江苏版2021年中考数学热点专题冲刺5三角形四边形问题

合集下载

专练05 三角形中的最值问题-2021年中考数学压轴题专项高分突破训练(全国通用)(解析版)

专练05 三角形中的最值问题-2021年中考数学压轴题专项高分突破训练(全国通用)(解析版)

专练05三角形中的最值问题1.几何探究题(1)发现:在平面内,若AB=a,BC=b,其中b>a.当点A在线段BC上时,线段AC的长取得最小值,最小值为________;当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为________.(2)应用:点A为线段BC外一动点,如图2,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=5,AB=2,则线段BE长度的最大值为________.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(7,0),点P为线AB 外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)∵当点A在线段BC上时,线段AC的长取得最小值,最小值为BC-AB,∵BC=b,AB=a,∴BC-AB=b-a,当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为BC+AB,∵BC=b,AB=a,∴BC+AB=b+a,故答案为:b-a,b+a;(2)解:①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,{AD=AB∠CAD=∠EABAC=AE,∴△CAD≌△EAB(SAS),∴CD=BE;7 ②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BE=CD=BD+BC=AB+BC=5+2=7;故答案为:7.(3)解:最大值为5+2 √2;∴P(2- √2,√2).如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(7,0),∴AO=2,OB=7,∴AB=5,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN= √2AP=2 √2,∴最大值为 5+2 √2;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE= √2,∴OE=OA-AE=2- √2,∴P(2- √2,√2).2.阅读下列材料,解决提出的问题:【最短路径问题】如图(1),点A,B分别是直线l异侧的两个点,如何在直线l上找到一个点C,使得点C到点A,点B 的距离和最短?我们只需连接AB,与直线l相交于一点,可知这个交点即为所求.如图(2),如果点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得这个点到点A、点B 的距离和最短?我们可以利用轴对称的性质,作出点B关于的对称点B’,这时对于直线l上的任一点C,都保持CB=CB’,从而把问题(2)变为问题(1).因此,线段AB’与直线l的交点C的位置即为所求.为了说明点C的位置即为所求,我们不妨在直线上另外任取一点C’,连接AC’,BC’,B’C’.因为AB’≤AC’+C’B’,∴AC+CB≤AC’+C’B,即AC+BC最小.(1)【数学思考】材料中划线部分的依据是________.(2)材料中解决图(2)所示问题体现的数学思想是.(填字母代号即可)A.转化思想B.分类讨论思想C.整体思想(3)【迁移应用】如图3,在Rt△ABC中,∠C=90°,∠BAC=15°,点P为C边上的动点,点D为AB边上的动点,若AB =6cm,求BP+DP的最小值.【答案】(1)两点之间线段最短或者三角形任何两边的和大于第三边(2)A(3)解:如图,作点B关于点C的对称点B′,连接AB′.作BH⊥AB′于H.作点D关于AC的对称点D′,则PD=PD′,∴PB+PD=PB+PD′,根据垂线段最短可知,当点D′与H重合,B,P,D′共线时,PB+PD的最小值=线段BH的长,∵BC=CB′,AC⊥BB′,∴AB=AB′,∴∠BAC=∠CAB′=15°,∴∠BAH=30°,在Rt△ABH中,∵AB=3cm,∠BAH=30°,∴BH=12AB=3cm,∴PB+PD的最小值为3cm3.如图(1)性质:角平分线上的点到角两边的距离相等,如图1:OP平分∠MON,PC⊥OM于C,PB⊥ON于B,则PB________PC(填“ >”“ <”或“=”);(2)探索:如图2,小明发现,在△ABC中,AD是∠BAC的平分线,则S△ABDS△ADC =ABAC,请帮小明说明原因.(3)应用:如图3,在小区三条交叉的道路AB,BC,CA上各建一个菜鸟驿站D,P,E,工作人员每天来回的路径为P→D→E→P,①问点P应选在BC的何处时,才能使PD+DE+PE最小?②若∠BAC=30°,S△ABC=10,BC=5,则PD+DE+PE的最小值是多少?【答案】(1)∵OP平分∠MON,PC⊥OM于C,PB⊥ON于B,∴PB=PC(2)解:理由:过点D作DE⊥AB于E,DF⊥AC于F∵AD是∠BAC的平分线,∴DE=DF∴S△ABDS△ADC =12DE·AB12DF·AC=ABAC;(3)解:①过点A作AP⊥BC于P,分别作点P关于AB、AC的对称点P1、P2 ,连接P1P2分别交AB、AC于D、E,连接PD、PE、AP1、AP2 ,由对称的性质可得AP1=AP=AP2 ,DP1=DP,EP2=EP,∴PD+DE+PE= DP1+DE+ EP2= P1P2 ,根据两点之间,线段最短和垂线段最短,即可得出此时PD+DE+PE最小,即P1P2的长即当AP⊥BC于P时,PD+DE+PE最小;②∵S△ABC=10,BC=5,∴12BC·AP=10解得:AP=4由对称的性质可得AP1=AP=AP2=4,DP1=DP,EP2=EP,∠DAP1=∠DAP,∠EAP2=∠EAP∴∠DAP1+∠EAP2=∠DAP+∠EAP=∠DAE=30°∴∠P1AP2=60°∴△P1AP2是等边三角形∴P1P2= AP1=4即PD+DE+PE的最小值是4.4.如图(1)探索1:如图1,点A 是线段BC 外一动点,若AB=2,BC=4,填空:当点A 位于________线段AC 长取得最大值,且最大值为________;(2)探索2:如图2,点A 是线段BC 外一动点,且AB=1,BC=3,分别以AB、BC 为直角边作等腰直角三角形ABD 和等腰直角三角形CBE,连接AC、DE.①请找出图中与AC 相等的线段,并说明理由;②直接写出线段DE 长的最大值;(3)如图3,在平面直角坐标系中,已知点A(2,0)、B(5,0),点P、M 是线段AB 外的两个动点,且PA=2,PM=PB,∠BPM=90°,求线段AM 长的最大值及此时点P 的坐标.(提示:在图 4 中作PN⊥PA,PN=PA,连接BN 后,利用探索 1 和探索2中的结论,可以解决这个问题)【答案】(1)∵点A为线段BC外一动点,且AB=2,BC=4,∴当点A位于CB的延长线上时,线段AC的长取最大值,最大值为2+4=6,故答案是:CB的延长线上,6;(2)解:①∵△ABD和△CBE是等腰直角三角形,∴AB=DB,CB=EC,∠ABD=∠CBE=90°,∴∠ABD−∠ABE=∠CBE−∠ABE,即∠DBE=∠ABC,在△BAC和△BDE中,{BA=BD∠ABC=∠DBEBC=BE,∴△BAC≅△BDE(SAS),∴AC=DE;②由(1)知AC的最大值是AB+BC=4,∵DE=AC,∴DE长的最大值是4;类比应用:(3)解:如图,过点P作PN⊥PA,PN=PA,连接BN,根据(2)中的方法,同理可以证明△AMP≅△NBP,∴AM=BN,当点N在线段BA的延长线上时,线段BN取最大值,也就是线段AM取最大值,最大值是AB+AN,∵A(2,0),B(5,0),∴AB=3,∵△APN是等腰直角三角形,∴AN=√2AP=2√2,∴最大值是2√2+3,如图,过点P作PE⊥x轴于点E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO−AB−AE=5−3−√2=2−√2,∴P(2−√2,√2),如图,点P也有可能在x轴下方,与刚刚的点P关于x轴对称,P(2−√2,−√2),综上:点P的坐标是(2−√2,√2)或(2−√2,−√2).5.在等腰Rt△ABC中,∠BAC=90°,AB=AC=6 √2,D是射线CB上的动点,过点A作AF⊥AD(AF始终在AD上方),且AF=AD,连接BF(1)如图1,当点D在线段BC上时,BF与DC的关系是________.(2)如图2,若D、E为线段BC上的两个动点,且∠DAE=45°,连接EF,DC=3,求ED的长.(3)若在点D的运动过程中,BD=3,则AF=________.(4)如图3,若M为AB中点,连接MF,在点D的运动过程中,当BD=________时,MF的长最小?最小值是________.【答案】(1)当点D在线段BC上时,∵AF=AD,∠BAF=90°−∠BAD=∠DAC,AB=AC∴△FAB≅△DAC(SAS)∴BF=DC(2)解:∵AE=AE,∠EAF=90°−∠DAE=45°=∠EAD,AF=AD,∴△FAE≅△DAE(SAS)∴ED=EF=3( 3 )BD=3,设AG为BC边上的高,G为垂足,在等腰Rt△ABC中,G为BC的中点,∴AF=AD=√AG2+DG2=√62+(6−3)2=3√5( 4 )点F的轨迹是过点B,且垂直于BC的射线,根据垂线段最短的性质,当MF⊥BF时,线段MF 最短,又因为BC⊥BF,∠ABC=45°,∠FBD=90°∴△BFM为等腰直角三角形,MF=BF=√22BM=√22×AB2=√24×6√2=3BD=BC-DC=12-3=9此时MF=3.6.(1)发现如图①所示,点A为线段BC外的一个动点,且BC=a,AB=b.填空:当点A位于________时,线段AC 的长取得最大值,且最大值为________(用含a、b 的式子表示).(2)应用点A为线段BC外一个动点,且BC=4,AB=1.如图②所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值_▲ .(3)拓展如图③所示,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P为线段AB外一个动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM的最大值________及此时点P的坐标________.【答案】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上;a+b;(2)解:①CD=BE;理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,{AD=AB∠CAD=∠EABAC=AE,∴△CAD≌△EAB,②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5故答案为:5;( 3 )∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN= √2AP=2 √2,∴AM长的最大值为2 √2+4;如图2,当点P在第一象限时,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE= √2,∴OE=OA-AE=2- √2,∴P(2- √2,√2);如图3,当点P在第四象限时,根据对称性可知,P(2- √2,- √2)也符合题意综上:点P的坐标为(2- √2,√2)或(2- √2,- √2)故答案为:2 √2+4;(2- √2,√2)或(2- √2,- √2).7.在等腰Rt△ABC中,∠BAC=90°,AB=AC=6√2,D是射线CB上的动点,过点A作AF⊥AD(AF始终在AD上方),且AF=AD,连接BF.(1)如图1,当点D在线段BC上时,BF与DC的关系是________;(2)如图2,若点D,E为线段BC上的两个动点,且∠DAE=45°,连接EF,DC=3,求ED 的长;(3)若在点D的运动过程中,BD=3,则AF=________;(4)如图3,若M为AB中点,连接MF,在点D的运动过程中,当BD=________时,MF的长最小?最小值是________.【答案】(1)长度相等(2)5(3)3√5(4)9;3【解析】(1)∵AF⊥AD∴∠DAF=90°∵∠BAC=90°∴∠CAD=∠BAC-∠BAD=∠DAF-∠BAD=∠BAF 即∠CAD =∠BAF∵AB=AC,AF=AD∴△ADC≌△AFB,∴BF= DC故答案为:长度相等;(2)由(1)可知△ADC≌△AFB,∵∠DAE=45°,∠BAC=90°∴∠CAD+∠BAE=45°∵∠CAD =∠BAF∴∠BAF +∠BAE=45°∴∠FAE=45°= ∠DAE∵AD=AF,AE=AE∴△AED≌△AEF,得到EF=DE,设DE=x,∵∠BAC=90°,AB=AC=6√2,∴BC= √AB2+AC2=12,∠C=∠ABC=45°,∴∠ABF=∠C=45°∴∠FBE=90°∴△BEF是直角三角形,∵EF=DE =x,CD=3∴BE=9-x,BF=CD=3在Rt△BEF中,EF2=BF2+BE2,即x2=32+(9-x)2,解得x=5即DE的长为5;(3)如图,过A点作AH⊥BC于H点,∵△ABC为的等腰直角三角形∴AH是△ABC的中线,BC=6∴AH= 12∵BD=3,∴DH=BH-BD=3∴AD= √AH2+DH2=3√5∴AF= 3√5故答案为:3√5;(4)如图,取AC中点M’,故BM=CM’∵∠FBM=∠C,BF=CD∴△FBM≌△DCM’∴MF=M’D,故当M’D最短时,则MF最短,作M’D⊥BC于D’点,AC=3√2则△CD’M’是等腰直角三角形,M’C= 12设CD’=D’M’=a∴a2+a2=(3√2)2解得a=3(负值舍去)∴CD’=3故此时BD=12-3=9,MF=D’M’=3故答案为:9;3.8.如图1,已知直线l的同侧有两个点A,B,在直线l上找一点P,使P点到A,B两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点就是所要找的点,通过这种方法可以求解很多问题(1)如图2,在平面直角坐标系内,点A的坐标为(1,1),点B的坐标为(5,4),动点P在x轴上,求PA+PB的最小值;(2)如图3,在锐角三角形ABC中,AB=8,∠BAC=45°,∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为________(3)如图4,∠AOB=30°,OC=4,OD=10,点E,F分别是射线OA,OB上的动点,则CF+EF+DE的最小值为________。

2021年中考数学第三轮冲刺专题复习:四边形的综合 (含答案)

2021年中考数学第三轮冲刺专题复习:四边形的综合 (含答案)

2021年中考数学第三轮冲刺专题复习:四边形的综合专项练习1、如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2、如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.3、如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.4、如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.5、如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.6、如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.7、如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.8、如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.9、定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.10、如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.11、如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.12、如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G 不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.13、在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.14、已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM 的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.15、如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.16、综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.17、已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF的值.参考答案2021年中考数学第三轮冲刺专题复习:四边形的综合专项练习1、如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.2、如图,▱ABCD的对角线AC、BD相交于点O,EF经过O,分别交AB、CD于点E、F,EF的延长线交CB的延长线于M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD,BC=AD,∴∠OAE=∠OVF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)解:过点O作ON∥BC交AB于N,则△AON∽△ACB,∵OA=OC,∴ON=BC=2,BN=AB=3,∵ON∥BC,∴△ONE∽△MBE,∴=,即=,解得,BE=1.3、如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.4、如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB=,AD=BC,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA∴AD=DE=10,∴BC=10,AB=CD=DE+CE=16,∵CE2+BE2=62+82=100=BC2,∴△BCE是直角三角形,∠BEC=90°;(2)解:∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE===8,∴cos∠DAE=cos∠EAB===.5、如图,已知平行四边形ABCD中,AB=5,BC=3,AC=2.(1)求平行四边形ABCD的面积;(2)求证:BD⊥BC.【解答】解:(1)作CE⊥AB交AB的延长线于点E,如图:设BE=x,CE=h在Rt△CEB中:x2+h2=9①在Rt△CEA中:(5+x)2+h2=52②联立①②解得:x=,h=∴平行四边形ABCD的面积=AB•h=12;(2)作DF⊥AB,垂足为F∴∠DF A=∠CEB=90°∵平行四边形ABCD∴AD=BC,AD∥BC∴∠DAF=∠CBE又∵∠DF A=∠CEB=90°,AD=BC∴△ADF≌△BCE(AAS)∴AF=BE=,BF=5﹣=,DF=CE=在Rt△DFB中:BD2=DF2+BF2=()2+()2=16∴BD=4∵BC=3,DC=5∴CD2=DB2+BC2∴BD⊥BC.6、如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为27、如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.【解答】(1)证明:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.8、如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.【解答】解:(1)AG=FG,理由如下:如图,过点F作FM⊥AB交BA的延长线于点M∵四边形ABCD是正方形∴AB=BC,∠B=90°=∠BAD∵FM⊥AB,∠MAD=90°,FG⊥AD∴四边形AGFM是矩形∴AG=MF,AM=FG,∵∠CEF=90°,∴∠FEM+∠BEC=90°,∠BEC+∠BCE=90°∴∠FEM=∠BCE,且∠M=∠B=90°,EF=EC∴△EFM≌△CEB(AAS)∴BE=MF,ME=BC∴ME=AB=BC∴BE=MA=MF∴AG=FG,(2)DH⊥HG理由如下:如图,延长GH交CD于点N,∵FG⊥AD,CD⊥AD∴FG∥CD∴,且CH=FH,∴GH=HN,NC=FG∴AG=FG=NC又∵AD=CD,∴GD=DN,且GH=HN∴DH⊥GH9、定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FBA与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.10、如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.【解答】(1)解:作CG⊥AD于G,如图1所示:设PG=x,则DG=4﹣x,在Rt△PGC中,GC2=CP2﹣PG2=17﹣x,在Rt△DGC中,GC2=CD2﹣GD2=52﹣(4﹣x)2=9+8x﹣x2,∴17﹣x2=9+8x﹣x2,解得:x=1,即PG=1,∴GC=4,∵DP=2AP=4,∴AD=6,∴S△ACD=×AD×CG=×6×4=12;(2)证明:连接NE,如图2所示:∵AH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,FC=AF=BF,∴∠ANE=∠BCD=135°,AD=BC=2AF,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=MC+2EC.11、如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.12、如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G 不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为3;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.【解答】(1)解:①P在线段AD上,PQ=AB=20,AP=x,AM=12,四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;②当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,∴0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊥AB于M,交CD于N,作GE⊥CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,∵△GDC是等腰直角三角形,∴DE=CE,GE=CD=10,∴GF=GE+EF=20,∴GH=20﹣x,由题意得:PQ∥CD,∴△GPQ∽△GDC,∴=,即=,解得:PQ=40﹣2x,∴梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,∴当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,∵0≤x≤20,∴10≤10+≤15,对称轴在10和15之间,∵10≤x≤20,二次函数图象开口向下,∴当x=20时,S最小,∴﹣202+×20≥50,∴a≥5;综上所述,a的取值范围为5≤a≤20.13、在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.【解答】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵P A⊥AB,PF⊥BD,BP平分∠ABD,∴P A=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵P A=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.14、已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM 的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为2cm/s,BC的长度为10cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.【解答】解:(1)∵t=2.5s时,函数图象发生改变,∴t=2.5s时,M运动到点B处,∴动点M的运动速度为:=2cm/s,∵t=7.5s时,S=0,∴t=7.5s时,M运动到点C处,∴BC=(7.5﹣2.5)×2=10(cm),故答案为:2,10;(2)①∵两动点M,N在线段BC上相遇(不包含点C),∴当在点C相遇时,v==(cm/s),当在点B相遇时,v==6(cm/s),∴动点N运动速度v(cm/s)的取值范围为cm/s<v≤6cm/s;②过P作EF⊥AB于F,交CD于E,如图3所示:则EF∥BC,EF=BC=10,∴=,∵AC==5,∴=,解得:AF=2,∴DE=AF=2,CE=BF=3,PF==4,∴EP=EF﹣PF=6,∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=×4×2+(4+2x﹣5)×3﹣×5×(2x﹣5)=﹣2x+15,S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=×2×6+(6+15﹣2x)×3﹣×5×(15﹣2x)=2x,∴S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x﹣)2+,∵2.5<<7.5,在BC边上可取,∴当x=时,S1•S2的最大值为.15、如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.【解答】(1)证明:如图1中,延长DM交FG的延长线于H.∵四边形ABCD,四边形BCFG都是正方形,∴DE∥AC∥GF,∴∠EDM=∠FHM,∵∠EMD=∠FMH,EM=FM,∴△EDM≌△FHM(AAS),∴DE=FH,DM=MH,∵DE=2FG,BG=DG,∴HG=DG,∵∠DGH=∠BGF=90°,MH=DM,∴GM⊥DM,DM=MG,连接EB,BF,设BC=a,则AB=2a,BE=2a,BF=a,∵∠EBD=∠DBF=45°,∴∠EBF=90°,∴EF==a,∵EM=MF,∴BM=EF=a,∵HM=DM,GH=FG,∴MG=DF=a,∴==.(2)解:(1)中的值有变化.理由:如图2中,连接BE,AD交于点O,连接OG,CG,BF,CG交BF于O′.∵DO=OA,DG=GB,∴GO∥AB,OG=AB,∵GF∥AC,∴O,G,F共线,∵FG=AB,∴OF=AB=DF,∵DF∥AC,AC∥OF,∴DE∥OF,∴OD与EF互相平分,∵EM=MF,∴点M在直线AD上,∵GD=GB=GO=GF,∴四边形OBFD是矩形,∴∠OBF=∠ODF=∠BOD=90°,∵OM=MD,OG=GF,∴MG=DF,设BC=m,则AB=2m,易知BE=2OB=2•2m•sinα=4m sinα,BF=2BO°=2m•cosα,DF=OB=2m•sinα,∵BM=EF==,GM=DF=m•sinα,∴==.16、综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在的直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一条直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3.第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME.如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是67.5°,的值是.(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:菱形EMCH或菱形FGCH.【解答】解:(1)由折叠的性质得:BE=EN,AE=AF,∠CEB=∠CEN,∠BAC=∠CAD,∵四边形ABCD是正方形,∴∠EAF=90°,∴∠AEF=∠AFE=45°,∴∠BEN=135°,∴∠BEC=67.5°,∴∠BAC=∠CAD=45°,∵∠AEF=45°,∴△AEN是等腰直角三角形,∴AE=EN,∴==;故答案为:67.5°,;(2)四边形EMGF是矩形;理由如下:∵四边形ABCD是正方形,∴∠B=∠BCD=∠D=90°,由折叠的性质得:∠BCE=∠ECA=∠ACF=∠FCD,CM=CG,∠BEC=∠NEC=∠NFC=∠DFC,∴∠BCE=∠ECA=∠ACF=∠FCD==22.5°,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC、FC,∴MC=ME=CG=GF,∴∠MEC=∠BCE=22.5°,∠GFC=∠FCD=22.5°,∴∠MEF=90°,∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,∵∠BME=∠BCE+∠MEC=22.5°+22.5°=45°,∴∠EMG=180°﹣∠CMG﹣∠BME=90°,∴四边形EMGF是矩形;(3)连接EH、FH,如图所示:∵由折叠可知:MH、GH分别垂直平分EC、FC,同时EC、FC也分别垂直平分MH、GH,∴四边形EMCH与四边形FGCH是菱形,故答案为:菱形EMCH或菱形FGCH.17、已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.(1)填空:点A在(填“在”或“不在”)⊙O上;当=时,tan∠AEF的值是;(2)如图1,在△EFH中,当FE=FH时,求证:AD=AE+DH;(3)如图2,当△EFH的顶点F是边AD的中点时,求证:EH=AE+DH;(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD 时,FN=4,HN=3,求tan∠AEF的值.【解答】解:(1)连接AO,∵∠EAF=90°,O为EF中点,∴AO=EF,∴点A在⊙O上,当=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FG,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=EQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴,∵DC∥AB∥QM,∴,∴,∵FE=FM,∴,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴,∴.。

2021年九年级中考数学三轮冲刺专题:《四边形综合》解答题冲刺练习(一)

2021年九年级中考数学三轮冲刺专题:《四边形综合》解答题冲刺练习(一)

2021年九年级中考数学三轮冲刺专题:《四边形综合》解答题冲刺练习(一)1.如图1,在矩形ABCD中,AB=4,BC=3,BD为对角线,将△ABD沿过点D的某条直线折叠得到△FED,直线EF分别与线段AB、BD交于点G、H.(1)求证:BG=EG;的值.(2)如图2,当点E、H、C三点共线时,请求S△DFH(3)若△DEH是等腰三角形,求tan∠DEB的值.2.已知在△ABC中,∠C=90°,BC=8,cos B=,点D是边BC上一点,过点D作DE ⊥AB,垂足为点E,点F是边AC上一点,联结DF、EF,以DF、EF为邻边作平行四边形EFDG.(1)如图1,如果CD=2,点G恰好在边BC上,求∠CDF的余切值;(2)如图2,如果AF=AE,点G在△ABC内,求线段CD的取值范围;(3)在第(2)小题的条件下,如果平行四边形EFDG是矩形,求线段CD的长.3.已知,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD先沿直线AE翻折,点B落在点F处,展开后再将矩形ABCD沿直线BF翻折,点E落在点G 处,再将图形展开,连接EF、FG、GB,得到四边形BEFG.(1)如图1,若点F恰好落在CD边上,求线段BE的长;(2)如图2,若BE=1,直接写出点F到BC边的距离;(3)若△ADG的面积为3,直接写出四边形BEFG的面积.4.如图,在△ABC中,∠ACB=90°,BC=6;AC=8,D为边BC的中点,E为边AC的中点.点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,到点B停止,以PD、PE为边作▱PEFD.设点P的运动时间为t(秒).(1)证明▱PEFD的面积是定值,并直接写出这个定值.(2)当▱PEFD是矩形时,求此时AP的长.(3)当▱PEFD的一条对角线和△ABC的一边垂直时,直接写出此时t的值.5.如图,正方形ABCD中,点E是边AB上一动点,点F在边AD的延长线上,且BE=DF.连接CE,CF,EF,AC,EF与AC交于点M.(1)求证:CE=CF.(2)若AM=AC,试求∠BCE的度数.(3)设EF的中点为P,连接DP.在点E的运动过程中,的值是否会发生变化?若不变,请求出它的值;若变化,请求出它的取值范围.6.如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE,当AC=4,∠ACB=30°时,求BE的长.7.如图,在平面直角坐标系内,A(0,4),B(4,4),C(4,0),连接OA,AB,BC,OC.(1)如图1,求证:四边形OABC为正方形;(2)如图2,若点D是OC的中点,连接AD,作DE⊥AD于点D,且DE=AD,点E 在点D的右侧,连接CE,求证:CE=OD;(3)如图3,若点D是x轴上一动点,作DE⊥AD于点D,且DE=AD,点E在点D的右侧,求BE的最小值.8.已知在菱形ABCD中,点P在CD上,连接AP.(1)在BC上取点Q,使得∠PAQ=∠B,①如图1,当AP⊥CD于点P时,线段AP与AQ之间的数量关系是.②如图2,当AP与CD不垂直时,判断①中的结论是否仍然成立,若成立,请给出证明,若不成立,则需说明理由.(2)在CD的延长线取点N,使得∠PAN=∠B,①根据描述在图3中补全图形.②若AB=4,∠B=60°,∠ANC=45°,求此时线段DN的长.9.(1)[问题背景]如图1,在△ABC中,AB=AC,∠BAC=α°,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转α°得到AE,连接EC,则∠BCE =°(用含α的式子表示),线段BC,DC,EC之间满足的等量关系式为;(2)[探究证明]如图2,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,求证:BD2+CD2=2AD2;(3)[拓展延伸]如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.将△ABF绕点A逆时针旋转90°,试画出旋转后的图形,并求出AF的长度.(不要求尺规作图)10.我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=CB,求证:四边形ABCD是“准筝形”;(2)小军同学研究“准筝形”时,思索这样一道题:如图2,“准筝形”ABCD,AD=BD,∠BAD=∠BCD=60°,BC=5,CD=3,求AC的长.小军研究后发现,可以CD为边向外作等边三角形,构造手拉手全等模型,用转化的思想来求AC.请你按照小军的思路求AC的长.(3)如图3,在△ABC中,∠A=45°,∠ABC=120°,BC=2,设D是△ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.11.如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(b,0),其中a、b满足,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.解答下列问题:(1)直接写出点A、点B的坐标:A();B();(2)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(3)在y轴上是否存在一点P,连接PA,PB,使S三角形PAB =S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.12.如图所示,在平行四边形ABCD中,∠DAC=60°,点E是BC边上一点,连接AE,AE=AB,点F是对角线AC边上一动点,连接EF.(1)如图1,若点F与对角线交点O重合,已知BE=4,OC:EC=5:3,求AC的长度;(2)如图2,若EC=FC,点G是AC边上一点,连接BG、EG,已知∠AEG=60°,∠AGB+∠BCD=180°,求证:BG+EG=DC.(3)如图3,若BE=4,CE=,将EF绕点E逆时针旋转90°得EF',请直接写出当AF'+BF'取得最小值时△ABF′的面积.13.将一个矩形纸片OABC放置在平面直角坐标系xOy内,边OA、OC分别在x轴、y轴上,B点坐标是(a,b)且a、b满足+(a+b﹣10)2=0,点P是线段B上的动点,将△OCP沿OP翻折得到△OC′P.(1)求点A和C的坐标;(2)如图①,当点C′落在线段AP上时,求点P的坐标;(3)如图②,当点P为线段BC中点时,求线段BC′的长度.14.如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,在(2)的旋转过程中,①当AE为最大值时,则AF=.②当AE为最小值时,则AF=.15.四边形ABCD中,AD∥BC,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,若∠ABE=30°,则∠BEA=(直接写出答案);(2)如图2,当点E在线段BC延长线上时,连接DE,若∠BAD:∠CDE=12:1,∠AED=60°,∠ABC=∠ADC,求∠ABC的度数;(3)在(2)的条件下,如图3所示,F为DA延长线上一点,连接FE交AB于G,交CD于H,∠F:∠FEA=3:1,BC:CE=5:2,当BG=10时,求CH的长.参考答案1.解:(1)证明:如图1,连接BE.由折叠,得BD=ED,∠DBA=∠DEF,∴∠DBE=∠DEB,∠DBE﹣∠DBA=∠DEB﹣∠DEF,∴∠GBE=∠GEB,∴BG=EG.(2)如图2,在矩形ABCD中,∠GBC=90°.由折叠,得∠EFD=∠A=90°,DF=DA=CB=3,∵E、H、C三点共线,∴∠CFD=180°﹣∠EFD=90°=∠GBC,∵CD∥AB,∴∠FCD=∠BGC,∴△FCD≌△BGC(AAS),∴GC=CD=AB=4,∴GB=CF==;∵CD∥GB,∴△CDH∽△GBH,∴,解得CH=,∴FH=﹣=,=×3×==.∴S△DFH(3)如图3,EF的延长线交BD于点H,DE=HE.延长BA交DE于点M,作BN⊥DE于点N,则∠BNE=∠BND=90°.由折叠,得MB=HE,DE=BD==5,∴MB=BD=5,AM=5﹣4=1,∵∠DAN=90°,∴DM==,MN=DN=DM=,∴EN=5,BN==,∴tan∠DEB==;如图4,EF交BD于点H,DH=EH.作BQ⊥DE于点Q,则∠DQB=∠BQE=90°.由折叠,得∠FED=∠ABD,DE=BD=5,∵∠FED=∠QDB,∴∠QDB=∠ABD,又∵∠DQB=∠A=90°,BD=DB,∴△DQB≌△BAD,∴QD=AB=4,QB=AD=3,∴QE=5﹣4=1,∴tan∠DEB==3;如图5,当点F与点A重合时,则点G也与点A重合,点H与点B重合,此时点E、A、B在同一条直线上,∵∠DAE=90°,AE=AB=4,AD=3,∴tan∠DEB=.综上所述,tan∠DEB的值为或3或.2.解:(1)在Rt△ABC中,cos B==,又BC=8,∴AB=10,∴AC===6,∵DE⊥AB,∴在Rt△BDE中,cos B=,又CD=2,BD=6,∴BE=,∵四边形ABCD是平行四边形,∴EF∥DG,∵点G在BC上,∴EF∥BC,∴,∴,∴CF=,在Rt△CFD中,cos=;(2)∵四边形EFDG是平行四边形,∴DF∥EG,当点G恰好在AB上时,∴DF∥AB,∴,设CD=x,则,∴CF=,在Rt△BDE中,cos B=,又CD=x,则BD=8﹣x,∴BE=(8﹣x),∵AE=AF,∴,∴x=,当点G在△ABC内时,0≤CD;(3)设CD=x,则BE=(8﹣x),∴AE=10﹣(8﹣x),设矩形EFDG的对角线FG与DE相交于点O,连接OA,∵平行四边形EFDG是矩形,∴OF=OE=DE,∵AF=AE,OA=OA,∴△AFO≌△AEO(SSS),∴∠AFO=∠AEO=90°,过点E作EH⊥AC于点H,∴EH∥HF∥CB,∵OD=OE,∴CF=HF,∴EH+CD=2OF=DE,∵(8﹣x),EH=[10﹣(8﹣x)],∴[10﹣(8﹣x)]+x=(8﹣x),∴x=,∴CD=.3.解:(1)连接AF,如图1所示:∵四边形ABCD是矩形,∴CD=AB=5,BC=AD=3,∠ABC=∠C=∠D=90°,由翻折的性质得:AF=AB=5,FE=BE,∴DF===4,∴CF=CD﹣DF=1,在Rt△CEF中,由勾股定理得:CE2+CF2=FE2,即(3﹣BE)2+12=BE2,解得:BE=;(2)连接AF,过点F作MN⊥BC于N,交AD于M,如图2所示:则MN⊥AD,AM=BN,∴∠AMF=∠FNE=90°,∴∠AFM+∠FAM=90°,由翻折的性质得:AF=AB=5,∠FE=BE=1,∠AFE=∠ABE=90°,∴∠AFM+∠EFN=90°,∴∠FAM=∠EFN,∴△AMF∽△FNE,∴===5,∴BN=5FN,在Rt△NEF中,由勾股定理得:FN2+EN2=FE2,即FN2+(5FN﹣1)2=12,解得:FN=,或FN=0(舍去),即点F到BC边的距离为;(3)连接AF,过G作GH⊥AD于H,过点F作MN⊥BC于N,交AD于M,如图2所示:则MN∥GH,MN⊥AD,MN=CD=5,∵△ADG的面积=AD×GH=×3×GH=3,∴GH=2,由翻折的性质得:BG=FG,FE=BE,BG=BE,∴BG=FG=FE=BE,∴四边形BEFG是菱形,∴FG∥BC∥AD,∴四边形GHMF是平行四边形,∵GH⊥AD,∴∠GHM=90°,∴平行四边形GHMF是矩形,∴FM=GH=2,∴FN=MN﹣FM=3,AM===,同(2)得:△AMF∽△FNE,∴=,即=,∴FE=,∴BE=,∴四边形BEFG的面积=BE×FN=×3=.4.解:(1)连接DE,作EG垂直于AB与点G,由勾股定理得AB==10,∵点D、E为BC、AC中点,∴DE∥AB,DE=AB=5,AE=AC=4,∵sin A==,∴GE=AE=,∴S=DE•EG=×5×=6,△DEP=2×6=12.∴▱PEFD的面积为2S△DEP(2)①如图,当点P为AB中点时,PD,PE分别为△ABC的中位线,PD⊥PE,∴▱PDEF为矩形,∴AP=AB=5.②如图,当∠DPE为直角时,作EG、DH垂直于AB于点G、H,∵∠DPH+∠EPG=90°,∠DPH+∠HDP=90°,∴△EGP∽△PHD,∴=,∵D为BC中点,∴BD=BC=3,∵tan A===,∴AG=GE=,∵sin B===,tan B===,∴HD=BD=,BH=HD=,∴GP=AP﹣AG=5t﹣,PH=AH﹣AP=AB﹣BH﹣AP=10﹣﹣5t=﹣5t.∴=,解得t=或t=1(舍),∴AP=5t=.综上所述,AP=5或.(3)①当PF⊥AB时,PF⊥DE,∴四边形PDFE为菱形,∴PD2=PE2,∴PH2+HD2=PG2+GE2,即(﹣5t)2+()2=(5t﹣)2+()2,∴﹣5t=5t﹣,解得t=.②当PF⊥BC时,PF交DE于点O,交CD于点K,∵O为DE中点,OK∥EC,∴OK为△EDC的中位线,∴DK=CD=3,∵BK=BP=6﹣3t,∴DK=6﹣3t﹣3=3﹣3t,∴3=3﹣3t,解得t=.③当PF⊥AC时,交AC于点M,同理可得M为EC中点,∴AM=AE+EC=AC=6,∴AP=AM=,∴5t=,解得t=.综上所述,t=或或.5.(1)证明:∵四边形ABCD是正方形,∴∠CBE=∠CDF=90°,BC=DC,∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF.(2)解:设EF交CD于T,设AE=a,BE=DF=b,则AD=AB=CD=a+b,∵AE∥CT,∴==,∴CT=2a,DT=a+b﹣2a=b﹣a,∵DT∥AE,∴=,∴=,整理得,2b2﹣2ba﹣a2=0,∴b=a(舍弃)或b=a,∴=,∴tan∠BCE===,∴∠BCE=30°.(3)解:结论:=.理由:连接PC,过点P作PH⊥AD于H.∵△CBE≌△CDF,∴∠BCE=∠DCF,∴∠ECF=∠BCD=90°,∵CE=CF,PE=PF,∴PC⊥EF,∠CFE=45°,∴∠CPT=∠FDT=90°,∵∠CTP=∠DTF,∴△CPT∽△FDT,∴=,∴=,∵∠PTD=∠CTF,∴△PTD∽△CTF,∴∠PDT∠CFT=45°,∵∠ADC=90°,∴∠PDH=90°,∵PH⊥DH,∴PD=PH,∵PE=PF,AE∥PH,∴AH=HF,∴PH=AE,∴PD=×AE,∴=.6.证明:(1)∵四边形ABCD是矩形,∴∠ADC=90°,∴AF⊥CE,又∵CD=DE,∴AE=AC,EF=CF,∴∠EAD=∠CAD,∵AE∥CF,∴∠EAD=∠AFC,∴∠CAD=∠CFA,∴AC=CF,∴AE=EF=AC=CF,∴四边形ACFE是菱形;(2)∵AC=4,∠ACB=30°,∠ABC=90°,∴AB=AC=2,BC=AB=2,∴CD=AB=2=DE,∴BE===2.7.解:(1)∵A(0,4),B(4,4),C(4,0),∴OA=AB=OC=BC=4,∠AOC=90°,∴四边形OABC为正方形;(2)如图2,作EG⊥DC于点G,∵点D是OC的中点,∴OD=OC=2,∵EG⊥DC,DE⊥AD,∴∠DGE=∠AOD=∠ADE=90°,∴∠OAD+∠ADO=∠ADO+∠EDG=90°,∴∠OAD=∠EDG,∵DE=AD,∴△OAD≌△GDE(AAS),∴OD=EG=2,DG=OA=4,∵OD=DC=2,∴CG=2,∴CG=EG,∴△ECG为等腰直角三角形,∠ECG=45°,∴CE=EG=OD;(3)情况1:如图3,点D在x负半轴上,作EH⊥DC于点H,∵EH⊥DC,DE⊥AD,∴∠ADE=∠DHE=∠AOD=90°,∵∠ADO+∠DAO=∠ADO+∠EDH=90°,∴∠DAO=∠EDH,∵AD=DE,∴△OAD≌△HDE(AAS),∴OD=EH,DH=OA=4,∵DH=DO+OH,OA=OC=OH+HC,∴DO=HC,∴EH=CH,∴△ECH为等腰直角三角形,∴∠ECH=45°∴E在直线y=x﹣4上运动,情况2:点D在是x正半轴上,如图4,与情况1同理可得:△ECH为等腰直角三角形,∴E在y=x﹣4的直线运动.如图3,图4中,作BK⊥CE,则BK为BE的最小值,∵BC=4,∠BCK=45°,∠BCK=90°,∴BK=.故BE的最小值为.8.解:(1)①AP=AQ.∵四边形ABCD是菱形,∴BC=CD,AB∥CD,∴∠B+∠QCD=180°,∵∠PAQ=∠B,∴∠PAQ+∠QCD=180°,∴∠APC+∠AQC=180°,∵AP⊥CD,∴∠APC=90°,∴∠AQC=90°,∴AQ⊥BC,=BC•AQ=CD•AP,∵S菱形ABCD∴AP=AQ;故答案为:AP=AQ;②①中的结论仍然成立.证明:如图2中,过点A作AM⊥BC于M,AN⊥CD于N.∵四边形ABCD是菱形,AM⊥BC,AN⊥CD,=BC•AM=CD•AN,∴S菱形ABCD∵BC=CD,∴AM=AN,∠AMQ=∠ANP=90°,AB∥CD,∴∠B+∠C=180°,∵∠PAQ=∠B,∴∠PAQ+∠C=180°,∴∠AQC+∠APC=180°,∵∠AQM+∠AQC=180°,∴∠AQM=∠APN,∴△AMQ≌△ANP(AAS),∴AP=AQ.(2)①补全图形如下:②如图3,过点A作AH⊥CD于点H,∵∠ANC=45°,∴∠NAH=45°,∴AH=HN,∵四边形ABCD是菱形,∠B=60°,∴∠ADC=60°,AB=AD=4,∴DH=AD=2,∴AH=DH=2,∴HN=2,∴DN=HN﹣DH=2﹣2.9.(1)解:如图1中,∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=(180°﹣α),∵∠ACB=∠B=(180°﹣α)∴∠BCE=180°﹣α,∴BC=BD+CD=CD+EC.故答案为:(180﹣α),BC=CD+EC.(2)证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴DE=AD,∴2AD2=BD2+CD2.(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=3,Rt△CGF中,∵CF=1,∴FG===2,∵△FAG是等腰直角三角形,∴AF==2.10.(1)证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°,∵∠A+∠C=270°,∠D=30°,∴∠B=360°﹣(∠A+∠C+∠D)=360°﹣(270°+30°)=60°,∵AB=CB,∴四边形ABCD是“准筝形”;.(2)解:以CD为边作等边△CDE,连接BE,过点E作EF⊥BC于F,如图2所示:则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在△ADC和△BDE中,,∴△ADC≌△BDE(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°﹣60°﹣60°=60°,∵∠EFC=90°,∴∠CEF=30°,∴CF=CE=,由勾股定理得:EF===,BF=BC+CF=5+=,在Rt△BEF中,由勾股定理得:BE===7,∴AC=BE=7.(3)解:过点C 作CH ⊥AB ,交AB 延长线于H ,如图3所示:设BH =x ,∵∠ABC =120°,CH 是△ABC 的高线,∴∠BCH =30°,∴HC =x ,BC =2BH =2x =2,∴x =, 又∵∠A =45°,∴△HAC 是等腰直角三角形,∴HA =HC =3,AB =3﹣, ∴AC =HC =3,当AB =AD =3﹣,∠BAD =60°时, 连接BD ,过点C 作CG ⊥BD ,交BD 延长线于点G ,过点A 作AK ⊥BD ,如图4所示:则BD =3﹣,∠ABD =60°,BK =AB =(3﹣),∵∠ABC =120°,∴∠CBG =60°=∠CBH ,在△CBG 和△CBH 中,,∴△CBG ≌△CBH (AAS ),∴GC =HC =3,在Rt △ABK 中,由勾股定理得:AK ===,∴S △ABD =BD •AK =×(3﹣)×=,S △CBD =BD •CG =×(3﹣)×3=,∴S 四边形ABCD =+=. ②当BC =CD =2,∠BCD =60°时,连接BD ,作CG ⊥BD 于点G ,AK ⊥BD 于K ,如图5所示:则BD=2,CG=BC=×2=3,AK=,∴S△BCD =BD•CG=×2×3=3,S△ABD=BD•AK=×2×=,∴S四边形ABCD=3+=;.③当AD=CD=AC=3,∠ADC=60°时,作DM⊥AC于M,如图6所示:则DM=AD=×3=,∴S△ABC=AB•CH=×(3﹣)×3=,S△ADC=AC•DM=×3×=,∴S四边形ABCD=+=+3,综上所述,四边形ABCD的面积为或或+3.11.解:(1)∵,(a +1)2≥0,≥0,∴a +1=0,b ﹣3=0,∴a =﹣1,b =3,∴A (﹣1,0),B (3,0),故答案为:﹣1,0;3,0; (2)∵将点A (﹣1,0),B (3,0)分别向上平移2个单位,再向右平移1个单位,对应点C ,D ,∴C (0,2),D (4,2),∴CD =AB =4,CD ∥AB ,OC =2,∴四边形ABDC 是平行四边形,∴S 四边形ABDC =AB •OC =4×2=8;(3)存在,P (0,4)或(0,﹣4).设P (0,t ),则OP =|t |,∴S 三角形PAB =AB •OP =×4|t |=2|t |,∵S 三角形PAB =S 四边形ABDC ,∴2|t |=8,∴|t |=4,∴t =±4,∴P (0,4)或(0,﹣4).12.解:(1)如图1,过点A 作AG ⊥BC ,垂足为G ,设OC =5k ,EC =3k , ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO =OC =5k ,∴∠ACG =∠DAC =60°,∴∠GAC=30°,∵AB=AE,∴BG=GE=2,∴GC=GE+EC=2+3k,在Rt△AGC中,∵∠GAC=30°,∴AC=2GC,∴10k=2(2+3k),解得:k=1,∴AC=10k=10;(2)如图2,延长BG到点M,使得GM=EG,连接CM,延长EF交AD于点N,连接CN,∵∠DAC=60°,EC=FC,∴△EFC是等边三角形,∴∠EFC=∠FEC=∠FCE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAN=∠AFN=∠ANF=60°,∴△AFN是等边三角形,∴AF+FC=FN+EF,∴AC=NE,∵AD∥BC,∴四边形AECN是等腰梯形,∴AE=CN,∵四边形ABCD是平行四边形,∴CD=AB,∵AE=AB,∴AE=CD,∴CN=CD,∵AD∥BC,AE=CD,∴四边形AECD是等腰梯形,∴N与点D重合,∵四边形AECD是等腰梯形,∴∠AEC=∠DCE,∵∠FEC=∠FCE=60°,∴∠AEF=∠DCG,∵∠AEG=60°,∴∠AEF=∠CEG,∴∠CEG=∠DCG,∵∠CEG+∠EGC+∠ECG=180°,∴∠DCG+∠EGC+∠ECG=180°,∴∠EGC+∠BCD=180°,∵∠AGB+∠BCD=180°,∴∠EGC=∠AGB=∠MGC,∵EG=GM,GC=GC,∴△EGC≌△MGC(SAS),∴EC=CM,∠ECG=∠MCG=60°,∴EF=MC,∠AFE=∠BCM=120°,∵△AFN是等边三角形,四边形ABCD是平行四边形,∴AD=BC=AF,∴△AGE≌△BCM(SAS),∴AE=BM,∵AE=AB=DC,BM=BG+GM,GM=EG,∴BG+EG=DC.(3)如图3,过点A作AG⊥BC,垂足为G,∵AB=AE,BE=4,∠DAC=60°,∴BG=GE=2,GC=GE+EC=2+,由(2)知∠ACG=60°,∴∠GAC=30°,∴AG=4+2,在AG上取一点M,使得AM=4,则GM=2,∵直线AG是BE的垂直平分线,∴MB=ME,∵====,∴EM∥AC,∴∠MEG=∠ACE=60°,∴△MBE是等边三角形,∴BF′是∠MBE的角平分线,过点F'作F'H⊥BC,垂足为H,则F'H=BF′,∴AF'+F'H≥AH,∴A,F',G三点共线时,AF'+F'H最小,此时F′H=,∴△ABF′的面积为BG•AF′=×2×(4+)=4+.13.解:(1)∵+(a+b﹣10)2=0,∴.解得:,∴B(6,4),又∵四边形OABC为矩形,∴A(6,0),C(0,4);(2)由(1)可知:AO=BC=6,CO=BA=4,∵AO∥BC,∴∠CPO=∠AOP,由折叠易知:∠CPO=∠C'PO,∴∠AOP=∠C'PO,∴AO=AP=6,在Rt△ABP中,PB==.∴CP=BC﹣PB=6﹣2,∴点P坐标为:(6﹣2,4);(3)连接CC',交PO于点D,如图所示:在Rt△PCO中,OC=4,PC===3,∴OP=,由折叠易知:OP垂直平分线段CC',即D为CC'的中点,==,∴S△PCO∴CD===,在Rt△PDC中,PD===,又∵D为CC'的中点,P为BC中点,∴PD为△CC'B的中位线,∴BC'=2PD=2×=.14.解:(1)结论:BG=AE,BG⊥AE.理由:如图1,延长EA交BG于K.∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,,∴△ADE≌△BDG(SAS),∴BG=AE,∠BGD=∠AED,∵∠GAK=∠DAE,∴∠AKG=∠ADE=90°,∴EA⊥BG.(2)①成立BG=AE,BG⊥AE.理由:如图2,连接AD,延长EA交BG于K,交DG于O.在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),∴BG=AE,∠BGD=∠AED,∵∠GOK=∠DOE,∴∠OKG=∠ODE=90°,∴EA⊥BG.(3)①如图③,当旋转角为270°时,BG=AE,此时AE的值最大.∵BC=DE=2,∴BG=2+1=3.∴AE=3.在Rt△AEF中,由勾股定理,得AF===2,∴AF=2.故答案为:2.②如图④中,连接AF.如图②中,在△BDG中,∵BD=1,DG=2,∴2﹣1≤BG≤1+2,∴AE的最小值为1,此时如图④中,G,B,D共线,在Rt△AEF中,AF===.故答案为:.15.解:(1)∵AD∥BC,∠ABE=30°,∴∠BAD=180°﹣∠ABE=180°﹣30°=150°,而AE平分∠BAD,∴=75°,∴∠BEA=∠DAE=75°,故答案为:75°,(2)设∠CDE=α,则由题意可知∠BAD=12α,∵AD∥BC,∴∠ABC=∠ADC=180°﹣12α,又∵AE平分∠BAD,∴∠DAE==,在△AED中,由三角形内角和定理可知:∠DAE+∠ADE+∠AED=180°,即,6α+180°﹣12α+α+60°=180°,解得:α=12°,∴∠ABC=180°﹣12×12°=36°;(3)由(2)可知:∠BAD=12α,∠ABC=∠ADC=180°﹣12α,故有,∠BAD+∠ADC=12α+180°﹣12α=180°,∴AB∥CD,∴∠GBC=∠HCE,而△CEH∽△BEG,∴,又∵BC:CE=5:2,BG=10,∴,∴CH=.。

2021年九年级中考数学第三轮解答题冲刺专题复习:四边形 综合练习(含答案)

2021年九年级中考数学第三轮解答题冲刺专题复习:四边形 综合练习(含答案)

2021年中考数学第三轮解答题冲刺专题复习:四边形综合练习1、如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.2、如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.3、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.4、如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.5、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.6、如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?7、如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.8、如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)9、已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.10、如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.11、如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)12、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.13、如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s 的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm 长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.14、对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)15、如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2 cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.16、在菱形ABCD 中,∠ABC =60°,点P 是射线BD 上一动点,以AP 为边向右侧作等边△APE ,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是 ,CE 与AD 的位置关系是 ;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理). (3) 如图4,当点P 在线段BD 的延长线上时,连接BE ,若AB =2√3 ,BE =2√19 ,求四边形ADPE 的面积.图1图2图3图4参考答案2021年中考数学第三轮压轴题冲刺专题复习:四边形综合练习题1、如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.2、如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【解答】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又 EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,3、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.4、如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【解答】解:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S=××=.△ADF5、已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.6、如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?【解答】解:(1)证明:∵四边形CEFG是正方形,∴CE=EF,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE,在△FEH和△ECD中,∴△FEH≌△ECD,∴FH=ED;(2)设AE=a,则ED=FH=4﹣a,=AE•FH=a(4﹣a),∴S△AEF=﹣(a﹣2)2+2,∴当AE=2时,△AEF的面积最大.7、如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.【解答】解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=48、如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【解答】解:(1)依题意作出图形如图①所示,(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC=,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.9、已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【解答】解:(1)∵2BM=AO,2CO=AO ∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=310、如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.【解答】解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM.在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH.∵CD=BC,∴CE=CH\1∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2如图2,连接AE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上.∵∠BCF=90°,∠BEF=90°,M为AF的中点,∴CM=AF,EM=AF,∴CM=ME.∵∠EFD=45°,∴∠EFC=135°.∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接CF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD.∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=MG,∴MD=ME,∠MCG=∠MGC.∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°.∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.11、如图1,以▱ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系,并说明理由;(2)延长DE、BA交于点H,其他条件不变:①如图2,若∠ADC=60°,求的值;②如图3,若∠ADC=α(0°<α<90°),直接写出的值(用含α的三角函数表示)【解答】解:(1)BG=EG,理由是:如图1,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵四边形CFED是菱形,∴EF=CD,EF∥CD,∴AB=EF,AB∥EF,∴∠A=∠GFE,∵∠AGB=∠FGE,∴△BAG≌△EFG,∴BG=EG;(2)①如图2,设AG=a,CD=b,则DF=AB=b,由(1)知:△BAG≌△EFG,∴FG=AG=a,∵CD∥BH,∴∠HAD=∠ADC=60°,∵∠ADE=60°,∴∠AHD=∠HAD=∠ADE=60°,∴△ADH是等边三角形,∴AD=AH=2a+b,∴==;②如图3,连接EC交DF于O,∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=,∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=AD,∴AM=AD=(2a+2bcosα)=a+bcosα,Rt△AHM中,cosα=,∴AH=,∴==cosα.12、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.13、如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s 的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.(1)点P到达终点O的运动时间是s,此时点Q的运动距离是cm;(2)当运动时间为2s时,P、Q两点的距离为6cm;(3)请你计算出发多久时,点P和点Q之间的距离是10cm;(4)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm 长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线y=过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.【解答】解:(1)∵四边形AOCB是矩形,∴OA=BC=16,∵动点P从点A出发,以3cm/s的速度向点O运动,∴t=,此时,点Q的运动距离是×2=cm,故答案为,;(2)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,过点P作PE⊥BC于E,过点Q作QF⊥OA于F,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,PQ=6,故答案为6;(3)设运动时间为t秒时,由运动知,AP=3t,CQ=2t,同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10cm,∴62+(16﹣5t)2=100,∴t=或t=;(4)k的值是不会变化,理由:∵四边形AOCB是矩形,∴OC=AB=6,OA=16,∴C(6,0),A(0,16),∴直线AC的解析式为y=﹣x+16①,设运动时间为t,∴AP=3t,CQ=2t,∴OP=16﹣3t,∴P(0,16﹣3t),Q(6,2t),∴PQ解析式为y=x+16﹣3t②,联立①②解得,x=,y=,∴D(,),∴k=×=是定值.14、对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD 边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P 点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)【解答】解:(1)由图①,可得∠BCE=∠BCD=45°,又∵∠B=90°,∴△BCE是等腰直角三角形,∴=cos45°=,即CE=BC,由图②,可得CE=CD,而AD=BC,∴CD=AD,∴=;(2)①设AD=BC=a,则AB=CD=a,BE=a,∴AE=(﹣1)a,如图③,连接EH,则∠CEH=∠CDH=90°,∵∠BEC=45°,∠A=90°,∴∠AEH=45°=∠AHE,∴AH=AE=(﹣1)a,设AP=x,则BP=a﹣x,由翻折可得,PH=PC,即PH2=PC2,∴AH2+AP2=BP2+BC2,即[(﹣1)a]2+x2=(a﹣x)2+a2,解得x=a,即AP=BC,又∵PH=CP,∠A=∠B=90°,∴Rt△APH≌Rt△BCP(HL),∴∠APH=∠BCP,又∵Rt△BCP中,∠BCP+∠BPC=90°,∴∠APH+∠BPC=90°,∴∠CPH=90°;②折法:如图,由AP=BC=AD,可得△ADP是等腰直角三角形,PD平分∠ADC,故沿着过D的直线翻折,使点A落在CD边上,此时折痕与AB的交点即为P;折法:如图,由∠BCE=∠PCH=45°,可得∠BCP=∠ECH,由∠DCE=∠PCH=45°,可得∠PCE=∠DCH,又∵∠DCH=∠ECH,∴∠BCP=∠PCE,即CP平分∠BCE,故沿着过点C的直线折叠,使点B落在CE上,此时,折痕与AB的交点即为P.15、如图,在矩形ABCD中,AB=2cm,∠ADB=30°.P,Q两点分别从A,B同时出发,点P沿折线AB﹣BC运动,在AB上的速度是2cm/s,在BC上的速度是2 cm/s;点Q在BD上以2cm/s的速度向终点D运动,过点P作PN⊥AD,垂足为点N.连接PQ,以PQ,PN为邻边作▱PQMN.设运动的时间为x(s),▱PQMN与矩形ABCD重叠部分的图形面积为y(cm2)(1)当PQ⊥AB时,x= s ;(2)求y关于x的函数解析式,并写出x的取值范围;(3)直线AM将矩形ABCD的面积分成1:3两部分时,直接写出x的值.【解答】解:(1)当PQ⊥AB时,BQ=2PB,∴2x=2(2﹣2x),∴x=s.故答案为s.(2)①如图1中,当0<x≤时,重叠部分是四边形PQMN.y=2x×x=2x2.②如图②中,当<x≤1时,重叠部分是四边形PQEN.y=(2﹣x+2tx×x=x2+x③如图3中,当1<x<2时,重叠部分是四边形PNEQ.y=(2﹣x+2)×[x﹣2(x﹣1)]=x2﹣3x+4;综上所述,y=.(3)①如图4中,当直线AM经过BC中点E时,满足条件.则有:tan∠EAB=tan∠QPB,∴=,解得x=.②如图5中,当直线AM经过CD的中点E时,满足条件.此时tan ∠DEA=tan ∠QPB , ∴=,解得x=,综上所述,当x=s 或时,直线AM 将矩形ABCD 的面积分成1:3两部分.16、在菱形ABCD 中,∠ABC =60°,点P 是射线BD 上一动点,以AP 为边向右侧作等边△APE ,点E 的位置随点P 的位置变化而变化.(1)如图1,当点E 在菱形ABCD 内部或边上时,连接CE ,BP 与CE 的数量关系是 ,CE 与AD 的位置关系是 ;(2)当点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理). (3) 如图4,当点P 在线段BD 的延长线上时,连接BE ,若AB =2√3 ,BE =2√19 ,求四边形ADPE 的面积.【解析】 (1)① BP=CE 理由如下: 连接AC∵菱形ABCD ,∠ABC=60°图1图2图3图4∴△ABC是等边三角形∴AB=AC ∠BAC=60°∵△APE是等边三角形∴AP=AE ∠PAE=60°∴∠BAP=∠CAE∴△ABP≌△ACE ∴BP=CE② CE⊥AD∵菱形对角线平分对角∴∠ABD=30°∵△ABP≌△ACE∴∠ACF=∠ABD=30°∴∠DCF=30°∴∠DCF+∠ADC=90°∴∠CFD=90°∴CF⊥AD 即CE⊥AD(2)(1)中的结论:BP=CE , CE⊥AD 仍然成立,理由如下:连接AC∵菱形ABCD,∠ABC=60°∴△ABC和△ACD都是等边三角形∴AB=AC ∠BAD=120°∠BAP=120°+∠DAP ∵△APE是等边三角形∴AP=AE ∠PAE=60°∴∠CAE=60°+60°+∠DAP=120°+∠DAP∴∠BAP=∠CAE∴△ABP≌△ACE ∴BP=CE ∠ACE=∠ABD=30°∴∠DCE=30°∵∠ADC=60°∴∠DCE+∠ADC=90°∴∠CHD=90°∴CE⊥AD∴(1)中的结论:BP=CE , CE⊥AD 仍然成立.(3) 连接AC交BD于点O , CE, 作EH⊥AP于H∵四边形ABCD是菱形∴AC⊥BD BD平分∠ABC∵∠ABC=60°,AB=2√3∴∠ABO=30°∴AO=√3 BO=DO=3∴BD=6由(2)知CE⊥AD∵AD∥BC ∴CE⊥BC∵BE=2√19BC=AB=2√3∴CE=√(2√19)2-(2√3)2=8由(2)知BP=CE=8 ∴DP=2 ∴OP=5∴AP=√52+(√3)2=2√7∵△APE是等边三角形,∴ PH=√7EH=√21∵S四ADPE=S△ADP+S△APE∴S四ADPE =12DP·AO+12AP·EH=12×2×√3 +12×2√7×√21=√3+7√3=8√3∴四边形ADPE的面积是8√3 .。

2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(五)

2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(五)

2021年九年级数学中考复习专题:四边形综合(考察全等证明、长度与面积计算等)(五)1.在正方形ABCD中,点E是BC边上一点,连接AE.(1)如图1,点F为AE的中点,连接CF.已知tan∠FBE=,BF=5,求CF的长;(2)如图2,过点E作AE的垂线交CD于点G,交AB的延长线于点H,点O为对角线AC的中点,连接GO并延长交AB于点M,求证:AM+BH=BE.2.阅读理解:如图1,若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,试在垂美四边形ABCD中探究AB2,CD2,AD2,BC2之间的关系,并说明理由;(3)解决问题:如图3,分别以Rt△ABC的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE、CE交BG于点N,交AB于点M.已知AC =,AB=2,求GE的长.3.已知:如图,长方形ABCD中,∠A=∠B=∠B=∠D=90°,AB=CD=4米,AD=BC=8米,点M是BC边的中点,点P从点A出发,以1米/秒的速度沿AB方向运动再过点B沿BM方向运动,到点M停止运动,点O以同样的速度同时从点D出发沿着DA方向运动,到点A停止运动,设点P运动的时间为x秒.(1)当x=2秒时,线段AQ的长是米;(2)当点P在线段AB上运动时,图中阴影部分的面积发生改变吗?请你作出判断并说明理由.(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP=DQ?若存在,求出点P的运动时间x的值;若不存在,请说明理由.4.A,B,C,D是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片ABCD按图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为;(2)将长方形纸片ABCD按图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长方形纸片ABCD按图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH=m°,求∠B'FC'的度数为.5.勾股定理是数学史上非常重要的一个定理.早在2000多年以前,人们就开始对它进行研究,至今已有几百种证明方法.在欧几里得编的《原本》中证明勾股定理的方法如下,请同学们仔细阅读并解答相关问题:如图,分别以Rt△ABC的三边为边长,向外作正方形ABDE、BCFG、ACHI.(1)连接BI、CE,求证:△ABI≌△AEC;(2)过点B作AC的垂线,交AC于点M,交IH于点N.①试说明四边形AMNI与正方形ABDE的面积相等;②请直接写出图中与正方形BCFG的面积相等的四边形.(3)由第(2)题可得:正方形ABDE的面积+正方形BCFG的面积=的面积,即在Rt△ABC中,AB2+BC2=.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD 于点E,交CB于点F.(1)若∠B=30°,AC=6,求CE的长;(2)过点F作AB的垂线,垂足为G,连接EG,试判断四边形CEGF的形状,并说明原因.7.已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.8.我们知道:在小学已经学过“正方形的四条边都相等,正方形的四个内角都是直角”,试利用上述知识,并结合已学过的知识解答下列问题:如图1,在正方形ABCD中,G是射线DB上的一个动点(点G不与点D重合),以CG为边向下作正方形CGEF.(1)当点G在线段BD上时,求证:∠DCG=∠BCF;(2)连接BF,试探索:BF,BG与AB的数量关系,并说明理由;(3)若AB=a(a是常数),如图2,过点F作FT∥BC,交射线DB于点T,问在点G 的运动过程中,GT的长度是否会随着G点的移动而变化?若不变,请求出GT的长度;若变化,请说明理由.9.如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.(1)当点F与点A重合时,点G恰好到达点D,此时x=,当EF⊥BC时,x =;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;(3)当S=15时,求此时x的值.10.把一副三角板按如图1所示放置,其中点E在BC边上,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=CD=6,将三角板DCE绕点C顺时针旋转,记旋转角为α(0°≤α≤180°).(1)在图1中,设AB与DE的交点为F,则线段AF的长为;(2)当α=15°时,三角板DCE旋转到△D1CE1的位置(如图2所示),连接D1A,D1B,请判断四边形ACBD1的形状,并证明你的结论;(3)当三角板DCE旋转到△D2CE2的位置(如图3所示)时,此时点D2恰好在AB延长线上.①求旋转角α的度数;②求线段AD2的长.参考答案1.解:(1)Rt△ABE中,BF为中线,BF=5,∴AE=10,FE=5,作FP⊥BC于点P,Rt△BFP中,,∴BP=3,FP=4,在等腰三角形△BFE中,BE=2BP=6,由勾股定理求得,∴CP=8﹣3=5,∴;(2)∵∠ACD=∠BAC=45°,AO=CO,∠AOM=∠COG,∴证明△AMO≌△CGO(ASA),∴AM=GC,过G作GP垂直AB于点P,得矩形BCGP,∴CG=PB,∵AB=PG,∠AEB=∠H,∠ABE=∠GPH,∴△ABE≌△GPH(ASA),∴BE=PH=PB+BH=CG+BH=AM+BH.2.解:(1)如图2,四边形ABCD是垂美四边形;理由如下:连接AC、BD交于点E,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)猜想结论:AB2+CD2=AD2+BC2,证明:如图1,在四边形ABCD中,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AB2+CD2=AO2+BO2+OD2+OC2AD2+BC2=AO2+BO2+OD2+OC2∴AB2+CD2=AD2+BC2,(3)如图3,连接CG,BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNC=90°,即BG⊥CE,∴四边形CGEB是垂美四边形,由(2)得:EG2+BC2=CG2+BE2∵,AB=2,∴BC=1,,,∴EG2=CG2+BE2﹣BC2=6+8﹣1=13,∴.3.解:(1)∵四边形ABCD是矩形,∴AD=BC=8,∵DQ=2,∴AQ=AD﹣DQ=8﹣2=6,故答案为6.(2)结论:阴影部分的面积不会发生改变.理由:连结AM,作MH⊥AD于H.则四边形ABMH是矩形,MH=AB=4.∵S阴=S△APM+S△AQM=×x×4+(8﹣x)×4=16,∴阴影面积不变;(3)当点P在线段AB上时,BP=4﹣x,DQ=x.∵BP=DQ,∴4﹣x=x,∴x=3.当点P在线段BM上时,BP=x﹣4,DQ=x.∵BP=DQ,∴x﹣4=x,∴x=6.所以当x=3或6时,BP=DQ.4.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在FC′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣m°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣m°﹣m°=180°﹣2m°,故答案为:180°﹣2m°.5.(1)证明:∵四边形ABDE、四边形ACHI是正方形,∴AB=AE,AC=AI,∠BAE=∠CAI=90°,∴∠EAC=∠BAI,在△ABI和△AEC中,,∴△ABI≌△AEC(SAS);(2)①证明:∵BM⊥AC,AI⊥AC,∴BM∥AI,∴四边形AMNI的面积=2△ABI的面积,同理:正方形ABDE的面积=2△AEC的面积,又∵△ABI≌△AEC,∴四边形AMNI与正方形ABDE的面积相等.②解:四边形CMNH与正方形BCFG的面积相等,理由如下:∵Rt△ABC中,AB2+BC2=AC2,∴正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积,由①得:四边形AMNI与正方形ABDE的面积相等,∴四边形CMNH与正方形BCFG的面积相等;(3)解:由(2)得:正方形ABDE的面积+正方形BCFG的面积=正方形ACHI的面积;即在Rt△ABC中,AB2+BC2=AC2;故答案为:正方形ACHI,AC2.6.解:(1)∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵CD⊥AB,∴∠ADC=90°,∴∠ACD=30°,∵AF平分∠CAB,∴∠CAF=∠BAF=30°,∴CE=AE,过点E用EH垂直于AC于点H,∴CH=AH∵AC=6,∴CE=2答:CE的长为2;(2)∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=GF,在Rt△ACF与Rt△AGF中,AF=AF,CF=GF,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∴四边形CEGF是菱形7.(1)证明:∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠DAC+∠CAF=90°,∵∠ABC=90°,∴∠DAC+∠BAD=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论仍然成立.理由:∵∠BAC=∠DAF=90°,∴∠BAC+∠CAD=∠DAF+∠CAD,∴∠BAD=∠CAF,在在△BAD和△CAF中,∴△BAD≌△CAF(SAS),∴BD=CF,即CF=BD.8.解:(1)∵四边形ABCD和四边形EFCG是正方形,∴CD=CB,CG=CF,∠BCD=∠FCG=90°,∵∠DCG=90°﹣∠BCG,∠BCF=90°﹣∠BCG,∴∠DCG=∠BCF;(2)BF+BG=AB,理由:在Rt△CDG和△CBF中,,∴△CDG≌CBF(SAS),∴DG=BF,在Rt△ABD中,AD=AB,∴BD=AB,∵BD=DG+BG=BF+BG,∴BF+BG=AB;(3)∵BD是正方形ABCD的对角线,∴∠CBD=∠CDB=45°,由(2)知,△CDG≌CBF(SAS),∴DG=BF,∠CDG=∠CBF=45°,∴∠DBF=∠CBD+∠CBF=90°,∴∠FBT=90°,∵FT∥CB,∴∠BTF=∠CBD=45°,∴∠BFT=45°=∠BTF,∴BF=BT,∴DG=BT,∴GT=BG+BT=BG+DG=BD=AB=a.9.解:(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;故答案为:6;10;(2)∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴=,即==,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴=,即=,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102 即S=x2﹣21x+102(6<x≤10);(3)当x2+9x+12=15时,解得:x=﹣6±2(负值舍去),∴x=﹣6+2;当x2﹣21x+102=15时,解得:x=14±4(不合题意舍去);∴当S=15时,此时x的值为﹣6+2.10.(1)解:(1)在Rt△ABC中,∠A=45°,AB=6,∴BC=AB=3,在Rt△CDE中,∠D=30°,CD=6,∴CE=3,∴BE=BC﹣CE=﹣3,在Rt△BEF中,∠B=90°﹣∠A=45°,∴BF=BE=6﹣3,∴AF=AB﹣BF=3,故答案为:3;(2)四边形ACBD1是正方形,理由:∵∠BCE1=α=15°,∴∠D1CB=45°=∠BAC,由旋转知,CD1=CD,∵CD=AB,∴CD1=AB,∵BC=AC,∴△D1CB≌△BAC(SAS),∴D1B=BC,同理可证:D1A=AC,又∴AC=BC,∴D1A=AC=BC=BD1,∴四边形ACBD1是菱形,又∠ACB=90°,∴菱形ACBD1是正方形.(3)①取AB边的中点H,连接CH,∵△ABC是等腰直角三角形,且斜边AB=6,∴CH⊥AB,且AH=CH=AB=3,∵△D2CE2是直角三角形,且斜边CD2=6,∠CD2E2=30°,∴CE2=3,又∵∠CHD2=∠E2=90°,∴Rt△D2CH≌Rt△D2CE2(HL),∴∠HD2C=∠E2D2C=30°,又∵∠ABC=45°,∴∠BCD2=15°,又∵∠E2CD2=60°,则旋转角α=∠BCE2=75°;②在Rt△D2CE2中,D2E2=CE2=3,∵Rt△D2CH≌Rt△D2CE2,∵D2H=D2E2=,AH=3,∴AD 2=AH+D2H=3+.。

专题05 面积的最值问题(解析版)2021届中考数学压轴大题专项训练

专题05  面积的最值问题(解析版)2021届中考数学压轴大题专项训练

专题05 面积的最值问题2021届中考数学压轴大题专项训练(解析版)1.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC 上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.【解析】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∵PN∵BC,∵∵APN∵∵ABC,∵AD∵BC,∵AD∵PN,∵PNBC=AEAD,即212y=1010y,解得y=154,∵PQ=154,PN=152.(2)设AE=x.∵四边形PQMN是矩形,∵PN∵BC,∵∵APN ∵∵ABC ,∵AD ∵BC ,∵AD ∵PN , ∵PN BC =AE AD, ∵PN =65x ,PQ =DE =10﹣x , ∵S 矩形PQMN =65x (10﹣x )=﹣65(x ﹣5)2+30, ∵当x =5时,S 的最大值为30,∵当AE =5时,矩形PQMN 的面积最大,最大面积是30,此时PQ =5,PN =6.2.如图,四边形ABCD 的两条对角线AC 、BD 互相垂直,10AC BD ,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?【解析】解:设AC=x ,四边形ABCD 面积为S ,则BD=10-x , 则:211125(10)(5)2222S AC BD x x x =⋅=-=--+,∵当x=5时,S最大=25 2,所以当AC=BD=5时,四边形ABCD的面积最大.3.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.(1)当四边形EFGH为正方形时,求DG的长;(2)当DG=6时,求∵FCG的面积;(3)求∵FCG的面积的最小值.【解析】解:(1)∵四边形EFGH为正方形,∵HG=HE,∵EAH=∵D=90°,∵∵DHG+∵AHE=90°,∵DHG+∵DGH=90°,∵∵DGH=∵AHE,∵∵AHE∵∵DGH(AAS),∵DG=AH=2;(2)过F作FM∵DC,交DC延长线于M,连接GE,∵AB∵CD,∵∵AEG=∵MGE,∵HE∵GF,∵∵HEG=∵FGE,∵∵AEH=∵MGF,在∵AHE和∵MFG中,∵A=∵M=90°,HE=FG,∵∵AHE∵∵MFG(AAS),∵FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此S∵FCG=12×FM×GC=12×2×(7-6)=1;(3)设DG=x,则由(2)得,S∵FCG=7-x,在∵AHE中,AE≤AB=7,∵HE2≤53,∵x2+16≤53,∵S∵FCG的最小值为7,此时,∵当时,∵FCG的面积最小为(7).4.如图,已知点P是∵AOB内一点,过点P的直线MN分别交射线OA,OB于点M,N,将直线MN绕点P旋转,∵MON的形状与面积都随之变化.(1)请在图1中用尺规作出∵MON,使得∵MON是以OM为斜边的直角三角形;(2)如图2,在OP的延长线上截取PC=OP,过点C作CM∵OB交射线OA于点M,连接MP并延长交OB于点N.求证:OP平分∵MON的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的∵MON 的面积最小.请利用图2帮助小亮说明理由.【解析】(1)∵在OB 下方取一点K ,∵以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,∵分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ∵作直线PE ,分别与OA 、OB 交于点M 、N ,故∵OMN 就是所求作的三角形;(2)∵CM ∵OB ,∵∵C =∵PON ,在∵PCM 和∵PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵PCM ∵∵PON (ASA ),∵PM =PN ,∵OP 平分∵MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∵OB ,∵∵GMP =∵FNP ,在∵PGM 和∵PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵PGM ∵∵PFN (ASA ),∵S ∵PGM =S ∵PFN∵S 四边形MOFG =S ∵MON .∵S 四边形MOFG <S ∵EOF ,∵S ∵MON <S ∵EOF ,∵当点P 是MN 的中点时S ∵MON 最小.5.如图,现有一张矩形纸片ABCD ,2AB =,6BC =,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .=;(1)求证:PM PN(2)当P,A重合时,求MN的值;∆的面积为S,求S的取值范围.(3)若PQM【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∵PM∵CN,∵∵PMN=∵MNC,∵∵MNC=∵PNM,∵∵PMN=∵PNM,∵PM=PN.(2)解:点P与点A重合时,如图2中,设BN=x ,则AN=NC=6-x ,在Rt∵ABN 中,AB 2+BN 2=AN 2,即22+x 2=(6-x )2,解得x=83,∵CN=6-83=103,AC ==∵12CQ AC ==∵QN ===,∵23MN QN ==. (3)解:当MN 过点D 时,如图3所示,此时,CN 最短,四边形CMPN 的面积最小,则S 最小为14S S =菱形CMPN =12214⨯⨯=,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大为11152223S =⨯⨯=, ∵513S ≤≤. 6.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m ,直角三角形较短边长n ,且n =2m ﹣4,大正方形的面积为S .(1)求S 关于m 的函数关系式.(2)若小正方形边长不大于3,当大正方形面积最大时,求m 的值.【解析】解:(1)∵小正方形的边长m ,直角三角形较短边长n ,∵直角三角形较长边长为m+n ,∵由勾股定理得:S =(m+n )2+n 2,∵n =2m ﹣4,∵S =(m+2m ﹣4)2+(2m ﹣4)2,=13m 2﹣40m+32,∵n =2m ﹣4>0,∵m >2,∵S 关于m 的函数关系式为S =13m 2﹣40m+32(m >2);(2)∵S =13m 2﹣40m+32(2<m≤3),∵S =13(m -2013)2+1613∵m≥2013时,S 随x 的增大而增大, ∵m =3时,S 取最大.∵m =3.7.如图:已知矩形ABCD 中,AB ,BC =3cm ,点O 在边AD 上,且AO =1cm.将矩形ABCD 绕点O 逆时针旋转α角(0180α<<),得到矩形A ′B ′C ′D ′(1)求证:AC ∵OB ;(2)如图1, 当B ′落在AC 上时,求AA ′;(3)如图2,求旋转过程中∵CC ′D ′的面积的最大值.【解析】解:(1)Rt ∵OAB 中,tan AB AOB OA∠== ∵∵AOB =60°R t∵ACD 中,tan CD CAD AD ∠== ∵∵CAD =30°∵∵OMA =180°-60°-30°=90°即AC ∵OB(2)Rt ∵OAM 中,1•sin 1sin 302OM OA CAD =∠=⨯︒= Rt ∵OAB 中,OB ′=OB =60OA COS ︒=2,Rt ∵O B ′M 中,B ′M =, BM =OB -OM =32,Rt ∵B B ′M 中,BB ='== ,,OA OB AOB A OB AOA BOB OA OB'''=∠=∴∆'∆''∽ ∵12AA OA BB OB =='',∵2AA '=(3)如图,过C 点作CH ∵于C ′D ′点H ,连结OC ,则CH ≤OC +OD ′只有当D ′在CO 的延长线上时,CH 才最大.又C ′D ′长一定,故此时∵CC ′D ′的面积的最大.而OC ==∵∵CC ′D ′的最大面积为12)2=8.[问题提出] (1)如图∵,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图∵,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图∵,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积【解析】解:(1)过点A作AE∵BC,如图所示:∵12ABCS BC AE=⋅,∵D为BC上一点,∵AD AE≥,∵要使∵ABC的面积最大,则需满足AD=AE,∵BC=6,AD=4,∵∵ABC的面积最大为:16412 2⨯⨯=;故答案为12;(2)∵四边形ABCD是矩形,∵AB=DC,AD=BC,∵矩形ABCD的周长是12,∵设AB=x,则有AD=6-x,矩形ABCD的面积为S,则有:()()226639S x x x x x=-=-+=--+,此函数为二次函数,由10a=-<,二次函数的开口向下,∵当x=3时,矩形ABCD的面积有最大值为:S9=;(3)如图所示:∵四边形PQMN 是矩形,∵QM=PN ,PQ=MN ,∵QMN=∵PNM=90°,∵∵B=∵C=60°,∵QMB=∵PNC=90°,∵∵BMQ∵∵CNP ,∵BM=NC ,设BM=NC=x ,则有MN=PQ=80-2x , ∵603QM BM tan x =⋅︒=,∵())280220PQMN S PQ QM x x =⋅=⋅-=--+矩形此函数关系为二次函数,由0a =-<可得开口向下,∵当x=20时,矩形PQMN 的面积有最大,即PQMN S =矩形9.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.【解析】解:(1)∵4MN =,1MA =,AB x =,∵413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①②解不等式∵得1x >,解不等式∵得2x <,∵x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =BD ==∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=,∵()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∵当32x =时,ABC 面积最大值的平方为12,∵ABC . 10.如图,已知AB 为半圆O 的直径,P 为半圆上的一个动点(不含端点),以OP 、OB 为一组邻边作∵POBQ ,连接OQ 、AP ,设OQ 、AP 的中点分别为M 、N ,连接PM 、ON .(1)试判断四边形OMPN 的形状,并说明理由.(2)若点P 从点B 出发,以每秒15°的速度,绕点O 在半圆上逆时针方向运动,设运动时间为ts . ∵试求:当t 为何值时,四边形OMPN 的面积取得最大值?并判断此时直线PQ 与半圆O 的位置关系(需说明理由);∵是否存在这样的t ,使得点Q 落在半圆O 内?若存在,请直接写出t 的取值范围;若不存在,请说明理由.【解析】(1)四边形OMPN 为矩形,理由如下:∵四边形POBQ 为平行四边形,∵PQ ∵OB ,PQ =OB .又∵OB =OA ,∵PQ =AO .又∵PQ ∵OA ,∵四边形PQOA为平行四边形,∵P A∵QO,P A=QO.又∵M、N分别为OQ、AP的中点,∵OM=12OQ,PN=12AP,∵OM=PN,∵四边形OMPN为平行四边形.∵OP=OA,N是AP的中点,∵ON∵AP,即∵ONP=90°,∵四边形OMPN为矩形;(2)∵∵四边形OMPN为矩形,∵S矩形OMPN=ON·NP=ON·12AP,即S矩形OMPN=S∵AOP.∵∵AOP的底AO为定值,∵当P旋转运动90°(运动至最高点)时,∵AOP的AO边上的高取得最大值,此时∵AOP的面积取得最大值,∵t=90÷15=6秒,∵当t=6秒时,四边形OMPN面积最大.此时,PQ与半圆O相切.理由如下:∵此时∵POB=90°,PQ//OB,∵∵OPQ=90°,∵PQ与半圆O相切;∵当点Q在半圆O上时,∵四边形POBQ为平行四边形,且OB=OP,∵四边形POBQ为菱形,∵OB=BQ=OQ=OP=PQ,∵∵POQ=∵BOQ=60°,即:∵BOP=120°,∵此时,t=120°÷15°=8秒,当点P与点A重合时,t=180°÷15°=12秒,综上所述:当8<t<12时,点Q在半圆O内.11.如图∵,在∵ABC中,∵C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图∵所示.(1)求出图∵中线段PQ所在直线的函数表达式;(2)将∵DCE沿DE翻折,得∵DME.∵点M是否可以落在∵ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;∵直接写出∵DME与∵ABC重叠部分面积的最大值及相应x的值.【解析】解:(1)设线段PQ 所在直线的函数表达式为y =kx +b , 将P (3,4)和Q (6,0)代入得,0306k b k b =+⎧⎨=+⎩,解得438k b ⎧=-⎪⎨⎪=⎩, ∵线段PQ 所在直线的函数表达式为483y x =-+; (2)∵如图1,连接CM 并延长CM 交AB 于点F ,∵∵C =90°,AB =10,BC =8,∵AC=6,由(1)得BE =()2221624248DEKP S x x x =-+-=--+四边形,∵CE=43x,∵34 DC ACCE BC==,∵∵DCE=∵ACB,∵∵DCE∵∵ACB,∵∵DEC=∵ABC,∵DE//AB,∵点C和点M关于直线DE对称,∵CM∵DE,∵CF∵AB,∵1122ABCS AC BC AB CF==△,∵6×8=10×CF,∵CF=24 5,∵∵C=90°,CD=x,CE=43x,∵DE53x =,∵CM=85x,MF=24855x-,过点M作MG∵AC于点M,过点M作MH∵BC于点H,则四边形GCHM为矩形,∵∵GCM+∵BCF=∵BCF+∵ABC=90°,∵∵GCM=∵ABC,∵∵MGC =∵ACB =90°,∵∵CGM∵∵BCA , ∵MG CG CM AC BC AB==, 即856810x MG CG ==, ∵MG =2425x ,CG =3225x , ∵MH =3225x , (∵)若点M 落在∵ACB 的平分线上,则有MG =MH ,即24322525x x =,解得x =0(不合题意舍去), (∵)若点M 落在∵BAC 的平分线上,则有MG =MF ,即242482555x x =-,解得x =158, (∵)若点M 落在∵ABC 的平分线上,则有MH =MF ,即322482555x x =-,解得x =53. 综合以上可得,当x =158或x =53时,点M 落在∵ABC 的某条角平分线上. ∵当0<x ≤3时,点M 不在三角形外,∵DME 与∵ABC 重叠部分面积为∵DME 的面积, ∵2142233S x x x ==, 当x =3时,S 的最大值为22363⨯=.当3<x ≤6时,点M 在三角形外,如图2,由∵知CM =2CQ =85x , ∵MT =CM ﹣CF =82455x -, ∵PK//DE , ∵∵MPK∵∵MDE , ∵()2222824265545MPKMDE x x S MF S MQ x x ⎛⎫- ⎪-⎛⎫=== ⎪ ⎪⎝⎭ ⎪⎝⎭△△ , ∵()2226MPK MDE x S S x -=△△,∵DEKP MDE MPK S S S =-△△四边形,∵()()2222226262113DEKP MDE x x S S x x x ⎡⎤⎡⎤--=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦△四边形, 即:()2221624248DEKP S x x x =-+-=--+四边形,∵当x =4时,∵DME 与∵ABC 重叠部分面积的最大值为8.综合可得,当x =4时,∵DME 与∵ABC 重叠部分面积的最大值为8.12.问题提出(1)如图∵,已知线段AB ,请以AB 为斜边,在图中画出一个直角三角形;(2)如图∵,已知点A 是直线l 外一点,点B 、C 均在直线l 上,AD∵l 且AD=3,∵BAC=60°,求∵ABC 面积的最小值;问题解决(3)如图∵,某园林单位要设计把四边形花园划分为几个区域种植不同花草,在四边形ABCD 中,∵A=45°,∵B=∵D=90°,CB=CD=6m ,点E 、F 分别为AB 、AD 上的点,若保持CE∵CF ,那么四边形AECF 的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由.【解析】解:(1)如图,Rt∵ACB 即为所求.(2)如图,作∵ABC 的外接圆∵O ,连接OA ,OB ,OC ,过点O 作OE∵BC 于点E , 则∵BOC=2∵BAC ,OA=OB=OC ,BE=CE=12BC , ∵∵BAC=60°,∵∵BOC=120°,∵OBC=∵OCB=30°,设OA=OB=OC=r ,则OE=12r ,, ∵AO+OE≥AD ,AD=3, ∵r+12r≥3, 解得r≥2,r≥∵S ∵ABC =12BC·AD≥12×∵∵ABC 面积的最小值为(3)存在;如图,分别延长AB 、DC 交于点M , 则∵ADM 、∵CBM 均为等腰直角三角形,∵CB=CD=6m ,∵BM=6m,CM=,AD=DM=(6+m , ∵S 四边形ABCD=S ∵ADM -S ∵CBM =12DM 2-12BC 2 =12×(6+2-12×62=(36+)m 2.将∵CBE 绕点C 顺时针旋转135°得到∵CDE′, 则A 、D 、E′三点共线.∵S 四边形AECF =S 四边形ABCD –(S ∵CBE +S ∵CDF )=S 四边形ABCD –S ∵CE ′F ∵S 四边形ABCD 为定值,∵当S ∵CE ′F 取得最小值时,S 四边形AECF 取得最大值. ∵∵E′CF=135°-90°=45°,∵以E′F 为斜边作等腰Rt∵OE′F ,则∵CE′F 的外接圆是以点O 为圆心,OF 长为半径的圆, 设∵CE′F 的外接圆半径为rm ,∵E′F=rm ,又∵OC+OD≥CD ,r+r≥6, ∵r≥12-当点O 在CD 上时,E′F 最短,此时r=(12)m ,∵S ∵CE ′F 最小=12×(12)×6=(36)m 2,∵S 四边形AECF 最大=S 四边形ABCD -S ∵CE’F 最小=36+-(-36)=72m 2.。

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题-三角形、四边形综合1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

4.几何图形的归纳、猜想问题中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。

对于这类归纳总结问题来说,思考的方法是最重要的。

5.阅读理解问题如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。

阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。

对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。

所以如何读懂题以及如何利用题就成为了关键。

解题策略1.学会运用数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想.数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

2021年九年级中考数学三轮综合复习专题:四边形专项(一)

2021年九年级中考数学三轮综合复习专题:四边形专项(一)

2021年九年级中考数学三轮综合复习专题:四边形专项(一)1.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,H是AF的中点,CH=3,那么CE的长是()A.3 B.4 C.D.2.如图,正方形ABCD中,AC、BD相交于点O,P是BC边上的一点,且PC=2PB,连接AP、OP、DP,线段AP、DP分别交对角线BD、AC于点E、F.过点E作EQ⊥AP,交CB的延长线于Q.下列结论中:①∠PAO+∠PDO+∠APD=90°;②AE=EQ;③sin∠PAC=;④S正方形ABCD =10S四边形OEPF,其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,在菱形ABCD中,O、E分别是AC、AD的中点,连接OE,若AB=3,AC=4,则tan ∠AOE的值为()A.B.C.D.4.如图,已知菱形OABC的顶点O(0,0),C(2,0)且∠AOC=60°,若菱形绕点O逆时针旋转,每秒旋转45°,则第2020秒时,菱形的对角线交点D的坐标为)A.(3,﹣)B.(﹣1,﹣)C.()D.()5.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD 一定是等腰三角形.其中正确的结论有()A.①②④B.①②③C.②③④D.①②③④6.如图,在平行四边形ABCD中,∠ABC=60°,过对角线BD上任意一点P作EF∥BC,GH ∥AB,且AH=2HD,若S=1,则S▱ABCD=()△HDPA.9 B.C.12 D.187.如图,顺次连接任意四边形ABCD各边中点,所得的四边形EFGH是中点四边形.下列四个叙述:①中点四边形EFGH一定是平行四边形;②当四边形ABCD是矩形时,中点四边形EFGH也是矩形;③当四边形ABCD的中点四边形EFGH是菱形时,则四边形ABCD也是菱形;④当四边形ABCD是正方形时,中点四边形EFGH也是正方形.其中正确结论的个数有()A.1个B.2个C.3个D.4个8.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=10cm,点P从点A出发,以1cm/s的速度向D运动,同时,点Q从点C以相同的速度向B运动.当点P运动到点D时,点Q 随之停止运动.若设运动的时间为t秒,以点A、B、C、D、P、Q任意四个点为顶点的四边形中同时存在两个平行四边形,则t的值是()A.2 B.3 C.4 D.59.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE 的度数为()A.22.5°B.27.5°C.30°D.35°10.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定11.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,S=24,则OH的长为()菱形ABCDA.B.3 C.D.12.七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1 B.1和2 C.2和1 D.2和213.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,sinα等于()A.B.C.D.14.如图所示,AB⊥AD于点A,CD⊥AD于点D,∠C=120°.若线段BC与CD的和为12,则四边形ABCD的面积可能是()A.24B.30C.45 D.15.在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC,垂足为E,交BC于点E,若AC=,AE=2,则菱形ABCD的面积为()A.5 B.4 C.2D.316.某小区打算在一块长80m,宽7.5m的矩形空地的一侧,设置一排如图所示的平行四边形倾斜式停车位若干个(按此方案规划车位,相邻车位间隔线的宽度忽略不计).已知规划的倾斜式停车位每个车位长6m,宽2.5m,如果这块矩形空地用于行走的道路宽度不小于4.5m,那么最多可以设置停车位()A.16 个B.15 个C.14 个D.13 个17.如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,OC=4,∠AOC=60°且以点O 为圆心,任意长为半径画弧,分别交OA、OC于点D、E;再分别以点D、点E为圆心,大于DE的长度为半径画弧,两弧相交于点F,过点O作射线OF,交BC于点P.则点P 的坐标为()A.(4,2)B.(6,2)C.(2,4)D.(2,6)18.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE,添加一个条件,使四边形AEBD是菱形,这个条件是()A.∠BAD=∠BDA B.AB=DE C.DF=EF D.∠BDC=∠BAD 19.如图,五边形ABCDE中,AE∥BC,AC,BE交于点O,四边形OCDE是平行四边形,若△ABE的面积是5,四边形OCDE的面积是6,则△AOE的面积是()A.2 B.2.5 C.3 D.420.如图,在边长为的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=5的点P的个数是()A.0 B.4 C.8 D.16参考答案1.解:连接AC,CF,如图,∵四边形ABCD和四边形CEFG为正方形,∴AB=BC=1,CE=EF,∠ACD=∠GCF=45°.∴∠ACF=45°×2=90°.∵H是AF的中点,CH=3,∴AF=2CH=6.在Rt△ABC中,AC=BC=.在Rt△ACF中,CF==.在Rt△ECF中,∵CE2+EF2=CF2,CE=EF,∴CE=CF==.故选:D.2.解:①∵∠POB=∠PDO+∠OPD,∠POC=∠PAO+∠APO,∠POB+∠POC=∠BOC,∵四边形ABCD为正方形,∴∠BOC=90°,∴∠PDO+∠OPD+∠PAO+∠APO=90°,∴∠PAO+∠APO+∠PDO=90°,∴①正确;②连接AQ,∵QE⊥AP,∴∠QEP=∠AEQ=∠ABQ=90°,∴A、Q、B、E四点共圆,∴∠AQE=∠ABE=∠ABC=45°,∴∠QAE=45°,∴AE=EQ,∴②正确;③过P作AC的垂线于点G,设BP=a,PC=2a,∴BC=3a,∴AP==a,∴AC=3a,∴AO=BO=a,∵BD⊥AC,PE⊥AC,∴BD∥PG,∴===,∴PG=×a=a,∴sin∠PAC==,∴③错误;④∵AD∥BC,∴△BEP∽△DEA,△PFC∽△DFA,∴BE:DE=1:3,CF:AF=2:3,∴BE:ED=1:1,OF:CF=1:4,设设S △BEP =s ,则S △OEP =s ,S △BPO =2s ,S △POC =4s ,∴S △OPE =s ,∴S △BCO =2s +4s =6s ,∴S 四边OPEQ =s +s =s ,S 正方形ABCD =4s ×6=24s ,∴④错误,综上①②正确,故选:B .3.解:连接OD ,如图所示:∵四边形ABCD 为菱形,∴AD =CD =AB =3,∵O 是AC 的中点∴OD ⊥AC ,OA =OC =AC =2, 由勾股定理得,OD ===,∵O 、E 分别是AC 、AD 的中点,∴OE 是△ACD 的中位线,∴OE ∥CD ,∴∠AOE =∠ACD ,∴tan ∠AOE =tan ∠ACD ==, 故选:B .4.解:连接AC 、OB 交于点D ,过A 作AE ⊥OC 于E ,如图所示: ∵C (2,0),∴OC =2,∵四边形OABC 是菱形,∴OA=OC,AD=CD,∵∠AOC=60°,∴△AOC是等边三角形,∴OA=OC=2,∵AE⊥OC,∴OE=OC=1,∴AE===,∴A(1,),∴D(,),∵菱形绕点O逆时针旋转,每秒旋转45°,45°×8=360°,∴转8秒回到原位置,∵2020÷8=252.5(周),即菱形OABC旋转了252周半,此时位于第三象限,∴此时菱形的对角线交点的坐标为(﹣,﹣),故选:D.5.解:延长PF交AB于点G,∵PF⊥CD,AB∥CD,∴PG⊥AB,即∠PGB=90°.∵PE⊥BC,PF⊥CD,∴四边形GBEP为矩形,又∵∠PBE=∠BPE=45°,∴BE=PE,∴四边形GBEP为正方形,四边形PFCE为矩形.∴GB=BE=EP=GP,∴GP=PE,AG=CE=PF,又∠AGP=∠C=90°,∴△AGP≌△FPE(SAS).∴AP=EF,∠PFE=∠BAP,故①、②正确;在Rt△PDF中,由勾股定理得PD=,故③正确;∵P在BD上,∴当AP=DP、AP=AD、PD=DA时,△APD才是等腰三角形,∴△APD是等腰三角形共有3种情况,故④错误.∴正确答案有①②③,故选:B.6.解:由题意可得,四边形HPFD是平行四边形,四边形AEPH、四边形PGCF均为平行四边形,且它们的面积相等,四边形EBGP是平行四边形,∵S=1,△HDP∴S▱HPDF=2,∵AH=2HD,∴S▱AEPH=S▱PGFC=4,∴S▱EBGP=8,∴S▱ABCD=2+4+4+8=18,故选:D.7.解:连接AC,BD,∵E,F,G,H分别是四边形各边的中点,∴EF∥AC,HG∥AC,EH∥BD,GF∥BD,∴EF∥GH,EH∥FG,∴四边形EFGH是平行四边形;(①正确)∵四边形ABCD是矩形,∴AC=BD,∵EF=AC,EH=BD,∴EF=EH,∴四边形EFGH是菱形;(②错误)∵四边形EFGH是菱形,∴AC⊥BD,∴四边形ABCD不一定是矩形;(③错误)∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,∴四边形EFGH是正方形.(④正确)∴正确的是①④.故选:B.8.解:A.t=2时,AP=2cm,PD=3cm,CQ=2cm,BQ=8cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;B.t=3时,AP=3cm,PD=2cm,CQ=3cm,BQ=7cm,因AD∥BC,此时构成一个平行四边形APCQ,不符合题意;C.t=4时,AP=4cm,PD=1cm,CQ=4cm,BQ=6cm,因AD∥BC,此时只构成一个平行四边形APCQ,不符合题意.D.t=5时,AP=5cm,CQ=5cm,BQ=5cm,则CQ=BQ=AD,因AD∥BC,此时有2个平行四边形:平行四边形ADCQ和平行四边形ADQB,符合题意.故选:D.9.解:∵四边形ABCD是正方形,∴BC=AD,∠DBC=45°,∵BE=AD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,∵AC⊥BD,∴∠COE=90°,∴∠ACE=90°﹣∠BEC=90°﹣67.5°=22.5°.故选:A.10.解:∵四边形ABCD是矩形,AD=3,AB=2,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵点E是CD的中点,FC=2BF,∴CE=DE=1,BF=1,CF=2,∴AB=CF=2,CE=BF=1,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴AF=EF,∠BAF=∠CFE,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣(∠CFE+∠AFB)=180°﹣9°=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,故选:B.11.解:∵四边形ABCD是菱形,∴AC⊥BD,DO=BO,AO=OC,∵OA=4,∴AC=2OA=8,=24,∵S菱形ABCD∴8×BD=24,解得:BD=6,∵DH⊥BC,∴∠DHB=90°,∵DO=BO,∴OH=BD=6=3,故选:B.12.解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.13.解:如图,∵四边形ABCD和四边形EFGH是矩形,∴∠ADC=∠HDF=90°,CD=AB=2cm,∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°,∴△CDM≌△HDN(ASA),∴MD=ND,且四边形DNKM是平行四边形,∴四边形DNKM是菱形,∴KM=MD,∵sinα=sin∠DMC=,∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=KM=acm,则CM=8﹣a(cm),∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=(cm),∴sinα=sin∠DMC===,故选:B.14.解:过C作CH⊥AB于H,∵AB⊥AD,CD⊥AD,∴∠A=∠ADC=∠AHC=90°,CD∥AB,∴四边形ADCH是矩形,四边形ABCD是直角梯形,∴∠DCH=90°,CD=AH,∵∠BCD=120°,∴∠BCH=30°,设BC=x,则CD=12﹣x,∴AH=12﹣x,BH=x,CH=x,∴四边形ABCD的面积=(CD+AB)•CH=(12﹣x+12﹣x+x)×x,∴四边形ABCD的面积=﹣(x﹣8)2+24,∴当x=8时,四边形ABCD的面积有最大值24,即四边形ABCD的面积可能是24,故选:A.15.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=,∵AE⊥BC,∴△ABC的面积=BC×AE=AC×OB,∴==,设BC=x,则OB=2x,在Rt△OBC中,由勾股定理得:(x)2﹣(2x)2=()2,解得:x=,∴BC=,∴菱形ABCD的面积=BC×AE=×2=5;故选:A.16.解:如图,根据题意可知:AB=7.5,BC≥4.5,∴AC≤3,当AC=3时,∵AD=GF=6,∴∠ADC=30°,CD=3,∴∠EFD=∠ADC=30°,∵DE=2.5,∴DF=5,设最多可以设置停车位x个,根据题意可得,∵S=DF•AC=5×3=15,平行四边形ADFGS=CD•AC=,△ADC∴15x+2×≤80×3,解得x≤14.96,所以最多可以设置停车位14个.故选:C.17.解:延长BC交y轴于E,如图所示:则BE⊥y轴,∴∠OEC=90°,∵∠AOC=60°,∴∠COE=30°,∴CE=OC=2,OE=CE=2,由题意得:OP平分∠AOC,∴∠AOP=∠COP,∵四边形OABC是平行四边形,∴OA∥BC,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴PC=OC=4,∴PE=PC+CE=6,∴点P的坐标为(6,2);故选:B.18.解:添加一个条件∠BDC=∠BAD,使四边形AEBD是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠BAD=∠C,∴AD∥BE,∴∠ADF=∠BEF,∵点F是AB的中点,∴AF=BF,在△ADF和△BEF中,,∴△ADF≌△BEF(AAS),∴AD=BE,又∵AD∥BE,∴四边形AEBD是平行四边形,∵∠BDC=∠BAD,∠BAD=∠C,∴∠BDC=∠C,∴BD=BC,∵AD=BC,AD=BE,∴BD=BE,∴四边形AEBD是菱形;故选:D.19.解:连接EC,如图:∵AE∥BC,∴△ABE和△ACE同底等高,∴S△ACE =S△ABE=5.∵四边形OCDE是平行四边形,∴OE=DC,OC=DE.在△OCE和△DEC中,,∴△OCE≌△DEC(SSS).∴S△OCE =S△DEC=S四边形OCDE=×6=3,∴S△AOE =S△ACE﹣S△OCE=5﹣3=2.故选:A.20.解:作点F关于BC的对称点M,连接CM,连接EM交BC于点P,如图所示:则PE+PF的值最小=EM;∵点E,F将对角线AC三等分,且边长为,∴AC=15,∴EC=10,FC=5=AE,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=,同理:在线段AB,AD,CD上都存在1个点P,使PE+PF=5;∴满足PE+PF=5的点P的个数是4个;故选:B.。

2020-2021学年江苏省中考选择填空压轴题专题5:三角形综合问题-(数学)

2020-2021学年江苏省中考选择填空压轴题专题5:三角形综合问题-(数学)

专题05 三角形综合问题例1.如图所示,矩形ABCD中,AB=4,BC=4 3 ,点E是折线ADC上的一个动点(点E与点A 不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个同类题型1.1 如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN =13S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个同类题型1.2 如图,D,E分别是△ABC的边BC,AC上的点,若∠B=∠C,∠ADE=∠AED,则()A.当∠B为定值时,∠CDE为定值B.当∠1为定值时,∠CDE为定值C.当∠2为定值时,∠CDE为定值D.当∠3为定值时,∠CDE为定值同类题型1.3 如图,在△ABC 中,AB =AC =2 3 ,∠BAC =120°,点D 、E 都在边BC 上,∠DAE=60°.若BD =2CE ,则DE 的长为______________.例2.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD .连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ≌△ACE ;②△CDE 为等边三角形;③EH =2EB ;④S △AEH S △CEH = EHCD.其中正确的结论是________.同类题型2.1 如图所示,已知:点A (0,0),B ( 3 ,0),C (0,1)在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1 ,第2个△B 1A 2B 2 ,第3个△B 2A 3B 3 ,…,则第n 个等边三角形的边长等于____________.同类题型2.2 如图,点P 在等边△ABC 的内部,且PC =6,PA =8,PB =10,将线段PC 绕点C 顺时针旋转60°得到P'C ,连接AP',则sin ∠PAP'的值为_________.例3.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+12∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③EF是△ABC的中位线;④设OD=m,AE+AF=n,则S△AEF =12mn.其中正确的结论是()A.①②③B.①③④C.②③④D.①②④同类题型3.1 如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.14 B.15 C.3 2 D.2 3同类题型3.2 如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=23;②C、O两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为π2 ;其中正确的是______________(把你认为正确结论的序号都填上).同类题型3.3 如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF 的值为( ) A .12B .54C .23D .33例4.如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AGFD的值为________.同类题型4.1 如图,已知CO 1 是△ABC 的中线,过点O 1 作O 1E 1 ∥AC 交BC 于点E 1 ,连接AE 1 交CO 1于点O 2 ;过点O 2 作O 2E 2 ∥AC 交BC 于点E 2 ,连接AE 2 交CO 1 于点O 3 ;过点O 3 作O 3E 3 ∥AC 交BC 于点E 3 ,…,如此继续,可以依次得到点O 4 ,O 5 ,…,O n 和点E 4 ,E 5 ,…,E n ,则O 2016E 2016 =_________AC .同类题型4.2 如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM = 13 AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112 ,则1tan ∠ACH的值是___________.例5. 如图,△ABC 的面积为S .点P 1 ,P 2 ,P 3 ,…,P n -1 是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且AM AB = AN AC = 1n ,连接MP 1 ,MP 2 ,MP 3 ,…,MP n -1 ,连接NB ,NP 1 ,NP 2 ,…,NP n -1 ,线段MP 1 与NB 相交于点D 1 ,线段MP 2 与NP 1 相交于点D 2 ,线段MP 3 与NP 2 相交于点D 3 ,…,线段MP n -1 与NP n -2 相交于点D n -1 ,则△ND 1P 1 ,△ND 2P 2 ,△ND 3P 3 ,…,△ND n -1P n -1 的面积和是 ____________.(用含有S 与n 的式子表示)同类题型5.1如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( ) A .1.5B .2C .2.25D .2.5同类题型5.2 如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75同类题型5.3 如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =2 +1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B ′始终落在边AC 上,若△MB ′C 为直角三角形,则BM 的长为____________.同类题型5.4 如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC 交于点F,若AB=9,DF=2FC,则BC=_________________.(结果保留根号)参考答案例1.如图所示,矩形ABCD中,AB=4,BC=4 3 ,点E是折线ADC上的一个动点(点E与点A 不重合),点P是点A关于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的位置共有()A.2个B.3个C.4个D.5个解:①BP为等腰三角形一腰长时,符合点E的位置有2个,是BC的垂直平分线与以B为圆心BA 为半径的圆的交点即是点P;②BP为底边时,C为顶点时,符合点E的位置有2个,是以B为圆心BA为半径的圆与以C为圆心BC为半径的圆的交点即是点P;③以PC为底边,B为顶点时,这样的等腰三角形不存在,因为以B为圆心BA为半径的圆与以B 为圆心BC为半径的圆没有交点.选C.同类题型1.1 如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC中点D,AC中点N,连接DN、DE、DF.下列结论:①EM=DN;②S△CDN =13S四边形ABDN;③DE=DF;④DE⊥DF.其中正确的结论的个数是()A.1个B.2个C.3个D.4个解:∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,∴DN ∥AB ,且DN =12AB ;∵三角形ABE 是等腰直角三角形,EM 平分∠AEB 交AB 于点M , ∴M 是AB 的中点, ∴EM =12 AB ,又∵DN =12 AB ,∴EM =DN , ∴结论①正确;∵DN ∥AB , ∴△CDN ∽ABC , ∵DN =12 AB ,∴S △CDN =14S △ABC ,∴S △CDN =13 S_(四边形ABDN),∴结论②正确;如图1,连接MD 、FN ,∵D 是BC 中点,M 是AB 中点, ∴DM 是△ABC 的中位线, ∴DM ∥AC ,且DM =12AC ;∵三角形ACF 是等腰直角三角形,N 是AC 的中点, ∴FN =12 AC ,又∵DM =12 AC ,∴DM =FN ,∵DM ∥AC ,DN ∥AB ,∴四边形AMDN 是平行四边形, ∴∠AMD =∠AND , 又∵∠EMA =∠FNA =90°, ∴∠EMD =∠DNF , 在△EMD 和△DNF 中,⎩⎪⎨⎪⎧EM =DN∠EMD =∠DNF MD =NF, ∴△EMD ≌△DNF , ∴DE =DF , ∴结论③正确;如图2,连接MD ,EF ,NF ,∵三角形ABE 是等腰直角三角形,EM 平分∠AEB ,∴M 是AB 的中点,EM ⊥AB ,∴EM =MA ,∠EMA =90°,∠AEM =∠EAM =45°,∴EM EA =sin45°=22 , ∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM ∥AC ,且DM =12AC ; ∵三角形ACF 是等腰直角三角形,N 是AC 的中点,∴FN =12AC ,∠FNA =90°,∠FAN =∠AFN =45°, 又∵DM =12AC , ∴DM =FN =22FA , ∵∠EMD =∠EMA +∠AMD =90°+∠AMD ,∠EAF =360°-∠EAM -∠FAN -∠BAC=360°-45°-45°-(180°-∠AMD )=90°+∠AMD∴∠EMD =∠EAF ,在△EMD 和△∠EAF 中,⎩⎪⎨⎪⎧EM EA =DM FA =22∠EMD =∠EAF∴△EMD ∽△∠EAF ,∴∠MED =∠AEF ,∵∠MED +∠AED =45°,∴∠AED +∠AEF =45°,即∠DEF =45°,又∵DE =DF ,∴∠DFE =45°,∴∠EDF =180°-45°-45°=90°,∴DE ⊥DF ,∴结论④正确.∴正确的结论有4个:①②③④.选D .同类题型1.2 如图,D ,E 分别是△ABC 的边BC ,AC 上的点,若∠B =∠C ,∠ADE =∠AED ,则()A .当∠B 为定值时,∠CDE 为定值B .当∠1为定值时,∠CDE 为定值C .当∠2为定值时,∠CDE 为定值D .当∠3为定值时,∠CDE 为定值解:在△CDE中,由三角形的外角性质得,∠AED=∠CDE+∠C,在△ABD中,由三角形的外角性质得,∠B+∠1=∠ADC=∠ADE+∠CDE,∵∠B=∠C,∠ADE=∠AED,∴∠B+∠1=∠CDE+∠C+∠CDE=2∠CDE+∠B,∴∠1=2∠CDE,∴当∠1为定值时,∠CDE为定值.选B.同类题型1.3 如图,在△ABC中,AB=AC=2 3 ,∠BAC=120°,点D、E都在边BC上,∠DAE =60°.若BD=2CE,则DE的长为______________.解:将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2 3 ,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF =BD =2CE ,∴CG =CE ,∴△CEG 为等边三角形,∴EG =CG =FG ,∴∠EFG =∠FEG =12∠CGE =30°, ∴△CEF 为直角三角形.∵∠BAC =120°,∠DAE =60°,∴∠BAD +∠CAE =60°,∴∠FAE =∠FAC +∠CAE =∠BAD +∠CAE =60°.在△ADE 和△AFE 中,⎩⎪⎨⎪⎧AD =AF∠DAE =∠FAE =60°AE =AE, ∴△ADE ≌△AFE (SAS ),∴DE =FE .设EC =x ,则BD =CD =2x ,DE =FE =6-3x ,在Rt △CEF 中,∠CEF =90°,CF =2x ,EC =x ,EF =CF 2-EC 2= 3 x ,∴6-3x = 3 x ,x =3- 3 ,∴DE =3x =3 3 -3.例2.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =BC ,E 为AB 边上一点,∠BCE =15°,且AE =AD .连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ≌△ACE ;②△CDE 为等边三角形;③EH =2EB ;④S △AEH S △CEH = EH CD.其中正确的结论是________.解:①∵∠ABC =90°,AB =BC ,∴∠BAC =∠ACB =45°,又∵∠BAD =90°,∴∠BAC =∠DAC ,在△ACD 和△ACE 中,⎩⎪⎨⎪⎧AD =AE∠EAC =∠DAC AC =AC, ∴△ACD ≌△ACE (SAS );故①正确;②同理∠AED =45°,∠BEC =90°-∠BCE =90°-15°=75°,∴∠DEC =60°,∵△ACD ≌△ACE ,∴CD =CE ,∴△CDE 为等边三角形.故②正确.③∵△CHE 为直角三角形,且∠HEC =60°∴EC =2EH∵∠ECB =15°,∴EC ≠4EB ,∴EH ≠2EB ;故③错误.④∵AE =AD ,CE =CD ,∴点A 与C 在DE 的垂直平分线上,∴AC 是DE 的垂直平分线,即AC ⊥DE ,∴CE >CH ,∵CD =CE ,∴CD >CH ,∵∠BAC =45°,∴AH =EH , ∵S △AEH S △CEH =AH CH =EH CH, ∴S △AEHS △CEH >EH CD ,故④错误. 答案为:①②.同类题型2.1 如图所示,已知:点A (0,0),B ( 3 ,0),C (0,1)在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1 ,第2个△B 1A 2B 2 ,第3个△B 2A 3B 3 ,…,则第n 个等边三角形的边长等于____________.解:∵OB = 3 ,OC =1,∴BC =2,∴∠OBC =30°,∠OCB =60°.而△AA 1B 1 为等边三角形,∠A 1AB 1 =60°,∴∠COA 1 =30°,则∠CA 1 O =90°.在Rt △CAA 1 中,AA 1=32OC =32 , 同理得:B 1A 2=12A 1B 1=322 , 依此类推,第n 个等边三角形的边长等于32n . 同类题型2.2 如图,点P 在等边△ABC 的内部,且PC =6,PA =8,PB =10,将线段PC 绕点C 顺时针旋转60°得到P'C ,连接AP',则sin ∠PAP'的值为_________.解:连接PP ′,如图,∵线段PC 绕点C 顺时针旋转60°得到P'C ,∴CP =CP ′=6,∠PCP ′=60°,∴△CPP ′为等边三角形,∴PP ′=PC =6,∵△ABC 为等边三角形,∴CB =CA ,∠ACB =60°,∴∠PCB =∠P ′CA ,在△PCB 和△P ′CA 中⎩⎪⎨⎪⎧PC =P ′C∠PCB =∠P ′CA CB =CA, ∴△PCB ≌△P ′CA ,∴PB =P ′A =10,∵62+82=102,∴PP ′2+AP 2=P ′A 2 ,∴△APP ′为直角三角形,∠APP ′=90°,∴sin ∠PAP ′=PP ′P ′A =610=35.同类题型2.4例3.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90°+ 12∠A ; ②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③EF 是△ABC 的中位线;④设OD =m ,AE +AF =n ,则S △AEF = 12mn . 其中正确的结论是( )A .①②③B .①③④C .②③④D .①②④解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC =12 ∠ABC ,∠OCB =12∠ACB ,∠A +∠ABC +∠ACB =180°, ∴∠OBC +∠OCB =90°-12∠A , ∴∠BOC =180°-(∠OBC +∠OCB )=90°+12∠A ;故①正确; 过点O 作OM ⊥AB 于M ,作ON ⊥BC 于N ,连接OA ,∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴ON =OD =OM =m ,∴S △AEF =S △AOE +S △AOF =12AE ﹒OM +12AF ﹒OD =12OD ﹒(AE +AF )=12mn ;故④正确; ∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB ,∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EBO =∠EOB ,∠FOC =∠FCO ,∴EB=EO,FO=FC,∴EF=EO+FO=BE+CF,∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切,故②正确,根据已知不能推出E、F分别是AB、AC的中点,故③正确,∴其中正确的结论是①②④选D.同类题型3.1 如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A.14 B.15 C.3 2 D.2 3解:以A为圆心,AB长为半径作圆,延长BA交⊙A于F,连接DF.∵DC∥AB,∴⌒DF=⌒BC ,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD=BF2-DF2=15 .选B .同类题型3.2 如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA =2 3 ; ②C 、O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为π2; 其中正确的是______________(把你认为正确结论的序号都填上).解:在Rt △ABC 中,∵BC =2,∠BAC =30°,∴AB =4,AC =42-22=2 3 ,①若C 、O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则OA =AC =2 3 ;所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE ,∵∠AOB =∠ACB =90°,∴OE=CE=12AB =2, 当OC 经过点E 时,OC 最大,则C 、O 两点距离的最大值为4;所以②正确;③如图2,当∠ABO =30°时,∠OBC =∠AOB =∠ACB =90°,∴四边形AOBC 是矩形,∴AB 与OC 互相平分,但AB 与OC 的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2为半径的圆周的14,则:90π×2180 =π, 所以④不正确;综上所述,本题正确的有:①②.同类题型3.3 如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MO MF的值为( ) A .12 B .54 C .23 D .33解:∵点O 是△ABC 的重心,∴OC =23CE , ∵△ABC 是直角三角形,∴CE =BE =AE ,∵∠B =30°,∴∠FAE =∠B =30°,∠BAC =60°,∴∠FAE =∠CAF =30°,△ACE 是等边三角形,∴CM =12CE , ∴OM =23CE -12CE =16 CE ,即OM =16AE , ∵BE =AE ,∴EF =33AE , ∵EF ⊥AB ,∴∠AFE =60°,∴∠FEM =30°,∴MF =12EF , ∴MF =36AE , ∴MO MF =16AE 36AE =33 . 选D .例4.如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为________.解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABDS △ACD=12AB ﹒h12AC ﹒h =AB AC =54,∴BD =54 CD .如右图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,⎩⎪⎨⎪⎧AB =AM∠BAD =∠MAD AD =AD∴△ABD ≌△AMD (SAS ),∴MD =BD =54 CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14 ,∴CK =14CD , ∴KD =54CD . ∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠4,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH =23 . ∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23, ∴AG FD =43 .同类题型4.1 如图,已知CO 1 是△ABC 的中线,过点O 1 作O 1E 1 ∥AC 交BC 于点E 1 ,连接AE 1 交CO 1 于点O 2 ;过点O 2 作O 2E 2 ∥AC 交BC 于点E 2 ,连接AE 2 交CO 1 于点O 3 ;过点O 3 作O 3E 3 ∥AC 交BC于点E 3 ,…,如此继续,可以依次得到点O 4 ,O 5 ,…,O n 和点E 4 ,E 5 ,…,E n ,则O 2016E 2016 =_________AC .解:∵O 1E 1 ∥AC ,∴∠BO 1E 1 =∠BAC ,∠BE 1O 1 =∠BCA ,∴△BO 1E 1 ∽△BAC ,∴BO 1BA =O 1E 1AC . ∵CO 1 是△ABC 的中线,∴BO 1BA =O 1E 1AC =12. ∵O 1E 1 ∥AC ,∴∠O 1E 1O 2=∠CAO 2 ,∠E 1O 1O 2=∠ACO 2 ,∴△E 1O 1O 2∽△ACO 2 ,∴E 1O 1AC =E 1O 2AO 2=12 . ∵O 2E 2 ∥AC ,∴E 1O 2E 1A =O 2E 2AC =13 , ∴O 2E 2=13AC . 同理:O n E n =1n +1AC .∴O 2016E 2016=12016+1=12017.同类题型4.2 如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC的延长线于点F .在AF 上取点M ,使得AM = 13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112 ,则1tan ∠ACH的值是___________.解:过点H 作HG ⊥AC 于点G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF =∠AFC =∠CAF ,∴AC =CF =2,∵AM =13AF , ∴AM MF =12 , ∵DE ∥CF ,∴△AHM ∽△FCM ,∴AM MF =AH CF ,∴AH =1,设△AHM 中,AH 边上的高为m ,△FCM 中CF 边上的高为n ,∴m n =AM MF =12, ∵△AMH 的面积为:112, ∴112=12AH ﹒m ∴m =16, ∴n =13, 设△AHC 的面积为S ,∴SS △AHM =m +n m =3, ∴S =3S △AHM =14, ∴12AC ﹒HG =14, ∴HG =14, ∴由勾股定理可知:AG =154 , ∴CG =AC -AG =2-154∴1tan ∠ACH =CG HG =8-15 .例5. 如图,△ABC 的面积为S .点P 1 ,P 2 ,P 3 ,…,P n -1 是边BC 的n 等分点(n ≥3,且n 为整数),点M ,N 分别在边AB ,AC 上,且AM AB = AN AC = 1n,连接MP 1 ,MP 2 ,MP 3 ,…,MP n -1 ,连接NB ,NP 1 ,NP 2 ,…,NP n -1 ,线段MP 1 与NB 相交于点D 1 ,线段MP 2 与NP 1 相交于点D 2 ,线段MP 3 与NP 2 相交于点D 3 ,…,线段MP n -1 与NP n -2 相交于点D n -1 ,则△ND 1P 1 ,△ND 2P 2 ,△ND 3P 3 ,…,△ND n -1P n -1 的面积和是 ____________.(用含有S 与n 的式子表示)解:连接MN ,设BN 交MP 1 于O 1 ,MP 2 交NP 1 于O 2 ,MP 3 交NP 2 于O 3 .∵AM AB =AN AC =1n, ∴MN ∥BC ,∴MN BC =AM AB =1n, ∵点P 1 ,P 2 ,P 3 ,…,P n -1 是边BC 的n 等分点,∴MN =BP 1=P 1P 2=P 2P 3 ,∴四边形MNP1B,四边形MNP2P1,四边形MNP3P2都是平行四边形,易知S△ABN =1n﹒S,S△BCN=n-1n﹒S,S△MNB=n-1n2﹒S,∴S△BP1O1=S△P1P2O2=S△P3P2O3=n-12n2﹒S,∴S阴=S△NBC-(n-1)﹒S△BP1O1-S△NPn-1C=n-1n﹒S-(n-1)﹒n-12n2﹒S-n-1n2S=(n-1)22n2﹒S.同类题型5.1如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.5解:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x 2=(9-x )2+(9-3)2 ,解得x =2,即AM =2,故选B .同类题型5.2 如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75解:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC =4,AB =3,∴BC =32+42=5, ∵CD =DB ,∴AD =DC =DB =52, ∵12﹒BC ﹒AH =12﹒AB ﹒AC , ∴AH =125 ,∵AE =AB ,∴点A 在BE 的垂直平分线上.∵DE =DB =DC ,∴点D 在BE 使得垂直平分线上,△BCE 是直角三角形,∴AD 垂直平分线段BE , ∵12﹒AD ﹒BO =12﹒BD ﹒AH , ∴OB =125, ∴BE =2OB =245, 在Rt △BCE 中,EC =BC 2-BE 2=52-(245)2=75 , 选D .同类题型5.3 如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC = 2 +1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B ′始终落在边AC 上,若△MB ′C 为直角三角形,则BM 的长为____________.解:①如图1,当∠B ′MC =90°,B ′与A 重合,M 是BC 的中点,∴BM =12BC =122+12; ②如图2,当∠MB ′C =90°,∵∠A =90°,AB =AC ,∴∠C =45°,∴△CMB ′是等腰直角三角形,∴CM = 2 MB ′,∵沿MN 所在的直线折叠∠B ,使点B 的对应点B ′,∴BM =B ′M ,∴CM = 2 BM ,∵BC = 2 +1,∴CM +BM =2BM +BM = 2 +1,∴BM =1,综上所述,若△MB ′C 为直角三角形,则BM 的长为122+12 或1.同类题型5.4 如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC 交于点F,若AB=9,DF=2FC,则BC=_________________.(结果保留根号)解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE=92+92=9 2 ,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=9 2由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴CGDE=CFDF=CF2CF=12设CG=x,DE=2x,则AD=9+2x=BC ∵BG=BC+CG∴92=9+2x+x解得x=3 2 -3∴BC=9+2(32-3)=6 2 +3.。

江苏省常州市中考数学第二轮专题复习:压轴题提优冲刺训练(2)

江苏省常州市中考数学第二轮专题复习:压轴题提优冲刺训练(2)

2021届九年级数学第二轮专题复习专题1 一线三等角/ K型图(垂直处理)专题2 特殊几何图形在坐标系(函数图像)中专题3 设点法解决反比例函数问题专题4 等腰三角形存在性问题专题5 直角三角形存在性问题专题6 特殊四边形存在性问题专题7 相似、全等三角形存在性问题专题8 相切问题专题9 线段问题专题10 角度问题专题11 面积问题专题六 特殊四边形存在性问题坐标系中特殊四边形的存在性问题的解题策略:1、平行四边形的存在性:利用构造全等或对角线互相平分建立点的坐标之间的关系;2、菱形的存在性:利用菱形的邻边相等的对称性,转化为等腰三角形的存在性问题;3、矩形的存在性:转化为直角三角形的存在性问题。

【平行四边形】例1: 如图,已知抛物线x x y 316342+=与x 轴的负半轴交于点C ,点E 的坐标为(0,-3),点N 在抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 、N ,使得以M 、N 、C 、E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由。

变式:如图,在平面直角坐标系中,已知抛物线234322++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC. (1)求A 、B 、C 三点的坐标及抛物线的对称轴。

(2)点D 为线段BC 上方抛物线上一点,连接CD 、BD ,求四边形COBD 面积的最大值及此时点D 的坐标。

(3)在(2)的条件下,若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B 、D 、M 、N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点N 的坐标;若不存在,请说明理由。

【菱形】例2:在平面直角坐标系中,直线4=xy与x轴交于点A,与y轴交于点B,点C在直线-+AB上,在平面直角坐标系中求一点D,使得以O、A、C、D为顶点的四边形是菱形。

变式:如图,在平面直角坐标系中,O 为坐标原点,直线4+-=x y 与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴负半轴上,28=ABC S △,点P 是线段CA 上一动点. (1)求直线CB 的解析式;(2)连接BP ,分别过点A 、C 向直线BP 作垂线,垂足分别为E 、F ,线段EF 的垂直平分线交 AC 于点F ,连接BG ,求BG 的长;(3)H 是直线BC 上一点,在平面内是否存在一点R ,使以点O 、B 、H 、R 为顶点的四边形是菱形?若存在,直接写出点R 的坐标;若不存在,请说明理由.【矩形】例3:如图,在平面直角坐标系x O y 中,抛物线a ax ax y 322--=(a <0)与x 轴交于A 、B两点(点A 在点B 的左侧),经过A 点的直线l :b kx y +=与y 轴交于点C ,与抛物线的另一个交点为D ,且CD=4AC 。

2021年九年级中考数学第三轮压轴题专题冲刺复习:四边形综合(含答案)

2021年九年级中考数学第三轮压轴题专题冲刺复习:四边形综合(含答案)

2021年中考数学第三轮压轴题专题冲刺复习:四边形综合1、如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.2、如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.3、如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.4、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.5、如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.6、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.7、如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.8、如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC 延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.9、在四边形ABCD中,︒∠.B,对角线AC平分BADD∠180=∠+(1)如图1,若︒∠90=B,试探究边AD、AB与对角线AC=∠120DAB,且︒的数量关系并说明理由.(2)如图2,若将(1)中的条件“︒B”去掉,(1)中的结论是否成立?∠90=请说明理由.(3)如图3,若︒DAB,探究边AD、AB与对角线AC的数量关系并说明∠90=理由.10、如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.11、如图1,菱形ABCD 的顶点A ,D 在直线上,∠BAD =60°,以点A 为旋转中心将菱形ABCD 顺时针旋转α(0°<α<30°),得到菱形AB ′C ′D ′,B ′C ′交对角线AC 于点M ,C ′D ′交直线l 于点N ,连接MN .(1)当MN ∥B ′D ′时,求α的大小.(2)如图2,对角线B ′D ′交AC 于点H ,交直线l 与点G ,延长C ′B ′交AB 于点E ,连接EH .当△HEB ′的周长为2时,求菱形ABCD 的周长.12、已知正方形的对角线,相交于点.(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若,①求证:;②当时,求的长.CD AB C A D B O E G OB C O C E DG F DF C ⊥E G OE =O H C B H C EH ⊥B OB E D H C E F C O G G OE =O DG C ∠O =∠O E 1AB =C H13、已知正方形ABCD,点M为边AB的中点.(1)如图1,点G为线段CM上的一点,且90∠=︒,延长AG,BG分别AGB与边BC,CD交于点E,F.①求证:BE CF=;②求证:2=⋅.BE BC CE(2)如图2,在边BC上取一点E,满足2=⋅,连接AE交CM于点G,BE BC CE连接BG延长交CD于点F,求tan CBF∠的值.14、如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D 为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q 在边AC 上时,正方形DEFQ 的边长为 cm (用含x 的代数式表示);(2)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(3)当0<x <2时,求y 关于x 的函数解析式;(4)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.15、如图AM 是ABC ∆的中线,D 是线段AM 上一点(不与点A 重合),AB DE //交AC 于点F ,AM CE //,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若AC BH ⊥,且AM BH =.当3=FH ,4=DM 时,求DH 的长.16、在四边形ABCD 中,对角线AC 、BD 交于点O .若四边形ABCD 是正方形如图1:则有AC=BD ,AC ⊥BD .旋转图1中的Rt △COD 到图2所示的位置,AC ′与BD ′有什么关系?(直接写出)若四边形ABCD 是菱形,∠ABC=60°,旋转Rt △COD 至图3所示的位置,AC ′与BD ′又有什么关系?写出结论并证明.17、在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m>0,四边形ABCD是矩形.(1)如图1,当四边形ABCD为正方形时,求m,n的值;(2)在图2中,画出矩形ABCD,简要说明点C,D的位置是如何确定的,并直接用含m的代数式表示点C的坐标;(3)探究:当m为何值时,矩形ABCD的对角线AC的长度最短.参考答案2021年中考数学第三轮压轴题专题冲刺复习:四边形综合1、如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.【解答】证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形;(2)∵BE=BC∴∠BCE=∠BEC,∵∠CBE:∠BCE=2:3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形.2、如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.【解答】(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴=,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴=,解得:x=,故AE=1﹣=.3、如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.4、给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.解:(1)正方形、矩形、直角梯形均可;证明:(2)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC2+CE2=DE2,∴DC2+BC2=AC2.5、如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.【解答】(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假设DF=BF=x,∴AF=AD﹣DF=8﹣x.∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.6、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中AF交EC于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=5,求EM的长.【解答】证明:(1)∵四边形ABCD,四边形ECGF都是正方形∴DA∥BC,AD=CD,FG=CG,∠B=∠CGF=90°∵AD∥BC,AH∥DG∴四边形AHGD是平行四边形∴AH=DG,AD=HG=CD∵CD=HG,∠ECG=∠CGF=90°,FG=CG∴△DCG≌△HGF(SAS)∴DG=HF,∠HFG=∠HGD∴AH=HF,∵∠HGD+∠DGF=90°∴∠HFG+∠DGF=90°∴DG⊥HF,且AH∥DG∴AH⊥HF,且AH=HF∴△AHF为等腰直角三角形.(2)∵AB=3,EC=5,∴AD=CD=3,DE=2,EF=5∵AD∥EF∴=,且DE=2∴EM=7、如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.8、如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC 延长线上一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)解:垂直,理由:过E 作EM ⊥DA 交DA 的延长线于M ,过E 作EN ⊥FC 交FC 的延长线于N , 在△AME 与△CNE 中,,∴△AME ≌△CNE ,∴∠ADE=∠CFE ,在△ADE 与△CFE 中,, ∴△ADE ≌△CFE ,∴∠DEA=∠FEC ,∵∠DEA+∠DEC=90°,∴∠CEF+∠DEC=90°,∴∠DEF=90°,∴ED ⊥EF .9、在四边形ABCD 中,︒=∠+∠180D B ,对角线AC 平分BAD ∠.(1)如图1,若︒=∠120DAB ,且︒=∠90B ,试探究边AD 、AB 与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“︒=∠90B ”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若︒=∠90DAB ,探究边AD 、AB 与对角线AC 的数量关系并说明理由.解:(1)AB AD AC +=.证明如下: 在四边形ABCD 中,︒=∠+∠180B D ,︒=∠90B ,∴ ︒=∠90D .︒=∠120DAB ,AC 平分DAB ∠, ∴ 60=∠=∠BAC DAC ,︒=∠90B ,∴AC AB 21=,同理AC AD 21=. ∴AB AD AC +=.(2)(1)中的结论成立,理由如下:以C 为顶点,AC 为一边作 60=∠ACE , ACE ∠的另一边交AB 延长线于点E , 60=∠BAC ,∴AEC ∆为等边三角形, ∴CE AE AC ==,︒=∠+∠180B D ,︒=∠120DAB ,∴ 60=∠DCB , ∴BEC DAC ∆≅∆,∴BE AD =,∴AB AD AC +=.(3)AC AB AD 2=+.理由如下:过点C 作AC CE ⊥交AB 的延长线于点E , ︒=∠+∠180B D ,︒=∠90DAB ,∴ 90=DCB , 90=∠ACE ,∴BCE DCA ∠=∠, 又AC 平分DAB ∠,∴ 45=∠CAB ,∴ 45=∠E . ∴CE AC =.又︒=∠+∠180B D ,CBE D ∠=∠,∴CBE CDA ∆≅∆,∴BE AD =,∴AE AB AD =+.在ACE Rt ∆中, 45=∠CAB ,∴AC cos ACAE 245==, ∴AC AB AD 2=+.10、如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由; (2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.【答案】(1)结论:AG 2=GE 2+GF 2. 理由:连接CG .∵四边形ABCD 是正方形, ∴A 、C 关于对角线BD 对称,∵点G 在BD 上, ∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F , ∴∠GEC=∠ECF=∠CFG=90°, ∴四边形EGFC 是矩形, ∴CF=GE ,在Rt △GFC 中,∵CG 2=GF 2+CF 2, ∴AG 2=GF 2+GE 2.解得,[来源:学科网ZXXK] ∴, ∴BG=BN ÷cos30°=.11、如图1,菱形ABCD 的顶点A,D 在直线上,∠BAD =60°,以点A 为旋转中心将菱形ABCD 顺时针旋转α(0°<α<30°),得到菱形AB ′C ′D ′,B ′C ′6交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.【解答】解:(1)∵四边形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等边三角形,∵MN∥B′C′,∴∠C′MN=∠C′B′D′=60°,∠CNM=∠C′D′B′=60°,∴△C′MN是等边三角形,∴C′M=C′N,∴MB′=ND′,∵∠AB′M=∠AD′N=120°,AB′=AD′,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠CAD=∠BAD=30°,∠DAD′=15°,∴α=15°.(2)∵∠C′B′D′=60°,∴∠EB′G=120°,∵∠EAG=60°,∴∠EAG+∠EB′G=180°,∴四边形EAGB′四点共圆,∴∠AEB ′=∠AGD ′,∵∠EAB ′=∠GAD ′,AB ′=AD ′, ∴△AEB ′≌△AGD ′(AAS ), ∴EB ′=GD ′,AE =AG , ∵AH =AH ,∠HAE =∠HAG , ∴△AHE ≌△AHG (SAS ), ∴EH =GH ,∵△EHB ′的周长为2,∴EH +EB ′+HB ′=B ′H +HG +GD ′=B ′D ′=2, ∴AB ′=AB =2, ∴菱形ABCD 的周长为8.12、已知正方形的对角线,相交于点.(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若,①求证:; ②当时,求的长.CD AB C A D B O E G OB C O C E DG F DF C ⊥E G OE =O H C B H C EH ⊥B OB E D H C E F C O G G OE =O DG C ∠O =∠O E 1AB =CH∴∠DOG=∠COE=90°∴∠OEC+∠OCE=90°∵DF⊥CE∴∠OEC+∠ODG=90°∴∠ODG=∠OCE∴△DOG≌△COE(ASA)∴OE=OG②解:设CH=x,∵四边形ABCD是正方形,AB=1 ∴BH=1-x∠DBC=∠BDC=∠ACB=45°∵EH⊥BC∴∠BEH=∠EBH=45°∴EH=BH=1-x∵∠ODG=∠OCE∴∠BDC-∠ODG=∠ACB-∠OCE ∴∠HDC=∠ECH∵EH⊥BC∴∠EHC=∠HCD=90° ∴△CHE ∽△DCH ∴∴HC 2=EH ·CD 得x 2+x-1=0 解得,(舍去) ∴13、已知正方形ABCD,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .①求证:BE CF =; ②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值.解答:(1)①证明:∵四边形ABCD 为正方形,∴AB BC ,90ABC BCF ∠∠°, 又90AGB ∠°,∴90BAE ABG ∠∠°,又90ABG CBF ∠∠°,∴BAE CBF ∠∠,∴ABE BCF △≌△(ASA),∴BE CF .EH HCHC CD=1x =1x =②证明:∵90AGB ∠°,点M 为AB 中点,∴MG MA MB ,∴GAM AGM ∠∠,又∵CGE AGM ∠∠,从而CGE CGB ∠∠,又ECG GCB ∠∠,∴CGE CBG △∽△, ∴CE CGCGCB,即2CG BC CE ,由CFG GBMCGF ∠∠∠,得CFCG .由①知,BE CF ,∴BE CG ,∴2BE BC CE . (2)解:(方法一)延长AE ,DC 交于点N (如图1),由于四边形ABCD 是正方形,所以AB CD ∥, ∴N EAB ∠∠,又CEN BEA ∠∠,∴CEN BEA △∽△, 故CE CNBEBA,即BE CN AB CE ,∵AB BC ,2BE BC CE ,∴CN BE ,由AB DN ∥知,CN CG CFAM GM MB, 又AM M B ,∴FC CN BE ,不妨假设正方形边长为1, 设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),∴512BEBC, 于是51tan 2FC BE CBFBC BC ∠,(方法二)不妨假设正方形边长为1,设BE x ,则由2BE BC CE ,得211x x , 解得1512x ,2512x (舍去),即512BE , 作GN BC ∥交AB 于N (如图2),则MNG MBC △∽△,∴12MN MB NGBC , 设MN y ,则2GN y ,5GM y ,∵GN AN BEAB ,即121y,解得125y,∴12GM,从而GM MAMB ,此时点G 在以AB 为直径的圆上,∴AGB △是直角三角形,且90AGB ∠°, 由(1)知BE CF ,于是51tan 2FC BE CBFBCBC∠.14、如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D 为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x ,∴y=S △DEQ =12DQ 2,∴y=12(2﹣x )2,∴y=12x 2﹣2x+2;(4)当Q 与C 重合时,E 为BC 的中点, 即2x=2, ∴x=1,当Q 为BC 的中点时, PB=1, ∴AP=3, ∴2x=3,∴x=32,∴边BC 的中点落在正方形DEFQ 内部时x 的取值范围为:1<x <32.15、如图AM 是ABC ∆的中线,D 是线段AM 上一点(不与点A 重合),AB DE //交AC 于点F ,AM CE //,连结AE .(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形; (2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由. (3)如图3,延长BD 交AC 于点H ,若AC BH ⊥,且AM BH =.当3=FH ,DM时,求DH的长.4【答案】:(1)证明:∵DE//AB,∴∠EDC=∠ABM,∵CE//AM,∴∠ECD=∠ADB,又∵AM是△ABC的中线,且D与M重合,∴BD=DC,∴△ABD≅△EDC,∴AB=ED,又∵AB//ED,∴四边形ABDE为平行四边形。

2021届中考数学冲刺专题训练:三角形与四边形【含答案解析】

2021届中考数学冲刺专题训练:三角形与四边形【含答案解析】

2021届中考数学冲刺专题训练三角形与四边形一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( ) A .16 B .12C .14D .12或16【答案】A 【解析】解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形; 若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16, 故选:A .2.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°【答案】B 【解析】∵BE 是∠ABC 的平分线, ∴∠EBM=12∠ABC , ∵CE 是外角∠ACM 的平分线, ∴∠ECM=12∠ACM , 则∠BEC=∠ECM-∠EBM=12×(∠ACM-∠ABC )=12∠A=30°,故选:B .3.如图,在△ABC 中,∠C =90°,AC =12,AB 的垂直平分线EF 交AC 于点D ,连接BD ,若cos ∠BDC =57,则BC 的长是( )A .10B .8C .3D .6【答案】D 【解析】∵∠C =90°,cos ∠BDC =57, 设CD =5x ,BD =7x , ∴BC =6x ,∵AB 的垂直平分线EF 交AC 于点D , ∴AD =BD =7x , ∴AC =12x , ∵AC =12, ∴x =1, ∴BC =6; 故选D.4.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为( ) A .8 B .12C .16D .32【答案】C 【解析】 如图所示:四边形ABCD 是菱形,12AO CO AC ∴==, 12DC BO BD ==,AC BD ⊥, 面积为28,∴12282AC BD OD AO ⋅=⋅=① 菱形的边长为6,2236OD OA ∴+=②,由①②两式可得:222()2362864OD AO OD OA OD AO +=++⋅=+=,8OD AO ∴+=,2()16OD AO ∴+=,即该菱形的两条对角线的长度之和为16, 故选C .5.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC【答案】C 【解析】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选项错误; 选项B 、添加AC=DF 可用AAS 进行判定,故本选项错误; 选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项正确;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项错误. 故选C .6.如图,ABCD 中,对角线AC 、BD 相交于点O ,OE BD ⊥交AD 于点E ,连接BE ,若ABCD 的周长为28,则ABE ∆的周长为( )A .28B .24C .21D .14【答案】D 【解析】∵四边形ABCD 是平行四边形, ∴OB OD =,AB CD =,AD BC =, ∵平行四边形的周长为28, ∴14AB AD += ∵OE BD ⊥,∴OE 是线段BD 的中垂线, ∴BE ED =,∴ABE ∆的周长14AB BE AE AB AD =++=+=, 故选:D .7.如图,在ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若=60B ︒∠,=3AB ,则ADE ∆的周长为( )A .12B .15C .18D .21【答案】C 【解析】由折叠可得,90ACD ACE ︒∠=∠=,90BAC ︒∴∠=,又60B ︒∠=,30ACB ︒∴∠=,26BC AB ∴==,6AD ∴=,由折叠可得,60E D B ︒∠=∠=∠=,60DAE ︒∴∠=,ADE ∴∆是等边三角形, ADE ∴∆的周长为6318⨯=,故选:C .8.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2﹣2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .4【答案】B 【解析】 ①如图1,∵四边形ABCD 是正方形,∴∠EBM =∠ADM =∠FDN =∠ABD =45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM=,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90 AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=12EF=2x,△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC=2=AO+OC,∴1+22x=2,x=2﹣2,∴BEEC=1(22)22---=(21)(22)2-+=22;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,AE AEFAE HAEAF AH=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH (SAS ), ∴EF =EH =BE+BH =BE+DF , 故③正确;④△ADN 中,∠FND =∠ADN+∠NAD >45°, ∠FDN =45°, ∴DF >FN ,故存在点E 、F ,使得NF >DF , 故④不正确; 故选B .二、填空题(本大题共4个小题,每小题6分,共24分)9.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 与点D ,连结AD ,若∠B =40°,∠C =36°,则∠DAC 的度数是____________.【答案】34° 【解析】由作图过程可知BD=BA , ∵∠B=40°, ∴∠BDA=∠BAD=12(180°-∠B)=70°, ∴∠DAC=∠BDA-∠C=70°-36°=34°. 故答案为34°. 10.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE ∆沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则 a 的值为________.【答案】53或53【解析】 分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形,90BAD B ︒∴∠=∠=,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上,1452BAE B AE BAD '︒∴∠=∠=∠=,AB BE ∴=,315a ∴=, 53a ∴=;②当点B '落在CD 边上时,如图2. ∵四边形ABCD 是矩形,90BAD B C D ︒∴∠=∠=∠=∠=,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上,90B AB E '︒∴∠=∠=,1AB AB '==,35EB EB a '==,2221DB B A AD a''∴=-=-,3255EC BC BE a a=-=-=.在ADB'∆与B CE'∆中,90A90B AD EBC B DD C︒︒⎧∠=∠=-∠'''⎨∠=∠=⎩,ADB B CE''∴∆⋃∆,DB ABCE B E'''∴=,即2112355aa a-=,解得153a=,20a=(舍去).综上,所求a的值为53或53.故答案为53或53.11.如图,正方形ABCD的边长为4,点E是CD的中点,AF平分BAE∠交BC于点F,将ADE∆绕点A顺时针旋转90°得ABG∆,则CF的长为_____.【答案】6-25【解析】作FM AD M FN AG N⊥⊥于,于,如图,易得四边形CFMD为矩形,则4FM=∵正方形ABCD的边长为4,点是的中点,2DE ∴=,∴224225AE =+=∵△ADE 绕点A 顺时针旋转90°得△ABG ,∴252349090AG AE BG DE GAE ABG D ∠∠∠︒∠∠︒==,==,=,=,== 而90ABC ∠︒= , ∴点G 在CB 的延长线上,∵AF 平分∠BAE 交BC 于点F ,∴∠1=∠2,∴∠2+∠4=∠1+∠3,即F A 平分∠GAD , ∴FN =FM =4, ∵11••22AB GF FN AG =, ∴42525GF ⨯==, ∴4225625CF CG GF +=-=﹣=﹣ . 故答案为6-25.12.如图,在平面直角坐标系中,OA =1,以OA 为一边,在第一象限作菱形OAA 1B ,并使∠AOB =60°,再以对角线OA 1为一边,在如图所示的一侧作相同形状的菱形OA 1A 2B 1,再依次作菱形OA 2A 3B 2,OA 3A 4B 3,……,则过点B 2018,B 2019,A 2019的圆的圆心坐标为_____.【答案】(-32018,3)2019) 【解析】过A 1作A 1C ⊥x 轴于C ,∵四边形OAA1B是菱形,∴OA=AA1=1,∠A1AC=∠AOB=60°,∴A1C=3,AC=12,∴OC=OA+AC=32,在Rt△OA1C中,OA1=2213OC AC+=,∵∠OA2C=∠B1A2O=30°,∠A3A2O=120°,∴∠A3A2B1=90°,∴∠A2B1A3=60°,∴B1A3=23,A2A3=3,∴OA3=OB1+B1A3=33=(3)3∴菱形OA2A3B2的边长=3=(3)2,设B1A3的中点为O1,连接O1A2,O1B2,于是求得,O1A2=O1B2=O1B133)1,∴过点B1,B2,A2的圆的圆心坐标为O1(0,23,∵菱形OA3A4B3的边长为333,∴OA4=934,设B2A4的中点为O2,连接O2A3,O2B3,同理可得,O2A3=O2B3=O2B2=3=(3)2,∴过点B2,B3,A3的圆的圆心坐标为O2(﹣3,33),…以此类推,菱形OA2019A2020B2019的边长为(3)2019,OA2020=(3)2020,设B2018A2020的中点为O2018,连接O2018A2019,O2018B2019,求得,O2018A2019=O2018B2019=O2018B2018=(3)2018,∴点O2018是过点B2018,B2019,A2019的圆的圆心,∵2018÷12=168…2,∴点O2018在射线OB2上,则点O2018的坐标为(﹣(3)2018,(3)2019),即过点B2018,B2019,A2019的圆的圆心坐标为:(﹣(3)2018,(3)2019),故答案为:(﹣(3)2018,(3)2019).三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DEFH=,求菱形ABCD的周长。

备战2021年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(五)

备战2021年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(五)

备战2021年九年级中考复习数学高分冲刺训练——几何综合:《四边形综合》(五)1.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=6cm,CD是中线.点P从点C出发以4cm/s速度沿折线CD﹣DB匀速运动,到点B停止运动.过点P作PQ⊥AC,垂足为点Q,以PQ为一边作矩形PQMN,且MQ=PQ.点M,C始终位于PQ的异侧,矩形PQMN与△ACD的重叠部分面积为S(cm2),点P的运动时间为t(s).(1)当点N在边AB上时,t=s.(2)求S与t之间的函数关系式.(3)当矩形PQMN与△ACD的重叠部分为轴对称图形时,直接写出t的取值范围.2.如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.(1)请判断线段AE和CD的数量关系,并说明理由;(2)当A、E、F三点在同一直线上时,求CD的长;(3)设AE的中点为M,连接FM,试求线段FM长的最大值.3.如图①所示,已知正方形ABCD和正方形AEFG,G、A、B在同一直线上,点E在AD 上,连接DG,BE.(1)证明:BE=DG;(2)发现:当正方形AEFG绕点A旋转,如图②所示,判断BE与DG的数量关系和位置关系,并说明理由;(3)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG =2AE时,判断BE与DG的数量关系和位置关系是否与(2)的结论相同,并说明理由.4.如图1,ABCD为正方形,将正方形的边CB绕点C顺时针旋转到CE,记∠BCE=α,连接BE,DE,过点C作CF⊥DE于F,交直线BE于H.(1)当α=60°时,如图1,则∠BHC=;(2)当45°<α<90°,如图2,线段BH、EH、CH之间存在一种特定的数量关系,请你通过探究,写出这个关系式:(不需证明);(3)当90°<α<180°,其它条件不变(如图3),(2)中的关系式是否还成立?若成立,说明理由;若不成立,写出你认为成立的结论,并简要证明.5.四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1).①请直接写出AE的长度;②当DE⊥CF时,试求出CF长度.(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.探究:当∠B 与∠EPC满足什么关系时,成立?并证明你的结论.6.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N.小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时,如图1,直线l分别交AD、A′D′、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;(2)当直线l与方形环的邻边相交时,如图2,l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).7.定义:我们把对角线互相垂直的四边形叫做神奇四边形.顺次连接四边形各边中点得到的四边形叫做中点四边形.(1)判断:①在平行四边形、矩形、菱形中,一定是神奇四边形的是;②命题:如图1,在四边形ABCD中,AB=AD,CB=CD,则四边形ABCD是神奇四边形.此命题是(填“真”或“假”)命题;③神奇四边形的中点四边形是;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是神奇四边形;②若AC=2,AB=,求GE的长;(3)如图3,四边形ABCD是神奇四边形,若AB=6,CD=,AD、BC分别是方程x2﹣(k+4)x+4k=0的两根,求k的值.8.如图,平面直角坐标系中,菱形ABCD的边长为4,∠ABC=60°,对角线AC与BD的交点E恰好在y轴上,点G是BC中点,直线AG交BD于F.(1)点F的坐标为;(2)如图1,在x轴上有一动点H,连接FH,请求出FH+DH的最小值及相应的点H 的坐标;(3)如图2,若点N是直线AC上的一点,那么在直线AG上是否存在一点M,使得以B、F、M、N为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.9.如图,正方形ABCD中,对角线AC,BD交于点O,点E,点F分别在线段OB,线段AB上,且AF=OE,连接AE交OF于G,连接DG交AO于H.(1)如图1,若点E为线段BO中点,AE=,求BF的长;(2)如图2,若AE平分∠BAC,求证:FG=HG;(3)如图3,点E在线段BO(含端点)上运动,连接HE,当线段HE长度取得最大值时,直接写出cos∠HDO的值.10.已知矩形ABCD中,点E为AD上一点.(1)连接BE、CE,∠BCE的平分线与AD交于点H,HG垂直平分BE.①如图1,若AE=8,BE=10,求△EHC的面积;②如图2,若∠ECD=30°,求证:BC+CE=HC;(2)如图3,若AB=CD=6,AD=BC=8,连接CE,将△CDE沿CE翻折,使点D恰好落在对角线AC上的点F处,将△AFE绕点A顺时针旋转90°,再沿AB方向向下平移至△A′F′B处(点E与点B重合),将△A′F′B绕着点B顺时针旋转一个角α(0°<α<180°),在旋转过程中,设直线A′F′分别交直线AC、BC于点P、Q,是否存在这样的P、Q两点,使得△CPQ为等腰三角形?若存在,请直接写出CQ的长度;若不存在,请说明理由.参考答案1.解:(1)如图1中,在Rt△ABC中,∵BC=6cm,∠ACB=90°,∠A=30°,∴AB=2BC=12cm,AC=BC=6cm,∵AD=DB,∴CD=AB=6cm,∵PN∥AC,∴=,∴=,解得t=,故答案为.(2)①如图2﹣1,当0<t≤时,重叠部分是矩形PQMN,∵CD =AD ,∴∠A =∠ACD =30°∴PQ =PC =×4t =2t ,MQ =PQ =,∴S =S 矩形PQMN =t ×2t =2t 2.②如图2﹣2,当<t ≤时,重叠部分是五边形PQMEF ,∵CQ =PC cos30°=2t ,AC =BC tan60°=6∴AM =AC ﹣MQ ﹣CQ =6﹣t ﹣2t =6﹣3t ,ME =AM tan30°=(6﹣3t )=6﹣3t ,EN =MN ﹣ME =2t ﹣(6﹣3t )=5t ﹣6,NF =EN tan60°=(5t ﹣6),∴S =S 矩形PQMN ﹣S △ENF =2t 2﹣(5t ﹣6)(5t ﹣6)=t 2+30t ﹣18.数学③如图3,当<t≤3时,重叠部分是五边形QMEDF.∵AP=AD+DP=CD+DP=4t,PQ=AP sin30°=2t∴NP=MQ=PQ=t,EN=NP tan30°=t,DP=AP﹣AD=4t﹣6,∴S=S矩形PQMN ﹣S△ENP﹣S△DFP=2t2﹣t t﹣(4t﹣6)2=t2+12t﹣9.(3)观察图象可知当0<t≤时,满足条件,如图2﹣3中,当DE=DF时,也满足条件,可得6﹣2t=4t﹣6解得t=2,综上所述,满足条件的t的值为0<t≤或t=2.2.解:(1)结论:AE=CD.理由:∵在Rt△ABC中,AC=BC=4,∠ACB=90°,∴∠ABC=∠EBD=45°,∴∠ABE=∠CBD,∵四边形BDEF是正方形,△ABC是等腰直角三角形,数学∴=,=,∴,∴△ABE∽△CBD,∴=,∴AE=CD;(2∵AC=BC=4,∠ACB=90°,∴AB=BC=4,∵当A、E、F三点在一直线上时,∵∠AFB=90°,∴AF===2,如图1,当AE在AB左上方时,AE=AF﹣EF=2﹣2,∵AE=CD,∴CD=AE=﹣,如图2,当AE在AB右下方时,同理,AE=AF+EF=2+2,∴CD=+,综上所述,当A、E、F三点在一直线上时,CD的长为﹣或+;(3)如图3,延长EF到G使FG=EF,连接AG,BG,则△BFG是等腰直角三角形,∴BG=BF=2,设M为AE的中点,连接MF,∴MF是△AGE的中位线,∴AG=2FM,在△ABG中,∵AB﹣BG≤AG≤AB+BG,∴2≤AG≤6,∴≤FM≤3,∴FM的最大值为3.3.解:(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴△ABE≌△DAG(SAS),∴BE=DG;(2)BE=DG,BE⊥DG.如图1中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△DAG(SAS),∴BE=DG;∠ABE=∠ADG,延长BE交AD于T,交DG于H.∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DHB=90°,∴BE⊥DG.(3)数量关系不成立,DG=2BE,位置关系成立.如图2中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠DAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴,∴△ABE∽△ADG,∴∠ABE=∠ADG,,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DHB=90°,∴BE⊥DG.4.解:(1)作CG⊥BH于G,如图1所示:∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,由旋转的性质得:CE=CB,∠BCE=α=60°,∴CD=CE,∠BCG=∠ECG=∠BCE=30°,∵CF⊥DE,∴∠ECF=∠DCF=∠DCE,∴∠GCH=(∠BCE+∠DCE)=×90°=45°;故答案为:45°;(2)BH+EH=CH;理由如下:作CG⊥BE于G,如图2所示:∵DC=EC,∴∠DCF=∠ECF=∠HCB+∠BCG+∠ECG,∵BC=EC,∴∠BCG=∠ECG,∴∠DCF=∠HCB+2∠BCG,∴∠DCF+∠HCB=2∠HCB+2∠BCG=90°,∴∠H=∠HCG=45°,∴△CGH是等腰直角三角形,∴CH=⎷2GH,∴BH+EH=BH+BH+BG+EG=2GH=CH,即:BH+EH=CH.(3)当90°<α<180°,其它条件不变,(2)中的关系式不成立,BH﹣EH=CH;理由如下:作CG⊥BH于G,如图3所示:同(1)得:∠BHC=45°,△CGH是等腰直角三角形,CH=GH,BG=EG=BE,∴BH﹣EH=BG+GH﹣EH=BG+EG﹣EH﹣EH=2GH=CH.5.解:(1)①∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠A=∠ADC=90°.∵AD=12,CD=10,∴BC=12,AB=10.∵点E是AB的中点,∴AE=AB=5.②∵DE⊥CF,∴∠DPC=∠DPF=90°,∴∠DFC+∠DCF=90°,∠DFC+∠FDP=90°,∴∠DCF=∠FDP.∵∠A=∠ADC,∴△CFD∽△DEA,∴.在Rt△AED中,由勾股定理,得ED=13.∴,∴CF=.答:CF的长度为;(2)当∠B+∠EPC=180°时,成立.证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EPC=180°,∴∠A=∠EPC=∠FPD,∵∠FDP=∠EDA,∴△DFP∽△DEA,∴,∵∠B=∠ADC,∠B+∠EPC=180°,∠EPC+∠DPC=180°,∴∠CPD=∠CDF,∵∠PCD=∠DCF,∴△CPD∽△CDF,∴,∴∴,即当∠B+∠EPC=180°时,成立.6.解(1)在方形环中,∵M′E⊥AD,N′F⊥BC,AD∥BC,在△MM′E与△NN′F中,,∴△MM′E≌△NN′F(AAS).∴MM′=N′N;(2)法一∵∠NFN′=∠MEM′=90°,∠FNN′=∠EM′M=α,∴△NFN′∽△M′EM,∴=.∵M′E=N′F,∴==tanα(或).①当α=45°时,tan α=1,则MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).法二在方形环中,∠D=90°.∵M′E⊥AD,N′F⊥CD,∴M′E∥DC,N′F=M′E.∴∠MM′E=∠N′NF=α.在Rt△NN′F与Rt△MM′E中,sinα=,cosα=,即=tanα(或).①当α=45°时,MM′=NN′;②当α≠45°时,MM′≠NN′,则=tanα(或).7.解:(1)①∵菱形的对角线互相垂直,∴菱形是神奇四边形;②∵AB=AD,CB=CD,∴AC是BD的垂直平分线,∴四边形ABCD是神奇四边形;③如图,已知:四边形ABCD是神奇四边形,点E,点F,点G,点H分别是AD,DC,BC,AB的中点,∵点E,点F,点G,点H分别是AD,DC,BC,AB的中点,∴EF∥AC∥HG,BD∥EH∥FG,∴四边形EFGH是平行四边形,∵四边形ABCD是神奇四边形,∴AC⊥BD,又∵EF∥AC∥HG,BD∥EH∥FG,∴EF⊥EH,∴四边形EFGH是矩形,故答案为矩形.(2)①如图2,连接CE,BG交于点N,CE交AB于M,∵四边形ACFG是正方形,四边形ABDE是正方形,∴AB=AE,AC=AG,∠CAG=∠BAE=90°,∴∠GAB=∠CAE,∴△GAB≌△CAE(SAS),∴∠AEC=∠ABG,∵∠AEM+∠AME=90°,∴∠ABG+∠BMN=90°,∴∠BNM=90°,∴CE⊥BG,∴四边形BCGE是神奇四边形;②∵AC=2,AB=,∴BC===1,∵四边形ACFG是正方形,四边形ABDE是正方形,AC=2,AB=,∴CG=AC=2,BE=AB=,∵GC2=CN2+GN2,BE2=BN2+NE2,BC2=CN2+BN2,GE2=GN2+NE2,∴CG2+BE2=BC2+GE2,∴GE==;(3)∵四边形ABCD是神奇四边形,∴同(2)中②的证明方法,可得AD2+BC2=AB2+CD2,∵AB=6,CD=,∴AD2+BC2=41,∵AD、BC分别是方程x2﹣(k+4)x+4k=0的两根,∴AD+BC=k+4,ADBC=4k,∵AD2+BC2=41=(AD+BC)2﹣2ADBC,∴(k+4)2﹣8k=41,∴k1=5,k2=﹣5(不合题意舍去),∴k=5.8.解:(1)如图1中,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD=4,∠ABC=∠ADC=60°,CA⊥BD,∴∠EDC=∠EDA=30°,∠CED=90°,∴EC=CD=2,∠ECD=60°,∵∠EOC=90°,∴∠CEO=30°,∴OC=EC=1,OE=OC=,∴C(﹣1,0),E(0,),D(3,0),∵AE=EC,BE=DE,∴A(1,2),B(﹣3,2),∴直线BC的解析式为y=﹣x﹣,直线BD的解析式为y=﹣x+,∵AG⊥BC,∴直线AG的解析式为y=x+,由,解得,∴F(﹣1,).故答案为(﹣1,).(2)如图1﹣1中,过点D作射线DM,使得∠ODM=30°,点点H作HK⊥OM于K,过点F作FJ⊥DM于J.∵D(3,0),∠ODK=30°,F(﹣1,),∴直线DM的解析式为y=x﹣,∵FJ⊥DM,∴直线FJ的解析式为y=﹣x+,由,解得,∴J(,﹣),∴FJ==3,在Rt△DHK中,∵∠KDH=30°,∴KH=DH,∴FH+DH=FH+HK≥FJ,∴FH+DH≥3,∴FH+DH的最小值为3,此时点H的坐标为(,0).(3)如图2中,过点C作CM∥BF交AG于M,连接BM,CF.∵△ABC是等边三角形,AG⊥BC,∴BG=CG,∵∠BFG=∠CMG,∠BGF=∠CGM,∴△BGF≌△CGM(AAS),∴BF=CM,∵BF∥CM,∴四边形BFCN=M是平行四边形,∴当点N与C重合时,四边形BFNM是平行四边形,此时N(﹣1,0),M(﹣3,)根据对称性可知,当点N与N′关于点A对称时,四边形BFM′N′是平行四边形,此时N′(3,4),M′(5,),如图3中,当BF是平行四边形的对角线时,BM″∥AC,∵直线BM″的解析式为y=x+5,直线AG的解析式为y=x+,由,解得,∴M″(﹣5,0),综上所述,满足条件的点M的坐标为(﹣3,)或(5,)或(﹣5,0).9.解:(1)∵四边形ABCD是正方形,∴OA=OB,AB=OA,∵点E为线段BO中点,∴OE=BE=OB=OA,∵OE2+OA2=AE2,且AE=,∴OE2+4OE2=5,∴OE=1,∴AF=OE=1,OB=OA=2,AB=2,∴BF=AB﹣AF=2﹣1;(2)如图,延长HG交AB于M,∵四边形ABCD是正方形,∴∠OAB=∠OBA=∠OAD=∠ODA=45°,AC⊥BD,AO=DO=BO,∵AE平分∠BAC,∴∠BAE=∠EAO=22.5°,∴∠DEA=67.5°=∠DAE,∴AD=DE=AB,∴AB﹣AF=DE﹣OE,∴BF=DO=BO,∴∠BFO=∠BOF=67.5°,∴∠AEO=∠BOF=67.5°,∠AOF=∠EAO=22.5°,∴EG=GO,AG=GO,∴AG=GE,又∵AD=DE,∴DM⊥AE,∠ADG=∠EDG=22.5°,∴∠AMD=67.5°=∠BFO,∴FG=GM,∵∠BAE=∠EAO,AG=AG,∠AGH=∠AGM=90°,∴△AGM≌△AGH(ASA),∴GM=GH,∴GF=GH;(3)如图,连接BH,∵点E在OB上运动,∠BOH=90°,∴BH≥EH,∴当点E与点B重合时,HE的长度有最大值,如图,过点F作FN⊥BD,∵AO=BO=DO,AC⊥BD,∴AB=OB,∵OE=AF,∴BF=OB﹣OB=(﹣1)OB,∵∠ABD=45°,FN⊥BD,∴FN=BN==OB,∴DN=BD﹣BN=2OB﹣OB=OB,∴DF==OB,∴cos∠HDO==.10.(1)①解:如图1中,连接BH.∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵AE=8,BE=10,∴AB=CD===6,∵HG垂直平分线段BE,∴BH=EH,设BH=EH=x,在Rt△ABH中,则有x2=62+(8﹣x)2,∴x=5,∴EH=BH=5,=EHCD=×5×6=15.∴S△CEH②证明:如图2中,连接BH.∵∠D=∠DCB=90°,∠ECD=30°,∴∠CED=60°,∠ECB=60°,∵EC平分∠DCH,∴∠ECD=∠ECH=30°,∵∠CED=∠EHC+∠ECH,∴∠EHC=∠ECH=30°,∴EH=EC,∵GH垂直平分线段BE,∴BH=EH=CE,∵EH∥BC,∴四边形BCEH是等腰梯形,∴∠ECB=∠HBC=60°,∵BH=CE,CB=BC,∴△ECB≌△HBC(SAS),∴∠EBC=∠HCB=30°,∴∠BEC=90°,设DE=a,则EC=2DE=2a,BC=2EC=4a,CD=a.CH=2a,∴EC+BC=6a=2a=CH.(2)分4种情况:①当CP=PQ时,如图3,此时P与A'重合,∴∠PQB=∠PCB,∵∠BF'Q=∠CBA=90°,∴△BQF'∽△ACB,∴=,∵BF'=EF=3,∴=,∴BQ=5,∴CQ=5+8=13.②当CP=CQ时,如图4,∵∠F'A'B=∠F AE=∠ACB,∴∠BA'Q=∠PCQ,∵∠A'QB=∠PQC,∴△PCQ∽△BA'Q,∵PC=CQ,∴B'A'=A'Q=5,Rt△BF'Q中,BF'=3,F'Q=4+5=9,∴BQ==3,∴CQ=BQ﹣BC=3﹣8.③当CQ=PQ时,如图5,∴∠QCP=∠CPQ,∵∠BA'F'=∠CAE=∠PCQ,∠CQP=∠A'QB,∴∠CPQ=∠A'BQ,∴∠A'BQ=∠BA'Q,∴BQ=A'Q,设BQ=x,则CQ=8﹣x,A'Q=x,F'Q=4﹣x,在Rt△BQF'中,由勾股定理得:32+(4﹣x)2=x2,x=,∴CQ=8﹣=.。

2021年中考数学 三轮专题冲刺:正方形及四边形综合问题(含答案)

2021年中考数学 三轮专题冲刺:正方形及四边形综合问题(含答案)

2021中考数学三轮专题冲刺:正方形及四边形综合问题一、选择题1. 下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形又是中心对称图形2. 小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次3. 如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.24. 如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边的正方形EFGH的周长为()A. 2B. 2 2C. 2+1D. 22+15. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若BE ∶EC =2∶1,则线段CH 的长是( ) A . 3 B . 4 C . 5 D . 66. (2020·威海)如图,在▱ABCD 中,对角线BD ⊥AD ,AB =10,AD =6,O 为BD 的中点,E 为边AB 上一点,直线EO 交CD 于点F ,连结DE ,BF .下列结论不成立的是( )A .四边形DEBF 为平行四边形B .若AE =3.6,则四边形DEBF 为矩形C .若AE =5,则四边形DEBF 为菱形D .若AE =4.8,则四边形DEBF 为正方形7. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G 、F ,H 为CG 的中点,连接DE 、EH 、DH 、FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( ) A . 1个 B . 2个 C . 3个 D . 4个8. (2020·温州)如图,在R t △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为A.14 B.15 C.83D.65二、填空题9. 将边长为1的正方形ABCD绕点C按顺时针方向旋转到正方形FECG的位置(如图),使得点D落在对角线CF上,EF与AD相交于点H,则HD=.(结果保留根号)10. 以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.11. 如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.12. 如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是________.13. ▱ABCD的对角线AC与BD相交于点O,且AC⊥BD,请添加一个条件:________,使得▱ABCD为正方形.14. 如图,正方形ABCD的边长为22,对角线AC,BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________.15. 如图,正方形ABCD的面积为3 cm2,E为BC边上一点,∠BAE=30°,F 为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于________cm.16. 如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是________.三、解答题17. 如图,已知正方形ABCD与正方形CEFG,M是AF的中点,连接DM,EM.(1)如图①,点E在CD上,点G在BC的延长线上,判断DM,EM的数量关系与位置关系,请直接写出结论.(2)如图②,点E在DC的延长线上,点G在BC上,(1)中结论是否仍然成立?请证明你的结论.18. 【问题解决】一节数学课上,老师提出了这样一个问题:如图①,点P是正方形ABCD内一点,P A=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△PBC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图②,若点P是正方形ABCD外一点,P A=3,PB=1,PC=,求∠APB的度数.19. 已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP ⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ长.20. 如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.21. (2020·河南)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为.连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当=60°时,△DEB′的形状为,连接BD,可求出BBCE′的值为;(2)当0°<<360°且≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′、E、C、D为顶点的四边形是平行四边形时,请直接写出BEB E′的值.2021中考数学三轮专题冲刺:正方形及四边形综合问题-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】D[解析]由旋转的性质可知,△ADE≌△ABF,∴BF=DE=1,∴FC=6,∵CE=4,∴EF===2.故选:D.4. 【答案】B【解析】∵正方形ABCD的面积为1,∴BC=CD=1,∵E、F是边的中点,∴CE=CF=12,∴EF=(12)2+(12)2=22,则正方形EFGH的周长为4×22=2 2.5. 【答案】B【解析】设CH=x,∵BE∶EC=2∶1,BC=9,∴EC=3,由折叠可知,EH=DH=9-x,在Rt△ECH中,由勾股定理得:(9-x)2=32+x2,解得:x=4.6. 【答案】:∵O为BD的中点,∴OB=OD,∵四边形ABCD为平行四边形,∴DC∥AB,∴∠CDO=∠EBO,∠DFO=∠OEB,∴△FDO≌△EBO(AAS),∴OE=OF,∴四边形DEBF为平行四边形,故A选顶结论正确,若AE=3.6,AD=6,∴,又∵,∴,∵∠DAE=∠BAD,∴△DAE∽△BAD,∴AED=∠ADB=90°.故B选项结论正确,∵AB=10,AE=5,∴BE=5,又∵∠ADB=90°,∴DE AB=5,∴DE=BE,∴四边形DEBF为菱形.故C选项结论正确,∵AE=3.6时,四边形DEBF为矩形,AE=5时,四边形DEBF为菱形,∴AE=4.8时,四边形DEBF不可能是正方形.故D不正确.故选:D.序号逐项分析正误①在正方形ABCD中,AB=BC=CD=DA,∠DAB=∠B=∠BCD=∠CDA=90°,∠ACB=∠ACD=45°,∵EF∥AD,∴四边形EFDA、四边形EFCB是矩形,∴∠EFC=∠ADC=90°,EF=DC,在Rt△CGF中,∠ACD=45°,∴GF=CF,∴EF-GF=CD-CF,即EG=DF√②∵△GFC是等腰直角三角形,H是CG的中点,∴GH=FH,∠HGF=∠GFH=45°,∴∠EGH=∠DFH=135°,又由①知EG=DF,∴△EGH≌△DFH(SAS),∴∠HEF=∠FDH,∵∠AEH=∠AEF+∠HEF=90°+∠HEF,∠ADH=∠ADC -∠FDH=90°-∠FDH,∴∠AEH+∠ADH=180°√③由②可知EH=DH,FH=CH,又∵EF=DC,∴△EHF≌△DHC(SSS)√④∵△EGH≌△DFH,∴EH=DH,∠EHG=∠DHF,∴∠EHG+∠AHD=∠DHF+∠AHD=90°,即∠EHD=∠AHF=90°,∴△EHD为等腰直角三角形,∵AEAB=23,∴设AE=2x,AB=3x,则DE=(2x)2+(3x)2=13x,∴EH=DH=22×13x=262x,∴S△EDH=12EH2=12×132x2=134x2. 在△DHC中,设CD边上的高为h,则h=12CF=x2,则S△DHC=12CD·h=12×3x×x2=34x2,S△EDHS△DHC=134x234x2=133,即3S△EDH=13S△DHC√8. 【答案】A【解析】本题主要考查了相似三角形和正方形的性质,由题意知△CDP∽△CBQ,所以CD DP CB BQ =,即2CD CD PECB CB PE-=-,解得:BC =2CD ,所以CQ =2CP ,则CP =5,CQ =10,由于PQ ∥AB ,所以∠CBA =∠BCQ =∠DCP ,则tan ∠BCQ =tan ∠DCP =tan ∠CBA =12,不妨设DP =x ,则DC =2x ,在R t △DCP 中,22(2)25x x +=,解得x =5.∴DC =25,BC =45,所以AB =10,△ABC 的斜边上的高=25454AC BC AB ⋅⨯==,所以CR =14,所以因此本题选A .二、填空题9. 【答案】-1 [解析]∵四边形ABCD 为正方形,∴CD=1,∠CDA=90°,∵边长为1的正方形ABCD 绕点C 按顺时针方向旋转到正方形FECG 的位置,使得点D 落在对角线CF 上, ∴CF=,∠CFE=45°,∴△DFH 为等腰直角三角形,∴DH=DF=CF -CD=-1.故答案为-1.10. 【答案】30°或150° [解析]如图①,∵△ADE 是等边三角形,∴DE=DA ,∠DEA=∠1=60°. ∵四边形ABCD 是正方形, ∴DC=DA ,∠2=90°. ∴∠CDE=150°,DE=DC , ∴∠3=(180°-150°)=15°. 同理可求得∠4=15°. ∴∠BEC=30°.如图②,∵△ADE 是等边三角形, ∴DE=DA ,∠1=∠2=60°, ∵四边形ABCD 是正方形, ∴DC=DA ,∠CDA=90°. ∴DE=DC ,∠3=30°,∴∠4=(180°-30°)=75°.同理可求得∠5=75°.∴∠BEC=360°―∠2―∠4―∠5=150°.故答案为30°或150°.11. 【答案】8[解析]如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA-AE=OC-CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,∴由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.12. 【答案】(3+2,1)【解析】如解图,过点D作DG⊥BC于G,DF⊥x轴于F,∵在菱形BDCE中,BD=CD,∠BDC=60°,∴△BCD是等边三角形,∴DF=CG=12BC=1,CF=DG=3,∴OF=3+2,∴D(3+2,1).解图13. 【答案】∠BAD=90°(答案不唯一)【解析】∵▱ABCD的对角线AC与BD 相交于点O,且AC⊥BD,∴▱ABCD是菱形,当∠BAD=90°时,菱形ABCD 为正方形.故可添加条件:∠BAD=90°.14. 【答案】55【解析】∵四边形ABCD为正方形,∴AO=BO,∠AOF=∠BOE=90°,∵AM ⊥BE ,∠AFO =∠BFM ,∴∠FAO =∠EBO ,在△AFO 和△BEO中,⎩⎨⎧∠AOF =∠BOE AO =BO ∠FAO =∠EBO,∴△AFO ≌△BEO(ASA ),∴FO =EO ,∵正方形ABCD的边长为22,E 是OC 的中点,∴FO =EO =1=BF ,BO =2,∴在Rt △BOE 中,BE =12+22=5,由∠FBM =∠EBO ,∠FMB =∠EOB ,可得△BFM ∽△BEO ,∴FM EO =BF BE ,即FM 1=15,∴FM =55.15. 【答案】233或33 【解析】如解图,过N 作NG ⊥AB ,交AB 于点G ,∵四边形ABCD 为正方形,∴AB =AD =NG = 3 cm ,在Rt △ABE 中,∠BAE =30°,AB = 3 cm ,∴BE =1 cm ,AE =2 cm ,∵F 为AE 的中点,∴AF =12AE =1 cm ,在Rt △ABE 和Rt △NGM 中,⎩⎨⎧AB =NGAE =NM ,∴Rt △ABE ≌Rt △NGM(HL ),∴BE =GM ,∠BAE =∠MNG =30°,∠AEB =∠NMG =60°,∴∠AFM =90°,即MN ⊥AE ,在Rt △AMF 中,∠FAM =30°,AF =1 cm ,∴AM =AF cos 30°=132=233cm ,由对称性得到AM′=BM =AB -AM =3-233=33 cm ,综上,AM 的长等于233或33 cm .解图16. 【答案】62≤a ≤3-3 【解析】∵ABCD 是正方形,∴AB =a =22AC ,∴a的取值范围与AC 的长度直接相关.如解图①,当A ,C 两点恰好是正六边形一组对边中点时,a 的值最小,∵正六边形的边长为1,∴AC =3,∴AB =a =22AC=62;如解图②,连接MN,延长AE,BF交于点G,∵正六边形和正方形ABCD,∴△MNG、△ABG、△EFG为正三角形,设AE=BF=x,则AM=BN =1-x,AG=BG=AB=1+x=a,∵GM=MN=2,∠BNM=60°,∴sin∠BNM=sin60°=BC2BN=a21-x,∴3()1-x=a,∴3()2-a=a,解得,a =233+1=3- 3.∴正方形边长a的取值范围是62≤a≤3- 3.三、解答题17. 【答案】解:(1)结论:DM⊥EM,DM=EM.[解析]延长EM交AD于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.(2)结论不变.DM⊥EM,DM=EM.证明:延长EM交DA的延长线于H.∵四边形ABCD是正方形,四边形EFGC是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE,∵AM=MF,∠AMH=∠FME,∴△AMH≌△FME,∴MH=ME,AH=EF=EC,∴DH=DE,∵∠EDH=90°,∴DM⊥EM,DM=ME.18. 【答案】[解析]将△PBC绕点B逆时针旋转90°得到△P'BA,连接PP',得到等腰直角三角形BP'P,从而得到PP'=2,∠BPP'=45°,又AP'=CP=3,AP=1,∴AP2+P'P2=1+8=9=P'A2,∴根据勾股定理的逆定理得∠APP'=90°,从而求出∠APB=45°+90°=135°.将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP',方法和上述类似,求出∠APB=45°.解:【问题解决】如图①,将△PBC绕点B逆时针旋转90°,得到△P'BA,连接PP'.①∵P'B=PB=2,∠P'BP=90°,∴PP'=2,∠BPP'=45°.又AP'=CP=3,AP=1,∴AP 2+P'P 2=1+8=9=P'A 2,∴∠APP'=90°, ∴∠APB=45°+90°=135°.【类比探究】如图②,将△PBC 绕点B 逆时针旋转90°,得到△P'BA ,连接PP'.②∵P'B=PB=1,∠P'BP=90°, ∴PP'=,∠BPP'=45°.又AP'=CP=,AP=3,∴AP 2+P'P 2=9+2=11=P'A 2, ∴∠APP'=90°, ∴∠APB=90°-45°=45°.19. 【答案】(1)证明:∵四边形ABCD 是正方形, ∴AB =AD, ∠BAQ +∠DAP =90°=∠DAB , ∵DP ⊥AQ ,∴∠DAP +∠ADP =90°, ∴∠BAQ =∠ADP.在△DAP 和△ABQ 中,⎩⎨⎧∠APD =∠AQB =90°∠ADP =∠BAQAD =AB,(2分) ∴△DAP ≌△ABQ(AAS ), ∴AP =BQ.(4分)(2)解:①AQ 和AP ;(5分) ②DP 和AP ;(6分) ③AQ 和BQ ;(7分) ④DP 和BQ.(8分)【解法提示】①由题图直接得:AQ -AP =PQ ; ②∵△ABQ ≌△DAP , ∴AQ =DP ,∴DP -AP = AQ -AP =PQ ; ③∵△ABQ ≌△DAP ,∴BQ =AP ,∴AQ -BQ =AQ -AP =PQ ; ④∵△ABQ ≌△DAP , ∴DP =AQ ,BQ =AP ,∴DP -BQ =AQ -AP =PQ.20. 【答案】解:(1)证明:正方形ABCD 中,AC=BD ,OA=AC ,OB=OD=BD ,∴OA=OB=OD , ∵AC ⊥BD ,∴∠AOB=∠AOD=90°, ∴∠OAD=∠OBA=45°,∴∠OAM=∠OBN , 又∵∠EOF=90°,∴∠AOM=∠BON , ∴△AOM ≌△BON ,∴OM=ON. (2)如图,过点O 作OP ⊥AB 于P , ∴∠OP A=90°,∠OP A=∠MAE , ∵E 为OM 中点,∴OE=ME ,又∵∠AEM=∠PEO ,∴△AEM ≌△PEO , ∴AE=EP ,∵OA=OB ,OP ⊥AB ,∴AP=BP=AB=2, ∴EP=1.Rt △OPB 中,∠OBP=45°,∴OP=PB=2, Rt △OEP 中,OE==,∴OM=2OE=2,Rt △OMN 中,OM=ON ,∴MN=OM=2.21. 【答案】解: (1)2. (2)①两个结论仍成立.证明:连接BD.∵AB=AB′,∠BAB′=,∴∠AB′B=90°-2a,∵∠B′AD=a -90°,AD=AB′,∴∠AB′D=135-2a,∴∠EB′D=∠AB′D -∠AB′B=45°.∵DE ⊥BB′,∴∠EDB′=∠EB′D=45°,∴△DEB′是等腰直角三角形,∴DB DE′=2. ∵四边形ABCD 为正方形,∴BD CD =2,∠BDC=45°.∴DB DE′=BDCD , ∵∠EDB′=∠BDC ,∴∠EDB′+∠EDB=∠BDC+∠EDB ,即∠BDB′=∠CDE.∴△B′DB ∽△EDC ,∴2BB BDCE CD′; ②3或1.思路提示:分两种情况.情形一,如图,当点B′在BE 上时,由BB CE′=2,设BB′=2m ,CE=2m . ∵CE ∥B′D ,CE=B′D ,∴B′D=2m ,在等腰直角三角形DEB′中,斜边B′D=2m ,∴B′E=DE=m ,于是得到BE B E ′2=3m mm. 情形二,如图,当点B′在BE 延长线上时,由BB CE′=2,设BB′=2m ,CE=2m .∵CE ∥B′D ,CE=B′D ,∴B′D=2m ,在等腰直角三角形DEB′中,斜边B′D=2m ,∴B′E=DE=m 。

2021年江苏省中考三轮冲刺数学训练—专题9三角形

2021年江苏省中考三轮冲刺数学训练—专题9三角形


;(用含有∠1、∠3 的代数式表示)
(2)若点 P 在△ABC 的外部,如图(2)所示,则∠1、∠2、∠3 之间有何关系?写出
你的结论,并说明理由.
(3)当点 P 在边 CB 的延长线上运动时,试画出相应图形,标注有关字母与数字,并写
出对应的∠1、∠2、∠3 之间的关系式.(不需要证明)
23.(2021 春•吴江区期中)如图,在△ABC 中,BC=6cm.射线 AG∥BC,点 E 从点 A 出
的小正方形,…重复这样的操作,则 2021 次操作后右下角的小正方形面积是( )
1 A.
2021
C.(
1 4
)2021
B.(
1 2
)2021
D.1

(
1 4
)2021
6.(2020 秋•海州区期末)如图,∠MON=90°,已知△ABC 中,AC=BC=10,AB=12,
△ABC 的顶点 A、B 分别在边 OM、ON 上,当点 B 在边 ON 上运动时,点 A 随之在边
探究∠D 与∠A 之间的等量关系.
答:∠D 与∠A 之间的等量关系


(3)拓展应用
请用以上结论解决下列问题:如图 4,在△ABC 中,BD、CD 分别平分∠ABC、∠ACB,
M、N、Q 分别在 DB、DC、BC 的延长线上,BE、CE 分别平分∠MBC、∠BCN,BF、
CF 分别平分∠EBC、∠ECQ,
CBE,还需要添加一个条件是( )
A.AD∥BC
B.DF∥BE
C.∠A=∠C
D.∠D=∠B
二.填空题(共 1 小题)
15.(2021 春•邗江区月考)如图,在△ABC 中,AD 是 BC 边上的中线,点 E 在线段 AC 上

第3篇 热点突破5 三角形与四边形 【启东中考总复习数学 --电子教师用书】

第3篇  热点突破5  三角形与四边形  【启东中考总复习数学 --电子教师用书】

‹#›
返回目录
(2)如果 EC⊥BE,证明:AD∥EC. 证明:∵EB⊥EC,∴∠E=90°. ∵△ADC≌△BEC,∴∠ADC=∠E=90°, ∴AD⊥DM.∵EC⊥DM,∴AD∥EC.
‹#›
返回目录
2.如图 3.5-2,在 Rt△ABC 中,∠ACB=90°, BD 平分∠ABC 交 AC 于点 D,过点 D 作 DE⊥AB 交 AB 于点 E,过点 C 作 CF∥BD 交 ED 的延长线 于点 F.
‹#›
返回目录
∴△ABC≌△DEF(SAS).
‹#›
返回目录
(2)若∠ABC=90°,AB=4,BC=3,当 AF 为 多少时,四边形 BCEF 是菱形?
解:如图答 3.5-1,连接 BE,交 CF 于点 G, ∵ △ ABC ≌ △ DEF , ∴ BC = EF , ∠ ACB = ∠DFE, ∴BC∥EF,∴四边形 BCEF 是平行四边形, ∴当 BE⊥CF 时,四边形 BCEF 是菱形.
‹#›
返回目录
(2)判断四边形 BEDF 的形状,并说明理由. 解:四边形 BEDF 是平行四边形.理由如下: ∵BE⊥AC,DF⊥AC,∴BE∥DF. 又∵BE=DF,∴四边形 BEDF 是平行四边形.
‹#›
返回目录
4.如图 3.5-4,正方形 ABCD 中,点 E 在边 AD 上,AF⊥BE,垂足为 F,点 G 在线段 BF 上,BG =AF.
图 3.5-2
‹#›
返回目录
(1)求证:△BED≌△BCD; 证明:∵在 Rt△ABC 中,∠ACB=90°,DE ⊥AB, ∴∠BED=∠BCD=90°. 又∵BD 平分∠ABC,∴ED=DC, 在 Rt△BED 与 Rt△BCD 中,EBDD= =DBDC, , ∴Rt△BED≌Rt△BCD(HL).

2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编15 四边形含详解

2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编15 四边形含详解

专题15四边形一、填空题1.(2021·江苏常州市)如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,其中点A 在x 轴正半轴上.若3BC =,则点A 的坐标是__________.2.(2021·江苏连云港市)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.3.(2021·江苏常州市)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在ABC 中,分别取AB 、AC 的中点D 、E ,连接DE ,过点A 作AF DE ⊥,垂足为F ,将ABC 分割后拼接成矩形BCHG .若3,2DE AF ==,则ABC 的面积是__________.4.(2021·江苏盐城市)如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC '是以AE 为腰的等腰三角形.5.(2021·江苏无锡市)下列命题中,正确命题的个数为________.①所有的正方形都相似①所有的菱形都相似①边长相等的两个菱形都相似①对角线相等的两个矩形都相似6.(2021·江苏南京市)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.7.(2021·江苏苏州市)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F ,若DF =,则对角线BD 的长为______.(结果保留根号)8.(2021·江苏扬州市)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.9.(2021·江苏扬州市)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.二、单选题10.(2021·江苏南通市)菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .511.(2021·江苏泰州市)如图,P 为AB 上任意一点,分别以AP 、PB 为边在AB 同侧作正方形APCD 、正方形PBEF ,设CBE α∠=,则AFP ∠ 为( )A .2αB .90°﹣αC .45°+αD .90°﹣12α12.(2021·江苏连云港市)如图,将矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在点1D 、1C 的位置,1ED 的延长线交BC 于点G ,若64EFG ∠=︒,则EGB ∠等于( )A .128︒B .130︒C .132︒D .136︒13.(2021·江苏无锡市)如图,D 、E 、F 分别是ABC 各边中点,则以下说法错误的是( )A .BDE 和DCF 的面积相等B .四边形AEDF 是平行四边形C .若AB BC =,则四边形AEDF 是菱形D .若90A ∠=︒,则四边形AEDF 是矩形14.(2021·江苏宿迁市)折叠矩形纸片ABCD ,使点B 落在点D 处,折痕为MN ,已知AB =8,AD =4,则MN 的长是( )A B .C D .15.(2021·江苏南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A .1,1,1B .1,1,8C .1,2,2D .2,2,216.(2021·江苏苏州市)如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C ',B C '交AD于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =B D '的长是( )A.1B C D三、解答题17.(2021·江苏徐州市)如图,将一张长方形纸片ABCD沿E折叠,使,C A两点重合.点D落在点G处.已知=4AB,BC=.8(1)求证:AEF∆是等腰三角形;(2)求线段FD的长.18.(2021·江苏宿迁市)在①AE=CF;①OE=OF;①BE①DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上,(填写序号).求证:BE=DF.注:如果选择多个条件分别解答,按第一个解答计分.19.(2021·江苏连云港市)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE=,求证:四边形ACED是矩形.20.(2021·江苏盐城市)如图,D、E、F分别是ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;①AE 平分BAC ∠;①AB AC =,这三个条件中选择条件填空(写序号),并加以证明.21.(2021·江苏扬州市)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =AFDE 的面积.22.(2021·江苏南通市)如图,正方形ABCD 中,点E 在边AD 上(不与端点A ,D 重合),点A 关于直线BE 的对称点为点F ,连接CF ,设ABE α∠=.(1)求BCF ∠的大小(用含α的式子表示);(2)过点C 作CG AF ⊥,垂足为G ,连接DG .判断DG 与CF 的位置关系,并说明理由;(3)将ABE △绕点B 顺时针旋转90︒得到CBH ,点E 的对应点为点H ,连接BF ,HF .当BFH △为等腰三角形时,求sin α的值.23.(2021·江苏宿迁市)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)如图①,连接BG 、CF ,求CF BG的值; (2)当正方形AEFG 旋转至图①位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.专题15四边形一、填空题1.(2021·江苏常州市)如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,其中点A 在x 轴正半轴上.若3BC =,则点A 的坐标是__________.【答案】(3,0)【分析】根据平行四边形的性质,可知:OA =BC =3,进而即可求解.【详解】解:①四边形OABC 是平行四边形,①OA =BC =3,①点A 的坐标是(3,0),故答案是:(3,0).【点睛】本题主要考查平行四边形的性质以及点的坐标,掌握平行四边形的对边相等,是解题的关键.2.(2021·江苏连云港市)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE AD ⊥,垂足为E ,8AC =,6BD =,则OE 的长为______.【答案】125【分析】直接利用菱形的性质得出AO ,DO 的长,再利用勾股定理得出菱形的边长,进而利用等面积法得出答案.【详解】解:①菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,DB =6,①AO =4,DO =3,①AOD =90°,①AD =5,在Rt ADO 中,由等面积法得:1122AO DO AD OE ,①341255AO DO OE AD 故答案为:125. 【点睛】 本题考查了菱形的性质,勾股定理,直角三角形斜边上的高的求法(等面积法),熟记性质与定理是解题关键. 3.(2021·江苏常州市)中国古代数学家刘徽在《九章算术注》中,给出了证明三角形面积公式的出入相补法.如图所示,在ABC 中,分别取AB 、AC 的中点D 、E ,连接DE ,过点A 作AF DE ⊥,垂足为F ,将ABC 分割后拼接成矩形BCHG .若3,2DE AF ==,则ABC 的面积是__________.【答案】12【分析】先证明ADF BDG ≌,AEF CEH ≌,把三角形的面积化为矩形的面积,进而即可求解.【详解】解:①D 是AB 的中点,四边形BCHG 是矩形,①AD =BD ,①G =①AFD =90°,又①①ADF =①BDG ,①ADF BDG ≌,①DF =DG ,AF =BG =2,同理:AEF CEH ≌,①EF =EH , ①GH =2(DF +EF )=2DE =2×3=6,①ABC 的面积=矩形BCHG 的面积=2×6=12.【点睛】本题主要考查全等三角形的判定和性质,矩形的性质,通过全等三角形的判定,把三角形的面积化为矩形的面积,是解题的关键.4.(2021·江苏盐城市)如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC '是以AE 为腰的等腰三角形.【答案】78或43【分析】对AEC '是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt①ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得①ABE ①①AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =. 【详解】解:当=AE EC '时,设BE x =,则4EC x =-,①ECF △沿EF 翻折得EC F '△,①=4EC EC x '=-,在Rt①ABE 中由勾股定理可得:222AE BE AB =+即222(4)3x x -=+, 解得:7=8x ; 当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,①AH ①EC ',=AE AC ',①EH C H '=,①EF AE ⊥,①=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠①ECF △沿EF 翻折得EC F '△,①=C EF FEC '∠∠,①BEA AEH =∠∠,在①ABE 和①AHE 中B AHE AEB AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①ABE ①①AHE (AAS ),①BE HE =,①=BE HE HC '=, ①12BE EC '=①EC EC '=, ①12BE EC =, ①14=33BE BC =, 综上所述,7483BE =或, 故答案为:7483或 【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可.5.(2021·江苏无锡市)下列命题中,正确命题的个数为________.①所有的正方形都相似①所有的菱形都相似①边长相等的两个菱形都相似①对角线相等的两个矩形都相似【答案】1【分析】根据多边形的判定方法对①进行判断;利用菱形的定义对①进行判断;根据菱形的性质对①进行判断;根据矩形的性质和相似的定义可对①进行判断.【详解】解:所有的正方形都相似,所以①正确;所有的菱形不一定相似,所以①错误;边长相等的两个菱形,形状不一定相同,即:边长相等的两个菱形不一定相似所以①错误;对角线相等的两个矩形,对应边不一定成比例,即不一定相似,所以①错误;故答案是:1.【点睛】本题考查了判断命题真假,熟练掌握图形相似的判定方法,菱形,正方形,矩形的性质,是解题的关键. 6.(2021·江苏南京市)如图,将ABCD 绕点A 逆时针旋转到AB C D '''的位置,使点B '落在BC 上,B C ''与CD 交于点E ,若3,4,1AB BC BB '===,则CE 的长为________.【答案】98【分析】过点C 作CM //C D ''交B C ''于点M ,证明ABB ADD ''∆∆∽求得53C D '=,根据AAS 证明ABB B CM ''∆≅∆可求出CM =1,再由CM //C D ''证明①CME DC E '∆∽,由相似三角形的性质查得结论.【详解】解:过点C 作CM //C D ''交B C ''于点M ,①平行四边形ABCD 绕点A 逆时针旋转得到平行四边形AB C D '''①AB AB '=,,AD AD '=B AB C D D '''∠=∠=∠=∠,BAD B AD ''∠=∠①BAB DAD ''∠=∠,B D '∠=∠①ABB ADD ''∆∆∽ ①3,4BB AB AB DD AD BC ''=== ①1BB '= ①43DD '= ①C D C D DD ''''=-CD DD '=-AB DD '=-433=- 53= AB C AB C CB M ABC BAB '''''∠=∠+∠=∠+∠①①CB M BAB ''=∠①413B C BC BB ''=-=-=①B C AB '=①AB AB '=①①AB B AB C ABB ''''=∠=∠①//AB C D ''',//C D CM ''①①AB C B MC '''=∠①①AB B B MC ''=∠在ABB '∆和B MC '∆中,BAB CB M AB B B MC AB B C ∠=∠⎧⎪∠='''∠''⎨⎪=⎩①ABB B CM ''∆≅∆①1BB CM '==①//CM C D '①①CME DC E '∆∽ ①13553CM CE DC DE '=== ①38CE CD = ①333938888CE CD AB ===⨯= 故答案为:98. 【点睛】此题主要考查了旋转的性质,平行四边形的性质,全等三角形的判定与性质以及相似三角形的判定与性质,正确作出辅助线构造全等三角形和相似三角形是解答本题的关键.7.(2021·江苏苏州市)如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F,若DF =,则对角线BD 的长为______.(结果保留根号)【答案】【分析】先由菱形的性质得出70DCE ∠=︒,求得55DCF ∠=︒,再根据直角三角形两锐角互余得35CDF ∠=︒ ,连接AC 交BD 于点O ,根据菱形的性质得90DOC ∠=︒,35BDC ∠=︒,根据AAS 证明CDO CDF ∆≅∆可得DO DF ==从而可求出BD =解:连接AC ,如图,①四边形ABCD 是菱形,①AB //CD ,90DOC ∠=︒,BD =2DO①70DCE ABC ∠=∠=︒①15ECM ∠=︒①55DCM ∠=︒①DF CM ⊥①35CDF ∠=︒①四边形ABCD 是菱形, ①113522CDB ADC ABC ∠=∠=∠=︒ ①CDF CDO ∠=∠在CDO ∆和CDF ∆中,90CDO CDF COD CFD CD CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩①CDO ∆①CDF ∆①DO DF ==①2BD DO ==故答案为:【点睛】此题主要考查了菱形的性质以及全等三角形的判定与性质,连接AC 并证明CDO ∆①CDF ∆是解答此题的关键. 8.(2021·江苏扬州市)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.【答案】50【分析】过点E 作EF ①BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到①BCE =①BEC ,可得BE =BC =10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E 作EF ①BC ,垂足为F ,①①EBC =30°,BE =10,①EF =12BE =5,①四边形ABCD 是平行四边形,①AD ①BC ,①①DEC =①BCE ,又EC 平分①BED ,即①BEC =①DEC ,①①BCE =①BEC ,①BE =BC =10,①四边形ABCD 的面积=BC EF ⨯=105⨯=50,故答案为:50.【点睛】本题考查了平行四边形的性质,30度的直角三角形的性质,角平分线的定义,等角对等边,知识点较多,但难度不大,图形特征比较明显,作出辅助线构造直角三角形求出EF 的长是解题的关键.9.(2021·江苏扬州市)如图,在ABC 中,AC BC =,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC 上,若4CF =,3BF =,且2DE EF =,则EF 的长为________.【答案】125【分析】根据矩形的性质得到GF ①AB ,证明①CGF ①①CAB ,可得72x AB =,证明①ADG ①①BEF ,得到AD =BE =34x ,在①BEF 中,利用勾股定理求出x 值即可.【详解】解:①DE =2EF ,设EF =x ,则DE =2x ,①四边形DEFG 是矩形,①GF ①AB ,①①CGF ①①CAB , ①44437GF CF AB CB ===+,即247x AB =, ①72x AB =, ①AD +BE =AB -DE =722x x -=32x , ①AC =BC , ①①A =①B ,又DG =EF ,①ADG =①BEF =90°,①①ADG ①①BEF (AAS ),①AD =BE =1322x ⨯=34x , 在①BEF 中,222BE EF BF +=, 即222334x x ⎛⎫+= ⎪⎝⎭, 解得:x =125或125-(舍), ①EF =125, 故答案为:125. 【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,全等三角形的判定和性质,等边对等角,解题的关键是根据相似三角形的性质得到AB 的长.二、单选题10.(2021·江苏南通市)菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A .24B .20C .10D .5【答案】B【分析】根据菱形的性质及勾股定理可直接进行求解.【详解】解:如图所示:①四边形ABCD 是菱形,BD=8,AC=6,①AC①BD ,OA=OC=3,OD=OB=4,在Rt①AOD 中,5AD =,①菱形ABCD 的周长为:4×5=20,故选B .【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.11.(2021·江苏泰州市)如图,P 为AB 上任意一点,分别以AP 、PB 为边在AB 同侧作正方形APCD 、正方形PBEF ,设CBE α∠=,则AFP ∠ 为( )A .2αB .90°﹣αC .45°+αD .90°﹣12α 【答案】B【分析】 根据题意可得∆≅∆()AFP CBP SAS ,从而90AFP CBP α∠=∠=︒- 即可.①四边形APCD 和四边形PBEF 是正方形,①AP =CP ,PF =PB ,90APF BPF PBE ∠=∠=∠=︒,①∆≅∆()AFP CBP SAS ,①①AFP =①CBP ,又①CBE α∠= ,①90AFP CBP PBE CBE α∠=∠=∠-∠=︒-,故选:B .【点睛】本题主要考查了正方形的性质,全等三角形的判定,熟练掌握正方形的性质,全等三角形的判定方法是解题的关键. 12.(2021·江苏连云港市)如图,将矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在点1D 、1C 的位置,1ED 的延长线交BC 于点G ,若64EFG ∠=︒,则EGB ∠等于( )A .128︒B .130︒C .132︒D .136︒【答案】A【分析】 由矩形得到AD //BC ,①DEF =①EFG ,再由与折叠的性质得到①DEF =①GEF =①EFG ,用三角形的外角性质求出答案即可.【详解】解:①四边形ABCD 是矩形,①AD //BC ,①矩形纸片ABCD 沿EF 折叠,①①DEF =①GEF ,又①AD //BC ,①①DEF =①EFG ,①①DEF =①GEF =①EFG =64①,①EGB ∠是①EFG 的外角,①EGB ∠=①GEF +①EFG =128①故选:A .本题考查了矩形的性质与折叠的性质,关键在于折叠得出角相等,再由平行得到内错角相等,由三角形外角的性质求解.13.(2021·江苏无锡市)如图,D、E、F分别是ABC各边中点,则以下说法错误的是()A.BDE和DCF的面积相等B.四边形AEDF是平行四边形C.若AB BC=,则四边形AEDF是菱形D.若90A∠=︒,则四边形AEDF是矩形【答案】C【分析】根据中位线的性质,相似三角形的判定和性质,平行四边形、菱形、矩形的判定定理逐一判断各个选项,即可得到答案.【详解】解:①点D、E、F分别是①ABC三边的中点,①DE、DF为①ABC得中位线,①ED①AC,且ED=12AC=AF;同理DF①AB,且DF=12AB=AE,①四边形AEDF一定是平行四边形,故B正确;①BDE BCA∽,CDF CBA∽①14BDE BCAS S=,14CDF BCAS S=,①BDE和DCF的面积相等,故A正确;①AB BC=,①DF=12AB=AE,①四边形AEDF不一定是菱形,故C错误;①①A=90°,则四边形AEDF是矩形,故D正确;故选:C.【点睛】本题考查三角形中位线性质定理和平行四边形、矩形、菱形的判定定理,相似三角形的判定和性质,熟练掌握上述性质定理和判定定理是解题的关键.14.(2021·江苏宿迁市)折叠矩形纸片ABCD,使点B落在点D处,折痕为MN,已知AB=8,AD=4,则MN的长是()A B.C D.【答案】B【分析】连接BM,利用折叠的性质证明四边形BMDN为菱形,设DN=NB=x,在Rt ABD中,由勾股定理求BD,在Rt ADN中,由勾股定理求x,利用菱形计算面积的两种方法,建立等式求MN.【详解】解:如图,连接BM,由折叠可知,MN垂直平分BD,,∴=OD OB又AB①CD,∴∠=∠∠=∠MDO NBO DMO BNO,,①BON①DOM,①ON=OM,①四边形BMDN为菱形(对角线互相垂直平分的四边形是菱形),∴===,DN BN BM DM设DN=NB=x,则AN=8﹣x,在Rt ABD中,由勾股定理得:BD在Rt ADN中,由勾股定理得:AD2+AN2=DN2,即42+(8﹣x)2=x2,解得x=5,根据菱形计算面积的公式,得×MN×BD,BN×AD=12×MN×即5×4=12解得MN =故选:B .【点睛】本题考查图形的翻折变换,勾股定理,菱形的面积公式的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.15.(2021·江苏南京市)下列长度的三条线段与长度为5的线段能组成四边形的是( )A .1,1,1B .1,1,8C .1,2,2D .2,2,2【答案】D【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D .【点睛】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.16.(2021·江苏苏州市)如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C ',B C '交AD于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =B D '的长是( )A .1B C D 【答案】B【分析】 利用平行四边形的性质、翻折不变性可得①AEC 为等腰直角三角形,根据已知条件可得CE 得长,进而得出ED 的长,再根据勾股定理可得出B D ';【详解】解:①四边形ABCD 是平行四边形①AB =CD ①B =①ADC =60°,①ACB =①CAD由翻折可知:BA =AB ′=DC ,①ACB =①AC B ′=45°,①①AEC 为等腰直角三角形①AE =CE①Rt①AE B ′①Rt①CDE①EB ′=DE①在等腰Rt①AEC 中, AC =①CE ①在Rt①DEC 中,CE ①ADC =60°①①DCE =30°①DE =1在等腰Rt①DE B ′中,EB ′=DE =1①B D '故选:B【点睛】本题考查翻折变换、等腰三角形的性质、勾股定理、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.(2021·江苏徐州市)如图,将一张长方形纸片ABCD 沿E 折叠,使,C A 两点重合.点D 落在点G 处.已知=4AB ,8BC =.(1)求证:AEF ∆是等腰三角形;(2)求线段FD 的长.【答案】(1)见解析;(2)3【分析】(1)根据矩形的性质可得//AD BC ,则FEC AFE ∠=∠,因为折叠,FEC AEF ∠=∠,即可得证;(2)设FD x =用含x 的代数式表示AF ,由折叠,AG DC =,再用勾股定理求解即可【详解】(1)四边形ABCD 是矩形∴//AD BC∴FEC AFE ∠=∠因为折叠,则FEC AEF ∠=∠AEF AFE ∴∠=∠∴AEF ∆是等腰三角形(2)四边形ABCD 是矩形8,4AD BC CD AB ∴====,90D ∠=︒设FD x =,则8AF AD x x =-=-因为折叠,则FG x =,4AG CD ==,90G D ∠=∠=︒在Rt AGF △中222FG AF AG =-即222(8)4x x =--解得:3x =∴3FD =【点睛】本题考查了矩形的性质,等腰三角形的判定定理,图像的折叠,勾股定理,熟悉以上知识点是解题的关键. 18.(2021·江苏宿迁市)在①AE=CF ;①OE=OF ;①BE ①DF 这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD 是平行四边形,对角线AC 、BD 相交于点O ,点E 、F 在AC 上, (填写序号). 求证:BE=DF .注:如果选择多个条件分别解答,按第一个解答计分.【答案】见解析【分析】若选①,即OE=OF ;根据平行四边形的性质可得BO =DO ,然后即可根据SAS 证明①BOE ①①DOF ,进而可得结论;若选①,即AE=CF ;根据平行四边形的性质得出OE=OF 后,同上面的思路解答即可;若选①,即BE ①DF ,则①BEO=①DFO,再根据平行四边形的性质可证①BOE①①DOF,于是可得结论.【详解】解:若选①,即OE=OF;证明:①四边形ABCD是平行四边形,①BO=DO,①OE=OF,①BOE=①DOF,①①BOE①①DOF(SAS),①BE=DF;若选①,即AE=CF;证明:①四边形ABCD是平行四边形,①BO=DO,AO=CO,①AE=CF,①OE=OF,又①BOE=①DOF,①①BOE①①DOF(SAS),①BE=DF;若选①,即BE①DF;证明:①四边形ABCD是平行四边形,①BO=DO,①BE①DF;①①BEO=①DFO,又①BOE=①DOF,①①BOE①①DOF(AAS),①BE=DF;【点睛】本题考查了平行四边形的性质和全等三角形的判定和性质,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定是关键.19.(2021·江苏连云港市)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB AE,求证:四边形ACED是矩形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点,得到AD①CE,AD=CE,从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE,从而证明平行四边形ACED是矩形.【详解】证明:(1)①四边形ABCD是平行四边形,①AD①BC,且AD=BC.①点C是BE的中点,①BC=CE,①AD=CE,①AD①CE,①四边形ACED是平行四边形;(2)①四边形ABCD是平行四边形,①AB=DC,①AB=AE,①DC=AE,①四边形ACED是平行四边形,①四边形ACED是矩形.【点睛】本题考查了平行四边形和矩形的判定和性质,正确的识别图形是解题的关键.20.(2021·江苏盐城市)如图,D、E、F分别是ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;①AE 平分BAC ∠;①AB AC =,这三个条件中选择条件填空(写序号),并加以证明.【答案】(1)见解析;(2)①或①,见解析【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形.(2)选①AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选①AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点①//DE AC又①E 、F 是BC 、AC 的中点①//EF AB①//DE AF①EF //AD①四边形ADEF 为平行四边形(2)证明:选①AE 平分BAC ∠①AE 平分BAC ∠①DAE FAE ∠=∠又①平行四边形ADEF①//EF DA①=∠∠FAE AEF①AF EF =①平行四边形ADEF 是菱形选①AB AC =①//EF AB 且12EF AB =//DE AC 且12DE AC =又①AB AC =①EF DE = ①平行四边形ADEF 为菱形故答案为:①或①【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点. 21.(2021·江苏扬州市)如图,在ABC 中,BAC ∠的角平分线交BC 于点D ,//,//DE AB DF AC .(1)试判断四边形AFDE 的形状,并说明理由;(2)若90BAC ∠=︒,且AD =AFDE 的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE ①AB ,DF ①AC 判定四边形AFDE 是平行四边形,再根据平行线的性质和角平分线的定义得到①EDA =①EAD ,可得AE =DE ,即可证明;(2)根据①BAC =90°得到菱形AFDE 是正方形,根据对角线AD 求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE 是菱形,理由是:①DE ①AB ,DF ①AC ,①四边形AFDE 是平行四边形,①AD 平分①BAC ,①①F AD =①EAD ,①DE ①AB ,①①EDA =①F AD ,①①EDA =①EAD ,①AE =DE ,①平行四边形AFDE 是菱形;(2)①①BAC =90°,①四边形AFDE是正方形,①AD=①AF=DF=DE=AE,①四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.22.(2021·江苏南通市)如图,正方形ABCD中,点E在边AD上(不与端点A,D重合),点A关于直线BE的对∠=.称点为点F,连接CF,设ABEα∠的大小(用含α的式子表示);(1)求BCF⊥,垂足为G,连接DG.判断DG与CF的位置关系,并说明理由;(2)过点C作CG AF△为等腰三角形(3)将ABE△绕点B顺时针旋转90︒得到CBH,点E的对应点为点H,连接BF,HF.当BFH时,求sinα的值.︒.【答案】(1)45+α(2)DG//CF.理由见解析..【分析】(1)作辅助线BF,用垂直平分线的性质,推导边相等、角相等.再用三角形内角和为180︒算出BCF∠.(2)作辅助线BF、AC,先导角证明CFG△是等腰直角三角形、ADC是等腰直角三角形.再证明ADM∽AGC、DGC∽AFC,最后用内错角相等,两直线平行,证得DG//CF.△为等腰三角形,要分三种情况讨论:①FH=BH①BF=FH①BF=BH,根据题目具体条件,舍掉了①、①种,(3) BFH第①种用正弦函数定义求出比值即可.【详解】(1)解:连接BF,设AF和BE相交于点N.点A 关于直线BE 的对称点为点F∴ BE 是AF 的垂直平分线BE AF ∴⊥ ,AB=BFBAF BFA ∴∠=∠=ABE α∠=90-=BAF BFA α∴∠︒∠()=180-90-90-=EBF αα∴∠︒︒︒四边形ABCD 是正方形∴ AB=BC ,=90ABC ∠︒=90-2,FBC AB BC BF α∴∠︒==BFC BCF ∴∠=∠180,902BFC BCF FBC FBC α∠+∠+∠=︒∠=︒-()180902=452BFC BCF αα︒-︒-∴∠∠==︒+ .(2) 位置关系:平行.理由:连接BF ,AC ,DG设DC 和FG 的交点为点M ,AF 和BE 相交于点N由(1)可知,,90,ABE EBF BAF BFA αα∠=∠=∠=∠=︒- 45BFC BCF α∠=∠=︒+ 9045135AFC AFB CFB αα∴∠=∠+∠=︒-+︒+=︒18045CFG AFC ∴∠=︒-∠=︒CG AG ⊥90FGC ∴∠=︒18045GCF FGC CFG CFG ∴∠=︒-∠-∠=︒=∠CGF ∴是等腰直角三角形CG CF ∴= 四边形ABCD 是正方形90,BAD ADC BCD AD CD ∴∠=∠=∠=︒=ADC ∴ 是等腰直角三角形45DC ACD AC ∴=∠=︒ 45BCA ∴∠=︒ BE 垂直平分AF90ANE ∴∠=︒180NAE ANE AEN α∴∠=︒-∠-∠=在ADM △ 和CGM △ 中,90ADC AGC AMD CMG ⎧∠=∠=︒⎨∠=∠⎩ADM ∽CGM ∴MCG GAD α∴∠=∠=45,45BCA BCF α∠=︒∠=︒+=ACF BCF BCA α∴∠=∠-∠在DGC 和AFC △ 中,DC CG DCG ACF AC FC α==∠=∠= DGC ∽AFC ∴135AFC DGC ∴∠=∠=︒1359045DGA DGC AGC ∴∠=∠-∠=︒-︒=︒45DGA CFG ∴∠=∠=︒∴ CF //DG(3)BFH △为等腰三角形有三种情况:①FH=BH ①BF=FH ①BF=BH ,要分三种情况讨论: ①当FH=BH 时,作MH BF ⊥ 于点M由(1)可知:AB=BF ,ABE EBF α∠=∠=四边形ABCD 是正方形,90,90AB BC ABC BAE ∴=∠=︒∠=︒设AB=BF=BC=a将ABE △绕点B 顺时针旋转90︒得到CBH,CBH ABE BH BE α∴∠=∠==90290FBH ABC ABF CBH ααα∴∠=∠-∠+∠=︒-+=︒- FH=BH90HBF BFH α∴∠=∠=︒-1802FHB FBH BFH α∴∠=︒-∠-∠= BFH 是等腰三角形,,BH HF HM BF =⊥1,22a BHM FHM BM MF BF α∴∠=∠==== 在ABE △ 和MHB 中, 90BAE BMH BHM ABE α⎧∠=∠=︒⎨∠=∠=⎩ ABE ∽MHB ∴1BM BH AE BE∴== ∴ BM=AE =2a2BE ∴===5AE sin BE α∴= ①当BF=FH 时,设FH 与BC 交点为OABE △绕点B 顺时针旋转90︒得到CBHABE CBH α∴∠=∠=由(1)可知:2ABF α∠=902FBC α∴∠=︒-90290FBH FBC CBH ααα∴∠=∠+∠=︒-+=︒-BF FH =90FBH FHB α∴∠=∠=︒-18090BOH CBH BHF ∴∠=︒-∠-∠=︒此时,BOH ∠ 与BCH ∠ 重合,与题目不符,故舍去①当BF=BH 时,由(1)可知:AB=BF设AB=BF=a四边形ABCD 是正方形∴ AB=BC=aBF=BH∴ BF=BH=BC=a而题目中,BC 、BH 分别为直角三角形BCH 的直角边和斜边,不能相等,与题目不符,故舍去.【点睛】 本题考查了三角形内角和定理(三角形内角和为180︒ )、平行线证明(内错角相等,两直线平行)、相似三角形证明(两组对应角分别相等的两个三角形相似,两边对应成比例且夹角相等的两个三角形相似)、等腰直角三角形三边比例关系(1、正弦函数定义式(对边:斜边) .23.(2021·江苏宿迁市)已知正方形ABCD 与正方形AEFG ,正方形AEFG 绕点A 旋转一周.(1)如图①,连接BG 、CF ,求CF BG的值; (2)当正方形AEFG 旋转至图①位置时,连接CF 、BE ,分别去CF 、BE 的中点M 、N ,连接MN 、试探究:MN 与BE 的关系,并说明理由;(3)连接BE 、BF ,分别取BE 、BF 的中点N 、Q ,连接QN ,AE =6,请直接写出线段QN 扫过的面积.【答案】(1(2)1;2MN BE MN BE ⊥=;(3)9π 【分析】 (1)由旋转的性质联想到连接AF AC 、,证明CAF BAG ∆∆∽即可求解;(2)由M 、N 分别是CF 、BE 的中点,联想到中位线,故想到连接BM 并延长使BM =MH ,连接FH 、EH ,则可证BMC HMF ∆∆≌即可得到HF BC BA ==,再由四边形BEFC 内角和为360︒可得BAC HFE ∠=∠,则可证明BAE HFE ∆∆≌,即BHE ∆是等腰直角三角形,最后利用中位线的性质即可求解;(3)Q 、N 两点因旋转位置发生改变,所以Q 、N 两点的轨迹是圆,又Q 、N 两点分别是BF 、BE 中点,所以想到取AB 的中点O ,结合三角形中位线和圆环面积的求解即可解答.【详解】解:(1)连接AF AC 、四边形ABCD 和四边形AEFG 是正方形,,90AB BC AG FG BAD GAE CBA AGF ∴==∠=∠=∠=∠=︒AF AC 、分别平分,EAG BAD ∠∠45BAC GAF ∴∠=∠=︒BAC CAG GAF CAG ∴∠+∠=∠+∠即BAG CAF ∠=∠且,ABC AGF ∆∆都是等腰直角三角形AC AF AB AG∴=CAF BAG ∴∆∆∽CF AC BG AB∴==(2)连接BM 并延长使BM =MH ,连接FH 、EH M 是CF 的中点CM MF ∴=又CMB FMH ∠=∠CMB FMH ∴∆∆≌,BC HF BCM HFM ∴=∠=∠在四边形BEFC 中360BCM CBE BEF EFC ∠+∠+∠+∠=︒又90CBA AEF ∠=∠=︒3609090180BCM ABE AEB EFC ∴∠+∠+∠+∠=︒-︒-︒=︒即180HFM EFC ABE AEB ∠+∠+∠+∠=︒即180HFE ABE AEB ∠+∠+∠=︒180BAE ABE AEB ∠+∠+∠=︒HFE BAE ∴∠=∠又四边形ABCD 和四边形AEFG 是正方形,BC AB FH EA EF ∴===BAE HFE ∴∆∆≌.BE HE BEA HEF ∴=∠=∠90HEF HEA AEF ∠+∠=∠=︒90BEA HEA BEH ∴∠+∠=︒=∠∴三角形BEH 是等腰直角三角形M 、N 分别是BH 、BE 的中点1//,2MN HE MN HE ∴= 190,2MNB HEB MN BE ∴∠=∠=︒= 1,2MN BE MN BE ∴⊥=(3)取AB 的中点O ,连接OQ 、ON ,连接AF在ABF ∆中,O 、Q 分别是AB 、BF 的中点12OQ AF ∴= 同理可得12ON AE =2AF ==3OQ ON ∴==所以QN 扫过的面积是以O 为圆心,3为半径的圆环的面积(2239S πππ∴=-=. 【点睛】本题考察旋转的性质、三角形相似、三角形全等、正方形的性质、中位线的性质与应用和动点问题,属于几何综合题,难度较大.解题的关键是通过相关图形的性质做出辅助线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热点专题5 三角形四边形问题考向1 三角形的性质1. (2019 江苏省淮安市)下列长度的3根小木棒不能搭成三角形的是( ) A .2cm ,3cm ,4cm B .1cm ,2cm ,3cm C .3cm ,4cm,5cmD .4cm ,5cm ,6cm【解析】解:A 、2+3>4,能构成三角形,不合题意;B 、1+2=3,不能构成三角形,符合题意;C 、4+3>5,能构成三角形,不合题意;D 、4+5>6,能构成三角形,不合题意.故选:B.2. (2019 江苏省泰州市)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【解析】根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC 边上的中线,∴点D是△ABC重心.故选:A.3. (2019 江苏省徐州市)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【解析】224+=Q,2∴,2,4不能组成三角形,故选项A错误,Q,55612+<∴,6,12不能组成三角形,故选项B错误,Q,5+=527∴,7,2不能组成三角形,故选项C错误,Q,66810+>∴,8,10能组成三角形,故选项D正确,故选:D.4. (2019 江苏省盐城市)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2 B.C.3 D.【解析】∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE=AC=1.5.故选:D.5. (2019 江苏省南京市)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.【解析】∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A=∠A,∴△ACD∽△ABC,∴=,∴AC2=AD×AB=2×5=10,∴AC=.故答案为:.考向2等腰三角形的性质与判定1. (2019 江苏省徐州市)函数1=+的图象与x轴、y轴分别交于A、B两点,点C在xy x轴上.若ABC∆为等腰三角形,则满足条件的点C共有个.【解析】以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为3;2. (2019 江苏省镇江市)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=°.【解析】∵△BCD是等边三角形,∴∠BDC=60°,∵a∥b,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2﹣∠A=40°,故答案为:40.3. (2019 江苏省连云港市)如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【解析】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.考向3全等三角形的性质与判定1. (2019 江苏省南京市)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.【解析】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A=∠ECF,∠ADF=∠E,∴△ADF≌△CEF(ASA).2. (2019 江苏省泰州市)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.【解析】(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=PA,∴∠APD=∠CPD=45°,∴△AEP≌△CEP(AAS);(2)CF⊥AB,理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠FCP+∠CMP=90°,∠AMF=∠CMP,∴∠AMF+∠PAB=90°,∴∠AFM=90°,∴CF⊥AB;(3)过点C作CN⊥PB.∵CF⊥AB,BG⊥AB,∴FC∥BN,∴∠CPN=∠PCF=∠EAP=∠PAB,又AP=CP,∴△PCN≌△APB(AAS),∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.3. (2019 江苏省无锡市)如图,在ABC∆中,AB AC=,=,点D、E分别在AB、AC上,BD CE BE、CD相交于点O.(1)求证:DBC ECB∆≅∆;(2)求证:OB OC=.【解析】(1)证明:∵AB=AC,∴∠ECB=∠DBC在中与ECB DBC ∆∆,∵ECB CB BC DBC CE BD ∠⎪⎩⎪⎨⎧==∠=∴ ECB DBC ∆≅∆(2)证明:由(1)知ECB DBC ∆≅∆ ∴∠DCB=∠EBC ∴OB=OC4. (2019 江苏省镇江市)如图,四边形ABCD 中,AD ∥BC ,点E 、F 分别在AD 、BC 上,AE =CF ,过点A 、C 分别作EF 的垂线,垂足为G 、H .(1)求证:△AGE ≌△CHF ;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.【解析】(1)证明:∵AG ⊥EF ,CH ⊥EF , ∴∠G =∠H =90°,AG ∥CH , ∵AD ∥BC , ∴∠DEF =∠BFE ,∵∠AEG =∠DEF ,∠CFH =∠BFE , ∴∠AEG =∠CFH ,在△AGE 和△CHF 中,,∴△AGE≌△CHF(AAS);(2)解:线段GH与AC互相平分,理由如下:连接AH、CG,如图所示:由(1)得:△AGE≌△CHF,∴AG=CH,∵AG∥CH,∴四边形AHCG是平行四边形,∴线段GH与AC互相平分.考向4平行四边形的性质与判定1. (2019 江苏省常州市)如图,把平行四边形纸片ABCD沿BD折叠,点C落在点C′处,BC′与AD相交于点E.(1)连接AC′,则AC′与BD的位置关系是;(2)EB与ED相等吗?证明你的结论.【解析】(1)连接AC′,则AC′与BD的位置关系是AC′∥BD,故答案为:AC′∥BD;(2)EB与ED相等.由折叠可得,∠CBD=∠C'BD,∵AD∥BC,∴∠ADB=∠CBD,∴∠EDB=∠EBD,∴BE=DE.2. (2019 江苏省淮安市)已知:如图,在▱ABCD中,点E、F分别是边AD、BC的中点.求证:BE=DF.【解析】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E、F分别是▱ABCD边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF.3. (2019 江苏省徐州市)如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G处,折痕为EF.求证:(1)ECB FCG∠=∠;(2)EBC FGC∆≅∆.【解析】证明:(1)Q四边形ABCD是平行四边形,∴∠=∠,A BCD由折叠可得,A ECG∠=∠,∴∠=∠,BCD ECG∴∠-∠=∠-∠,BCD ECF ECG ECF∴∠=∠;ECB FCG(2)Q四边形ABCD是平行四边形,∴∠=∠,AD BCD B=,由折叠可得,D G=,∠=∠,AD CG=,B G∴∠=∠,BC CG又ECB FCGQ,∠=∠∴∆≅∆.()EBC FGC ASA4. (2019 江苏省扬州市)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.(1)求证:∠BEC=90°;(2)求cos∠DAE.【解析】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB=,AD=BC,DC∥AB,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA∴AD=DE=10,∴BC=10,AB=CD=DE+CE=16,∵CE2+BE2=62+82=100=BC2,∴△BCE是直角三角形,∠BEC=90°;(2)解:∵AB∥CD,∴∠ABE=∠BEC=90°,∴AE===8,∴cos∠DAE=cos∠EAB===.考向5矩形的性质与判定1. (2019 江苏省徐州市)如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、MN=,则AC的长为.OC的中点.若4【解析】MQ、N分别为BC、OC的中点,∴==.28BO MNQ四边形ABCD是矩形,AC BD BO∴===.216故答案为16.2. (2019 江苏省宿迁市)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解析】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BD=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.考向6菱形的性质与判定1. (2019 江苏省苏州市)如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8C .10D .12【解析】由菱形的性质得28AO OC CO BO OD B O '''======,90AOB AO B ''∠=∠=o ,AO B ''∴V 为直角三角形10AB '∴= 故选C2. (2019 江苏省无锡市)下列结论中,矩形具有而菱形不一定具有的性质是( ) A .内角和为360︒ B .对角线互相平分 C .对角线相等D .对角线互相垂直【解析】本题考查了矩形和菱形的性质,显然对角线相等是矩形有而菱形不一定有的. 故选C考向7 正方形的性质与判定1. (2019 江苏省扬州市)如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN .若AB =7,BE =5,则MN = .DB【解析】连接CF,∵正方形ABCD和正方形BEFG中,AB=7,BE=5,∴GF=GB=5,BC=7,∴GC=GB+BC=5+7=12,∴=13.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.2.(2019 山东省东营市)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O 作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【解析】①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.最新Word。

相关文档
最新文档