyansky P,Sidenko S,et al.Two-dimensionalstrain-a novel software for real-time quantitativeechocardiographic assessment of myocardial function.J Am Soc Echocardiogr2004;17:1021e9.26.Reisner SA,Lysyansky P,Agmon Y,et al.Global longitudinalstrain:a novel index of left ventricular systolic function.J Am Soc Echocardiogr2004;17:630e3.27.Belghitia H,Brette S,Lafitte S,et al.Automated functionimaging:a new operator-independent strain method for assessing left ventricular function.Arch Cardiovasc Dis2008;101:163e9.28.Edvardsen T,Helle-Valle T,Smiseth OA.Systolic dysfunction inheart failure with normal ejection fraction:speckle-trackingechocardiography.Prog Cardiovasc Dis2006;49:207e14.29.Becker M,Kramann R,Dohmen G,et al.Impact of left ventricularloading conditions on myocardial deformation parameters:analysis of early and late changes of myocardial deformation parametersafter aortic valve replacement.J Am Soc Echocardiogr2007;20:681e9.<This paper elegantly demonstrated that LV pre-and afterload conditions influence deformation parameters. 30.Bijnens BH,Cikes M,Claus P,et al.Velocity and deformationimaging for the assessment of myocardial dysfunction.Eur JEchocardiogr2009;10:216e26.31.Delgado V,Mollema SA,Ypenburg C,et al.Relation betweenglobal left ventricular longitudinal strain assessed with novelautomated function imaging and biplane left ventricular ejectionfraction in patients with coronary artery disease.J Am SocEchocardiogr2008;21:1244e50.<LVEF and global longitudinal strain were shown to be less correlated in patients with heart failure or ST elevationmyocardial infarction.Thus,global longitudinal strain provided information different from that of LVEF in these patients. 32.Kawagishi T.Speckle tracking for assessment of cardiac motionand dyssynchrony.Echocardiography2008;25:1167e71.33.Kapetanakis S,Kearney MT,Siva A,et al.Real-time three-dimensional echocardiography:a novel technique to quantify global left ventricular mechanical dyssynchrony.Circulation2005;112:992e1000.34.Marsan NA,Bleeker GB,Ypenburg C,et al.Real-time three-dimensional echocardiography permits quantification of leftventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy.J Cardiovasc Electrophysiol2008;19:392e9.35.Marsan NA,Henneman MM,Chen J,et al.Real-time three-dimensional echocardiography as a novel approach to quantify left ventricular dyssynchrony:a comparison study with phase analysis of gated myocardial perfusion single photon emission computedtomography.J Am Soc Echocardiogr2008;21:801e7.36.Goffinet C,Chenot F,Robert A,et al.Assessment of subendocardialvs.subepicardial left ventricular rotation and twist using two-dimensional speckle tracking echocardiography:comparison withtagged cardiac magnetic resonance.Eur Heart J2009;30:608e17.。

相关文档
最新文档