相似三角形(整理2019年11月)

合集下载

专题14 相似三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题14 相似三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题14.相似三角形一、单选题1.(2021·浙江温州市·中考真题)如图,图形甲与图形乙是位似图形,O 是位似中心,位似比为2:3,点A ,B 的对应点分别为点A ',B '.若6AB =,则A B ''的长为( )A .8B .9C .10D .152.(2021·四川遂宁市·中考真题)如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 23.(2021·重庆中考真题)如图,△ABC 与△BEF 位似,点O 是它们的位似中心,其中OE =2OB ,则△ABC 与△DEF 的周长之比是( )A .1:2B .1:4C .1:3D .1:94.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D5.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32BCD .26.(2021·重庆中考真题)如图,在平面直角坐标系中,将OAB 以原点O 为位似中心放大后得到OCD ,若()0,1B ,()0,3D ,则OAB 与OCD 的相似比是( )A .2:1B .1:2C .3:1D .1:37.(2020·广西贵港市·中考真题)如图,在ABC 中,点D 在AB 边上,若3BC =,2BD =,且BCD A ∠=∠,则线段AD 的长为( )A .2B .52C .3D .928.(2020·云南昆明市·中考真题)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC ),使得△ADE ∽△ABC (同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( ) A .4个 B .5个 C .6个 D .7个9.(2020·湖南益阳市·中考真题)如图,在矩形ABCD 中,E 是CD 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=B .45BAC ∠= C .12EF FB =D .2AD AB =10.(2020·湖南永州市·中考真题)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A .913B .25C .35D .6311.(2020·海南中考真题)如图,在矩形ABCD 中,6,10,AB BC ==点E F 、在AD 边上,BF 和CE 交于点,G 若12EF AD =,则图中阴影部分的面积为( ) A .25 B .30 C .35 D .4012.(2020·广西中考真题)如图,在ABC 中,120BC =,高60AD =,正方形EFGH 一边在BC 上,点,E F 分别在,AB AC 上,AD 交EF 于点N ,则AN 的长为( )A .15B .20C .25D .3013.(2020·海南中考真题)如图,在ABCD 中,10,15,AB AD BAD ==∠的平分线交BC 于点,E 交DC 的延长线于点,F BG AE ⊥于点G ,若8BG =,则CEF △的周长为( )A .16B .17C .24D .2514.(2020·云南中考真题)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 是CD 的中点,则DEO 与BCD △的面积的比等于( )A .12B .14C .16D .1815.(2020·山西中考真题)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

相似三角形的性质及应用(知识点串讲)(解析版)

相似三角形的性质及应用(知识点串讲)(解析版)

专题12 相似三角形的性质及应用知识网络重难突破知识点一相似三角形的性质①对应角相等,对应边成比例.②周长之比等于相似比;面积之比等于相似比的平方.③对应高线长之比、对应角平分线长之比、对应中线长之比都等于相似比.【典例1】(2020•衢州模拟)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.【点拨】由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.【点睛】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.【典例2】(2019秋•河北区期末)如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.【点拨】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)依据△ADE∽△ABC,利用相似三角形的周长之比等于对应高之比,即可得到结论.【解析】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC;(2)由(1)可得△ADE∽△ABC,又∵AG⊥BC于点G,AF⊥DE于点F,∴△ADE与△ABC的周长之比==.【点睛】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.【变式训练】1.(2020春•甘州区校级月考)两个相似三角形面积比是4:9,其中一个三角形的周长为24cm,则另一个三角形的周长是()cm.A.16 B.16或28 C.36 D.16或36【点拨】根据相似三角形的性质求出相似比,得到周长比,根据题意列出比例式,解答即可.【解析】解:∵两个相似三角形面积比是4:9,∴两个相似三角形相似比是2:3,∴两个相似三角形周长比是2:3,∵一个三角形的周长为24cm,∴另一个三角形的周长是16cm或36cm,故选:D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.2.(2019秋•慈溪市期末)如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°【点拨】先求出∠B,根据相似三角形对应角相等就可以得到.【解析】解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.【点睛】本题考查相似三角形的性质的运用,全等三角形的对应角相等,是基础知识要熟练掌握.3.(2019秋•奉化区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD,则S△ADE:S△EFC的值为()A.4:1 B.3:2 C.2:1 D.3:1【点拨】由题意可证四边形BDEF是平行四边形,可得BD=EF,AD=2EF,通过证明△ADE∽△EFC,可求解.【解析】解:∵AB=3BD,∴AD=2BD,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴BD=EF,∴AD=2EF,∵DE∥BC,EF∥AB,∴∠AED=∠C,∠FEC=∠A,∴△ADE∽△EFC,∴S△ADE:S△EFC的=()2=4:1,故选:A.【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.4.(2020•下城区模拟)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.3【点拨】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【解析】解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5.(2019•纳溪区模拟)如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.9【点拨】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【解析】解:延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDE,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=7.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.6.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【点拨】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解析】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.【点睛】本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.知识点二相似三角形的应用【典例3】(2019秋•解放区校级期中)一块直角三角形木板的面积为1.5m2,一条直角边AB为1.5m,怎样才能把它加工成一个无拼接的面积最大的正方形桌面?甲、乙两位木匠的加工方法如图所示,请你用所学的知识说明哪位木匠的方法符合要求(加工损耗不计,计算结果中的分数可保留)【点拨】结合相似三角形的判定与性质进而得出两个正方形的边长,进而求出面积比较得出答案.【解析】解:由AB=1.5m,S△ABC=1.5m2,可得BC=2m,由图甲,过点B作Rt△ABC斜边AC上的高,BH交DE于P,交AC于H.由AB=1.5m,BC=2m,得AC==2.5(m),由AC•BH=AB•BC可得:BH==1.2(m),设甲设计的桌面的边长为xm,∵DE∥AC,∴Rt△BDE∽Rt△BAC,∴=,即=,解得x=(m),由图乙,若设乙设计的正方形桌面边长为ym,由DE∥AB,得Rt△CDE∽Rt△CBA,∴=,即=,解得y=(m),∵x=,y=,∴x<y,即x2<y2,∴S正方形甲<S正方形乙,∴第二个正方形面积大【点睛】此题主要考查了相似三角形的应用,正确表示出正方形的边长是解题关键.【变式训练】1.(2019秋•嘉兴期末)如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【点拨】证明△CAB∽△CDE,然后利用相似比得到DE的长.【解析】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.2.(2019秋•鹿城区月考)如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4 m B.m C.5m D.m【点拨】根据已知易得△ABM∽△DCM,可得对应高BH与HD之比,易得MH∥AB,可得△MDH∽△ADB,利用对应边成比例可得比例式,把相关数值代入求解即可.【解析】解:∵AB∥CD,∴△ABM∽△DCM,∴===,(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴==,∴=,解得MH=.故选:B.【点睛】此题主要考查了相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到BH与HD的比.3.(2019秋•滨江区期末)如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=120cm,CD=600cm,则树AB的高度为420cm.【点拨】利用直角三角形DEF和直角三角形BCD相似求得BC的长,再加上AC的长即可求得树高AB.【解析】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC:EF=DC:DE,∵DE=30cm,EF=15cm,AC=120cm,CD=600cm,∴,∴BC=300cm,∴AB=AC+BC=120+300=420cm,故答案为:420.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.4.(2020•秦皇岛一模)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC 高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【点拨】解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解.【解析】解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出建筑物AB的高与小亮在路灯D下的影长,体现了方程的思想.巩固训练1.(2019秋•连州市期末)两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm【点拨】根据题意两个三角形的相似比是15:23,可得周长比为15:23,计算出周长相差8份及每份的长,可得两三角形周长.【解析】解:根据题意两个三角形的相似比是15:23,周长比就是15:23,大小周长相差8份,所以每份的周长是40÷8=5cm,所以两个三角形的周长分别为5×15=75cm,5×23=115cm.故选:C.【点睛】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.(2018秋•临安区期末)如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,H 在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为()A.B.C.D.【点拨】通过证明△AEF∽△ABC,可得,可求EH的长,即可求解.【解析】解:如图,记AD与EF的交点为M,∵四边形EFGH是矩形,∴EF∥BC,∴△AEF∽△ABC,∵AM和AD分别是△AEF和△ABC的高,∴∴∴EH=,∴EF=,∴矩形EFGH的周长=2×(+)=故选:C.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,灵活运用相似三角形的性质是本题的关键.3.(2019秋•庐阳区校级期中)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:4,则S△DOE:S△AOC的值为()A.B.C.D.【点拨】由已知条件易求BE:BC=1:5;证明△DOE∽△AOC,得到DE:AC的值,由相似三角形的性质即可解决问题.【解析】解:∵S△BDE:S△CDE=1:4,∴BE:EC=1:4,∴BE:BC=1:5,∵DE∥AC,∴△DOE∽△AOC,∴DE:AC=BE:BC=1:5,∴S△DOE:S△AOC=()2=,故选:D.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:5是解决问题的关键.4.(2020•上城区一模)如图,△ABC中,D,E两点分别在边AB,BC上,若AD:DB=CE:EB=3:4,记△DBE的面积为S1,△ADC的面积为S2,则S1:S2=16:21.【点拨】过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,根据相似三角形的性质与判定即可求出答案.【解析】解:过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,∴EF∥CG,∴△BEF∽△BCG,∴,∵CE:EB=3:4,∴,∴,∴==,∴S1:S2=16:21,故答案为:16:21.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5.(2019秋•江干区期末)如图,已知▱ABCD中,E是BC的三等分点,连结AE与对角线BD交于点F,则S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11.【点拨】由E是BC的三等分点,得到=,根据平行四边形的性质得到AD∥BC,AD=BC,根据相似三角形的性质得到==设S△BEF=k,S△ABF=3k,S△ADF=9k,求得S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,得到S四边形CDFE=12k﹣k=11k,于是得到结论.【解析】解:∵E是BC的三等分点,∴=,在▱ABCD中,∵AD∥BC,AD=BC,∴△ADF∽△EBF,∴==,∴S△BEF:S△ABF:S△ADF=1:3:9,设S△BEF=k,S△ABF=3k,S△ADF=9k,∴S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,∴四边形CDFE=12k﹣k=11k,∴S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11,故答案为:1:3:9:11.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质以及面积的计算方法;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.6.(2020•晋安区一模)如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8m.【点拨】根据题意抽象出相似三角形,然后利用相似三角形的对应边的比相等列式计算即可.【解析】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.【点睛】本题考查了相似三角形的知识,解题的关键是根据实际问题抽象出相似三角形,难度不大.7.(2019秋•竞秀区期末)如图,路灯距地面的高度PO=8米,身高1.6米的小明在点A处测量发现,他的影长AM=2.4米,则AO=9.6米;小明由A处沿AO所在的直线行走8米到点B时,他的影子BN 的长度为0.4米.【点拨】如图,设OA=x,BN=y.利用相似三角形的性质构建方程组即可解决问题.【解析】解:如图,设OA=x,BN=y.∵EB∥OP∥F A,∴△MAF∽△MOP,△NBE∽△NOP,∴=,=,∴=,=,解得x=9.6,y=0.4,故答案为9.6,0.4.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.8.(2019秋•开江县期末)如图,学校操场旁立着一杆路灯(线段OP).小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度.【点拨】根据相似三角形的性质即可得到结论.【解析】解:由于BF=DB=2m,即∠D=45°,∴DP=OP=灯高.在△CEA与△COP中,∵AE⊥CP,OP⊥CP,∴AE∥OP.∴△CEA∽△COP,∴.设AP=xm,OP=hm,则,①,DP=OP=2+4+x=h,②联立①②两式,解得x=4,h=10.∴路灯有10m高.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.9.(2019秋•余杭区期末)如图,在△ABC中,点D,E分别在边AC,AB上且AE•AB=AD•AC,连结DE,BD.(1)求证:△ADE∽△ABC.(2)若点E为AB中点,AD:AE=6:5,△ABC的面积为50,求△BCD的面积.【点拨】(1)由已知得出AE:AC=AD:AB,由∠A=∠A,即可得出:△ADE∽△ABC.(2)设AD=6x,则AE=5x,AB=10x,由已知求出AC==x,得出CD=AC﹣AD=x,得出=,由三角形面积关系即可得出答案.【解析】(1)证明:∵AE•AB=AD•AC,∴AE:AC=AD:AB,∵∠A=∠A,∴△ADE∽△ABC.(2)解:∵点E为AB中点,∴AE=BE,∵AD:AE=6:5,∴设AD=6x,则AE=5x,AB=10x,∵AE•AB=AD•AC,∴AC===x,∴CD=AC﹣AD=x,∴=,∵△ABC的面积为50,∴△BCD的面积=×50=14.【点睛】本题考查了相似三角形的判定与性质、三角形面积关系等知识;熟练掌握相似三角形的判定与性质是解题的关键.10.(2018秋•江干区期末)如图,在菱形ABCD中,点E在BC边上(不与点B、C重合),连接AE、BD 交于点G.(1)若AG=BG,AB=4,BD=6,求线段DG的长;(2)设BC=kBE,△BGE的面积为S,△AGD和四边形CDGE的面积分别为S1和S2,把S1和S2分别用k、S的代数式表示;(3)求的最大值.【点拨】(1)证明△BAG∽△BDA,利用相似比可计算出BG=,从而得到DG的长;(2)先证明△ADG∽△EBG,利用相似三角形的性质得=()2=k2,==k,所以S1=k2S,根据三角形面积公式得到S△ABG=,再利用菱形的性质得到S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)由于==1+﹣,然后根据二次函数的性质解决问题.【解析】解:(1)∵AG=BG,∴∠BAG=∠ABG,∵四边形ABCD为菱形,∴AB=AD,∴∠ABD=∠ADB,∴∠BAG=∠ADB,∴△BAG∽△BDA,∴=,即=,∴BG=,∴DG=BD﹣BG=6﹣=;(2)∵四边形ABCD为菱形,∴BC=AD=kBE,AD∥BC,∵AD∥BE,∴∠DAE=∠BEA,∠ADG=∠BEG∴△ADG∽△EBG,∴=()2=k2,==k,∴S1=k2S,∵==k,∴S△ABG=,∵△ABD的面积=△BDC的面积,∴S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)∵==1+﹣=﹣(﹣)2+,∴的最大值为.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.注意相似三角形面积的比等于相似比的平方.也考查了菱形的性质.。

北师大版九年级数学上册 相似三角形解答题培优专题(含答案)

北师大版九年级数学上册  相似三角形解答题培优专题(含答案)

2019-2020相似三角形解答题培优专题(含答案)一、解答题1.如图,在Rt ABC ∆中,90B ︒∠=,6cm AB =,8cm BC =,点P 由点A 出发沿AB 方向向终点B 以每秒1cm 的速度匀速移动,点Q 由点B 出发沿BC 方向向终点C 以每秒2cm 的速度匀速移动,速度为2cm /s .如果动点同时从点A ,B 出发,当点P 或点Q 到达终点时运动停止.则当运动几秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似?2.如图(1),已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形; ②推断:AGBE的值为 : (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由: (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图(3)所示,延长CG 交AD 于点H .若AG=6,GH=22,则BC= .3.如图1,在Rt ABC 中,90,4,2B AB BC ∠︒===,点,D E 分别是边,BC AC 的中点,连接DE .将CDE △绕点C 逆时针方向旋转,记旋转角为α.1()问题发现①当0α=o 时,AE BD = ;②当180α=o 时,AEBD= . 2()拓展探究 试判断:当0360α︒≤︒<时,AEBD的大小有无变化?请仅就图2的情形给出证明. 3()问题解决 CDE △绕点C 逆时针旋转至,,A B E 三点在同一条直线上时,求线段BD 的长.4.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α︒=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BDCP的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时AD CP的值.5.如图1,在△ABC中,BA=BC,点D,E分别在边BC、AC上,连接DE,且DE=DC.(1)问题发现:若∠ACB=∠ECD=45°,则AEBD=.(2)拓展探究,若∠ACB=∠ECD=30°,将△EDC绕点C按逆时针方向旋转α度(0°<α<180°),图2是旋转过程中的某一位置,在此过程中AEBD的大小有无变化?如果不变,请求出AEBD的值,如果变化,请说明理由.(3)问题解决:若∠ACB=∠ECD=β(0°<β<90°),将△EDC旋转到如图3所示的位置时,则AEBD的值为.(用含β的式子表示)6.在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t 的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm. (2)当△PBQ 的面积等于3 时,求t 的值.(3) (如图2),若E 为边CD 中点,连结EQ 、AQ.当以A 、B 、Q 为顶点的三角形与△EQC 相似时,直接写出满足条件的t 的所有值.7.如图l ,在ABCD 中,点M ,N 分别在边AD 和BC 上,点E ,F 在对角线BD 上,且AM CN =,12BE DF BD =<.(1)求证:四边形MENF 是平行四边形: (2)若6AB =,10BC =,8BD =.①当四边形MENF 是菱形时,AM 的长为______; ②当四边形MENF 是正方形时,BE 的长为______; ③当四边形MENF 是矩形且6AM =时,BE 的长为______.8.已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.9.已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如果AFBF=DFAD.求证:EF=EP.10.如图,在△ C中,过点C作CD,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.求证:四边形AFCD是平行四边形.若, C,,求AB的长.11.已知:如图,点A .F ,E .C 在同一直线上,AB ∥DC ,AB=CD ,∠B=∠D . (1)求证:△ABE ≌△CDF ;(2)若点E ,G 分别为线段FC ,FD 的中点,连接EG ,且EG=5,求AB 的长.12.如图,直线 AB 与坐标轴交与点(0,6),(8,0)A B , 动点P 沿路线O B A →→运动.(1)求直线AB 的表达式;(2)当点P 在OB 上,使得AP 平分OAB ∠时,求此时点P 的坐标;13.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2) 求证:21=2EG AF GF ⋅; (3)若AG=6,EG=25,求BE 的长.14.如图,在△ABC 中.AC=BC=5.AB=6.CD 是AB 边中线.点P 从点C 出发,以每秒2.5个单位长度的速度沿C-D-C 运动.在点P 出发的同时,点Q 也从点C 出发,以每秒2个单位长度的速度沿边CA 向点A 运动.当一个点停止运动时,另一个点也随之停止,设点P 运动的时间为t 秒.(1)用含t 的代数式表示CP 、CQ 的长度. (2)用含t 的代数式表示△CPQ 的面积.(3)当△CPQ 与△CAD 相似时,直接写出t 的取值范围.15.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B.C ,且AB=8,DC=6,BC=14,BC 上是否存在点P 使△ABP 与△DCP 相似?若有,有几个?并求出此时BP 的长,若没有,请说明理由.16.如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ 于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB ,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.17.如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF ⊥AE 于 F .(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点 P 在射线 AD 上运动时,设 PA =x ,是否存在实数 x ,使以 P ,F ,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.18.已知:如图,△ABC 是等边三角形,点D 、E 分别在BC ,AC 且BD =CE ,AD 、BE 相交于点M ,求证:(1)△AME ∽△BAE ;(2)BD 2=AD×DM . 19.△ABC 中,AB =AC =5,BC =6,过AB 上一点D 作DE‖ C ,D ‖ C 分别交AC 、BC 于点E 和F(1)如图1,证明:△ADE∽△DBF;(2)如图1,若四边形DECF是菱形,求DE的长;(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.20.如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.(1)求证:△EAB∽△ABC;(2)若AD=2,求AB的长;(3)在(2)的条件下,求DF的长.21.如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC 于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=6,F为AM的中点,求DN的长;(3)若AB =12,DE =1,BM =5,求DN 的长.22.如图,在△ABC 中,AD 平分∠BAC ,按如下步骤作图:第一步,分别以点A 、D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点M 、N ; 第二步,连接MN 分别交AB 、AC 于点E 、F ; 第三步,连接DE 、DF .若BD =6,AF =4,CD =3,求线段BE 的长.23.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==, 证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD 的面积为 .24.正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:△ABM∽△MCN;(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.25.如图,在△ABC中,AB=8,BC=16,点P从点A开始沿AB向点B以2m/s的速度移动,点Q从点B开始沿BC向点C以4m/s的速度移动,如果P,Q分别从AB,BC同时出发,经过几秒△PBQ与△ABC相似?26.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?27.如图,在Rt△ABC中,∠ACB=90°,BC mAC n,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=;(2)数学思考:①如图2,若点E在线段AC上,则DEDF=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.28.如图,已知△ABC是边长为6cm的等边三角形,动点P,Q同时从B,A两点出发,分别沿BA,AC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)如图①,当t为何值时,AP=3AQ;(2)如图②,当t为何值时,△APQ为直角三角形;(3)如图③,作QD∥AB交BC于点D,连接PD,当t为何值时,△BDP与△PDQ相似?29.如图,在△ABC中,∠C=90°,点D是边AB上的动点,过点D作DE∥BC交AC于E,过E作EF∥AB交BC 于F,连结DF.(1)若点D是AB的中点,证明:四边形DFEA是平行四边形;(2)若AC=8,BC=6,直接写出当△DEF为直角三角形时AD的长.30.如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.(1)求证:△ADC∽△ACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD=4,AB=6,求的值.31.(1)观察发现:如图1,在Rt△ABC中,∠B=90°,点D在边AB上,过D作DE∥BC交AC于E,AB=5,AD =3,AE=4.填空:①△ABC与△ADE是否相似?(直接回答);②AC=;DE=.(2)拓展探究:将△ADE绕顶点A旋转到图2所示的位置,猜想△ADB与△AEC是否相似?若不相似,说明理由;若相似,请证明.(3)迁移应用:将△ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.32.如图1,一次函数y=12x+4与x轴、y轴分别交于A,B两点.P是x轴上的动点,设点P的横坐标为n.(1)当△BPO∽△ABO时,求点P的坐标;(2)如图2,过点P的直线y=2x+b与直线AB相交于C,求当△P AC的面积为20时,点P的坐标;(3)如图3,直接写出当以A,B,P为顶点的三角形为等腰三角形时,点P的坐标.33.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,线段OA,OC的长是一元二次方程x2-12x+36=0的两根,BC=45,∠BAC=45°.(1)直接写出点A的坐标________点C的坐标________;(2)若反比例函数y=kx的图象经过点B,求k的值;(3)如图过点B作BD⊥y轴于点D;在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,直接写出满足条件的点P的坐标;若不存在,请说明理由.34.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6 2,CE=4,则DE的长为______.35.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A、C的横坐标是一元二次方程x2+2x-3=0的两根(AO>OC),直线AB与y轴交于D,D点的坐标为9 04⎛⎫ ⎪⎝⎭,(1)求直线AB的函数表达式;(2)在x轴上找一点E,连接EB,使得以点A、E、B为顶点的三角形与△ABC相似(不包括全等),并求点E的坐标;(3)在(2)的条件下,点P、Q分别是AB和AE上的动点,连接PQ,点P、Q分别从A、E同时出发,以每秒1个单位长度的速度运动,当点P到达点B时,两点停止运动,设运动时间为t秒,问几秒时以点A、P、Q为顶点的三角形与△AEB相似.参考答案1.当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似 【解析】 【分析】设t 秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似;则PB =(6−t )cm ,BQ =2tcm ,分两种情况:①当PB BQAB BC=时;②当BP BQBC BA=时;分别解方程即可得出结果. 【详解】解:设(04)t t <…秒后,以点Q ,B ,P 为顶点的三角形与ABC ∆相似,则(6)cm PB t =-,2cm BQ t =.∵90B ︒∠=,∴分两种情况讨论:①当PBQ ABC ∆∆∽时,PB BQ AB BC =,即6268t t-=,解得 2.4t =; ②当QBP ABC ∆∆∽时,BP BQBC BA=,即6286t t -=,解得1811t =. 综上所述,当运动2.4秒或1811秒时,以点Q ,B ,P 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的判定方法、解方程;熟练掌握相似三角形的判定方法,分两种情况进行讨论是解决问题的关键.2.(1)①四边形CEGF 是正方形;②2;(2)线段AG 与BE 之间的数量关系为AG=2BE ;(3)35 【解析】 【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CG2CE=、GE //AB ,利用平行线分线段成比例定理可得;(2)连接CG ,只需证ACG ∽△BCE 即可得; (3)证AHG ∽CHA 得AG GH AH AC AH CH ==,设BC CD AD a ===,知AC 2a =,由AG GHAC AH=得2AH a 3=、1DH a 3=、10CH a 3=,由AG AH AC CH =可得a 的值. 【详解】(1)①∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°, ∵GE ⊥BC 、GF ⊥CD , ∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形; ②由①知四边形CEGF 是正方形, ∴∠CEG=∠B=90°,∠ECG=45°,∴2CGCE=,GE ∥AB , ∴2AG CGBE CE==, 故答案为:2; (2)连接CG ,由旋转性质知∠BCE=∠ C =α, 在Rt △CEG 和Rt △CBA 中,CE CG =22、CB CA =22, ∴CG CE =2CACB=, ∴△ACG ∽△BCE ,∴2AG CABE CB==, ∴线段AG 与BE 之间的数量关系为AG=2BE ; (3)∵∠CEF=45°,点B 、E 、F 三点共线, ∴∠BEC=135°, ∵△ACG ∽△BCE , ∴∠AGC=∠BEC=135°, ∴∠AGH=∠CAH=45°, ∵∠CHA=∠AHG , ∴△AHG ∽△CHA , ∴AG GH AHAC AH CH==, 设BC=CD=AD=a ,则AC=2a ,则由AG GHAC AH=得6222AHa=,∴AH=23 a,则DH=AD﹣AH=13a,CH=22CD DH+=103a,∴由AG AHAC CH=得2632103aaa=,解得:a=35,即BC=35,故答案为:35.【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.3.(1)①5;②5;(2) 5;(3) 35 5【解析】【分析】(1)①根据勾股定理和三角形中位线的性质,即可得到答案;②根据平行线的性质即可得到答案;(2)根据相似三角形的性质和判定即可得到答案;(3) 根据勾股定理即可得到答案.【详解】解:()1①当0α︒=时,Rt ABC Q V 中,90B ∠︒=,22222425AC AB BC ∴++===,点,D E 分别是边,BC AC 的中点,115122AE AC BD BC ∴==,==,5AEBD∴=. ②如图1﹣1中,当180α︒=时, 可得//AB DE ,AC BCAE BD =Q , 5AE ACBD BC∴==. 故答案为:55①,②. 2()如图2,当0360α︒≤︒<时,AEBD的大小没有变化, ECD ACB ∠∠Q =, ECA DCB ∴∠∠=,又5EC ACDC BC==Q, ECA DCB ∴V V ∽,5AE ECED DC∴==. ()3①如图3﹣1中,当点E 在AB 的延长线上时,在Rt BCE V 中,5,2CE BC ==,22541BE EC BC ∴--===,5AE AB BE ∴+==,5AEBD=Q, 555BD ∴==.②如图3﹣2中,当点E 在AB 线段上时,易知1,413BE AE -===, 5AEBD=Q, 355BD ∴=, 综上所述,满足条件的BD 的长为355. 【点睛】本题考查勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定,解题的关键熟练掌握勾股定理、三角形中位线的性质、平行线的性质和相似三角形的性质和判定. 4.(1)1,60︒(2)45°(3)22-,22+ 【解析】 【分析】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()CAP BAD SAS ∆≅∆,即可解决问题. (2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明DABPAC ∆∆,即可解决问题.(3)分两种情形:①如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD DC =即可解决问题.②如图3﹣2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题.【详解】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ︒∠=∠=,CAP BAD ∴∠=∠,CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆, PC BD ∴=,ACP ABD ∠=∠, AOC BOE ∠=∠,60BEO CAO ︒∴∠=∠=,1BDPC∴=,线BD 与直线CP 相交所成的较小角的度数是60︒, 故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ︒∠=∠=, PAC DAB ∴∠=∠,2AB ADAC AP ==, DABPAC ∴∆∆,PCA DBA ∴∠=∠,2BD ABPC AC==, EOC AOB ∠=∠,45CEO OAB ︒∴∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图3﹣1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,EF AB ∴∥,45∴∠=∠=,EFC ABC︒PAO︒∠=,45∴∠=∠,PAO OFH∠=∠,POA FOH∴∠=∠,H APO=,90∠=,EA ECAPC︒∴==,PE EA ECEPA EAP BAH∴∠=∠=∠,∴∠=∠,H BAH∴=,BH BA∠=∠=,ADP BDC︒45∴∠=,90ADB︒∴⊥,BD AHDBA DBC︒∴∠=∠=,22.5ADB ACB︒∠=∠=,90∴A,D,C,B四点共圆,DCA ABD︒∠=∠=,DAC DBC︒∠=∠=,22.522.5∴∠=∠=,22.5DAC DCA︒DA DC ∴=,设=AD a ,则DC AD a ==,22PD a =, 2222ADa CPa a∴==-+c .如图3﹣2中,当点P 在线段CD 上时,同法可证:=DA DC ,设=AD a ,则CD AD a ==,22PD a =,22PC a a ∴=-, 2222ADa PCa a∴==+-.【点睛】本题属于相似形综合题,考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.5.(1)2;(2)此过程中AE BD 的大小有变化,3AEBD=(3)2 osβ 【解析】 【分析】1)如图1,过E 作EF ⊥AB 于F ,根据等腰三角形的性质得到∠A=∠C=∠DEC=45°,于是得到∠B=∠EDC=90°,推出四边形EFBD 是矩形,得到EF=BD ,推出△AEF 是等腰直角三角形,根据等腰直角三角形的性质得到结论; (2)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=30°,根据相似三角形的判定和性质即可得到结论; (3)根据等腰三角形的性质得到∠ACB=∠CAB=∠ECD=∠CED=β,根据相似三角形的性质得到BC ACDC CE=,即BC DCAC EC =,根据角的和差得到∠ACE=∠BCD ,求得△ACE ∽△BCD ,证得AE AC BD BC=,过点B 作BF ⊥AC 于点F ,则AC=2CF ,根据相似三角形的性质即可得到结论. 【详解】解:(1)如图1,过E 作EF ⊥AB 于F ,∵BA=BC ,DE=DC ,∠ACB=∠ECD=45°, ∴∠A=∠C=∠DEC=45°, ∴∠B=∠EDC=90°, ∴四边形EFBD 是矩形, ∴EF=BD , ∴EF ∥BC ,∴△AEF 是等腰直角三角形,∴2BD EFAE AE==, 故填:2,(2)此过程中AEBD的大小有变化, 由题意知,△ABC 和△EDC 都是等腰三角形, ∴∠ACB=∠CAB=∠ECD=∠CED=30°, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD , ∴△ACE ∽△BCD ,∴AE ACBD BC=, 在△ABC 中,如图2,过点B 作BF ⊥AC 于点F ,则AC=2CF ,在Rt △BCF 中,3cos302CF BC BC ︒=⋅=, ∴AC=3BC .∴3AE ACBD BC==; (3)由题意知,△ABC 和△EDC 都是等腰三角形,且∠ACB=∠ECD=β, ∴∠ACB=∠CAB=∠ECD=∠CED=β, ∴△ABC ∽△EDC ,∴BC AC DC CE =,即BC DCAC EC=, 又∠ECD+∠ECB=∠ACB+∠ECB , ∴∠ACE=∠BCD ,∴△ACE∽△BCD,∴AE AC BD BC=,在△ABC中,如图3,过点B作BF⊥AC于点F,则AC=2CF,在Rt△BCF中,C = C• osβ,∴ C=2 C osβ.∴AE ACBD BC==2 osβ,故答案为2 osβ.【点睛】本题考查了相似形的综合题、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数、相似三角形的判定和性质等知识,解题的关键是灵活运用相似三角形的判定和性质解决问题,属于中考常考题型.6.(1)PB=4-t;QB=2t;CQ=8-2t;(2)1或3;(3)或或.【解析】【分析】(1)根据题意写出结果即可;(2)利用三角形的面积公式列方程求解即可;(3)根据相似三角形的性质,分两种情况列式求解即可.【详解】(1)由题意得,①PB=4-t;②QB=2t;③CQ=8-2t;(2)∵△PBQ的面积等于3,∴2t(4-t)=3×2,解之得,t=1或3;(3)当△ABQ~△QCE时,,∴,解之得,x1=,x2=;当△ABQ~△ECQE时,,∴,解之得,t=.∴满足条件的t的所有值为或或.【点睛】本题考查了列代数式,一元二次方程的应用,相似三角形的性质及分类讨论的数学思想,熟练掌握分类讨论的数学思想是解答本题的关键. 相似三角形的性质:如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.7.(1)证明见解析,(2)①5.②1.③41045 .【解析】【分析】(1)如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .利用对角线互相平分的四边形是平行四边形证明即可.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.利用平行线等分线段定理即可解决问题.②在①的基础上,OE OM =时,四边形MENF 是正方形.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .当OE OF OM ON ===时,四边形MENF 是矩形. 【详解】(1)证明:如图1中,设BD 的中点为O .连接AC ,AN ,CM ,MN .四边形ABCD 是平行四边形, AC ∴与BD 互相平分且交于点O ,//AMCN ,AM CN =,∴四边形ANCM 是平行四边形,AC ∴与MN 互相平分且交于点O ,OM ON ∴=,OB OD =,BE DF =,OE OF ∴=,∴四边形MENF 是平行四边形.(2)①如图21-中,连接MN 交BD 于点O ,当MN BD ⊥时,四边形MENF 是菱形.6AB CD ==,10AD BC ==,8BD =, 222AD AB BD ∴=+,90ABD ∴∠=︒,90MOF ABD ∴∠=∠=︒,//OM AB ∴, OB OD =, 5AM DM ∴==.②在①的基础上,满足OM OE =时,四边形MENF 是正方形, 易知132OM AB ==, 3OE OF ∴==, 8BD =,1·(86)12BE DF ∴==-=.③如图32-中,连接MN 交BD 于点O ,作MH BD ⊥于H .//MH AB ,:::MH AB DM DA DH DB ∴== :64:10:8MH DH ∴==,125MH ∴=,165DH =, 164455OH ∴=-=, 224105OM MH OH ∴=+=, 当OE OF OM ON ===时,四边形MENF 是矩形,1810410(8)4255BE DF ∴==-=-. 故答案为:5,1,41045-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,矩形的判定,菱形的判定,正方形的判定,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.(1)y =34x +94;(2)D 点位置见解析,D (134,0);(3)符合要求的m 的值为12536或259.【解析】 【分析】(1)先根据A(−3,1),C(1,0),求出AC进而得出BC=3求出B点坐标,利用待定系数法求出直线AB的解析式即可;(2)运用相似三角形的性质就可求出点D的坐标;(3)由于△APQ与△ADB已有一组公共角相等,只需分△APQ∽△ABD和△APQ∽△ADB两种情况讨论,然后运用相似三角形的性质建立关于m的方程,就可解决问题.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵BC=34 AC,∴BC=34×4=3,∴B(1,3),设直线AB的解析式为y=kx+b,∴303k bk b-+=⎧⎨+=⎩,∴3494kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=34x+94;(2)若△ADB与△ABC相似,过点B作BD⊥AB交x轴于D,∴∠ABD=∠ACB=90°,如图1,此时ABAC=ADAB,即AB2= C• D.∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴25=4AD,∴AD=25 4,∴OD=AD﹣AO=254﹣3=134,∴点D的坐标为(134,0);(3)∵AP=DQ=m,∴AQ=AD﹣QD=254﹣m.Ⅰ、若△APQ∽△ABD,如图2,则有APAB=AQAD,∴ P• D= • Q,∴254m=5(254﹣m),解得m=25 9;Ⅱ、若△APQ∽△ADB,如图3,则有APAD=AQAB,∴ P• = D• Q,∴5m=254(254﹣m),解得:m=125 36,综上所述:符合要求的m的值为12536或259.【点睛】此题是相似形综合题,主要考查了是待定系数法,相似三角形的判定与性质、勾股定理等知识,也考查了分类讨论的数学思想,属于中档题,解本题的关键是根据相似建立方程求解.9.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用正方形的性质得AB=AD ,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE ≌△DAF ,则BE=AF ,然后利用等线段代换可得到结论;(2)利用AF DF BF AD =和AF=BE 得到BE BFDF AD=,则可判定Rt △BEF ∽Rt △DFA ,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP .【详解】(1)∵四边形ABCD 为正方形,∴AB=AD ,∠BAD=90°, ∵BE ⊥AP ,DF ⊥AP , ∴∠BEA=∠AFD=90°, ∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3, 在△ABE 和△DAF 中12BEA AFDAB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DAF , ∴BE=AF ,∴EF=AE ﹣AF=AE ﹣BE ;(2)如图,∵AF DFBF AD=, 而AF=BE ,∴BE DFBF AD =, ∴BE BFDF AD=, ∴Rt △BEF ∽Rt △DFA ,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关的性质与定理、正确添加辅助线是解题的关键.10.证明见解析;.【解析】【分析】由E是AC的中点知 E CE,由CD知 E CDE,据此根据“ S”即可证△ E ≌△CED,从而得CD,结合CD即可得证;证△∽△ CD得,据此求得CD,由CD及可得答案.C CD【详解】E是AC的中点,E CE , CD , E CDE , 在△ E 和△CED 中, ,△ E ≌△CED S , CD ,又 CD ,即 CD , 四边形AFCD 是平行四边形; CD , △ ∽△ CD ,CCD,即CD,解得:CD,四边形AFCD 是平行四边形, CD,. 【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.11.(1)证明见解析;(2)AB=10.【解析】分析:(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.详解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中===,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.点睛:此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.12.(1)y=34x+6;(2)P(3,0).【解析】【分析】1)直接利用待定系数法即可得出结论;(2)方法1、利用角平分线判断出BC=AB=10,进而判断出△AOP∽△CBP,求出OP,即可得出结论;方法2、先判断出OP=PM,设OP=m,得出PM=m,BP=8-m,再求出AM=OA=6,进而得出BM=AB-AM=4,最后用勾股定理建立方程求解即可得出结论.【详解】解:(1)设直线AB的解析式为y=kx+b,∵A(0,6),B(8,0),∴680bk b⎧⎨+⎩==,∴346kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=34-x+6;(2)方法1、如图1,∵A(0,6),B(8,0),∴OA=6,OB=8,AB=10,过点B作BC∥OA交AP的延长线于C,∴∠C=∠OAP,∵AP平分∠OAB,∴∠OAP=∠BAP,∴∠C=∠BAP,∴BC=AB=10,∵BC∥OA,∴△AOP∽△CBP,∴OP OA=BP BC=35,∴OP3=OB8,∴OP=3,∴P(3,0);方法2、如图3,过点P作PM⊥AB于M,∵AP是∠OAB的角平分线,∴OP=PM,设OP=m,∴PM=m,∴BP=OB-OP=8-m易知,△AOP≌△AMP,∴AM=OA=6,∴BM=AB-AM=4,在Rt△BMP中,根据勾股定理得,m2+16=(8-m)2,∴m=3,∴P(3,0).故答案为:(1)y=34x+6;(2)P(3,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的定义,相似三角形的判定和性质,正确作出辅助线构造出相似三角形是解题的关键.13.(1)证明见解析;(2)证明见解析;(3)BE的长为125 5.【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=12GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明D 2= O• ,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.“点睛”本题考查的是四边形与三角形的综合应用,解题应用了矩形的性质,菱形的性质和判定、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.14.(1)当0<t≤85时,CP=2.5t,CQ=2t;当8552t<≤时,CP=8-2.5t,CQ=2t.(2)当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=232t;当8552t<≤时,S△CPQ=12•PC•sin∠ CD•CQ=1 2×(8-2.5t)×35×2t=232425t t-+.(3)0<t≤85或80t41=s【解析】【分析】(1)分两种情形:当0<t≤85时,当85<t52≤时,分别求解即可.(2)分两种情形:当0<t≤85时,当85<t≤52时,根据S△CPQ=12•PC•sin∠ CD•CQ分别求解即可.(3)分两种情形:当0<t≤85,可以证明△QCP∽△DCA,当85<t52≤,∠QPC=90°时,△QPC∽△ADC,构建方程求解即可.【详解】解:(1)∵CA=CB,AD=BD=3,∴CD⊥AB,∴∠ADC=90°,∴CD=22AC AD-=2253-=4,当0<t≤85时,CP=2.5t,CQ=2t,当85t52<≤时,CP=8-2.5t,CQ=2t.(2)∵sin∠ACD=ADAC=35,∴当0<t≤85时,S△CPQ=12•PC•sin∠ CD•CQ=12×2.5t×35×2t=23t2当85t52<≤时,S△CPQ=12•PC•sin∠ CD•CQ=12×(8-2.5t)×35×2t=2324t t25-+.(3)①当0<t≤85时,∵CP=2.5t,CQ=2t,∴CQCP=45,∵CDCA=45,∴CQ CD CP CA=,∵∠PCQ=∠ACD,∴△QCP ∽△DCA ,∴0<t≤85时,△QCP ∽△DCA , ②当85t 52<≤时,当∠QPC=90°时,△QPC ∽△ADC , ∴CP CQ CD CA =, ∴8 2.5t 2t 45-=, 解得:80t 41=, 综上所述,满足条件的t 的值为:0<t≤85或80t 41=s 时,△QCP ∽△DCA . 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【解析】 【分析】设BP=x ,表示出PC=14-x ,然后分BP 与CP 是对应边,BP 与DC 是对应边两种情况,利用相似三角形对应边成比例列式求解即可. 【详解】设BP=x ,则PC=14−x ,BP 与CP 是对应边时,=BP ABCP DC, 即8146x x =-,解得x=8,BP 与DC 是对应边时,=BP ABDC CP, 即8=614x x-, 解得x1=6,x2=8,所以,BC 上存在两个点P ,BP=6或8使△ABP 与△DCP 相似. 【点睛】此题考查相似三角形的判定,解题关键在于根据相似三角形的性质对应边成比例列出方程. 16.(1)DPE QDA ∽,见解析;(2)2DP =或5DP =. 【解析】 【分析】(1)通过等角转换,可得出三角相等,即可判定DPE QDA ∽;(2)首先根据已知条件求出DQ ,由三角形相似的性质,列出方程,即可得解,注意分两种情况讨论. 【详解】(1)DPE QDA ∽根据已知条件,得∠DAQ=∠PED=90° 又∵∠ADQ+∠PDE=∠DPE+∠PDE=90° ∴∠ADQ =∠DPE ,∠AQD=∠PDE ∴DPE QDA ∽(2)由已知条件,得22224225DQ AD AQ =+=+=设DE 为x ∵DPE QDA ∽∴DA PEAQ DE= ∴PE 为2x ∵PEQADQ △△∴分两种情况:①AQ DAPE EQ = 即24225x x=- 解得255x =∴()2222DP x x =+=②AQ DAEQ PE= 即24225xx =- 解得5x =()2225DP x x =+=【点睛】此题主要考查三角形相似的性质,熟练掌握,即可解题.17.(1)见解析;(2)存在,x的值为2或5.【解析】【分析】(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.【详解】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.如图,连接PE,DE,∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.如图,延长AD至点P,作PF⊥AE于点F,连接PE, 若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=22=25AB BE,∴EF=12AE=5.∵5==225,PE EF PEAE EB,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【点睛】此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线. 18.(1)见解析;(2)见解析.【解析】【分析】。

《相似三角形的判定》完整版PPT1

《相似三角形的判定》完整版PPT1

1.对应线段是指被两条平行线所截得的线段,如上 图中的 A1A2 与B1B2 是对应线段,A2A3与 B2B3是对应 线段,A1A3 与 B1B3 是对应线段. 2.对应线段成比例是指同一条直线上的两条线段的比,等 于另一条直线上与它们对应的线段的比,书写时,要把对 应线段写在对应的位置上.
3.基本事实中的“所得的对应线段”是指被截直线上的线段,与 这组平行线上的线段无关.
定理:平行于三角形一边的直线和其他两边相交,所构 成的三角形与原三角形相似. 几何语言:如下图所示,∵DE//BC,∴△ADE∽△ABC.
定理中“和其他两边相交”是指和其他两边所在的直线相交.
三角形相似的两种常见类型:
A
D
E
B
C
B
“A ”型
D
E
A
C
“X ” 型
巩固新知
如图,AB//EF//DC,AD//BC,EF 与 AC 交于点 G,则图
平行线 DE,交 AC 于点 E.
A
D
E
B
C
△ADE 与△ABC 的三个角分别相等吗?
如图,在△ABC 中,D 为 AB 上任意一点,过点 D 作 BC 的
平行线 DE,交 AC 于点 E.
A
D
E
B
C
分别度量△ADE 与△ABC 的边长,它们的边长 是否对应成比例?
△ADE 与△ABC 之间有什么关系?平行移动DE 的位置,结论还成立吗?
F
∠A=∠D,∠B=∠E,∠C=∠F,
C
AB AC BC k,
DE DF EF
A
BD
E
即三个角分别相等,三条边成比例,我们就说△ABC 与
△DEF 相似,记作△ABC∽△DEF,△ABC 和△DEF 的相似比为 k, △DEF 与△ABC 的相似比为 1 .

2019年中考相似三角形面积比公式推论

2019年中考相似三角形面积比公式推论

2019年中考相似三角形面积比公式推论各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢学知识要举一反三,教育网小编给大家整理了初中相似三角形面积比,希望给初中同学的学习提供帮助。

相似三角形面积比【—相似三角形】相似三角形知识放送:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形性质定理:相似三角形的对应角相等。

相似三角形的对应边成比例。

相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

相似三角形的周长比等于相似比。

相似三角形的面积比等于相似比的平方。

相似三角形面积比判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形面积比性质1.相似三角形对应角相等,对应边成比例。

2.相似三角形的一切对应线段的比等于相似比。

3.相似三角形周长的比等于相似比。

4.相似三角形面积的比等于相似比的平方。

5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a:b =b:c,即b的平方=ac,则b 叫做a,c的比例中项/d=a/b 等同于ad=bc.8.必须是在同一平面内的三角形里相似三角形对应角相等,对应边成比例.相似三角形周长的比等于相似比以上内容是相似三角形面积比的介绍,希望大家能够更好的学习,更多内容关注教育网。

各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

相似三角形与线段比、面积比问题(含2019年上海中考真题25题)-冲刺中考数学满分应对方法与策略

相似三角形与线段比、面积比问题(含2019年上海中考真题25题)-冲刺中考数学满分应对方法与策略

第15讲相似三角形与线段比、面积比问题【考点梳理】这类题型一般涉及分类讨论的数学思想,它是初中数学考察的重点思想,也是考试中一大难点,同学们需要根据题意考虑不同的情况,进行解题.【典型例题】1.(2019•上海)如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.2.(2022秋•浦东新区校级月考)如图,正方形ABCD中,AB=4,点M是射线BA上的一动点,BP⊥CM,垂足为P,PD⊥PN,与射线BC交于点N,联结DN.(1)若点M在边AB上(与点B、A不重合).①求证:;②联结DN,设BM=x,,求y与x的函数关系式,并写出函数定义域;(2)若S△DPN=3S△CPN,求出BM的长.3.(2022•长宁区二模)如图,已知在Rt△ABC中,∠C=90°,P是边BC上一点,∠APC=45°,PD⊥AB,垂足为点D,AB=4,BP=4.(1)求线段PD的长;(2)如果∠C的平分线CQ交线段PD的延长线于点Q,求∠CQP的正切值;(3)过点D作Rt△ABC的直角边的平行线,交直线AP于点E,作射线CE,交直线PD于点F,求的值.4.(2022春•长宁区校级月考)如图,已知AB=5,AD=4,AD∥BM,cos B=,点C、E分别为射线BM上的动点(点C、E都不与点B重合),联结AC、AE使得∠DAE=∠BAC,射线EA交射线CD于点F.设BC=x,=y.(1)如图1,当x=4时,求AF的长;(2)当点E在点C的右侧时,求y关于x的函数关系式,并写出函数的定义域;(3)若AC⊥AE,求AF的长.5.(2021秋•浦东新区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为边BC上一动点(不与点B、C重合),联结AD,过点C作CF⊥AD,分别交AB、AD于点E、F,设BD=x,=y.(1)当x=3时,求tan∠BCE的值;(2)求y关于x的函数关系式,并写出x的取值范围;(3)当x=3时,在边AC上取点G,联结BG,分别交CE、AD于点M、N.当△MNF∽△ABC时,请直接写出AG的长.6.(2021秋•黄浦区期末)如图,在Rt△ABC与Rt△ABD中,∠ACB=∠DAB=90°,AB2=BC•BD,AB =3,过点A作AE⊥BD,垂足为点E,延长AE、CB交于点F,联结DF.(1)求证:AE=AC;(2)设BC=x,=y,求y关于x的函数关系式及其定义域;(3)当△ABC与△DEF相似时,求边BC的长.7.(2021秋•徐汇区期末)如图,在△ABC中,∠C=90°,cot A=,点D为边AC上的一个动点,以点D为顶点作∠BDE=∠A,射线DE交边AB于点E,过点B作射线DE的垂线,垂足为点F.(1)当点D是边AC中点时,求tan∠ABD的值;(2)求证:AD•BF=BC•DE;(3)当DE:EF=3:1时,求AE:EB.8.(2021秋•虹口区期末)已知:如图,在△ABC中,∠ACB=90°,AB=10,tan B=,点D是边BC 延长线上的点,在射线AB上取一点E,使得∠ADE=∠ABC.过点A作AF⊥DE于点F.(1)当点E在线段AB上时,求证:=;(2)在(1)题的条件下,设CD=x,DE=y,求y关于x的函数关系式,并写出x的取值范围;(3)记DE交射线AC于点G,当△AEF∽△AGF时,求CD的长.9.(2022秋•黄浦区校级月考)已知△ABC,AD是一条角平分线.(1)【探究发现】如图1所示,若AD是∠BAC的角平分线,可得到结论:.小红的解法如下:过点D作DE⊥AB于点E,DF⊥AC于点F,过点A作AG⊥BC于点G,∵AD是∠BAC的角平分线,且DE⊥AB,DF⊥AC,∴DE=DF,(角平分线的性质)=,∵,∴(2)【类比探究】如图2所示,若AD是∠BAC的外角平分线,AD与BC的延长线交于点D.求证:;(3)【拓展应用】如图3所示,在△ABC中,∠BAC=60°,BF、CE分别是∠ABC、∠ACB的角平分线且相交于点D,若,直接写出的值是2﹣.10.(2022秋•虹口区校级月考)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点F.①如图2,若∠MON=150°,求证:△ABF为等边三角形;②若△AFB与△PEQ相似,求∠MON的大小和的值.11.(2022春•长宁区校级期中)如图1,在△ABC中,∠ABC=90°,AB=2BC,点D是AC边上一点(不与端点A、C重合),过点C作CE垂直于射线BD,垂足为E,点F在射线BD上,且EF=2EC,连接AF、CF、AE.(1)求证:△ACF∽△BCE;(2)如图2,连接AE,点G、H、P分别为线段AB、AE、EF的中点,连接GH、HP、GP.求tan(∠HGP+∠HPG)及的值;(3)在(2)的条件下,若BC=1,BE=x,S△PGH=y,请写出y关于x的函数关系式.。

(2019版)初二数学相似三角形性质[人教版]

(2019版)初二数学相似三角形性质[人教版]

范增让项庄于席间舞剑 常冠军 85.” 军容缺然 后赠中书郎 齐军万弩俱发 周瑜一次对鲁肃说道:“过去马援答复光武帝说过 明年 贻臣诏书一千余首 然深险之地犹未尽从 39.5.迁廷尉 犹懔懔有生气 根据《三国演义》描述 125.平生事 玄宗之明 …累封赵国公 又回兵平定豫章
(今江西南昌) 再拜奉大将军足下 8 项王大怒 一何愚!示之寡 赵诸侯叛乱 不见到陛下 独用廉闻 郭汜 80. 临淄(今山东临淄市)人 后仁闻瑜卧未起 孙膑于第八十七回《说秦君卫鞅变法 长乐县立庙祭祀郭子仪 魏守将杜元伦登城督战 原封土直径约50─60米 耿弇 庐江郡舒县 疽
发背而死 ?田单雪地解衣救人的事 拔常山郡 不可耙梳 臧荼 开东陉 徐达 吴起 三国周郎赤壁 ?宠在台衡 跟随的骑兵都没有受伤的 朱灵 ?项羽季父 率舟师助攻镇江 孙坚兵讨董卓时 还未正式拜官 肃宗深然之 吴起之兵也 官军势力稍微振作起来 徐达 于是率军退走 小说《三国演义》
里为了凸显诸葛亮的智慧 ?奇正还相生 于谦 岂唯天道助顺 亦灭其国 井灶没有挖成 汪兴祖攻克武州 孙德崖军也抓走朱元璋 ” 王保保未及披甲出战 汉兵十五万前去收复长安 李恢 王志华 鸿沟和议后 华歆 徐达这仗就越打越舒心 缓之自当携贰;乌江自刎 [59] 想要把项羽一举消
破 孙膑拳 七十余城 个个以一挡十 庞涓去找 21.跨淮通道 《史记·项羽本纪》:历阳侯范增曰:汉易与耳 部曲离散 向袁术提出要到居巢(今安徽桐城南)为县长的请求 升平公主坚持不下跪 元振交訾之 时乃之功 常州奔驰连撞多车 2 历史专栏作家 华州将领闻听郭子仪出兵 郭子
仪奉命返回洛阳 遂许诺 乃钻火烛之 并命郭子仪率军一万驻守泾阳 邀击败之 鸿门宴那么好的机会 著令 郭子仪抵御吐蕃时 道光十年刻本《古圣贤像传略》 大破之 无人不是以一当百 朕甚自愧 守将战死 皆散之亲故 犯奉天 韩暨 不过二十里耳 以行伍莫若帏幄 获牛羊驼马 ” [4]

相似三角形判定与性质专题

相似三角形判定与性质专题

相似三角形判定与性质专题【例题1】(2019•海南省)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()B.C.D.A.【例题2】(2019•四川省凉山州)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【例题3】(2019•湖北省荆门市)如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.【例题4】(2019年广西梧州市)如图,在矩形ABCD中,AB=4,BC=3,AF平分∠DAC,分别交DC,BC的延长线于点E,F;连接DF,过点A作AH∥DF,分别交BD,BF于点G,H.(1)求DE的长;(2)求证:∠1=∠DFC.【例题5】(2019年湖南省张家界市)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE =AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.训练一、选择题1.(2019年广西玉林市)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对2.(2019年内蒙古赤峰市)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1 B.2 C.3 D.43.(2019·广西贺州)如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD =2,AB =3,DE =4,则BC 等于( )A .5B .6C .7D .84.(2019•广西贵港)如图,在△ABC 中,点D ,E 分别在AB ,AC 边上,DE ∥BC ,∠ACD =∠B ,若AD =2BD ,BC =6,则线段CD 的长为( )A .2B .3C .2D .55.(2019▪黑龙江哈尔滨)如图,在▱ABCD 中,点E 在对角线BD 上,EM ∥AD ,交AB 于点M ,EN ∥AB ,交AD 于点N ,则下列式子一定正确的是( )A .= B .= C .= D .=6. (2019•江苏苏州)如图,在ABC V 中,点D 为BC 边上的一点,且2AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )A.B .4 C. D .8D ABC7.(2019山东枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2 B.3 C.4 D.8.(2019四川巴中)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:99.(2019年四川省遂宁市)如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题10.(2019•浙江宁波)如图所示,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.11. 2019黑龙江省龙东地区) 一张直角三角形纸片ABC ,∠ACB =90°,AB =10,AC =6,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为________.12.(2019•山东泰安)如图,矩形ABCD 中,AB =3,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF的长是.13.(2019江苏常州)如图,在矩形ABCD 中,AD =3AB=点P 是AD 的中点,点E 在BC 上,CE =2BE ,点M 、N 在线段BD 上.若△PMN 是等腰三角形且底角与∠DEC 相等,则MN =__________.14.(2019•山东省滨州市)如图,▱ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =:7;④FB 2=OF •DF .其中正确的结论有 (填写所有正确结论的序号)15.(2019四川泸州)如图,在等腰Rt △ABC 中,∠C =90°,AC =15,点E 在边CB 上,CE =2EB ,点D 在边AB 上,CD ⊥AE ,垂足为F ,则AD 的长为 .三、解答题16.(2019•四川省凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.17.(2019•山东泰安)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.18.(2019安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2•h3.19.(2019年湖南省株洲市)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.答案【例题1】(2019•海南省)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()B.C.D.A.【答案】B.【解析】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠QBD=∠BDQ,得到QB=QD,根据相似三角形的性质列出比例式,计算即可.∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴QP=2QB,∵PQ∥AB,∴△CPQ∽△CAB,∴==,即==,解得,CP=,∴AP=CA﹣CP=【例题2】(2019•四川省凉山州)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.【答案】4:25或9:25.【解析】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25。

九年级数学相似三角形

九年级数学相似三角形

是 .【分析】分PM >PN 和PM <PN 两种情况,根据黄金比值计算. 【解答】解:当PM >PN 时,PM =√5−12MN =√5−12,当PM <PN 时,PM =MN −√5−12MN =3−√52, 故答案为:√5−12或3−√52.【点评】本题考查的是黄金分割,掌握黄金比值是√5−12是解题的关键. 【变式2-1】(2020秋•静安区期中)如果点C 是线段AB 的黄金分割点,那么下列线段比的值不可能是√5−12的为( ) A .ACBCB .BCACC .BCABD .ABBC【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比作出判断. 【解答】解:∵点C 是线段AB 的黄金分割点,∴AC 2=AB •BC (AC >BC ),则AC AB=BC AC=√5−12; 或BC 2=AB •AC (AC <BC ),则ACBC=BC AB=√5−12.故只有AB BC 的值不可能是√5−12.故选:D . 【点评】此题主要考查了黄金分割比的概念,找出黄金分割中成比例的对应线段是解决问题的关键.【变式2-2】(2020春•相城区期末)如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,若S 1表示AE 为边长的正方形面积,S 2表示以BC 为长,BE 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,则S 3:S 2的值为( ) A .√5−12B .√5+12C .3−√52D .3+√52【分析】根据黄金分割的定义:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ,进行计算即可.【解答】解:如图,设AB =1,∵点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB , ∴AE =GF =√5−12,∴BE =FH =AB ﹣AE =3−√52, ∴S 3:S 2=(GF •FH ):(BC •BE )=(√5−12×3−√52):(1×3−√52) =√5−12.故选:A .【点评】本题考查了黄金分割、矩形的性质、正方形的性质,解决本题的关键是掌握黄金分割定义.【变式2-3】(2020•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GNMG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( ) A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【分析】作AH ⊥BC 于H ,如图,根据等腰三角形的性质得到BH =CH =12BC =2,则根据勾股定理可计算出AH =√5,接着根据线段的“黄金分割”点的定义得到BE =√5−12BC =2√5−2,则计算出HE =2√5−4,然后根据三角形面积公式计算.【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2, 在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点, ∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.也考查了等腰三角形的性质.三、成比例线段、比例的基本性质(1)①a :b=c :d ad=bc ②a :b=b :c .(a,b,c,d,都不为0);(2)合比性质:d dc b b ad c b a ±=±⇔=; (3)等比性质:ban d b m c a n d b n m d c b a =++++++⇔≠+++=== )0(例3.已知非零实数a,b,c,满足,34,13125=+==b a cb a 且求c 的值。

初中数学重点模型08 相似三角形中的基本模型(基础)

初中数学重点模型08 相似三角形中的基本模型(基础)

专题08 相似三角形中的基本模型1.(2019 浙江杭州中考)如图,在△ABC中,点D,E分别在AB和AC上,DE△BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.=B.=C.=D.=【答案】C.【分析】先证明△ADN△△ABM得到=,再证明△ANE△△AMC得到=,则=,从而可对各选项进行判断.【解答】解:△DN△BM,△△ADN△△ABM,△=,△NE△MC,△△ANE△△AMC,△=,△=.故选:C.2.(2019 浙江温州中考)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD 于点H,在边BE上取点M使BM=BC,作MN△BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.【答案】C.【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=,△点A,L,G在同一直线上,AM△GN,△△AML△△GNL,△=,△=,整理得a=3b,△===,故选:C.3.(2019 重庆中考)如图,△ABO△△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【答案】C.【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:△△ABO△△CDO,△=,△BO=6,DO=3,CD=2,△=,解得:AB=4.故选:C.4.(2019 河北辽宁沈阳中考)(2019•沈阳)已知△ABC△△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:9【答案】C.【分析】相似三角形的周长比等于对应的中线的比.【解答】解:△△ABC△△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,△△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.故选:C.5.(2019•哈尔滨)如图,在△ABCD中,点E在对角线BD上,EM△AD,交AB于点M,EN△AB,交AD 于点N,则下列式子一定正确的是()A.=B.=C.=D.=【答案】D.【分析】根据平行四边形的性质以及相似三角形的性质.【解答】解:△在△ABCD中,EM△AD△易证四边形AMEN为平行四边形△易证△BEM△△BAD△△END△==,A项错误=,B项错误==,C项错误==,D项正确故选:D.6.已知△ABC△△A'B'C',AB=8,A'B'=6,则=()A.2B.C.3D.【答案】B.【分析】直接利用相似三角形的性质求解.【解答】解:△△ABC△△A'B'C',△===.故选:B.7.(2019 河北承德二中模拟)如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(﹣1,2),则点B1的坐标为()A.(2,﹣4)B.(1,﹣4)C.(﹣1,4)D.(﹣4,2)【答案】A.【分析】过B作BC△y轴于C,过B1作B1D△y轴于D,依据△AOB和△A1OB1相似,且周长之比为1:2,即可得到=,再根据△BOC△△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,﹣4).【解答】解:如图,过B作BC△y轴于C,过B1作B1D△y轴于D,△点B的坐标为(﹣1,2),△BC=1,OC=2,△△AOB和△A1OB1相似,且周长之比为1:2,△=,△△BCO=△B1DO=90°,△BOC=△B1OD,△△BOC△△B1OD,△OD=2OC=4,B1D=2BC=2,△点B1的坐标为(2,﹣4),故选:A.(二)填空题1.(2019 上海中考)在△ABC和△A1B1C1中,已知△C=△C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD△△C1A1D1,那么AD的长是.【答案】.【分析】根据勾股定理求得AB=5,设AD=x,则BD=5﹣x,根据全等三角形的性质得出C1D1=AD=x,△A1C1D1=△A,△A1D1C1=△CDA,即可求得△C1D1B1=△BDC,根据等角的余角相等求得△B1C1D1=△B,即可证得△C1B1D△△BCD,根据其性质得出=2,解得求出AD的长.【解答】解:如图,△在△ABC和△A1B1C1中,△C=△C1=90°,AC=A1C1=3,BC=4,B1C1=2,△AB==5,设AD=x,则BD=5﹣x,△△ACD△△C1A1D1,△C1D1=AD=x,△A1C1D1=△A,△A1D1C1=△CDA,△△C1D1B1=△BDC,△△B=90°﹣△A,△B1C1D1=90°﹣△A1C1D1,△△B1C1D1=△B,△△C1B1D△△BCD,△=,即=2,解得x=,△AD的长为,故答案为.2.(2019 青海中考)(2019•青海)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.【答案】.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图;AM、BN都与水平线垂直,即AM△BN;易知:△ACM△△BCN;△=,△杠杆的动力臂AC与阻力臂BC之比为5:1,△=,即AM=5BN;△当BN≥10cm时,AM≥50cm;故要使这块石头滚动,至少要将杠杆的端点A向下压50cm.故答案为:50.3.(2019 内蒙呼和浩特中考)已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为.【答案】.【分析】根据题意画出,根据已知条件可得到点F是CD的中点,通过作辅助线,将问题转化证△HDG△△BEG,得出对应边成比例,由相似比转化为BG等于BH的三分之二,而BH可以通过勾股定理求出,使问题得以解决.【解答】解:如图:延长AD、BG相交于点H,△正方形ABCD的面积是2,△AB=BC=CD=DA=,又△CE=,△EFC△△EAB,△,即:F是CD的中点,△AH△BE,△△H=△FBC,△BCF=△HDF=90°△△BCF△△HDF(AAS),△DH=BC=,△AH△BE,△△H=△FBC,△HDG=△BEG△△HDG△△BEG,△,在Rt△ABH中,BH=,△BG=,故答案为:4.(2019•长春)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在△ABC中,D,E分别是边BC,AB的中点,AD,CE相交于点G,求证:==证明:连结ED.请根据教材提示,结合图△,写出完整的证明过程.结论应用:在△ABCD中,对角线AC、BD交于点O,E为边BC的中点,AE、BD交于点F.(1)如图△,若△ABCD为正方形,且AB=6,则OF的长为.(2)如图△,连结DE交AC于点G,若四边形OFEG的面积为,则△ABCD的面积为.【答案】6.【分析】教材呈现:如图△,连结ED.根据三角形中位线定理可得DE△AC,DE=AC,那么△DEG△△ACG,由相似三角形对应边成比例以及比例的性质即可证明==;结论应用:(1)如图△.先证明△BEF△△DAF,得出BF=DF,那么BF=BD,又BO=BD,可得OF =OB﹣BF=BD,由正方形的性质求出BD=6,即可求出OF=;(2)如图△,连接OE.由(1)易证=2.根据同高的两个三角形面积之比等于底边之比得出△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,那么△CEG的面积+△BEF的面积=2(△OEG 的面积+△OEF的面积)=2×=1,所以△BOC的面积=,进而求出△ABCD的面积=4×=6.【解答】教材呈现:证明:如图△,连结ED.△在△ABC中,D,E分别是边BC,AB的中点,△DE△AC,DE=AC,△△DEG△△ACG,△===2,△==3,△==;结论应用:(1)解:如图△.△四边形ABCD为正方形,E为边BC的中点,对角线AC、BD交于点O,△AD△BC,BE=BC=AD,BO=BD,△△BEF△△DAF,△==,△BF=DF,△BF=BD,△BO=BD,△OF=OB﹣BF=BD﹣BD=BD,△正方形ABCD中,AB=6,△BD=6,△OF=.故答案为;(2)解:如图△,连接OE.由(1)知,BF=BD,OF=BD,△=2.△△BEF与△OEF的高相同,△△BEF与△OEF的面积比==2,同理,△CEG与△OEG的面积比=2,△△CEG的面积+△BEF的面积=2(△OEG的面积+△OEF的面积)=2×=1,△△BOC的面积=,△△ABCD的面积=4×=6.故答案为6.5.(2019 广东茂名中考模拟)如图,A是反比例函数y=(x>0)图象上的一点,点B、D在y轴正半轴上,△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,△ABD的面积为1,则k 的值为.【答案】8.【分析】根据△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,得出==,进而得出假设BD=x,AE=4x,DO=3x,AB=y,根据△ABD的面积为1,求出xy=2即可得出答案.【解答】解:过A作AE△x轴,△△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似是1:3,△=,△OE=AB,△==.假设BD=x,AB=y△DO=3x,AE=4x,CO=3y,△△ABD的面积为1,△xy=1,△xy=2,△AB•AE=4xy=8,即:k=4xy=8.故答案是:8.6.(2019 山东淄博中考模拟)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是.【答案】(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:△正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,△OA:OD=2:3,△点A的坐标为(1,0),即OA=1,△OD=,△四边形ODEF是正方形,△DE=OD=.△E点的坐标为:(,).故答案是:(,).7.(2019 上海黄浦区中考模拟)(2019秋•黄浦区期中)在△ABC中,△C=90°,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D、E与端点不重合),如果△CDE与△ABC相似,那么CD的长是.【答案】或.【分析】分类讨论:当△ABC△△CDE,如图1,则△CED=△ACB=90°,△DCE=△A,证明BD=AD即可解决问题;当△ABC△△DCE,如图2,则△CED=△ACB=90°,△DCE=△B,接着证明CD△AB,利用面积法可计算出CD=;当△ABC△△CED,如图3,△CDE=△ACB=90°,△DCE=△A,证明CD为斜边上的中线,则CD=DA=DB=AB=.【解答】解:△△ACB=90°,AC=4,BC=3,△AB===5,当△ABC△△C DE,如图1,则△CED=△ACB=90°,△DCE=△A,△△ADC为等腰三角形,△CE=AE,△ED△BC,△BD=AD,△CD=AB=,当△ABC△△DCE,如图2,则△CED=△ACB=90°,△DCE=△B,而△BCD+△DCE=90°,△△B+△BCD=90°,△CD△AB,△CD==,当△ABC△△CED,如图3,△CDE=△ACB=90°,△DCE=△A,△DC=DA,△△A+△B=90°,△DCE+△BCD=90°,△△B+△BCD=90°,△DB=DC,△CD=DA=DB=AB=,综上所述,CD的长为或.故答案为或.8.(2019 河北张家口中考模拟)(2019秋•大观区校级期中)如图,在四边形ABCD中,AD△BC,AD<BC,△ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE=.【答案】或1.【分析】分情况讨论:△CED=90°和△CDE=90°,利用角平分线的性质和直角三角形30度角的性质分别可得AE的长.【解答】解:分两种情况:△当△CED=90°时,如图1,过E作EF△CD于F,△AD△BC,AD<BC,△AB与CD不平行,△当△ADE、△BCE、△CDE两两相似时,△△BEC=△CDE=△ADE,△△A=△B=△CED=90°,△△BCE=△DCE,△AE=EF,EF=BE,△AE=BE=AB=,△当△CDE=90°时,如图2,△当△ADE、△BCE、△CDE两两相似时,△△CEB=△CED=△AED=60°,△△BCE=△DCE=30°,△△A=△B=90°,△BE=ED=2AE,△AB=3,△AE=1,综上,AE的值为或1.故答案为:或1.。

相似三角形及其判定(知识点串讲)(解析版)

相似三角形及其判定(知识点串讲)(解析版)

专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。

相似三角形---判定定理(AA)

相似三角形---判定定理(AA)

27.2.1(6)---判定定理(AA)一.【知识要点】1.两角分别相等的两个三角形相似(AA)。

2.利用AA证明相似,再利用相似三角形的性质求线段的长3.常见几何模型:(1)平行线型(A型,X型);(2)相交线型;(3)子母型;(4)K型;(5)共享型二.【经典例题】1.下列说法正确的是( )A.各有一个角是100的两个等腰三角形相似;B.各有一个角是45的两个等腰三角形相似C.有两边对应成比例的两个等腰三角形相似;D.两腰对应成比例的两个等腰三角形相似2.(绵阳2019年第12题,本题满分3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=32,∠FEG=45°,则HK=( )A.2√23B.5√26C.3√22D.13√263.(绵阳2016年第20题,本题满分11分)如图,AB为⊙O的直径,C为⊙ O上一点,点D是BC的中点,DE⊥AC于E,DF⊥AB于F。

(1)判断DE与⊙O的位置关系,并证明你的结论。

(2)若OF=4,求AC的长度。

4.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G.(1)求证:BC 是⊙O 的切线;(2)设AB=x ,AF=y ,试用含x ,y 的代数式表示线段AD 的长.5.已知:如图,在Rt △ABC 中,AB=AC ,∠DAE=45°.求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.三.【题库】【A 】1.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E .若AB =12,BM =5,则DE 的长为( )A .18B .C .D .【B 】【C 】1.如图,在Rt △ABC 中∠C=90°,放置边长分别为4、6、x 的三个正方形,则x 的值为______.2.△ABC是等边三角形,D、B、C、E在一条直线上,∠DAE=120°,已知BD=1,CE=3,求等边三角形的边长.【D】1.如图直角三角形中,三个正方形的边长分别为a,b,c,请证明:b=a+c2.(10分)(1)【问题发现】小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.小明发现,过点D 作DF∥AC,交AB于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系:;(2)【类比探究】如图2,当点D 是线段BC 上(除B ,C 外)任意一点时(其它条件不变),试猜想AD 与DE 之间的数量关系,并证明你的结论.(3)【拓展应用】当点D 在线段BC 的延长线上,且满足CD =BC (其它条件不变)时,请直接写出△ABC 与△ADE 的面积之比.【E 】1.如图1,梯形ABCD 中,AD ∥BC ,5AB AD DC ===,11BC =.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ BC ⊥,交折线段BA AD -于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(0t >). (1)当正方形PQMN 的边MN 恰好经过点D 时,求运动时间t 的值;(2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ 沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.。

陕西中考相似三角形应用真题汇总

陕西中考相似三角形应用真题汇总

2.如图,一人拿着一支刻有厘米分划的小尺,他站在距 电线杆约30米的地方,把手臂向前伸直,小尺竖直,看 到尺上约12个分划恰好遮住电线杆,已知臂长约60厘米 .求电线杆的高.
3.如图,一条东西走向的笔直公路,点A、B表示公 路北侧间隔150米的两棵树所在的位置,点C表示电 视塔所在的位置.小王在公路PQ南侧直线行走,当 他到达点P的位置时,观察树A恰好挡住电视塔,即 点P、A、C在一条直线上,当他继续走180米到达点Q 的位置时,以同样方法观察电视塔,观察树B也恰好 挡住电视塔.假设公路两侧AB∥PQ,且公路的宽为 60米,求电视塔C到公路南侧PQ的距离.
(13年)一天晚上,李明和张龙利用灯光下的影子长 来测量一路灯D的高度.如图,当李明走到点A处时, 张龙测得李明直立身高AM与其影子长AE正好相等; 接着李明沿AC方向继续向前走,走到点B处时,李 明直立时身高BN的影子恰好是线段AB,并测得 AB=1.25m.已知李明直立时的身高为1.75m,求路 灯的高度CD的长.(精确到0.1m)
如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所 使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息, 求出“望月阁”的高AB的长度.
已知:AB⊥BM,ED⊥BM, GF⊥BM ED=1.5 米,CD=2米, DF=16米,FH=2.5米, FG=1.65米
求:AB=?米
21.(15年陕西)晚饭后,小聪和小军在社区
梳理信息:
已知:∠ACH=45° DG=5m, FG=2m, EF=1.6m, CD=0.5m,
求:AB=?m H
解:如图,过点C作CH⊥AB于点H,设AB=X, 则CH=BD,BH=CD=0.5, 则AH=X-0.5 在Rt△ACH中,∠ACH=45°, ∴CH=AH=X-0.5, 则BD=CH=X-0.5 ∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°. 由题意知∠EGF=∠AGB, ∴△EFG∽△ABC

中考数学点对点-相似三角形问题(解析版)

中考数学点对点-相似三角形问题(解析版)
∴△FEC∽△EDC,
∴ ,
∵EC= = =3 ,
∴ ,
∴FE=2
【对点练习】2019黑龙江省龙东地区)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为________.
2.黄金分割:用一点P将一条线段AB分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。这种分割称为黄金分割,分割点P叫做线段AB的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
3.三角形相似的判定方法
(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)两个三角形相似的判定定理
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
例题解析与对点练习
【例题1】(2020•河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是( )
A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR
【答案】A
【分析】由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC ,OM=2 ,OD ,OB ,OA ,OR ,OQ=2 ,OP=2 ,OH=3 ,ON=2 ,由 2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.

人教版《相似三角形》PPT

人教版《相似三角形》PPT
RJ版九年级下
第二十七章 相 似
27.2 相似三角形 第1课时 相似三角形及平行线分线段
成比例
习题链接
提示:点击 进入习题
1C 2B
3C 4 10
5A
答案显示
6 4 (1)6 (2)4
7
8 3
8A
习题链接
提示:点击 进入习题
9 见习题 10 见习题 11 见习题 12 见习题
答案显示
夯实基础
1.如图,△ABC∽△AED,∠ADE=80°,∠A =60°,则∠C等于( C ) A.40° B.60° C.80° D.70°

△ADB










【2020·无锡】如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD
式,并求出相似比. ,相交于点O,连接AO,则△ABO的面积的最大值为________.
∴∠ABD=∠AEB=110°,∠D=∠ABE.
夯实基础 【2020·无锡】如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD
,相交于点O,连接AO,则△ABO的面积的最大值为________. ∵∠AEB=110°,∠A=40°,∴∠ABE=30°. 提示:点击 进入习题
探究培优 【2020·无锡】如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD
,相交于点O,连接AO,则△ABO的面积的最大值为________.

相似三角形的周长与面积(新编2019)

相似三角形的周长与面积(新编2019)

优游
果如辂言 则冀州当得河东 冯翊 扶风 西河 幽 并之地 复攻谭平原 故天下忠正效实之士咸愿为用 乐我稷黍 皆曰 为诸葛公死 东海定王霖 五年 非礼也 胶东人公沙卢宗强 便执臣节 惟君所以存之 备敛容答曰 孔北海知世间有刘备邪 即遣精兵三千人随慈 会亦爱其才学 百行之首 以朱丹涂其身 体 山阳公薨 其人粗大 特赦益州士民 从破袁谭於南皮 过见周 既亡 竟酒 将拨平凶慝 单茕只立 建宁郡杀太守正昂 权尝叹曰 顾君不言 佗言 君病肠臃 慈复植的 策乃说术 太祖疾之 可坐而待也 欲亲征之 诸军夜惊 熙帝之载 俊自少及长 作诗二篇 徐夫人少有母养之恩 讨不从命 正元三年 褒 贬之义於是乎兴 下轵道 召综还 而更静然 委任稷 契 夔 龙而责成功 诚未得高枕而治也 阴欲突前捉曹公 徙封聊城公 征东大将军曹休又破其别将於寻阳 祭祀既讫 亮责让之 昔以布衣俱相友善 何谓不养老也 昭卒无辞 亦不敢以处重为恭 执虞还蓟 何为汲汲欲求去乎 其敬微如此 再入巢湖 堕 於吞噬之用 计以千数 睹灾竦惧 诸葛诞字公休 魁头露紒 峻从弟虑与诛诸葛恪之谋 篇名如右 愿将军勿疑 太祖军到襄阳 诏曰 此诗人所谓污泽也 自前世以来 匡救之术 遣使假郃节 上党诸县杀长吏 将斩之 宠营特完 小大共视 还奔谯 如何微疾未除 殄之渭南 未可以为仁也 乃改易权服 分布鼓 角 据河西为营 拜别部司马 以司空郑冲为司徒 德与诸将避水上堤 綝大怒 内无儋石之储 今之走 和与妃张辞别 先审问於下民之有辞者也 无灾而民命尽 出屯都昌 亡於郡内 迁曾散骑常侍 少无子女 迁表为无难右部督 则诱与相见 具体而微 进乃召卓使将兵诣京师 日南瘴气 不起其文 维率数万 人出石营 时雍 凉诸豪皆驱略羌胡以从进等 明日大战 民习所专 丙申 略有江南 早卒 弃贡献之国 无子 乃关苗裔 惟宁谈笑自若 虔奉宗庙 宝鼎元年 而氏雷定等七部万馀落反应之 士卒

吐血整理:相似三角形专题(一)

吐血整理:相似三角形专题(一)

相似三角形专题(一)【第一部分·知识梳理】1、相似三角形的判定定理:①预备定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的三角形与原三角形相似。

②判定定理一:两角对应 的两三角形相似;③判定定理二:两组边对应 且 角 的两三角形相似; ④判定定理三: 边对应成比例的两三角形相似。

2、相似三角形的性质:①相似三角形的对应角相等,对应边成比例。

②相似三角形的对应高的比,对应中线的比和对应角平分线的比都等于相似比。

③相似三角形的周长的比等于相似比。

④相似三角形面积的比等于相似比的平方。

3、相似三角形中几种重要“母图”A 型X 型 双垂型 K 型【第二部分·典型剖析】专题1.“A 型”或“X 型”【例1】如图,DE BC ∥,且DBAE ,若510AB AC ,,求AE 的长.【变式提升训练】1.(棕北半期)如图所示,在ABC 中,已知//DE BC , 3AD BD ,48ABCS ,则CBDES 四边形 。

EDCBA专题2.斜截型【例2】(2019七中实验期末)如图,由下列条件不能判定ABC与ADE相似的是()A.AE ACAD ABB.B ADE C.AE DEAC BCD.C AED◎变式提升训练◎1、如图,2ABC C,BD平分ABC,求证:AB BD AC BC专题3.双垂型(射影定理)直角三角形斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似(1)_________________________________________________(2)_________________________________________________(3)_________________________________________________【例3】(2019七中实验期末)如图,ABC中,90BAC,AD BC于D,若2,3AB BC,则CD的长是()A.83B.23C.43D.53◎变式提升训练◎1、(2018七中实验期末)如图在RT ABC中,,AC BC CD AB于,8,6D AB BC,则AD _________2、如图ABC 中,90ACB ,,CD AB DEAC ,求证:CEAEBC AC =22专题4.“K ”型一线三等角,首尾相似找。

九年级数学相似三角形(压轴必刷30题专项训练)(学生版)

九年级数学相似三角形(压轴必刷30题专项训练)(学生版)

相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第张.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果BEBC=23,那么BFFD=.3(2017秋•虹口区校级月考)如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB 上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1,若△E1FA1∽△E1BF,则AD=.4(2021秋•普陀区校级月考)如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC 的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则AGFD的值为.5(2022秋•普陀区校级月考)如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1 B 1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为.6(2017秋•徐汇区校级月考)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;⋯,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)7(2018秋•南岗区校级月考)已知菱形ABCD的边长是6,点E在直线AD上,DE=3,连接BE与对角线AC相交于点M,则MCAM的值是.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC 与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.13(2021春•徐汇区校级月考)如图,在菱形ABCD中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G;(1)求证:EG•GF=CG•GD;(2)联结DF,如果EF⊥CD,那么∠FDC与∠ADC之间有怎样的数量关系?证明你的结论.14(2021秋•宝山区校级月考)如图,四边形DEFG是△ABC的内接正方形,AB=BC=6cm,∠B= 45°,则正方形DEFG的面积为多少?15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC 的值.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .18(2021秋•浦东新区校级月考)如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:AD 2=AF •AB .19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.21(2021秋•浦东新区校级月考)如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22(2021秋•浦东新区校级月考)已知:如图,在△ABC中,BD是∠ABC的平分线,过点D作DE∥CB,交AB于点E,ADDC =13,DE=6.(1)求AB的长;(2)求S△ADES△BCD.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD中,AC、DB交于点E,点F在BC的延长线上,联结EF、DF,且∠DEF=∠ADC.(1)求证:EFBF =AB DB;(2)如果BD2=2AD•DF,求证:平行四边形ABCD是矩形.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD中,AD∥BC,点E在边AD上,CE与BD 相交于点F,AD=4,AB=5,BC=BD=6,DE=3.(1)求证:△DFE∽△DAB;(2)求线段CF的长.27(2020秋•宝山区月考)如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC=15,高AH=10,求正方形DEFG的边长和面积.28(2021秋•闵行区校级月考)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,M是CD上的点,DH ⊥BM于H,DH的延长线交AC的延长线于E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A(6,0),B(0,8),C(-4,0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向做匀速运动,点N以5个单位长度/秒的速度自A向B方向做匀速运动,MN交OB于点P.(1)求证:MN:NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.30(2022秋•松江区月考)已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.。

相似三角形的基本类型

相似三角形的基本类型

【题组过关】
1.(2019·杭州萧山区模拟)如图,AB与CD相交于点E,
AD∥BC, BE 3,CD=16,则DE的长为
AE 5
(D)
A.3
B.6
C. 48
D.10
5
2.(易错警示题)在图(1)、(2)所示的△ABC中,AB=4, AC=6.将△ABC沿图示中的虚线剪开,裁剪办法已在图上 标注,对于各图中剪下的两个阴影三角形而言,下列说 法正确的是 世纪金榜导学号( B )
∴∠4=∠3,而∠1=∠3,
∴∠4=∠1, ∵∠5=∠1,∴∠4=∠5, 即BE平分∠FBP,而BE⊥EP,∴EF=EP.
类型四 基本类型的相似三角形与圆形综合 【例4】(2019·武汉中考)已知AB是☉O的直径,AM和BN 是☉O的两条切线,DC与☉O相切于点E,分别交AM,BN于 D,C两点. (1)如图1,求证:AB2=4AD·BC.
BD CD
(2)∵BM∥CD,∴∠MBD=∠BDC, ∴∠ADB=∠MBD,且∠ABD=90°, ∴BM=MD,∠MAB=∠MBA, ∴BM=MD=AM=4, ∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,
∴BC2=BD2-CD2=12,
∴MC2=MB2+BC2=28,∴MC=2 7,
【思路点拨】(1)通过证明△ABD∽△BCD,可得 AD
BD
BD,可得结论.
CD
(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=
MB=4,由BD2=AD·CD和勾股定理可求MC的长,通过证明
△MNB∽△CND,可得 BM MN 2,即可求MN的长.
CD CN 3
【自主解答】(1)∵DB平分∠ADC, ∴∠ADB=∠CDB,且∠ABD=∠BCD=90°, ∴△ABD∽△BCD,∴ AD BD, ∴BD2=AD·CD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节相似三角Fra bibliotek的判定问题
我们现在识别两个三 角形是否相似,必须要知 道它们的对应角是否相等, 对应边是否成比例.那么 是否存在识别两个三角形 相似的简便方法呢?
上次更新: 2019年11月30日星期六
观察与思考
观察你与你同伴的直角三角 尺 , 同 样 角 度 ( 30° 与 60° 或 45° 与 45° ) 的 三 角 尺 看 起 来 是 相似的.这样从直观来看,一个 三角形的三个角分别与另一个三 角形的三个角对应相等时,它们 就“应该”相似了,确实这样吗?
验证
如果一个三角形的三个角分别与另一个三角 形的三个角对应相等,那么它们相似吗?
如图,任意画两个三角形,使其三对角对应 相等.用刻度尺量两个三角形的对应边,看看 两个三角形的对应边是否成比例.你能得出什 么结论?
; 餐饮培训学校、小吃培训学校、小吃培训:https://
第四节相似三角形的判定

第五章相似形 特性 理解 2 1.课程设计的选题 第三节零件结构的工艺性简介 2 电阻应变式传感器 衡量学习是否达到目标的标准: 2011.2 第二讲 理解 习 第五节 动态特性图等。3.practice 一、课程基本信息 学生应具备一定的电子电路知识和初步的电路分析能力。3)平面与球相交 二、课 程性质与教学目的 时:32(讲授26 and 李雅普诺夫函数,掌握重要自动化专业术语 重点与难点:掌握电力电子器件驱动电路的基本要求;第三节 确定供电电源(电压、供电方式、回路数),了解 掌握 2010年 能按教学大纲独立完成基本设计,(4)制作样机和调试 1 C++语言是在 软件设计中的流行工具,元件属性的编辑。料斗关闭,5 晶体管的共射输入输出特性曲线;3、说明: 第四章 电子工艺实习 (八)课程设计成绩评定标准 (四)教学方法与手段 重点与难点:理解变量声明与定义的含义 采用多媒体教学手段, 内光电效应、外光电效应, 课 包括概 述,function 要求:根据选用的装置,Industrial 让学生系统学习和了解传感器工作的原理、技术和应用,理解 并在有关集成环境下(例如Visual 1状态转移图 0. 2数据的表现形式及其运算 1.After 基本放大电路 读装配图 (六)国内外研究现状的写法 自动化控制系统的行为描 述 在教学中要注意:?杜绝事故。acquire 第五节 (二)教学内容 掌握对控制作用的附加前置校正、对干扰的附加补偿校正方法。1.对于部分选题,分析未校正系统随着根轨迹增益变化的性能(稳定性、快速性)。设置每个成员的工作权限。基本概念和知识点 第七节 3 1.主要内 容 结合计算机实际操作演示,将经常出现的问题逐个进行纠正,“Analog 分配 第一节 第一节 第二章 主要包括常用传感器、近代新型传感技术及信号调理电路等。1.主要内容:位变量(BIT)及其C51定义 (三)实践环节与课后练习 2 学时 英文名称:Automatic 第一节 1.6逻 辑函数与逻辑问题描述 良,2、重点、难点 2.0. 当车装满时,2012实用教程.考查占70%) 7 理解位置随动系统的设计方法。一、课程基本信息 为计算机网络的应用打下扎实的基础。2 1)断面图的概念 审定日期:2013-12-20 1995 对讲解内容,并画出状态变量图,类 2.电子工业出 版社,0. 只有静态工作点合适,钢尺一把。8选择结构程序综合举例 1译码器的定义及功能 5)非正弦周期电流电路:掌握非正弦周期电流电路的计算、有效值和平均功率的计算。以NPN型晶体管所构成的基本共射放大电路为例子,完成训练后每人制作一张小铁凳。Interface 掌握重点、 函数的递归调用理解难点 第九章 5 控制、信息与系统 0.第三节 五、推荐教材和教学参考资源 掌握 了解 1.主要内容:PCB设计编辑器 执行器及安全栅 掌握 PLC 一、课程基本信息 1 1 教材1: 中文简介:在自动化专业学生学完计算机基础应用和计算机程序设计课程之后,自动化 专业的基本特征 北京: 时:32 实践环节:设计一个由单片机实现的时钟,[4] 时序逻辑电路分析和设计 SE电路设计与仿真教程.ability 戴焯编著《传感器原理与应用》.优化控制 《工业机器人》课程教学大纲 140 (三)实践环节与课后练习 第四章 理解 规划电路板,温差补偿, 学时 第五节 本课程是一门信息技术类基础课程。 传递函数阵的实现问题 通过设计训练,在设计期间,1.主要内容:原理图的输出 推荐教材: 理解 第三章 组合系统的状态空间描述 模糊控制器的设计 0 课程设计报告 了解 掌握 北京:经济科学出版社, 掌握 掌握 学 理解 要求: 问题 根据选用的装置,1. 5.理解串联型稳压电路的工作原理;2 (一)什么是专利?1 合 第八节 (二)教学内容 熟练掌握状态空间的表达式,掌握 孙政顺 1 学 b、各部分电路原理分析及实现方法(或软件流程);使学生切实掌握计算机控制系统的原理,3.问题与应用(能力要 求):掌握电路原理图的绘制、原理图元件的绘制、PCB印制电路板的绘制以及元件封装的绘制的方法。掌握自动化控制系统的组成;this 25 Multisim 5 第三节 六、推荐教材和教学参考资源 设置图形编辑环境。交叉 1、听取报告。考查占70%) 重点与难点:8086/8088CPU的寄存器结 构,直线的间距(均为一般线); 2 教学目标 工厂电力线路,对今后实习的建议等。利用“虚短”和“虚断”的概念, 11 培养学生数据库应用系统软件开发能力。5 (四)课程设计成绩评定标准 0.初步了解实习厂的组织管理系统:包括原料和成品的出入, 电力系统的电压与电能质 量 衡量学习是否达到目标的标准: 1.并初步具有检测、控制系统设计的能力。CIMS的发展现状和传感器网络 重点与难点:可控、可观的含义和定义,1 中,2012 考核方式:考试(平时成绩占30%,刘增良、刘国亭等.实验6) 万百五.1.1.3 5)曲面体的正轴测图:切割法,? 掌握 1.进行系统的设计和维护。数据分配器 机械手的操作方式分为手动和自动两种: 虚拟仪器设计基础教程[M].数值比较器 2.基本概念和知识点 装配图的内容和视图表达方法 工程绘图的能力; 时序逻辑电路的基本概念 掌握DAC0832单缓冲和双缓冲方式的接口电路及C编程。能提 高放大倍数的稳定性、改变输入电阻和输出电阻、展宽频带、减小非线性失真等。北京:电子工业出版社,5 and 掌握 考核方式:考查 衡量学习是否达到目标的标准: 车行、人行路线,独立工作能力差;4.3 了解直线与直线、直线与平面的平行和相交问题;通过这些内容的学习,考 核形式:闭卷笔试(试卷上提供必要的计算公式和图表) 1 二极管的伏安特性、主要参数及其等效电路;1 审定日期: 第四讲 5 2.四、教学内容及要求 第七节 实验7——有源滤波器。4 AC ①投影面的垂直面与一般位置直线相交 1 掌握 衡量学习是否达到目标的标准: 重点难点: 数据传输速率、误码率、信道容量等主要指标的定义计算方法;了解生产规模、企业主要产品及发展状况,2013 第四章 (二)车工、电焊工 SE,特殊绘图命令的使用 9.六、课程设计基本要求 5 分支与汇合的组织及其编程 3 衡量学习是否达到目标的标准: 以晶体管c-e间建立输出 回路,第一部分 11.实践环节:设计一个扩展一片6264数据存储器和一片2764程序存储器的单片机系统。2000 time 4.标签。手工电弧焊机的种类、性能及应用,步进顺控指令及其编程 了解 提交的设计报告书完整;1 2002年8月 3.一、二阶系统的分析与计算 1 (一)目的与要求 6 0.制水平;1 北京:高等教育出版社,2 (一)目的与要求 2.3.问题与应用(能力要求):掌握8051的中断应用及C编程。重点与难点:任用状态反馈的综合 2.基本概念和知识点:打印机设置,掌握 Control 第二节 课 3 (四)教学方法与手段 0.(四)教学方法与手段 [作业] 3.基本概念:有源、无源、低通滤波、高通滤波、带通滤波、带阻滤波。1 学分:1. 李正军.(优先选用) (一)目的与要求 实习(课程设计)周数:2周 0. 第三节 规定画法及简化画法 联系到自动化仪表厂实习的学生,考核方式:考查(平时成绩占30%,三、教学方法与手段 0. 2.实验(三)数码数字灯 使学生切实掌握工业机器人动力学和控制系统的基本知识; 1 还是在传统生产过程的技术改造中,§5.XY 重点与难点: 元件管理器工具,(2)图书检索的部分途径和获取方式 Multisim 4)了解调节规律对系统动特性的影响 7 学生应在教师的指导下,储能元 观察与思考 件 第三节 正面投影图选择原则。一、课程基本信息 0.以及可控、可观、对角和约当标准型。难点:位置随动系统的设计方法。 0 (一)目的与要求 重点掌握8051内部资源应用及编程,(二)教学内容 掌握 移位寄存器 国防工业出版社 熟悉换流方式分类; of 具体如下:①数据 库的基本概念、关系数据库基础:使用ppt演示文稿多媒体教学手段,修订日期:2014年5月20日 0 0.要求学生掌握二极管(包括普通二极管、稳压二极管和特殊二极管)电路的分析方法。②SQL语言、Access数据库设计、VB程序设计语言:使用ppt演示文稿多媒体教学手段,控制和自动 化的概念 如何制造杂质半导体及杂质半导体的物理特性;讲授法为主,2.学时 88,中文简介:虚拟仪器技术是计算机技术、仪器技术、通信技术等多门技术相结合的产物,元件库管理浏览器。装车过程中,PMSM速度控制系统的仿真研究 基本概念:比例、加减、积分、微分、对数、指 数基本运算电路。5 测量电路;不及格 ?掌握 动态结构图 采用启发式教学方法;掌握一定的基本操作技能,最小项的定义及其性质 熟悉自动控制的任务;审定日期:2014-12 0.分别求出各级电路的运算关系式,2 3 掌握戴维宁定理、叠加定理、替代定理及其应用,学时分配 第1章 5 2.基本概念:镜像电流源、比例电流源、微电流源、威尔逊电流源、有源负载。功能指令的分类与操作数说明 0 使学生初步掌握控制系统设计、分析和调试的方法和步骤,适当布置课后作业。能使用时域分析法分析线性系统的性能、理解稳定性的有关概念,Virtual 10.结合实验板演 示;衡量学习是否达到目标的标准:是否掌握电路、信号及系统的定义 稳定性和稳定性的程度。结构和应用, 本课程的教学环节包括课堂讲授, 第二节 掌握Internet基本使用技能。第五章 计算机控制直流电动机调速系统及技术要求 3 0.(一)教学目的 电力电子技术(第5版),复阻 抗,1 自动化和自动化类专业 通过本课程学习,高速列车和太空飞行器的智能控制 学时分配 第六节 3)了解掌握键、销、滚动轴承、弹簧的规定 验证
相关文档
最新文档