河东区高中2018-2019学年上学期高三数学期末模拟试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河东区高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 设函数
,则有( )
A .f (x )是奇函数,
B .f (x )是奇函数, y=b x
C .f (x )是偶函数
D .f (x )是偶函数,
2. 函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 3. 已知集合},052|{2
Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 4. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )
A .96
B .48
C .24
D .0
5. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是( )
A .
B .1﹣
C .
D .1﹣
6. 4
213
5
3
2,4,25a b c ===,则( )
A .b a c <<
B .a b c <<
C .b c a <<
D .c a b <<
7. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2
)
则a ,b ,c 的大小关系为( )
A .a <c <b
B .b <a <c
C .c <a <b
D .c <b <a
8. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( )
A .124+
B .124- C. 34
D .0 9. 在ABC ∆中,222
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]
A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π 10.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题: ①若m ∥l ,m ⊥α,则l ⊥α; ②若m ∥l ,m ∥α,则l ∥α;
③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ; ④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m . 其中正确命题的个数是( )
A .1
B .2
C .3
D .4
11.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 12.函数f (x )=kx +b x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )
A .-1
B .1
C .2
D .4
二、填空题
13.已知||2=a ,||1=b ,2-a 与13b 的夹角为3
π
,则|2|+=a b .
14.定积分
sintcostdt= .
15.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)
16.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为 .
14.已知集合
,若3∈M ,5∉M ,则实数a 的取值范围是 .
17.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x
=+-∈,
若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
18.函数的单调递增区间是.
三、解答题
19.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},
(1)求A∪B,(∁U A)∩(∁U B);
(2)若集合C={x|x>a},A⊆C,求a的取值范围.
20.在数列中,,,其中,.
(Ⅰ)当时,求的值;
(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;(Ⅲ)当时,证明:存在,使得.
21.已知函数f(x)=e x﹣ax﹣1(a>0,e为自然对数的底数).
(1)求函数f(x)的最小值;
(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值.
22.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;
(3)判断函数f (x )在(1,+∞)上的单调性,并证明.
23.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;
(2)若a =5c =,求.
24.求下列各式的值(不使用计算器):
(1)
;
(2)lg2+lg5﹣log 21+log 39.
河东区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)
一、选择题
1. 【答案】C
【解析】解:函数f (x )的定义域为R ,关于原点对称.
又f (﹣x )=
=
=f (x ),所以f (x )为偶函数.
而f ()===﹣=﹣f (x ),
故选C .
【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.
2. 【答案】D 【解析】因为1()f x x a x
'=++,直线的03=-y x 的斜率为3,由题意知方程1
3x a x ++=(0x >)有解,
因为1
2x x
+
?,所以1a £,故选D . 3. 【答案】D 【解析】
试题分析:由{}
{}1,2,025
,0522--=⎭
⎬⎫⎩⎨⎧∈<<-
=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 4. 【答案】
B
【解析】
排列、组合的实际应用;空间中直线与直线之间的位置关系.
【专题】计算题;压轴题.
【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.
【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.
分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,
(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)
那么安全存放的不同方法种数为2A44=48.
故选B.
【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.
5.【答案】B
【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型
公式可得该点取自阴影部分的概率是;
故选:B.
【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.
6.【答案】A
【解析】
试题分析:
222
353
4,4,5
a b c
===,由于4x
y=为增函数,所以a b
>.应为
2
3
y x
=为增函数,所以c a
>,故
b a c
<<.
考点:比较大小.
7.【答案】C
【解析】解:由题意f(x)=f(|x|).
∵log43<1,∴|log43|<1;
2>|ln|=|ln3|>1;
∵|0.4﹣1.2|=| 1.2|>2
∴|0.4﹣1.2|>|ln|>|log43|.
又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.
∴c<a<b.
故选C
8.【答案】B
【解析】
考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
9.【答案】C
【解析】
考点:三角形中正余弦定理的运用.
10.【答案】B
【解析】解:∵①若m∥l,m⊥α,
则由直线与平面垂直的判定定理,得l⊥α,故①正确;
②若m∥l,m∥α,则l∥α或l⊂α,故②错误;
③如图,在正方体ABCD﹣A1B1C1D1中,
平面ABB1A1∩平面ABCD=AB,
平面ABB1A1∩平面BCC1B1=BB1,
平面ABCD∩平面BCC1B1=BC,
由AB、BC、BB1两两相交,得:
若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n不成立,故③是假命题;
④若α∩β=l,β∩γ=m,γ∩α=n,n∥β,
则由α∩γ=n知,n⊂α且n⊂γ,由n⊂α及n∥β,α∩β=m,
得n∥m,同理n∥l,故m∥l,故命题④正确.
故选:B.
【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.
11.【答案】A.
【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 12.【答案】
【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),
则⎩⎪⎨⎪⎧n =
km +b m +1
4-n =k (-2-m )+b
-1-m
,恒成立.
由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,
∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,
∴b =1,故选B.
二、填空题
13.【答案】2
【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23
π
,1⋅=-a b , ∴|2|+=
a
b 2==.
14.【答案】
.
【解析】
解:
sintcostdt=0sin2td (2t )
=(﹣cos2t )
|
=×(1+1)
=.
故答案为:
15.【答案】 (0,2)
【解析】解:令x=0,得y=a 0
+1=2 ∴函数y=a x
+1(a >0且a ≠1)的图象必经过点 (0,2)
故答案为:(0,2).
【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点
16.【答案】 6 .
【解析】解:f (x )=x 3﹣2cx 2+c 2x ,f ′(x )=3x 2﹣4cx+c 2
, f ′(2)=0⇒c=2或c=6.若c=2,f ′(x )=3x 2﹣8x+4, 令f ′(x )>0⇒x
<或x >2,f ′(x )<0
⇒<x <2,
故函数在(﹣∝
,)及(2,+∞
)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.
17.【答案】1,e
⎛⎤-∞ ⎥⎝
⎦
【解析】结合函数的解析式:1
22e e 1x x y +=+可得:()
()
122
221'1
x x x e e y e +-=+, 令y ′=0,解得:x =0,
当x >0时,y ′>0,当x <0,y ′<0,
则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],
结合函数的解析式:()()R lnx
f x x a a x
=+-∈可得:()22ln 1'x x f x x -+=
, x ∈(0,e ),()'0f x >,
则f (x )在(0,e )单调递增,
下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x
-=, 当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝
⎦
.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 18.【答案】 [2,3) .
【解析】解:令t=﹣3+4x ﹣x 2
>0,求得1<x <3,则y=
,
本题即求函数t 在(1,3)上的减区间.
利用二次函数的性质可得函数t 在(1,3)上的减区间为[2,3), 故答案为:[2,3).
三、解答题
19.【答案】
【解析】解:(1)∵A={x|3≤x <10},B={x|2<x ≤7},
∴A ∩B=[3,7];A ∪B=(2,10);(C U A )∩(C U B )=(﹣∞,3)∪[10,+∞); (2)∵集合C={x|x >a},
∴若A ⊆C ,则a <3,即a 的取值范围是{a|a <3}.
20.【答案】
【解析】【知识点】数列综合应用
【试题解析】(Ⅰ),,.
(Ⅱ)成等差数列,,
即,
,即.
,.
将,代入上式,解得.
经检验,此时的公差不为0.
存在,使构成公差不为0的等差数列.
(Ⅲ),
又,令.
由,
,
……
,
将上述不等式相加,得,即.
取正整数,就有
21.【答案】
【解析】解:(1)∵f(x)=e x﹣ax﹣1(a>0),
∴f'(x)=e x﹣a,
由f'(x)=e x﹣a=0得x=lna,
由f'(x)>0得,x>lna,此时函数单调递增,
由f'(x)<0得,x<lna,此时函数单调递减,
即f(x)在x=lna处取得极小值且为最小值,
最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1.
(2)若f(x)≥0对任意的x∈R恒成立,
等价为f(x)min≥0,
由(1)知,f(x)min=a﹣alna﹣1,
设g(a)=a﹣alna﹣1,
则g'(a)=1﹣lna﹣1=﹣lna,
由g'(a )=0得a=1,
由g'(x )>0得,0<x <1,此时函数单调递增, 由g'(x )<0得,x >1,此时函数单调递减, ∴g (a )在a=1处取得最大值,即g (1)=0, 因此g (a )≥0的解为a=1, ∴a=1.
22.【答案】
【解析】解:(1)∵f (x )=2x ﹣,且f (2)=, ∴4﹣=, ∴a=﹣1;(2分) (2)由(1)得函数,定义域为{x|x ≠0}关于原点对称…(3分)
∵=
,
∴函数
为奇函数.…(6分)
(3)函数f (x )在(1,+∞)上是增函数,…(7分) 任取x 1,x 2∈(1,+∞),不妨设x 1<x 2,则
=
…(10分)
∵x 1,x 2∈(1,+∞)且x 1<x 2∴x 2﹣x 1>0,2x 1x 2﹣1>0,x 1x 2>0 ∴f (x 2)﹣f (x 1)>0,即f (x 2)>f (x 1), ∴f (x )在(1,+∞)上是增函数 …(12分)
【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.
23.【答案】(1)6
B π
=;(2)b =
【解析】1111]
(2)根据余弦定理,得
2222cos2725457
=+-=+-=,
b a
c ac B
所以b=
考点:正弦定理与余弦定理.
24.【答案】
【解析】解:(1)
=4+1﹣﹣
=1;
(2)lg2+lg5﹣log21+log39
=1﹣0+2
=3.
【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.。