找最大公因数和最小公倍数练习题 (35)

合集下载

初中三年级公因数公倍数练习册

初中三年级公因数公倍数练习册

初中三年级公因数公倍数练习册练一: 公因数
1. 找出以下数字的公因数:
- 12和18
- 15和25
- 21和35
2. 找出以下数字的最大公因数:
- 16和24
- 20和30
- 36和48
3. 如果两个数字的最大公因数是1,那么这两个数字是互质的。

找出以下互质数字对:
- 8和9
- 14和25
- 20和21
练二: 公倍数
1. 找出以下数字的公倍数:
- 3和4的公倍数
- 5和7的公倍数
- 6和9的公倍数
2. 找出以下数字的最小公倍数:
- 2和3
- 4和5
- 6和8
3. 如果两个数字的最小公倍数等于其中一个数,那么这两个数字是倍数关系。

找出以下倍数关系的数字对:
- 9和27
- 12和36
- 15和45
练三: 综合练
1. 找出以下数字的最大公因数和最小公倍数:
- 8和12
- 9和10
- 15和20
2. 判断以下说法是否正确,并给出理由:
- 两个互质的数字的最大公因数一定是1。

- 两个倍数关系的数字的最小公倍数一定等于其中一个数。

3. 解决以下问题:
- 一辆公交车每10分钟经过一次站牌,一辆自行车每15分钟经过一次站牌。

如果两辆车在同时经过站牌时,最短需要多久它们再次同时经过同一个站牌?
以上练习旨在帮助初中三年级学生巩固和提高他们在公因数和公倍数方面的理解和运用能力。

通过练习这些问题,学生可以更好地掌握如何找出数字的公因数和最大公因数,以及如何找出数字的公倍数和最小公倍数。

这些能力对于进一步学习数学和解决实际问题都非常重要。

(完整版)求最大公因数、最小公倍数练习题

(完整版)求最大公因数、最小公倍数练习题

一、基本概念:公因数:两个或多个数都有的因数叫做公因数公倍数:两个或多个数都有的倍数叫做公倍数最大公因数:两个或多个数都有的因数里最大的叫做最大公因数最小公倍数:两个或多个数都有的倍数里最小的叫做最小公倍数(没有最大公倍数)公约数和最大公约数几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。

12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。

一般地我们用(a,b)表示a,b这两个自然数的最大公约数,如(12,30)=6。

如果(a,b)=1,则a,b两个数是互质数。

2、公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:12的倍数有12,24,36,48,60,72,… 18的倍数有18,36,72,90,…12和18的公倍数有:36,72…其中36是12和 18的最小公倍数。

一般地,我们用[a,b]表示自然数,a,b的最小公倍数,如[12,18]=36。

求最大公因数、最小公倍数习题一、用短除法求几个数的最大公因数12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60 42、105和56 24、36和48二、用短除法求几个数的最小公倍数。

25和30 24和3039和78 60和84 18和20126和60 45和75 12和24 12和14 45和6076和80 36和60 27和72 42、105和56 24、36和48六、用短除法求几个数的最大公因数与最小公倍数。

45和60 36和60 27和72 76和806、12和247、21和498、12和36八、写出下列各数的最大公因数和最小公倍数15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是最小公倍数是7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是29和87的最大公因数是最小公倍数是;30和15的最大公因数是最小公倍数是13、26和52的最大公因数是最小公倍数是2、3和7的最大公因数是最小公倍数是16、32和64的最大公因数是最小公倍数是7、9和11的最大公因数是最小公倍数是九. 求下面每组数的最大公约数和最小公倍数。

(完整版)最大公因数与最小公倍数应用题练习

(完整版)最大公因数与最小公倍数应用题练习

(完整版)最大公因数与最小公倍数应用题练习1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。

这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=12 12-1=114、五年级学生参加植树活动,人数在30~50之间。

如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。

五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。

问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360 360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人) 56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。

20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。

这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。

最大公因数与最小公倍数的练习题

最大公因数与最小公倍数的练习题

最大公因数和最小公倍数习题精选一、填空1、甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是().2、36和60相同的质因数有(),它们的积是(),也就是36和60的().3、()的两个数,叫做互质数.4、自然数a除以自然数b,商是15,那么a和b的最大公因数是().二、判断(对的打“√”,错的打“×”).1、互质数是没有公约数的两个数.()2、成为互质数的两个数,一定是质数.()3、只要两个数是合数,那么这两个数就不能成为互质数.()4、两个自然数分别除以它们的最大公因数,商是互质数.()三、选择题1、成为互质数的两个数().①没有公因数②只有公因数1③两个数都是质数④都是质因数2、下列各数中与18只有公因数1是().①21②40③25④183、下列各组数中,两个数只有公因数1的是().①17和51②52和91③24和25④11和22四、直接说出下列各组数的最大公因数.1、8与9的最大公因数是().2、48、12和16的最大公因数是().3、6、30和45的最大公因数是().4、150和25的最大公因数是( ).习题精选(二)一、填空1、按要求,使填出的两个数只有公因数1.①质数()和合数(),②质数()和质数(),③合数()和合数(),④奇数()和奇数(),⑤奇数()和偶数().2、两个数为互质数,这两个数的最大公因数是().3、所有自然数的公因数为().4、18和24的公因数有(),18和24的最大公因数是().二、判断(对的打“√",错的打“×”).1、因为15÷3=5,所以15和3的最大公因数是5.()2、30 、15和5的最大公因数是30.()3、最小的合数和最小的质数这两个数不是只有公因数1.()4、相邻的两个自然数一定只有公因数1.( )三、选择题1、甲数的质因数里有1个7,乙数的质因数里没有7,它们的最大公约数的质因数里应该().①有五个7②没有7③不能确定2、甲、乙两数的最大公约数是7,甲数的3倍与乙数的5倍的最大公约数( )①肯定是7②肯定不是7③不能肯定四、用短除法求下列各组数的最大公因数.1、56和422、225和153、84和1054、54、72和905、60、90和120五、应用题用96朵红花和72朵白花做花束,如果每个花束里的红花朵数都相等,每个花束里的白花的朵数也都相等.每个花束里最少有几朵花?习题精选(三)一、填空1.a和b 都是自然数,如果a 除以b商5没有余数,那么a 和b的最大公约数是(),最小公倍数().2.如果a和b 是互质的自然数,那么a 和b 的最大公约数是(),最小公倍数是().3.三个质数的最小公倍数是42,这三个质数是().4.100以内能同时被3和7整除的最大奇数是(),最大偶数是().5.一个数的最大约数是,它的最小倍数是().6.所有偶数的最大公约数是(),所有奇数的最大公约数().二、判断1.几个数的公倍数是无限的,最小的只有一个.()2.两个不同的自然数的最大公因数一定比最小公倍数小.()3.如果三个自然数两两互质,它们的最大公约数是1,最小公倍数就是三个数的乘积.()4.如果一个质数与一个合数不是互质数,那么这个合数是这两个数的最小公倍数.()5.一个数的约数必定小于它的倍数.()三、选择题1.96是16和12的()①公倍数②最小公倍数③公约数2.几个质数的连乘积是()①合数②质数③最大公约数④最小公倍数3.甲是乙的15倍,甲和乙的最小公倍数是()①15②甲③乙④甲×乙4.12是24和36的()①约数②质因数③最大公约数5.一个数的最大约数()它的最小倍数.①>②<③=6.=2×2×5,=2×3×5,那么、的最小公倍数是()①600②300③60④10四、直接说出下列每组数的最小公倍数1.18和36的最小公倍数是()2.45和135的最小公倍数是()3.8、18和72的最小公倍数是()4.48、16和24的最小公倍数是()。

五年级下期最大公因数和最小公倍数的练习题

五年级下期最大公因数和最小公倍数的练习题

一、判断(对的打“√”,错的打“×”,每题2分,共24分)1.互质的两个数中,至少有一个是质数。

( )2.所有的质数都是奇数。

( )3.质因数必须是质数,不能是合数。

( )4.把28分解质因数是:28=4×7。

( )5.自然数中,除去合数就是质数。

( )6.所有的偶数都是合数。

( )7.有公因数1的两个数一定是互质数。

( )8.18的最大因数和最小倍数相等。

( )9.能同时被2和3整除的数都是偶数。

( )10.两个数能整除,也可以说这两个数能除尽。

( )11.12的因数只有2、3、4、6、12。

( )12.1是质数而不是偶数。

( )二、选择填空(每空2分,共16分)1.两个不同质数的最大公因数是( )。

① 1 ②小数③大数2.1.5能 ( )。

①整除3 ②被3整除③被3除尽3.大于2的两个质数的乘积一定是 ( )。

①质数②偶数③合数4.任意两个自然数的积是( )。

①质数②合数③质数或合数5.甲数的质因数里有2个2,乙数的质因数里有3个2,它们的最大公因数里应该有( )。

①2个2 ②3个2 ③5个26.在100以内,能同时被3和5整除的最大奇数 ( )。

① 95 ② 90 ③ 757.a和b是互质数,a和b的最大公因数是( );最小公倍数是( )。

①a ②b ③1 ④ab(1)长方形的砖长40厘米,宽25厘米,至少要用多少块这样的砖才能铺成一块正方形地?(2)已知某小学六年级学生超过100人,而不足140人,将他们按每组12人分组多3人;按每组8人分也多3人。

求出该校六年级的确切人数。

(3)一张长方形红纸长42厘米,宽36厘米。

要把这张纸截成大小相等的正方形而没有剩余,正方形的边长最大是多少厘米?这张纸共截成多少块这样的正方形?(4)在公路两旁相对着各种下一棵树,但有一段路的两旁种树距离不一样。

其中一旁每隔6米种一棵,另一旁每隔8米种一棵;若要再出现两旁相对种树的情况,至少要经过多少米?这时这段路的两旁各种了多少棵树?(5)汽车发动机上两个互相咬合的齿轮,甲齿轮72个齿,乙齿轮28个齿,两个齿轮从第一次相遇到第二次相遇各转了多少圈?(6)把一块长180米,宽120米的长方形地分成面积相等的正方形地最少能分成多少块?(7)在长3千米的公路边,等距离架电线杆,开始每隔30米架一根,后来改成每隔50米架一根,不用改架的电线杆有多少根?(8)有96个男生和72个女生一起参加团体操表演,男、女生分别排成行,人数相同,每行最多有几个人?(9)一排电线杆,每相邻两根间的距离原来是45米,现在改成60米,如果起点一根不动,那么至少再相隔多远又有一根电线杆可以不动?(10)有长36厘米,宽24厘米的长方形木板若干块,问几块这样的木板可以拼成一个最大的正方形?(11)小张、小李和小王三个棋迷,他们定期去少年宫下棋,小张每隔5天去一次,小李每隔6天去一次,小王每隔9天去一。

(完整版)最新苏教版五年级下册数学_最大公因数_最小公倍数易错题和重点题型(可编辑修改word版)

(完整版)最新苏教版五年级下册数学_最大公因数_最小公倍数易错题和重点题型(可编辑修改word版)

一、知识点整理:1、一个数最小的因数是 1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。

一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。

几个数的公倍数也是无限的。

3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)。

两个数的公因数也是有限的。

4、两个素数的积一定是合数。

举例:3×5=15,15 是合数。

5、两个数的最小公倍数一定是它们的最大公因数的倍数。

举例:[6,8]=24,(6,8)=2,24 是2 的倍数。

6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

举例:15 和5,[15,5]=15,(15,5)=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

举例:[3,7] =21,(3,7)=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。

[5,8]=40,(5,8)=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

[9,8]=72,(9,8)=1特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数 1),比如 4 和9、4 和15、10 和21,最大公因数是1,最小公倍数是它们的乘积。

一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。

二、经典例题:例 1,写出每组数的最大公因数7 和9 5 和25 10 和4写出每组数的最小公倍数8 和10 51 和3 5 和4例 2:有一批地砖,每块长 45 厘米、宽 30 厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一张长 40 厘米,宽 32 厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数,也称最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个。

a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。

求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。

与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。

质因数分解法:把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数。

例如:求24和60的最大公约数,先分解质因数,得24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2、2、3,它们的积是2×2×3=12,所以,(24、60)=12。

把几个数先分别分解质因数,再把各数中的全部公有的质因数和独有的质因数提取出来连乘,所得的积就是这几个数的最小公倍数。

例如:求6和15的最小公倍数。

先分解质因数,得6=2×3,15=3×5,6和15的全部公有的质因数是3,6独有质因数是2,15独有的质因数是5,2×3×5=30,30里面包含6的全部质因数2和3,还包含了15的全部质因数3和5,且30是6和15的公倍数中最小的一个,所以[6,15]=30。

短除法:短除法求最大公约数,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几个数的最大公约数。

短除法求最小公倍数,先用这几个数的公约数去除每个数,再用部分数的公约数去除,并把不能整除的数移下来,一直除到所有的商中每两个数都是互质的为止,然后把所有的除数和商连乘起来,所得的积就是这几个数的最小公倍数,例如,求12、15、18的最小公倍数。

求最大公因数最小公倍数练习题终审稿)

求最大公因数最小公倍数练习题终审稿)

求最大公因数最小公倍数练习题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-一、基本概念:公因数:两个或多个数都有的因数叫做公因数公倍数:两个或多个数都有的倍数叫做公倍数最大公因数:两个或多个数都有的因数里最大的叫做最大公因数最小公倍数:两个或多个数都有的倍数里最小的叫做最小公倍数(没有最大公倍数)公约数和最大公约数?几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。

12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。

一般地我们用(a,b)表示a,b这两个自然数的最大公约数,如(12,30)=6。

如果(a,b)=1,则a,b两个数是互质数。

2、公倍数和最小公倍数几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

例如:12的倍数有12,24,36,48,60,72,…18的倍数有18,36,72,90,…12和18的公倍数有:36,72…其中36是12和18的最小公倍数。

一般地,我们用[a,b]表示自然数,a,b的最小公倍数,如[12,18]=36。

求最大公因数、最小公倍数习题一、用短除法求几个数的最大公因数12和30 24和36 39和78 72和84 36和6045和60 45和75 45和60 42、105和56 24、36和48二、用短除法求几个数的最小公倍数。

25和30 24和30 39和78 60和84 18和20126和60 45和75 12和24 12和14 45和60 76和8036和60 27和72 42、105和56 24、36和48 六、用短除法求几个数的最大公因数与最小公倍数。

45和60 36和60 27和72 76和806、12和247、21和498、12和36八、写出下列各数的最大公因数和最小公倍数15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是最小公倍数是7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是26和13的最大公因数是最小公倍数是 13和6的最大公因数是最小公倍数是4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是29和87的最大公因数是最小公倍数是;30和15的最大公因数是最小公倍数是13、26和52的最大公因数是最小公倍数是2、3和7的最大公因数是最小公倍数是16、32和64的最大公因数是最小公倍数是7、9和11的最大公因数是最小公倍数是九. 求下面每组数的最大公约数和最小公倍数。

最大公因数及最小公倍数应用题——五年级上册

最大公因数及最小公倍数应用题——五年级上册

最大公因数与最小公倍数应用题——五年级上册几个数公有的因数叫做这几个数的公因数,此中最大的一个叫做这几个数的最大公因数。

几个数公有的倍数叫做这几个数的公倍数,此中最小的一个叫做这几个数的最小公倍数。

最大公因数和最小公倍数的性质1)两个数分别除以它们的最大公因数,所得的商必然是互质数。

2)两个数的最大公因数的因数,都是这两个数的公因数,3)两个自然数的最大公因数与最小公倍数的乘积等于这两个数的乘积。

例:有一个长方体的木头,长3.25米,宽1.75米,厚0.75米。

假如把这块木头截成好多相等的小立方体,并使每个小立方体尽可能大,小立方体的棱长及个数各是多少?解:依据题意,小立方体一条棱长应是长方体长、宽、厚各数的最大合约数。

即:(325、175、75)=25(厘米)因为325÷25=13;175÷25=7;75÷25=3所以13×7×3=273(个)或(325×175×75)÷(25×25×25)=273例:有一个两位数,除50余2,除63余3,除73余1。

求这个两位数是多少?解:这个两位数除50余2,则用他除48(52-2)恰好整除。

也就是说,这个两位数是4 8的约数。

同理,这个两位数也是60、72的约数。

所以,这个两位数只可能是48、60、72的合约数1、2、3、4、6、12,而满足条件的只有合约数12,即(48、60、72)=12。

练习1.新年联欢会上,张老师把42个打气球和30个吝啬球均匀分给几个小组,正好分完。

最多可以分给几个小组?每个小组分的大、吝啬球各多少个?2.雨辰小学五年二班有54人,五年三班有63人,两班决定分小组去博物馆观光,两班每组人数相等而且没有节余每小组最多有多少人?每个班可以分多少个小组?3.同学们买了24朵百合花的18朵玫瑰花送个老师,两栽花混在一起扎成一束,想要扎成每束百合花、玫瑰花朵数相同,最多扎几束?每束几朵百合花,几朵玫瑰花?4.明显有一张长84厘米,宽60厘米的长方形纸板,剪成边长相等的小正方形,边长最长是多少?可以剪几块?解答合约数或公倍数问题的要点是:从约数和倍数的意义下手来解析,把原题归纳为求几个数的合约数或公倍数问题。

公因数与公倍数练习题(一)

公因数与公倍数练习题(一)

公因数与公倍数练习题(一)博思教育五年级数学下册第三单元《公倍数和公因数》测试题一、认真填写。

(27分)1.一个两位数既是3的倍数,也是5的倍数,而且是偶数,这个数最小是(60),最大是(90)。

2.35和7的最大公因数是(7),最小公倍数是(35)。

3.a和b的最大公因数是1,它们的最小公倍数是(a×b)。

4.x、y是自然数,x=7y,x和y的最大公因数是(y),最小公倍数是(7y)。

5.100以内3和7的公倍数中,最大的偶数是(84),最大的奇数是(21)。

6.(1)15×4,使它成为3和5的公倍数,4里可填(4)。

2)52×2,使它成为2和3的公倍数,2里可填(1)。

二、解方程。

(18分)7.x = 28.58.x = 787.59.x = 8810.x = 102三、求下列每组数的最小公倍数(每题2分,共12分)1.14和56的最小公倍数是(56)。

2.12和8的最小公倍数是(24)。

3.20和64的最小公倍数是(320)。

4.15和7的最小公倍数是(105)。

5.6和9的最小公倍数是(18)。

6.12和18的最小公倍数是(36)。

四、求下列每组数的最大公因数(每题2分,共12分)1.22和99的最大公因数是(11)。

2.34和51的最大公因数是(17)。

3.21和105的最大公因数是(21)。

4.14和25的最大公因数是(1)。

5.16和28的最大公因数是(4)。

6.18和20的最大公因数是(2)。

五、应用题(共12分)1.小正方形的边长最大可以是6厘米,可以分成12个正方形。

2.至少去了60人。

3.最多需要6个花瓶,每个花瓶中黄花和红花各有3朵。

4.至少购进了140朵鲜花。

一、基础巩固题2、6的倍数有:6、12、18、24、30、36、42、48、54、60;8的倍数有:8、16、24、32、40、48、56、64;6的8的公倍数有:24、48;6的8的最小公倍数是:24.二、思维拓展题1)选的卡片组成的最小三位数是210.2)这两个数分别是13和17,它们的和是30.3)这三个数分别是5、6、7,它们的最小公倍数是210.三个连续奇数的和是21,这三个奇数分别是3、5、7,它们的最小公倍数是15.1.10和12的最大公因数是2,最小公倍数是60,比较这两个数的乘积和最大公因数与最小公倍数的积,我发现它们相等。

人教版五年级下册数学《最大公因数和最小公倍数》知识点和精选练习题

人教版五年级下册数学《最大公因数和最小公倍数》知识点和精选练习题

人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。

,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。

3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除.(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除).因此,36,24,48的最大公因数是2×2×3=12。

(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。

②互质的两个数最大公因数是1.(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。

二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。

化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。

③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。

解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b,最小公倍数是其中的较大数α.B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。

(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小。

( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1。

(完整版)最小公倍数和最大公因数的应用题归纳

(完整版)最小公倍数和最大公因数的应用题归纳

最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。

如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。

最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。

如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。

补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。

小学数学 五年级 最大公因数和最小公倍数 PPT+作业(带答案)

小学数学 五年级 最大公因数和最小公倍数  PPT+作业(带答案)

出现两两互质 [15,20,30]=5×3×2×1×2×1=60
总结:求三个数的最大公因数时,只要商出现互质即可; 求三个数的最,24,48)和 [18,24,48]。 (2)求(16,24,32)和 [16,24,32]。
2 18 24
48
39 3
例6
已知两个自然数的最大公因数是6,最小公倍数是120,求这两个自然数。 已知最大公因数和最小公倍数,通过短除法反推
分析芒果数量和梨的数量与小朋友人数的关系。
芒果和梨都能恰好平均分给小朋友们说明: 小朋友的人数是芒果数量和梨的数量的公因数 小朋友最多时,即求最大公因数
(24,32)=8 最多8个小朋友 芒果:24÷8=3(个) 梨:32÷8=4(个) 答:小朋友最多8个人,这时每个小朋友分到3个芒果,4个梨。
总结:区分题目中要求的量是“最小公倍数”还是“最大公因 数”。
总结:配对法找因数——使用乘积的形式一对一对地寻找因数。
例2
(1)求(12,18,24)和 [12,18,24]。 (2)求(15,20,30)和 [15,20,30]。
短除法找最大公因数与最小公倍数
5 15 20
30
3
4
6
出现互质 (15,20,30)=5
5 15 20
30
33
4
6
21
4
2
1
2
1
不满足“互质”
④a=4,b=8 ⑤a=5,b=7
不符合 符合 A=5×3=15 B=7×3=21
总结:两个自然数分别除以他们的最大公因数,所得的商互质。
练习5
运用短除法求A、B的最大公因数时,过程如下:
如果a+b=15,且a<b,那么A、B分别可能等于多少?

最大公因数,最小公倍数,练习题

最大公因数,最小公倍数,练习题

最大公因数和最小公倍数一、写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是;最小公倍数是。

1.在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。

2.在20以内的质数中,()加上2还是质数。

3.如果有两个质数的和等于24,可以是()+(),()+()或()+()。

4.把330分解质因数是()。

5.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。

6.在50以内的自然数中,最大的质数是(),最小的合数是()。

7.既是质数又是奇数的最小的一位数是()。

二、判断题1.两个质数相乘的积还是质数。

()2.成为互质数的两个数,必须都是质数。

()3.任何一个自然数,它的最大约数和最小倍数都是它本身。

()4.一个合数至少得有三个约数。

()5.在自然数列中,除2以外,所有的偶数都是合数。

()6.12是36与48的最大公约数。

()三、选择题1.15的最大约数是(),最小倍数是()。

①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的()。

①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是()。

【典型例题系列】五年级数学下册典型例题系列之第三单元最大公因数与最小公倍数部分(解析版)苏教版

【典型例题系列】五年级数学下册典型例题系列之第三单元最大公因数与最小公倍数部分(解析版)苏教版

2021-2022学年五年级数学下册典型例题系列之第三单元最大公因数与最小公倍数部分(解析版)编者的话:《2021-2022学年五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第三单元最大公因数与最小公倍数部分。

本部分内容主要是最大公因数和最小公倍数的求法及其应用,建议作为本章重点内容进行讲解,考点划分较多,共划分为十四个考点,欢迎使用。

【考点一】求最大公因数。

【方法点拨】1.最大公因数的定义几个数公有的因数叫做这几个数的公因数。

其中最大的一个叫做这几个数的最大公因数2.求两个数的最大公因数的方法:(1)列举法;(2)短除法3.短除法的口诀:求最大公因乘一边,求最小公倍乘一圈。

注意:求两个数的最大公因数用小括号表示。

【典型例题】求最大公因数。

(1)18和6 (2)11和13 (3)8和36 (4)18和24解析:6;1;4;6【对应练习1】求下面每组数的最大公因数。

6和10 18和24 34和17解析:2;6;17【对应练习2】写出每组数的最大公因数。

(4,50)=(10,25)=(20,21)=(12,36)=解析:2;5;1;12【对应练习3】求两组数的最大公因数。

24和60 36和45解析:12;9【考点二】求最小公倍数。

【方法点拨】1.最小公倍数的定义:几个数公有的倍数,叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数。

2.求最小公倍数的方法:(1)列举法;(2)短除法。

3.短除法的口诀:求最大公因乘一边,求最小公倍乘一圈。

注意:求两个数的最小公因数用中括号表示。

【典型例题】求下面每组数的最小公倍数。

(1)28和21 (2) 11和7 (3)34和68解析:84;77;68【对应练习1】求下列各组数的最大公因数和最小公倍数。

最大公因数和最小公倍数练习题

最大公因数和最小公倍数练习题

最大公因数和最小公倍数练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最大公因数和最小公倍数练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最大公因数和最小公倍数练习题的全部内容。

最大公因数相关练习题一、按照要求在下面的圈里填数,再找出它们的最大公因数。

12的因数18的因数12和18的公因数12和18的最大公因数是:。

二、求下面各组数的最大公因数。

】15和18 36和12 45和60 64和72三、在括号里填上一个数,使它与前面的数成为互质数。

24和( ) 13和() 2和( ) 5和( )四、判断题。

(1)如果两个数互质,它们没有公因数.()(2)两个不同的质数一定是互质数.()(3)两个合数一定不是互质数.( )五、先把36和60分解质因数,再回答问题。

36= 60=36和60公有的质因数有:。

36和60的最大公因数是: . 六、生活中的数学。

有三根木棒,分别长12cm、44cm、56cm.要把它们都截成同样长的小棒(不许剩余),每根小棒最长有多少厘米?七、数学智慧园。

三个质数,它们的乘积是1001。

这三个质数各是多少?八、有一个长方体,长70cm,宽50cm,高45cm.如果要切成同样大的小正方体,那么这些小正方体的棱长最大可以是多少厘米?最小公倍数相关练习题一、选择题1。

4和9是().A.质数B。

奇数C。

互质数 D。

质因数2.两个数的()的个数是无限的.A.最大公约数 B。

最小公倍数 C.公约数 D。

公倍数3.互质的两个数的公约数().A.只有1个 B。

有2个 C.有3个 D.有无限个4.两个数的最大公约数是6,最小公倍数是90,已知一个数是18,另一个数是()。

最大公因数与最小公倍数练习题(思维拓展)

最大公因数与最小公倍数练习题(思维拓展)

最大公因数与最小公倍数练习题(思维拓展)问题一已知两个数的最大公因数是12,其中一个数为36,请问另一个数是多少?解答:根据最大公因数的定义,最大公因数是指两个或多个整数共有的约数中的最大值。

而两个数的最大公因数是12,可以推断出这两个数可以同时被12整除。

其中一个数为36,所以另一个数必须满足能被12整除,并且除以12得到的商是36。

因此,另一个数可以通过36乘以12得到,即36 * 12 = 432。

所以另一个数是432。

问题二已知两个数的最小公倍数是60,其中一个数为20,请问另一个数是多少?解答:最小公倍数是指两个或多个数公有的倍数中的最小值。

两个数的最小公倍数是60,可以推断出这两个数的乘积必须是60的倍数。

其中一个数为20,所以另一个数必须满足能被20整除,并且乘以20的结果是60的倍数。

因此,另一个数可以通过60除以20得到,即60 / 20 = 3。

所以另一个数是3。

问题三求两个数的最大公因数和最小公倍数。

已知两个数分别为48和60。

解答:首先,我们可以通过计算它们的约数来找到最大公因数。

48的约数有1、2、3、4、6、8、12、16、24、48;60的约数有1、2、3、4、5、6、10、12、15、20、30、60。

可以发现,48和60的公共约数有1、2、3、4、6、12。

其中,最大的公因数即为最大公共约数,即12。

最小公倍数可以通过最大公因数求得。

假设两个数的最大公因数为x,两个数分别为a和b,最小公倍数可以通过以下公式计算:最小公倍数 = (a * b) / x。

所以,最小公倍数 = (48 * 60) / 12 = 240。

所以,两个数的最大公因数是12,最小公倍数是240。

问题四已知两个数的最大公因数是18,最小公倍数是270,请问这两个数分别是多少?解答:设两个数分别为a和b。

已知它们的最大公因数是18,最小公倍数是270。

根据最小公倍数的定义,两个数的乘积必须是270的倍数。

最大公因数-最小公倍数-练习题2

最大公因数-最小公倍数-练习题2

最大公因数和最小公倍数一、写出下列各数的最大公因数和最小公倍数(1) 4和6的最大公因数是;最大公倍数是;(2) 9和3的最大公因数是;最大公倍数是;(3) 9和18的最大公因数是;最大公倍数是;(4) 11和44的最大公因数是;最大公倍数是;(5) 8和11的最大公因数是;最大公倍数是;(6) 1和9的最大公因数是;最大公倍数是;(7) 已知A=2×2×3×5,B=2×3×7,那么A、B的最大公因数是;最小公倍数是;(8)已知A=2×3×5×5,B=3×5×5×11,那么A、B的最大公因数是;最小公倍数是。

1.在17、18、15、20和30五个数中,能被2整除的数是();能被3整除的数是();能被5整除的数是();能同时被2、3整除的数是();能同时被3、5整除的数是();能同时被2、5整除的数是();能同时被2、3、5整除的数是()。

2.在20以内的质数中,()加上2还是质数。

3.如果有两个质数的和等于24,可以是()+(),()+()或()+()。

4.把330分解质因数是()。

5.一个能同时被2、3、5整除的三位数,百位上的数比十位上的数大9,这个数是()。

6.在50以内的自然数中,最大的质数是(),最小的合数是()。

7.既是质数又是奇数的最小的一位数是()。

二、判断题1.两个质数相乘的积还是质数。

()2.成为互质数的两个数,必须都是质数。

()3.任何一个自然数,它的最大约数和最小倍数都是它本身。

()4.一个合数至少得有三个约数。

()5.在自然数列中,除2以外,所有的偶数都是合数。

()6.12是36与48的最大公约数。

()三、选择题1.15的最大约数是(),最小倍数是()。

①1 ②3 ③5 ④152.在14=2×7中,2和7都是14的()。

①质数②因数③质因数3.有一个数,它既是12的倍数,又是12的约数,这个数是()。

(完整版)公因数和公倍数练习题

(完整版)公因数和公倍数练习题

公因数和公倍数(一)概念整理。

1、倍数和因数是不能够单独存在的,我们往往会说“谁是谁的倍数,谁是谁的因数”,比如说,通过算式72÷8=9,我们可以说( )是()的因数,也可以说( )是()的因数,()是()的倍数.2、在自然数中,只有1和它本身两个因数的数,我们称为(),也叫();有三个或三个以上因数的数叫做( );1既不是(),也不是()。

3、12的因数有(),40的因数有(),其中既是12的因数,又是40的因数的数有(),它们是12和40共同的因数,也就是12和40的公因数...。

这些公因数当中,最大的是(),它就是12和40的最大公因数.....。

4、9的倍数有( )(写出10个)12的倍数有( )(写出10个)5、上面这些数当中,9和12共同的倍数有(),它们就是9和12的公倍数...,其中最小的是(),它就是9和12的最小公倍数.....。

(二)求两个数最大公因数的方法整理.1。

要找到两个数的最大公因数,我们可以先依次分别写出两个数的因数,然后在这当中找到它们的公因数,其中最大的就是两个数的最大公因数。

例如:27的因数有:______________________,45的因数有:______________________;27和45的公因数有:____________,27和45的最大公因数是:__________。

2.对于一些有特殊关系的数,我们可以迅速判断它们的最大公因数。

(1)公因数只有1的关系:两个数如果是公因数只有1关系,它们的最大公因数就是1。

公因数只有1的关系一般有4种情况:①两个素数公因数只有1,如3和7 ②相邻两个自然数公因数只有1,如15和16③1和任何自然数公因数只有1,如1和18④其他,如4和15,就需要我们自己判断,看看它们是不是只有公因数1(2)倍数关系:如12和72,8和64,15和60等等。

两个数如果是倍数关系,它们的最大公因数就是其中较小的数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8和5 16和5 36和33最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和5 4和21 16和33最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 12和15 20和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 16和21 14和41最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和9 2和15 28和35最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和7 6和5 36和25最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 18和9 40和7最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 16和21 8和7最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 10和11 18和3最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和9 16和19 4和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和7 16和13 14和23最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和9 16和7 4和33最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和7 6和5 12和9最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 18和7 2和23最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和9 6和3 4和5最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 8和3 16和27最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和3 12和19 40和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 16和3 2和41最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和5 16和3 12和17最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和5 2和19 18和31最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和5 10和17 16和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和7 18和11 38和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和7 6和13 6和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数: 6和3 2和11 4和17最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和9 4和13 40和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和3 12和21 28和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和7 2和21 14和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和5 4和15 18和23最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和7 14和3 30和25最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 6和19 32和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和5 20和7 8和33最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和9 10和7 32和29最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和9 6和11 6和11最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和7 8和3 38和25最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和7 6和21 26和15最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和9 18和3 14和33最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和7 12和11 34和29最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和7 20和9 28和15最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 18和5 22和9最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:2和3 18和19 38和23最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 20和21 30和15最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和5 12和21 10和29最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和7 16和21 2和7最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和7 20和17 36和3最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和7 6和13 6和41最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 12和13 24和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和3 18和13 30和29最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和3 18和21 38和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 2和13 34和31最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和7 20和7 34和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数: 2和7 16和17 32和35最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和3 18和3 30和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和9 14和17 38和19最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:6和9 18和11 12和7最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 6和19 30和19最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和3 14和11 18和29最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和5 8和11 6和15最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 16和7 16和25最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 16和5 34和25最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和7 20和7 20和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和9 20和5 8和9最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 18和19 28和3最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 12和9 10和29最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:8和7 16和15 12和21最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和7 20和19 24和35最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 2和13 10和3最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:6和5 2和5 2和39最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和7 12和15 2和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和3 18和19 10和13最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和5 18和5 34和29最大公因数: 最大公因数: 最大公因数:最小公倍数: 最小公倍数: 最小公倍数:4和9 6和9 18和27最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:2和9 10和7 6和31最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:8和9 10和7 20和33最大公因数: 最大公因数: 最大公因数: 最小公倍数: 最小公倍数: 最小公倍数:4和5 6和9 22和39最大公因数: 最大公因数: 最大公因数:。

相关文档
最新文档