正切函数图像与性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、周期性 T π π tan( x π ) tan x , x R, x kπ , k Z 2
y A tan(x )
T
2、奇偶性 π tan( x ) tan x , x R, x kπ , k Z 2 正切函数是奇函数
正切函数在整个定义域上单调递增?
例1、判断下列函数的奇偶性并求周期:
(1)
(2) y tan 2 x y tan 3x 奇函数,T . 非奇非偶函数,T . 3 2 x (4) y tan x (3) y tan 2 3 奇函数,T 2 . 奇函数,T 3
正切函数的性质:
定义域: x x k , k Z 2
k 对称中心是 ( , 0), k Z 2
值域: R 周期性:T 奇偶性:奇函数
在开区间 k , k k Z内递增 单调性: 2 2 在每一个开区间内都是单调增函数.能不能说
1.4.3 正切函数的图象和性质
正切函数的性质与图象
利用正切线画出函数在
, 2 2
y
的图象 y P T
O M A x

3 4 6 2
O1
O 6
4 3 2
x
结合正切函数图像研究正切函数的性质:定义域、值域、周期性、 正切函数的性质: 奇偶性和单调性. ⑤单调性: 奇函数.正切曲线关于原点 O 对称. ②值域: R ④奇偶性: x x k,k Z ①定义域: 2 Z)且无限接近于 kkk Z ) 内都是增 k, ( 时, x tan . k 正切函数在每个开区间 当 x 小于 (k x 正切函数是周期函数,周期是k Z ) 2 2 ∵任意 x 2 k, k( 2 ,都有 tan x tan x , 2 2 tan 当 函数. x 大于 2 k(k Z)且无限接近于 2 k 时, x ∴正切函数是奇函数.
π π 例2、求函数y tan x 的定义域、 3 2 周期和单调区间 . y tan x 理清: 3 2 (1)换元法 π (2)周期T ω ( 3)复合函数的单调性
13 17 例3、比较tan π与tan π的大小. 4 5
π π 析 : 利用y tan x在( , )上是增函数。 2 2
例4.求函数y
tan x 1 3 tan x
的定义域
小结回顾
正切函数的基本性质
相关文档
最新文档