高中数学《不等式和绝对值不等式》课件2 新人教A版选修4-5
合集下载
5.2不等式和绝对值不等式(二)课件(人教A版选修4-5)
![5.2不等式和绝对值不等式(二)课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/ccacf243cf84b9d528ea7ab9.png)
a
ab
b
由这个图,你还能发现什么结论?
推论 练习
定理(绝对值三角形不等式) 如果 a , b 是实数,则 a b ≤ a b ≤ a b 注:当 a、 b 为复数或向量时结论也成立.
我们还可讨论涉及多个实数的绝对值不等式的问题:
推论 1(运用数学归纳法可得) :
a1 a2 an ≤ a1 a2 an .
可以看到,几何背景在问题解决中有其独特的魅力。
这节课我们来研究:绝对值有什么性质? 我们知道,一个实数 a 的绝对值的意义: a ( a 0) ⑴ a 0 (a 0) ;(定义) a (a 0) |a| a x 0 ⑵ a 的几何意义: O A
表示数轴上坐标为a的点A到原点O的距离.
关于绝对值还有什么性质呢?
a a2 ①
a a ② ab a b , ,……(从运算的角度来看绝 b b
对值的特点,你发现了什么?)
思考:用恰当的方法在数轴上把 a , b , a b 表示出 来,你能发现它们之间的什么关系?
注:绝对值的几何意义: ⑴ a 表示数轴上的数 A 对应的点与原点 O 的距离 OA ; ⑵ a b 表示数轴上的数 A 对应的点与数 b 对应的点 B 的距离.如图: 即 a = OA , a b AB
证明:对于 a 2 ຫໍສະໝຸດ b2 ,可想到直角三角形的斜边, 这时可构造出图形: 以 a+b+c 为边长画一个正方形,如图
2 2 2 2 则 AP1 a b , P1 P2 b c ,
P2 B c 2 a 2 , AB 2(a b c) .
显然 AP1 P1 P2 P2 B ≥ AB , 即 a 2 b 2 b 2 c 2 c 2 a 2 ≥ 2 (a b c ) .
新人教A版高中数学(选修4-5)《绝对值不等式》ppt课件
![新人教A版高中数学(选修4-5)《绝对值不等式》ppt课件](https://img.taocdn.com/s3/m/2f76206483d049649a66584c.png)
新人教A版高中数学(选修4-5)《绝 对值不等式》ppt课件
从 不 等 式 的 背 景 可到 以,许 看多 不 等 关 系 都 涉 及 到 距 离短 的,面 长积 或 体 积 的 大 小,重 量 的 大 小 ,等 等,它 们 都 要 通 过 非 负 数 来 表 .因示 此,研 究 含 有 绝 对 值 的 不 等 式 具要 有意 重义.
解 设生活区应建碑 于的 公x第 路 k处 m路 ,两个
施工队每天往之 返和 的S为 路 xk程 m,则 Sx2| x10|| x20|.
因 |x 1 为 | |0 x 2 | |x 0 1 | |0 2 x 0 |
|x 1 0 2 0 x | 1,0 当且 x 1 仅 0 2 0 当 x0 时取 . 等号 解 x 不 1 2 0 x 0 等 0 ,得 1 x 式 0 2 . 0
探 究如果把1定 中理 的实 a,b数 分别换为向 量a,b,能 得 出 什 ?么 你能 结解果 释 它 的 何几 意 义?吗
在上面的不等式中 ,用向量 a,b y
分 别 替 换 a, b,当 向 量 a, b不 共 线 时,那么由向 量 加 法的 三角形
ab b
法则,向量 a b,a,b构成三角形 , 因此我们有向量形式的 不等式
为 了 更 好 地 理 1,我 解们 定再 理从 代 数 理 的 角 度 给 出.它 的 证 明 证当 明 a b 0 时 ,a b |a|b ,
|ab| ab2 a22abb2
|a|22|ab ||b|2
|a||b|2
| ab|
当 a b0 时 ,a b|a|b ,
|ab| ab2 a22abb2
a O
x
| a b || a | | b | .
从 不 等 式 的 背 景 可到 以,许 看多 不 等 关 系 都 涉 及 到 距 离短 的,面 长积 或 体 积 的 大 小,重 量 的 大 小 ,等 等,它 们 都 要 通 过 非 负 数 来 表 .因示 此,研 究 含 有 绝 对 值 的 不 等 式 具要 有意 重义.
解 设生活区应建碑 于的 公x第 路 k处 m路 ,两个
施工队每天往之 返和 的S为 路 xk程 m,则 Sx2| x10|| x20|.
因 |x 1 为 | |0 x 2 | |x 0 1 | |0 2 x 0 |
|x 1 0 2 0 x | 1,0 当且 x 1 仅 0 2 0 当 x0 时取 . 等号 解 x 不 1 2 0 x 0 等 0 ,得 1 x 式 0 2 . 0
探 究如果把1定 中理 的实 a,b数 分别换为向 量a,b,能 得 出 什 ?么 你能 结解果 释 它 的 何几 意 义?吗
在上面的不等式中 ,用向量 a,b y
分 别 替 换 a, b,当 向 量 a, b不 共 线 时,那么由向 量 加 法的 三角形
ab b
法则,向量 a b,a,b构成三角形 , 因此我们有向量形式的 不等式
为 了 更 好 地 理 1,我 解们 定再 理从 代 数 理 的 角 度 给 出.它 的 证 明 证当 明 a b 0 时 ,a b |a|b ,
|ab| ab2 a22abb2
|a|22|ab ||b|2
|a||b|2
| ab|
当 a b0 时 ,a b|a|b ,
|ab| ab2 a22abb2
a O
x
| a b || a | | b | .
5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)
![5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/c70b246c9b6648d7c1c746e6.png)
-(x-1)+(x+2) (3)当x<-2时,原不等式同解于 x<-2 x≤-3 -(x-1)-(x+2) ≥5 综合上述知不等式的解集为 x x ≥ 2或x ≤ 3
-2 ≤ x ≤ 1
x ≥5
2.解不等式|x-1|+|x+2|≥5 方法三:通过构造函数,利用函数的图象(体现了 函数与方程的思想). 解 原不等式化为|x-1|+|x+2|-5 ≥0 令f(x)=|x-1|+|x+2|-5 ,则 (x-1)+(x+2)-5 (x>1) f(x)= -(x-1)+(x+2)-5 (-2≤x≤1) y -(x-1)-(x+2)-5 (x<-2) 2x-4 (x>1) f(x)= -2 (-2≤x≤1) -2x-6 (x<-2) 1 -2 由图象知不等式的解集为
5.解不等式: x 5 2x 3 1
5答案
补充练习: 5.解不等式 x 5 2x 3 1.
解: (零点分段讨论法)如图 ⑴当 x >5 时,原不等式可变形为 x 5 (2 x 3) 1,∴ x <9,∴5< x <9; 3 ⑵当 x ≤ 5 时,原不等式可变形为 5 x (2 x 3) 1, 2 1 1 ∴ x ∴ x ≤5; 3 3 3 ⑶当 x ≤ 时,原不等式可变形为 5 x (2x 3) 1 , 2 ∴ x 7 ,∴ x 7 1 ∴综上所述,原不等式的解集为 (, 7) ( , ) 3
方法小结: 解绝对值不等式的基本思路是去绝对值符号 转化为一般不等式来处理。
主要方法有: ⑴同解变形法:运用解法公式直接转化; ⑵定义法:分类讨论去绝对值符号; ①含一个绝对值符号直接分类;②含两个或两 个以上绝对值符号:零点分段法确定. ⑶数形结合(运用绝对值的几何意义); ⑷利用函数图象来分析.
-2 ≤ x ≤ 1
x ≥5
2.解不等式|x-1|+|x+2|≥5 方法三:通过构造函数,利用函数的图象(体现了 函数与方程的思想). 解 原不等式化为|x-1|+|x+2|-5 ≥0 令f(x)=|x-1|+|x+2|-5 ,则 (x-1)+(x+2)-5 (x>1) f(x)= -(x-1)+(x+2)-5 (-2≤x≤1) y -(x-1)-(x+2)-5 (x<-2) 2x-4 (x>1) f(x)= -2 (-2≤x≤1) -2x-6 (x<-2) 1 -2 由图象知不等式的解集为
5.解不等式: x 5 2x 3 1
5答案
补充练习: 5.解不等式 x 5 2x 3 1.
解: (零点分段讨论法)如图 ⑴当 x >5 时,原不等式可变形为 x 5 (2 x 3) 1,∴ x <9,∴5< x <9; 3 ⑵当 x ≤ 5 时,原不等式可变形为 5 x (2 x 3) 1, 2 1 1 ∴ x ∴ x ≤5; 3 3 3 ⑶当 x ≤ 时,原不等式可变形为 5 x (2x 3) 1 , 2 ∴ x 7 ,∴ x 7 1 ∴综上所述,原不等式的解集为 (, 7) ( , ) 3
方法小结: 解绝对值不等式的基本思路是去绝对值符号 转化为一般不等式来处理。
主要方法有: ⑴同解变形法:运用解法公式直接转化; ⑵定义法:分类讨论去绝对值符号; ①含一个绝对值符号直接分类;②含两个或两 个以上绝对值符号:零点分段法确定. ⑶数形结合(运用绝对值的几何意义); ⑷利用函数图象来分析.
1新人教A版高中数学(选修4-5)《不等式》ppt课件]
![1新人教A版高中数学(选修4-5)《不等式》ppt课件]](https://img.taocdn.com/s3/m/a9281a5677232f60ddcca14c.png)
1 d 1 c cd cd 0,因此 1 d 1 c 0.
由a 0及性质4 , 得
a d
a c
0.
由a b 0,
1 c
0及性质4 , 得
a d b c
a d b c .
a c
b c
0.
由性质2 , 得
0.
根据性质6, 有
从上述基本事实可知要比 , 较两个实数的大小 可以转 , 化为比较它们的差与的大 0 小.这是研究不等关系的一 个出发点 .
例1
比较 x 3 x 7 和 x 4 x 6
的大小 .
分析 通过考察它们的差与 的大小关系 0 , 得出这两个多项式的大 小关系.
解
因为 x 3 x 7 x 4 x 6
:
这个基本事实可以表示 ab ab 0; a b ab 0; a b a b 0.
上面的符号 相推出 .
为
" " 表示 " 等价于 " , 即可以互
0是正数 与负数 的 分界 点 , 它为 实数 比 较大小 提 供了 " 标杆".
思考
从上述基本事实出发 比较
,
你认为可以用什么方法 两个实数的大小 ?
2 2
x 10 x 21 x 10 x 24 3 0
所以 x 3 x 7 x 4 x 6 .
探究
我们知道 , 等式有 " 等式两边同 " "等
加 或减 一个 数 , 等式仍然成立 式两边 同乘
或除于 一个数
6 如果 a b 0, 那么n
由a 0及性质4 , 得
a d
a c
0.
由a b 0,
1 c
0及性质4 , 得
a d b c
a d b c .
a c
b c
0.
由性质2 , 得
0.
根据性质6, 有
从上述基本事实可知要比 , 较两个实数的大小 可以转 , 化为比较它们的差与的大 0 小.这是研究不等关系的一 个出发点 .
例1
比较 x 3 x 7 和 x 4 x 6
的大小 .
分析 通过考察它们的差与 的大小关系 0 , 得出这两个多项式的大 小关系.
解
因为 x 3 x 7 x 4 x 6
:
这个基本事实可以表示 ab ab 0; a b ab 0; a b a b 0.
上面的符号 相推出 .
为
" " 表示 " 等价于 " , 即可以互
0是正数 与负数 的 分界 点 , 它为 实数 比 较大小 提 供了 " 标杆".
思考
从上述基本事实出发 比较
,
你认为可以用什么方法 两个实数的大小 ?
2 2
x 10 x 21 x 10 x 24 3 0
所以 x 3 x 7 x 4 x 6 .
探究
我们知道 , 等式有 " 等式两边同 " "等
加 或减 一个 数 , 等式仍然成立 式两边 同乘
或除于 一个数
6 如果 a b 0, 那么n
5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)
![5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/53497a2a5901020207409c96.png)
5.解不等式: x 5 2x 3 1
5答案
补充练习: 5.解不等式 x 5 2x 3 1.
解: (零点分段讨论法)如图 ⑴当 x >5 时,原不等式可变形为 x 5 (2 x 3) 1,∴ x <9,∴5< x <9; 3 ⑵当 x ≤ 5 时,原不等式可变形为 5 x (2 x 3) 1, 2 1 1 ∴ x ∴ x ≤5; 3 3 3 ⑶当 x ≤ 时,原不等式可变形为 5 x (2x 3) 1 , 2 ∴ x 7 ,∴ x 7 1 ∴综上所述,原不等式的解集为 (, 7) ( , ) 3
-(2x-4)-(3x+9)<1 30当x<-3时,原不等式可化为 x<-3 x<-13 -(2x-4)+(3x+9)<1
5
6 综上所述,原不等式的解集为 x x 或x 13 5
-(x-1)+(x+2) (3)当x<-2时,原不等式同解于 x<-2 x≤-3 -(x-1)-(x+2) ≥5 综合上述知不等式的解集为 x x ≥ 2或x ≤ 3
-2 ≤ x ≤ 1
x ≥5
2.解不等式|x-1|+|x+2|≥5 方法三:通过构造函数,利用函数的图象(体现了 函数与方程的思想). 解 原不等式化为|x-1|+|x+2|-5 ≥0 令f(x)=|x-1|+|x+2|-5 ,则 (x-1)+(x+2)-5 (x>1) f(x)= -(x-1)+(x+2)-5 (-2≤x≤1) y -(x-1)-(x+2)-5 (x<-2) 2x-4 (x>1) f(x)= -2 (-2≤x≤1) -2x-6 (x<-2) 1 -2 由图象知不等式的解集为
第一讲《不等式和绝对值不等式》课件(人教A选修4-5)
![第一讲《不等式和绝对值不等式》课件(人教A选修4-5)](https://img.taocdn.com/s3/m/c75beb5a25c52cc58bd6be5c.png)
课本例5
例3
若X>-1,则x为何值时,
x 1 x 1
有最小值,并求出最小值?
解:∵ x 1 ∴ x 1 0
1 0 x 1
∴
x
1 x 1
=
x 1
1 1 x 1
2
(x 1) 1 1 2 1 1 x 1
当且仅当
x 1 1 即 x 1
x
0
时
x
1 x 1
有最小值1
例 4.⑴已知 0 x 3 ,求函数 y 2
新课讲解: 基本不等式
定理1(重要不等式) 如果a, b∈R, 那么 a2+b2≥2ab.
当且仅当a=b时等号成立。
证明:因为a2 b2 2ab (a b)2 0, 当且仅当a b时,等号成立, 所以,a2 b2 2ab,当且仅当a b时, 等号成立.
探究: 你能从几何的角度解释定理1吗?
S矩形BCGH+S矩形JCDI=2ab,其值等于图中有阴影部分的 面积,它不大于正方形ABCD与正方形CEFG的面积和。 即a2+b2≥2ab.当且仅当a=b时,两个矩形成为正方形, 此时有 a2+b2=2ab。
定称理为2a(,b基的本不等式) 如果a,称b为>a0,,b那的么
算术平均 a b ab
当a b c时,等号成立。
即:三个正数的算术平均不小于它们的几何平均。
思考:以上定理如何证明呢?
把基本不等式推广到一般情形:对于n个正数a1, a2, , an ,它们的算术平均不小于它们的几何平均, 即:
a1 a2 n
当且仅当a1 a2
an n a1a2 an , an时,等号成立。
∴函数 y x(3 2x) 的最 大值 为 3 2 ,当且 仅当 x 3 取
高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式二2.绝对值不等式的解法2
![高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式二2.绝对值不等式的解法2](https://img.taocdn.com/s3/m/5cace06d53ea551810a6f524ccbff121dc36c547.png)
(3)若不等式的解集为∅,m 只要不小于|x+2|-|x+3|的最 大值即可,即 m≥1,m 的取值范围为[1,+∞).
法二:由|x+2|-|x+3|≤|(x+2)-(x+3)|=1,|x+3|-|x+ 2|≤|(x+3)-(x+2)|=1,
可得-1≤|x+2|-|x+3|≤1. (1)若不等式有解,则 m∈(-∞,1). (2)若不等式解集为 R,则 m∈(-∞,-1). (3)若不等式解集为∅,则 m∈[1,+∞).
法三:原不等式的解集就是 1<(x-2)2≤9 的解集,即
x-22≤9, x-22>1,
解得-x<11≤或xx≤>35,,
∴-1≤x<1 或 3<x≤5.
∴原不等式的解集是[-1,1)∪(3,5].
(2)由不等式|2x+5|>7+x,
可得 2x+5>7+x 或 2x+5<-(7+x),
整理得 x>2 或 x<-4.
∴原不等式的解集是(-∞,-4)∪(2,+∞).
(3)①当 x2-2<0 且 x≠0,即- 2<x< 2,且 x≠0 时,原不 等式显然成立. ②当 x2-2>0 时, 原不等式可化为 x2-2≥|x|,即|x|2-|x|-2≥0, ∴|x|≥2,∴不等式的解为|x|≥2, 即 x≤-2 或 x≥2. ∴原不等式的解集为(-∞,-2]∪(- 2,0)∪(0, 2)∪[2, +∞).
法三:将原不等式转化为|x+7|-|x-2|-3≤0, 构造函数 y=|x+7|-|x-2|-3,
即 y=-2x+12,2,x-<-7≤7,x≤2, 6,x>2.
作出函数的图象,由图可知,当 x≤-1 时,有 y≤0, 即|x+7|-|x-2|-3≤0, ∴原不等式的解集为(-∞,-1].
高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质
![高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.1不等式的基本性质](https://img.taocdn.com/s3/m/db0c2563a7c30c22590102020740be1e650ecc25.png)
探究四
探究一不等式的基本性质
对于考查不等式的基本性质的选择题,解答时,一是利用不等式的相关
性质,其中,特别要注意不等号变号的影响因素,如数乘、取倒数、开方、平
方等;二是对所含字母取特殊值,结合排除法去选正确的选项,这种方法一般
要注意选取的值应具有某个方面的代表性,如选取 0、正数、负数等.
J 基础知识 Z 重点难点
几乎都有类似的前提条件,但结论会根据不同的要求有所不同,因而这需要
根据本题的四个选项来进行判断.选项 A,还需有 ab>0 这个前提条件;选项
B,当 a,b 都为负数时不成立,或一正一负时可能也不成立,如 2>-3,但 22>(-3)2
1
a
b
不正确;选项 C,c2+1>0,由 a>b 就可知c2+1 > c2 +1,故正确;选项 D,当 c=0 时不
A.P≥Q
B.P>Q
C.P≤Q
1
−
a+1+ a
解析:P-Q=( a + 1 − a)-( a − a-1)=
a-1- a+1
=
D.P<Q
.
( a+1+ a)( a+ a-1)
∵a≥1,∴ a-1 < a + 1,即 a-1 − a + 1<0.
又∵ a + 1 + a>0, a + a-1>0,
a-1- a+1
格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.在使用
不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作
人教A版高中数学选修4-5第一讲二绝对值不等式上课课件
![人教A版高中数学选修4-5第一讲二绝对值不等式上课课件](https://img.taocdn.com/s3/m/d117df6203020740be1e650e52ea551810a6c9c8.png)
证明
3x 2 y 3a 3b 3 x a 2 y b
2 xa 3 yb
3 2 5
所以:3x 2 y 3a 2b 5 .
例2
两个施工队分别被安排在公路沿线的两 个地点施工,这两个地点分别位于公路路碑 的第10km和第20km处。现要在公路沿线建两 个施工队的共同临时生活区,每个施工队每 天在生活区和施工区地点之间往返一次。要 使两个施工队每天往返的路程之和最小,生 活区应该建在何处?
分析
本题是绝对值不等式的应用,第一把 实际问题划归为数学问题,即归结为求解 形如y x a x b 的函数的极值问题, 这类问题借助于绝对值三角不等式解答。
解:设生活区建于公路路碑的第xkm处,两个施 工队每天往返的路程之和为S(x)km,
则S x 2 x 10 x 20 .
因 :x 10 x 20 x 10 20 x 10, 且 x 1020 x 0 取等 。
因此:a b a b .
其几何意义是三角形的两边之和大于 第三边(如下图)。
x
a+b b
由此可称 定理1为绝 对值三角
不等式
a
y
0
(2)当向量a,b共线时,分以下两种情况: 如果向量a,b方向相同时,a b a b ; 如果向量a,b方向相反时,a b a b .
一般地,我们有 a b a b .
.. . . x . . .. x
0 a b a+b
a+b b a 0
图1
(2)当ab<0时,又可以分a>0,b<0和a<0,b>0两 中情况.
如果a>0,b>0时,如图2-1,a b a b .
.. b a+b
3x 2 y 3a 3b 3 x a 2 y b
2 xa 3 yb
3 2 5
所以:3x 2 y 3a 2b 5 .
例2
两个施工队分别被安排在公路沿线的两 个地点施工,这两个地点分别位于公路路碑 的第10km和第20km处。现要在公路沿线建两 个施工队的共同临时生活区,每个施工队每 天在生活区和施工区地点之间往返一次。要 使两个施工队每天往返的路程之和最小,生 活区应该建在何处?
分析
本题是绝对值不等式的应用,第一把 实际问题划归为数学问题,即归结为求解 形如y x a x b 的函数的极值问题, 这类问题借助于绝对值三角不等式解答。
解:设生活区建于公路路碑的第xkm处,两个施 工队每天往返的路程之和为S(x)km,
则S x 2 x 10 x 20 .
因 :x 10 x 20 x 10 20 x 10, 且 x 1020 x 0 取等 。
因此:a b a b .
其几何意义是三角形的两边之和大于 第三边(如下图)。
x
a+b b
由此可称 定理1为绝 对值三角
不等式
a
y
0
(2)当向量a,b共线时,分以下两种情况: 如果向量a,b方向相同时,a b a b ; 如果向量a,b方向相反时,a b a b .
一般地,我们有 a b a b .
.. . . x . . .. x
0 a b a+b
a+b b a 0
图1
(2)当ab<0时,又可以分a>0,b<0和a<0,b>0两 中情况.
如果a>0,b>0时,如图2-1,a b a b .
.. b a+b
高中数学 第一讲 不等式和绝对值不等式(2)课件 新人教版选修4-5
![高中数学 第一讲 不等式和绝对值不等式(2)课件 新人教版选修4-5](https://img.taocdn.com/s3/m/8725058c1eb91a37f0115c42.png)
①利用绝对值不等式的几何意义 ②零点分区间法 ③构造函数法
练习:
1.解不等式|2x-4|-|3x+9|<1
2.对任意实数 x,若不等式|x+1||x2|>k 恒成立,
则 k 的取值范围是(B )
( A)k 3 (B)k 3 (C)k ≤3 (D) k ≤ 3
3.不等式 x 4 x 3 a 有解的条件是( B )
解绝对值不等式的基本思路是去绝对值符号 转化为一般不等式来处理。
主要方法有: ⑴同解变形法:运用解法公式直接转化; ⑵定义法:分类讨论去绝对值符号; ①含一个绝对值符号直接分类;②含两个或两 个以上绝对值符号:零点分段法确定. ⑶数形结合(运用绝对值的几何意义); ⑷利用函数图象来分析.
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
定理3 如果a、b是实数,
-
-------那么||a|-|b||≤|a+b|≤|a|+|b|
当且仅当ab ≤0时, 当且仅当ab ≥0时,
等号成立.
等号成立.
将定理中的实数a、b换成向
量(或复数)仍成立
例1 已知ε> 0,|x - a|<ε,|y - b|<ε, 求 证: 2x + 3y - 2a - 3b|< 5ε
绝对值不等式的解法
形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集: ① 不等式|x|<a的解集为{x|-a<x<a}
-a
0
a
② 不等式|x|>a的解集为{x|x<-a或x>a }
-a
0
a
注:如果 a ≤0 ,不等式的解集易得.
练习:
1.解不等式|2x-4|-|3x+9|<1
2.对任意实数 x,若不等式|x+1||x2|>k 恒成立,
则 k 的取值范围是(B )
( A)k 3 (B)k 3 (C)k ≤3 (D) k ≤ 3
3.不等式 x 4 x 3 a 有解的条件是( B )
解绝对值不等式的基本思路是去绝对值符号 转化为一般不等式来处理。
主要方法有: ⑴同解变形法:运用解法公式直接转化; ⑵定义法:分类讨论去绝对值符号; ①含一个绝对值符号直接分类;②含两个或两 个以上绝对值符号:零点分段法确定. ⑶数形结合(运用绝对值的几何意义); ⑷利用函数图象来分析.
-------当且仅当(a-b)(b-c) ≥0时,等号成立.
定理3 如果a、b是实数,
-
-------那么||a|-|b||≤|a+b|≤|a|+|b|
当且仅当ab ≤0时, 当且仅当ab ≥0时,
等号成立.
等号成立.
将定理中的实数a、b换成向
量(或复数)仍成立
例1 已知ε> 0,|x - a|<ε,|y - b|<ε, 求 证: 2x + 3y - 2a - 3b|< 5ε
绝对值不等式的解法
形如|x|<a和|x|>a (a>0)的含绝对值的不等式的解集: ① 不等式|x|<a的解集为{x|-a<x<a}
-a
0
a
② 不等式|x|>a的解集为{x|x<-a或x>a }
-a
0
a
注:如果 a ≤0 ,不等式的解集易得.
5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)
![5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/486e1ed36f1aff00bed51e81.png)
x ≥ 4或 x ≤ 1 1 x 4 或 x 5或 x 1 1 x 3
x 5 或 x 1或 1 x 3
∴ 原不等式的解集为 x | x 5 或 x 1或 1
பைடு நூலகம்
x 3} .
还有没有其他方法?
2.怎么解不等式|x-1|+|x+2|≥5 呢?
解绝对值不等式关键是去绝对值符号, 你有什么方法解决这个问题呢?
方法一:利用绝对值的几何意义(体现了数形结 合的思想).
解:|x-1|+|x+2|=5的解为x=-3或x=2
-3 -2 1 2
所以原不等式的解为 x x ≥ 2 或 x ≤ 3
方法小结: 解绝对值不等式的基本思路是去绝对值符号 转化为一般不等式来处理。
主要方法有: ⑴同解变形法:运用解法公式直接转化; ⑵定义法:分类讨论去绝对值符号; ①含一个绝对值符号直接分类;②含两个或两 个以上绝对值符号:零点分段法确定. ⑶数形结合(运用绝对值的几何意义); ⑷利用函数图象来分析.
6
x≤ 2
6 综上所述,原不等式的解集为 x x 或 x 1 3 5
有解的条件是( B )
(C ) a 1 10
( B )a 1
(D )a 1
1.解不等式|2x-4|-|3x+9|<1 解:10当x>2时,原不等式可化为 x>2 x>2 (2x-4)-(3x+9)<1 20当-3≤x≤2时,原不等式可化为
-3 ≤ x ≤ 2
5 -(2x-4)-(3x+9)<1 30当x<-3时,原不等式可化为 x<-3 x<-13 -(2x-4)+(3x+9)<1
5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)
![5.2不等式和绝对值不等式(四)课件(人教A版选修4-5)](https://img.taocdn.com/s3/m/2e7cfd6acaaedd3382c4d306.png)
第一讲不等式和绝对值不等式(三)
接上节课思考
知识要点
练习第1题
练习第2题
课堂练习
上节课的 课外练习 讲解
方法小结
解绝对值不等式的思路是转化为等价的不含绝对值符号的不 等式(组) ,根据式子的特点可用下列解法公式进行转化:
⑴ f x a (a 0) f x a或f x a;
-(x-1)+(x+2) (3)当x<-2时,原不等式同解于 x<-2 x≤-3 -(x-1)-(x+2) ≥5 综合上述知不等式的解集为 x x ≥ 2或x ≤ 3
-2 ≤ x ≤ 1
x ≥5
2.解不等式|x-1|+|x+2|≥5 方法三:通过构造函数,利用函数的图象(体现了 函数与方程的思想). 解 原不等式化为|x-1|+|x+2|-5 ≥0 令f(x)=|x-1|+|x+2|-5 ,则 (x-1)+(x+2)-5 (x>1) f(x)= -(x-1)+(x+2)-5 (-2≤x≤1) y -(x-1)-(x+2)-5 (x<-2) 2x-4 (x>1) f(x)= -2 (-2≤x≤1) -2x-6 (x<-2) 1 -2 由图象知不等式的解集为
还有没有其他方法?
2.怎么解不等式|x-1|+|x+2|≥5 呢?
解绝对值不等式关键是去绝对值符号, 你有什么方法解决这个问题呢?
方法一:利用绝对值的几何意义(体现了数形结 合的思想).
解:|x-1|+|x+2|=5的解为x=-3或x=2
-3 -2
所以原不等式的解为 x x ≥ 2或x ≤ 3
接上节课思考
知识要点
练习第1题
练习第2题
课堂练习
上节课的 课外练习 讲解
方法小结
解绝对值不等式的思路是转化为等价的不含绝对值符号的不 等式(组) ,根据式子的特点可用下列解法公式进行转化:
⑴ f x a (a 0) f x a或f x a;
-(x-1)+(x+2) (3)当x<-2时,原不等式同解于 x<-2 x≤-3 -(x-1)-(x+2) ≥5 综合上述知不等式的解集为 x x ≥ 2或x ≤ 3
-2 ≤ x ≤ 1
x ≥5
2.解不等式|x-1|+|x+2|≥5 方法三:通过构造函数,利用函数的图象(体现了 函数与方程的思想). 解 原不等式化为|x-1|+|x+2|-5 ≥0 令f(x)=|x-1|+|x+2|-5 ,则 (x-1)+(x+2)-5 (x>1) f(x)= -(x-1)+(x+2)-5 (-2≤x≤1) y -(x-1)-(x+2)-5 (x<-2) 2x-4 (x>1) f(x)= -2 (-2≤x≤1) -2x-6 (x<-2) 1 -2 由图象知不等式的解集为
还有没有其他方法?
2.怎么解不等式|x-1|+|x+2|≥5 呢?
解绝对值不等式关键是去绝对值符号, 你有什么方法解决这个问题呢?
方法一:利用绝对值的几何意义(体现了数形结 合的思想).
解:|x-1|+|x+2|=5的解为x=-3或x=2
-3 -2
所以原不等式的解为 x x ≥ 2或x ≤ 3
1新人教A版高中数学(选修4-5)《不等式》ppt课件]
![1新人教A版高中数学(选修4-5)《不等式》ppt课件]](https://img.taocdn.com/s3/m/74f7bc8aad51f01dc281f1e0.png)
例6 已知-3<a<b<1,-2<c<-1, 求证:-16<(a-b)c2<0. 【思路点拨】 要求(a-b)c2的范围,应先 确定a-b及c2的范围与符号.
【证明】 ∵-3<a<b<1, ∴-1<-b<3,-3<a<1, ∴-4<a-b<4. 又a<b,∴a-b<0, ∴-4<a-b<0,∴0<b-a<4. 又-2<c<-1,∴1<c2<4, ∴0<(b-a)c2<16, ∴-16<(a-b)c2<0.
e
e
a-c2>b-d2.
【思路点拨】 已知 e<0,故只需证a-1 c2 <b-1 d2,即只需证(a-c)2>(b-d)2.
【证明】 ∵c<d<0, ∴-c>-d>0. ∵a>b>0, ∴a-c>b-d>0, ∴(a-c)2>(b-d)2>0, ∴b-1 d2>a-1 c2, 又∵e<0,∴b-e d2<a-e c2,
即a-e c2>b-e d2.
变式训练 2 已知 a>b>0,c<d<0,求证: a-b c<b-a d. 证明:∵c<d<0,∴-c>-d>0. 又 a>b>0,∴a-c>b-d>0, ∴0<a-1 c<b-1 d,
而 0<b<a,∴a-b c<b-a d.
考点三 利用不等式性质求代 数式的范围
例 2已 a 知 b0 ,cd0 ,求a 证 b. dc
【证明】 ∵-3<a<b<1, ∴-1<-b<3,-3<a<1, ∴-4<a-b<4. 又a<b,∴a-b<0, ∴-4<a-b<0,∴0<b-a<4. 又-2<c<-1,∴1<c2<4, ∴0<(b-a)c2<16, ∴-16<(a-b)c2<0.
e
e
a-c2>b-d2.
【思路点拨】 已知 e<0,故只需证a-1 c2 <b-1 d2,即只需证(a-c)2>(b-d)2.
【证明】 ∵c<d<0, ∴-c>-d>0. ∵a>b>0, ∴a-c>b-d>0, ∴(a-c)2>(b-d)2>0, ∴b-1 d2>a-1 c2, 又∵e<0,∴b-e d2<a-e c2,
即a-e c2>b-e d2.
变式训练 2 已知 a>b>0,c<d<0,求证: a-b c<b-a d. 证明:∵c<d<0,∴-c>-d>0. 又 a>b>0,∴a-c>b-d>0, ∴0<a-1 c<b-1 d,
而 0<b<a,∴a-b c<b-a d.
考点三 利用不等式性质求代 数式的范围
例 2已 a 知 b0 ,cd0 ,求a 证 b. dc
高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式
![高中数学新人教A版选修4-5课件:第一讲不等式和绝对值不等式1.1.2基本不等式](https://img.taocdn.com/s3/m/ef49c2f0dbef5ef7ba0d4a7302768e9950e76e4c.png)
1
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即
年销售收入为 150% 32 3- t+1 + 3 + 2t.
首 页
探究一
探究二
J 基础知识 Z 重点难点
ICHU ZHISHI
探究三
由题意,生产 x 万件化妆品正好销完,
由年利润=年销售收入-年生产成本-促销费,
-t2 +98t+35
得年利润 y=
(t≥0).
2(t+1)
-t2 +98t+35
1 2x+y 2
1
(x,y∈R+)中,用的是不等式链中的
其变形去解题,如 xy= ×(2x)y≤
2
2
2
2
1 (2x+y)
1
a+b 2
(x,y∈R+)也可以,这两种解法比较,
.但是 xy= ×(2x)y≤ ×
ab≤
2
2
2
2
可以发现,求得的最值不一样,这说明选择不同的重要不等式的变形形式,求
得的值或范围是不同的,所以我们在选择重要不等式的变形形式时,要使
论有关的不等关系,得出有关理论参数的值.
(4)作出问题结论:根据③中得到的理论参数的值,结合题目要求得出问
题的结论.
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
1
1.下列各式中,最小值等于 2 的是(
x
A.
y
y
+
x
B.
1
C.tanθ+θ
2
3
S 随堂练习
1
的最大值,转化为求 (2x)y 的最大值,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题 求证:在表面积一定的长方体中,以正 方体的体积最大. 解:设长方体的三边长 度分别为x、y、z,则长 方体的体积为 而 S 2 xy 2 xz 2 yz
v xyz
x z y
略
例2: 如图,把一块边长是a 的正方形铁 片的各角切 去大小相同的小正方形, 再把它的边沿着虚线折转作成一个无盖 方底的盒子,问切去的正方形边长是多 小时?才能使盒子的容积最大?
2答案 3答案
基础练习: 2.设 A=1+2x ,B=2x +x ,x∈R 且 x≠1,比较 A,B 的大小.
提示:比较大小,最简单、最有效的方法 是作差→变形→定符号. 变形方法有二种: 一、是分解因式; 二是配方.
4 3 2
解:∵A-B=1+2x4-(2x3+x2)= (2x4 2x3 ) (1 x2 ) = 2x3 ( x 1) (1 x)(1 x) = ( x 1)(2x3 x 1) = ( x 1)( x 1)(2x2 2x 1) 1 2 1 2 = ( x 1) 2( x ) 0 2 2 ∴A>B
基本不等式
定理1:如果a,b∈R,那么a + b ≥ 2ab, 当且仅当a = b时等号成立。
2 2
几何解释
b
a b a b
算术平均数不小于几何平均数
当 a、b 为正数时,
ab ≥ ab 则 2
(当且仅当 a = b 时取“=”号)
算术平均数 (a 、b 的)
几何平均数
(a
、b 的)
定理2:(基本不等式) a+b 如果a,b 0,那么 ≥ ab, 2 当且仅当a = b时等号成立。
2 则 3b 2a 的最大值是____.5 2.已知 x 0 , y 0 ,且 x 2 y 1 , 1 1 3 2 2 u 的最小值是______________。 则 x y x2 8 ( x 1) 的最小值为______. 3.函数 y x 1 4. 现有两个定值电阻,串联后等效电阻值为 R,并 联后等效电阻值为 r,若 R k r ,则实数 k 的取值 范围是_____.
的最小值.
均值不等式可以用来求最值(积定和小,和 定积大),但特别要注意条件的满足: 一正、 二定、 三相等.
四:三个正数的算术—几何平均不等式
类比基本不等式得
abc 3 ≥ abc , 定理 3:如果 a、b、c R ,那么 3 当且仅当 a b c 时,等号成立.
推广: 对于 n 个正 a1 , a2 , a3 ,an, 它们的算术平均值 不小于它们的几何平均值, a1 a2 a3 an ≥ n a1 a2 a3 an 即 n (当且仅当 a1 a2 a3 an 时取等号.)
2
解不等式的过程就是对不等式进行一系列同解 变形的过程,同解变形的依据是什么?
思考 2.已知 a 0, b 0, a b 时,
2ab ab 求证: ab
证明不等式的最基本的思考是分析法——很多 时候就是对要证的不等式进行变形转化。
不等式的基本性质 基本不等式
不等式的性质 ⑴(对称性或反身性) a b b a ; ⑵(传递性) a b,b c a c ; ⑶(可加性) a b a c b c ,此法则又称为移项法则; (同向可相加) a b,c d a c b d ⑷(可乘性) a b,c 0 ac bc; a b,c 0 ac bc . (正数同向可相乘) a b 0,c d 0 ac bd ⑸(乘方法则) a b (n N) a n bn 0 0 ⑹(开方法则) a b (n N , n ≥ 2) n a n b 0 0 1 1 ⑺(倒数法则) a b,ab 0 a b 掌握不等式的性质,应注意:条件与结论间的对应关系, 是“ ”符号还是“ ”符号;运用不等式性质的关键是不 等号方向,条件与不等号方向是紧密相连的。
3 3⑴已知 0 x ,求函数 y x(3 2x) 的最大值. 2 2 x2 ⑵求函数 y ( x 3) 的最小值. x 3 x2 3 ⑶求函数 y 的最小值. x2 2 解: ⑵∵ x 3 ,∴ x 3 0 2 x 2 2( x 2 9) 18 18 2x 6 ∴y x 3 x 3 x 3 18 12 ≥24 = 2( x 3) x 3 18 当且仅当 2( x 3) 即 x 6 时取等号. x3 2 x2 ( x 3) 的最小值为 24,且当 x 6 时取得. ∴函数 y x 3
3 3.⑴已知 0 x ,求函数 y x(3 2x) 的最大值. 2 2 x2 ⑵求函数 y ( x 3) 的最小值. x 3 x2 3 ⑶求函数 y 的最小值. x2 2 3 解⑴(重要不等式法)∵ 0 x ,∴ x 0且3 2 x 0 , 2 1 1 2x 3 2x 3 2 ∴ x(3 2x) = = 2 x(3 2 x) ≤ 4 2 2 2 3 当且仅当 x 时取等号. 4 3 3 2 ∴函数 y x(3 2x) 的最大值为 ,当且仅当 x 取得. 4 4
解:设AM=y米
Q
P
200 - x 2 因而 4 xy x 2 200 y 4x
D
A
C
B M N
于是S 4200x2 210 4xy 80 2 y 2 0 x 10 2
E
F
课堂练习: 1.判断下列命题是否正确: (1) a b, c b a c ( × ) (2) a b c a c b (√ ) × (4) a b, c d ac bd (×) 2 2 (3) a b ac bc ( ) a b × (5) 2 2 a b ( √ ) (6) a 2 b 2 a b ( ) c c (7) a b a 2 b 2 (×) (8) a b a 2 b 2 (√ )
第一讲不等式和绝对值不等式(一)
引入
思考一
重要不等式的 应用举例
练习
重要不等 式的推广
作业:课本 P 第1、2题 , P 11第11、12、14 题 10
第一讲不等式和绝对值不等式(一)
对于不等式大家并不陌生,我们已经会解 一些简单的不等式和证明一些不等式, 如 1.求解下列不等式: x2 2 ① x 3 x 10 0 ② >0 x5 3 2 2.设 n 1 ,且 n 1, 求证: n 1 > n n .
x
解:依 题 意有 v (a 2 x) 2 x a (0 x ) 2
a
求证: ( x y z) ≥ 27 xyz 例3:已知x, y, z R ,
3
试证明:已知a、b、c∈R+,
abc 3 ab abc ) ≥ 2( ab ) 求证 3( 3 2
课外思考: 1.已知 a 0, b 0 , 2a 3b 10 ,
定理:设 x , y , z 都是正数,则有 ⑴若 xyz S (定值) ,
x y z 时, x y z 有最小值 3 3 s . 则当
⑵若 x y z p (定值) ,
p 则当 x y z 时, xyz 有最大值 . 27
3
注:一正、二定、三等。
2
1 例1 求函数 y x (1 3 x)在 [0, ]上的最大值. 3
2
注:一正、二定、三等。
例 3求证:(1)在所有周长相同的矩形中,正方 --------------形的面积最大; (2)在所有面积相同的矩形中,正方 ---------------形的周长最短.
例3答案
例4
例 3求证:(1)在所有周长相同的矩形中,正方 --------------形的面积最大;
算术平均数
C
几何平均数
几何解释
ab
A a O D b B
可以用来求最值(积定和小,和定积大)
定理:设 x , y , z 都是正数,则有 ⑴若 xy S (定值) ,则当 x y 时, x y 有最小值 2 s .
p ⑵若 x y p (定值) ,则当 x y 时, xy 有最大值 . 4
a b (9) a b 0, c d 0 (× ) c d 2.设 A=1+2x4,B=2x3+x2,x∈R 且 x≠1,比较 A,B 的大小. 3 3.⑴已知 0 x ,求函数 y x(3 2x) 的最大值. 2 2 x2 x2 3 ( x 3) 的最小值.⑶求函数 y ⑵求函数 y 的最小值. x 3 x2 2
3 3⑴已知 0 x ,求函数 y x(3 2x) 的最大值. 2 2 x2 ⑵求函数 y ( x 3) 的最小值. x 3 x2 3 ⑶求函数 y 的最小值. x2 2
解: ⑶∵ y
2
x2 3 x2 2
x2 2 1 x2 2
x 2
2
1 x2 2
1 又∵ x 2 ≥ 2 ,又∵函数 y t 在 t 1, 时是减函数. t 3 2 1 2 ∴当 x 0 时,函数 y x 2 取得最小值 . 2 2 x 2
3⑶求函数 y
x2 3
x2 2 x2 3 x2 2 1 1 2 解: ⑶∵ y ≥2 x 2 x2 2 x2 2 x2 2 x2 3 ∴函数 y 的最小值为 2. x2 2 上面解法错在哪?
下面我们来系统且更进一步地认识不等式,从 而进一步提高分析问题、处理问题的能力。
两个实数大小比较: