相似三角形知识点总结

合集下载

相似三角形知识点梳理

相似三角形知识点梳理

相似三角形知识点汇总重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。

一、重要定理(比例的有关性质):二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理: (1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理)相似三角形判定的基本模型A字型 X字型反A字型反8字型母子型旋转型双垂直三垂直相似三角形判定的变化模型CB EDA。

初中相似三角形知识点归纳

初中相似三角形知识点归纳

初中相似三角形知识点归纳分享借鉴.初中相似三角形知识点11.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形.2.相似三角形的表示方法:用符号∽ 表示,读作相似于 .3.相似三角形的相似比:相似三角形的对应边的比叫做相似比.4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似.从表中可以看出只要将全等三角形判定定理中的对应边相等的条件改为对应边成比例就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的`斜边和一条直角边对应成比例,那么这两个直角三角形相似.7.相似三角形的性质定理:(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.8. 相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2初中相似三角形知识点21.相似三角形的定义对应角相等.对应边成比例的两个三角形叫做相似三角形.如果三边分别对应A,B,C和a,b,c:那么:A/a=B/b=C/c即三边边长对应比例相同.2.相似三角形判定对应角相等,对应边成比例的两个三角形叫做相似三角形.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)判定定理4:两三角形三边对应平行,则两三角形相似.判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似.其他判定:由角度比转化为线段比:h1/h2=Sabc3.相似三角形性质(1)相似三角形的对应角相等.(2)相似三角形的对应边成比例.(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.(4)相似三角形的周长比等于相似比.(5)相似三角形的面积比等于相似比的平方.初中相似三角形知识点3一.平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例.2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边.二.相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例.三.相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形.2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边.高.中线.角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方.说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应.3. 判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似.四.三角形相似的证题思路:五.利用相似三角形证明线段成比例的一般步骤:一定:先确定四条线段在哪两个可能相似的三角形中;二找:再找出两个三角形相似所需的条件;三证:根据分析,写出证明过程.如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等. 六.相似与全等:全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例.2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改对应边相等成对应边成比例.初中相似三角形知识点。

相似三角形的知识点总结

相似三角形的知识点总结

相似三角形的知识点总结相似三角形是几何学中的重要概念,它在实际生活中有着广泛的应用。

相似三角形是指具有相同形状但大小不同的两个三角形。

在相似三角形中,对应角度相等,对应边的比例相等。

相似三角形的知识点包括相似比例、相似条件、相似性质以及相似定理等。

下面将逐一介绍这些知识点。

1. 相似比例:相似三角形的对应边的比例相等。

即若两个三角形ABC和DEF相似,则有AB/DE = AC/DF = BC/EF。

2. 相似条件:两个三角形相似的条件有三种情况:a) 两个三角形的对应角度相等;b) 两个三角形的两个对应角度相等,且两个对应边的比例相等;c) 两个三角形的一个对应角度相等,且两个对应边的比例相等。

3. 相似性质:相似三角形具有以下性质:a) 相似三角形的对应角度相等;b) 相似三角形的对应边的比例相等;c) 相似三角形的对应角的平分线相交于一点;d) 相似三角形的内角平分线相交于一点。

4. 相似定理:相似三角形的定理有多个,其中一些重要的定理包括:a) AA相似定理:若两个三角形的两个对应角度相等,则两个三角形相似;b) SSS相似定理:若两个三角形的对应边的比例相等,则两个三角形相似;c) SAS相似定理:若两个三角形的一个对应角度相等,且两个对应边的比例相等,则两个三角形相似;d) 勾股定理的相似定理:若两个直角三角形的两条直角边分别成比例,则两个三角形相似。

相似三角形的知识点对于解决实际问题非常重要。

例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量阴影的长度和角度,计算出高楼的高度。

又如,在地图上测量两地的距离时,我们可以利用相似三角形的性质,通过测量地图上两地的距离和角度,计算出实际距离。

相似三角形是几何学中的重要概念,它在解决实际问题中有着广泛的应用。

通过掌握相似三角形的知识点,我们可以更好地理解几何学中的相似性质,从而应用于实际生活中的测量和计算中。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳1.相似三角形的定义:如果两个三角形的对应角相等,则这两个三角形是相似的。

记作△ABC∽△DEF。

2.相似三角形的判定条件:(1)AA相似判定法:如果两个三角形的两个角相等,则这两个三角形是相似的。

(2)SAS相似判定法:如果两个三角形的对应两边成比例并且夹角相等,则这两个三角形是相似的。

(3)SSS相似判定法:如果两个三角形的对应三条边成比例,则这两个三角形是相似的。

3.相似三角形的性质:(1)对应边成比例:在相似三角形中,对应边的长度之比相等。

即AB/DE=BC/EF=AC/DF。

(2)对应角相等:在相似三角形中,对应角的度数相等。

即∠A=∠D,∠B=∠E,∠C=∠F。

(3) 对应角的正弦值成比例:在相似三角形中,如果一个角和其对边的正弦值成比例,则另一个角和其对边的正弦值也成比例。

即sin∠A/sin∠D = sin∠B/sin∠E = sin∠C/sin∠F。

(4)图形相似:除了三角形外,相似三角形所在的图形也是相似的。

4.角平分线的性质:(1)在相似三角形中,角平分线之间的关系相等。

即角平分线所分的两个角对应的另外两个角也是相等的。

(2)在相似三角形中,角平分线和对应边长成比例。

即角平分线与对应边所分出的线段之比相等。

5.高度的性质:(1)在相似三角形中,高度之间的关系成比例。

即两个相似三角形的高度之比等于对应边长之比。

(2)在相似三角形中,高度与底边成比例。

即两个相似三角形的高度和底边之比等于对应边长之比。

6.面积的性质:(1)在相似三角形中,面积之间的关系成比例。

即两个相似三角形的面积之比等于对应边长之比的平方。

(2)在相似三角形中,面积与任意一边平方成比例。

即两个相似三角形的面积和任意一边的平方之比等于对应边长之比。

7.相似三角形的应用:(1)根据相似三角形的性质,可以通过测量一个三角形和两条边的比例,计算出另一个三角形的边长和面积。

(2)在地图上,可以利用相似三角形的性质,测量无法直接测量的远距离。

九年级数学相似三角形知识点

九年级数学相似三角形知识点

九年级数学相似三角形知识点九年级数学:相似三角形知识点1. 相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边成比例的三角形。

也就是说,如果两个三角形的三个角分别相等,且每组对应边的比值都相等,那么这两个三角形就是相似的。

2. 相似三角形的标记在标记相似三角形时,通常使用希腊字母来表示对应的顶点。

例如,如果三角形ABC与三角形DEF相似,我们可以标记为:△ABC ∼△DEF。

3. 相似三角形的性质- 对应角相等:∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

- 对应边成比例:AB/DE = BC/EF = AC/DF。

- 对应高的比值也相等:AH/DH = BH/EH = CH/FH(其中H是三角形的高所在的顶点)。

- 对应中线的比值也相等:AM/DM = BM/EM = CM/FM(其中M是三角形的中线所在的顶点)。

4. 相似三角形的判定- 三角形相似的判定定理一:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。

- 三角形相似的判定定理二:如果两个三角形的三组对应边的比值都相等,那么这两个三角形相似。

- 三角形相似的判定定理三:如果两个三角形的两组对应边的比值相等,且它们之间的夹角也相等,那么这两个三角形相似。

5. 相似三角形的应用- 解决实际问题:在建筑设计、地图制作等领域,相似三角形的概念可以用来解决比例缩放问题。

- 计算面积比:相似三角形的面积比等于对应边长的平方比。

即,如果AB/DE = x,则△ABC的面积与△DEF的面积之比为x²。

- 证明几何定理:在证明某些几何定理时,可以通过证明三角形相似来简化证明过程。

6. 相似三角形的计算- 使用比例关系解决实际问题时,通常需要先确定比例系数,然后利用这个系数来计算其他边长或角度。

- 在计算面积比时,应先计算出三角形的边长比,然后根据边长比计算面积比。

7. 相似三角形的证明- 在证明三角形相似时,需要明确指出所使用的判定定理,并确保所有的条件都满足。

相似三角形知识点总结

相似三角形知识点总结

相似三角形知识点总结知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d cb =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即AC BC AB AC == 简记为:12长短==全长 注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1)基本性质:① bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅. (2)反比性质(把比的前项、后项交换): a c b db d a c=⇔=. (3)等比性质:如果)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ .可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或①结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角...形三边...对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 知识点5 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两B个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

三角形的相似性知识点总结

三角形的相似性知识点总结

三角形的相似性知识点总结三角形是几何学中重要的图形,通过相似性的概念,我们可以研究不同大小但形状相似的三角形之间的关系。

相似的三角形可以通过比较它们的边长、角度或比例来判断。

在以下内容中,我将对三角形的相似性及其应用进行详细总结。

一、相似三角形的定义和性质:1.相似三角形定义:具有相等的夹角且各对应边长度成比例的三角形称为相似三角形。

2.相似三角形性质:a)对应顶角相等:如果两个三角形相似,它们对应的顶角必定相等。

b)对应边成比例:如果两个三角形相似,它们对应的边长必定成比例。

c)对应角与边的比例一致:在两个相似三角形中,对应角与对应边的比例是相等的。

d)周长比例:两个相似三角形的周长之比等于对应边之比。

e)面积比例:两个相似三角形的面积之比等于对应边长之比的平方。

二、相似三角形的证明方法:1.侧角侧相似定理(SAS相似定理):如果两个三角形中一对对应角相等,且它们的两对对应边成比例,则这两个三角形相似。

2.角角相似定理(AA相似定理):如果两个三角形中两对对应角相等,则这两个三角形相似。

3. 正弦定理(Sine定理):对于一个任意三角形ABC,在∠B和∠C 两个顶点的夹角中,它们的对边与其相对的角的正弦比相等,即a/sinA=b/sinB=c/sinC,其中a、b和c分别是三角形的边长。

4. 余弦定理(Cosine定理):对于一个任意三角形ABC,在∠B和∠C两个顶点的夹角中,它们的边长与其余弦值的比之间有一定的关系,即c²=a²+b²-2ab*cosC。

三、相似三角形的应用:1.三角形的比例测量:通过已知相似三角形的边长比例,可以测量无法直接测量的长度。

2.高度测定:在无法直接测量的情况下,可以通过相似三角形的性质来求解三角形的高度。

3.距离测量:通过相似三角形的应用,可以通过测量一个已知长度物体的阴影长度,推算出其他位置阴影长度对应的物体距离。

4.角度测量:通过已知相似三角形的角度关系,可以测量无法直接测量的角度。

相似三角形知识点

相似三角形知识点

相似三角形知识点知识点1有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2比例线段的相关概念(1)如果选用同一单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是 - m,或写b n成a : b m: n .注:在求线段比时,线段单位要统一。

(2)在四条线段a,b,c,d中,如果a和b的比等于c和d的比,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a是b,c,d的第四比例项,那么应得比例式为:- -.②c aa c在比例式(a:b c:d)中,a、d叫比例外项,b、c叫比例内项,a、c叫比例前项,b、d叫比例后b d项,d叫第四比例项,如果b=c,即a: b b:d那么b叫做a、d的比例中项,此时有b2ad。

(3)黄金分割:把线段AB分成两条线段AC,BC(AC BC),且使AC是AB和BC的比例中项,即.;■ 5 i AC2AB BC,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC AB -20.618 AB •即AC 匹壬」简记为:长=短=卫」AB AC 2 简全长2注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1)基本性质:2① a : b c : d ad bc :② a : b b : c b aC .注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如ad bc,除了可化为a: b c: d,还可化为a: c b: d , c: d a : b , b : d a : c , b: a d : c , c: ad : b , d : c b : a , d : b c: a .——,佼换内项)c da c d E,(交换外项)(2) 更比性质(交换比例的内项或外项):b d b ad b(同时交换内外项)c a(3) 反比性质(把比的前项、后项交换): a c b db d a c(4) a c a b c合、分比性质:一d注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立•如:a£ ab da b c c c 等等 •dda ba c em Z1 , r小、 a c e m a(5 )等比性质:如果(b d f n 0),那么一b d fnb d fn b注:①此性质的证明运用了 “设 k 法”(即引入新的参数 k ) 这样可以减少未知数的个数, 这种方法是有关比例计算变形中一种常用方法•②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立•如:a ce a 2c 3e a 2c 3e a;其中 b 2d 3f 0 b b d f b 2d 3f b 2d 3f知识点4比例线段的有关定理1.三角形中平行线分线段成比例定理 :平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD AE 亠 BD EC 亠 AD AE 由DE// BC 可得: 或 或 DB EC AD EA AB AC注:① 重要结论:平行于三角形的一边 ,并且和其它两边相交的直线 ,所截的三角形的三边 与原三角形三边 对应成比 例•② 三角形中平行线分线段成比例定理的逆定理: 如果一条直线截三角形的两边 (或两边的延长线)所得的对应线段 成比例•那么这条直线平行于三角形的第三边 •此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③ 平行线的应用:在证明有关比例线段时,辅助线往往做平行线 ,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 •注:平行线分线段成比例定理的推论:线段也相等。

平面几何中的相似三角形知识点总结

平面几何中的相似三角形知识点总结

平面几何中的相似三角形知识点总结
相似三角形是平面几何中重要的概念,它在解决实际问题和证明几何定理中起到重要的作用。

以下是相似三角形的知识点总结:
1. 相似三角形定义:相似三角形定义:
相似三角形是指具有对应角度相等且对应边长成比例的两个三角形。

2. 相似三角形定理:相似三角形定理:
- AAA相似定理:如果两个三角形的三个对应角度分别相等,那么这两个三角形是相似的。

- AA相似定理:如果两个三角形的一个角度相等,且它们的对边成比例,那么这两个三角形是相似的。

- SSS相似定理:如果两个三角形的三条对边成比例,那么这两个三角形是相似的。

3. 相似三角形特性:相似三角形特性:
- 对应角相等:相似三角形的对应角度是相等的。

- 对边成比例:相似三角形的对应边长成比例,即各对应边的比值相等。

- 外接圆相似:相似三角形的外接圆是相似的。

4. 相似三角形的性质:相似三角形的性质:
- 相似三角形的周长比等于对应边长比。

- 相似三角形的面积比等于对应边长比的平方。

- 两个相似三角形的高度和底边成比例。

5. 相似三角形的应用:相似三角形的应用:
- 测量不可直接测量的长度:利用相似三角形的边长比例,可以测量无法直接测量的长度,如建筑物的高度、山的高度等。

- 解决实际问题:相似三角形的概念经常用于解决实际问题,如计算建筑物的阴影长度、确定图像的放大缩小比例等。

以上是平面几何中相似三角形的重要知识点总结。

掌握这些知识,能帮助我们更好地理解和解决与相似三角形相关的问题。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳下面是关于相似三角形的一些重要知识点的归纳:1.相似三角形的定义:当两个三角形的对应角度相等时,它们称为相似三角形。

记作△ABC∽△DEF。

2.相似三角形的性质:相似三角形具有以下重要性质:-对应角度相等:如果△ABC∽△DEF,则∠A=∠D,∠B=∠E,∠C=∠F。

-对应边长度比相等:如果△ABC∽△DEF,则AB/DE=BC/EF=AC/DF。

-对应高度比相等:如果△ABC∽△DEF,则h₁/h₂=AB/DE=BC/EF=AC/DF,其中h₁和h₂分别为两个三角形的高度。

3.相似三角形的证明方法:-AA相似定理:如果两个三角形的两个角度分别相等,则它们相似。

根据该定理,只需证明两个对应角度相等即可证明两个三角形相似。

-SAS相似定理:如果两个三角形中的一对对应边的比相等,且对应角度相等,则这两个三角形相似。

-SSS相似定理:如果两个三角形的三对对应边比分别相等,则这两个三角形相似。

4.相似三角形的应用:-计算长度比例:根据相似三角形的性质,可以通过已知长度比例的一组相似三角形,来计算其他边的长度比例。

-求解角度:通过已知相似三角形的对应角度相等,可以求解未知的角度。

-计算面积比例:相似三角形的面积比等于边长比的平方。

所以,通过已知相似三角形的边长比,可以计算出面积比。

5.重要的相似三角形定理:-长边分割定理:如果一条直线平行于一个边,且与另外两条边相交,这条直线将三角形分割成两个相似的三角形。

-三角形的垂直角定理:在一个直角三角形中,斜边与任意一个锐角的两个垂直角相等。

总结起来,相似三角形是几何学中一个重要的概念。

通过理解相似三角形的定义、性质、证明方法以及应用,我们可以去解决各种几何问题。

相似三角形的知识点需要掌握好,也是我们在解决几何问题过程中的重要工具。

相似三角形知识点

相似三角形知识点

相似三角形知识点相似三角形是初中数学中的重要内容,它不仅在数学学科中有着广泛的应用,也为解决实际问题提供了有力的工具。

下面就让我们一起来深入了解一下相似三角形的相关知识点。

一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

例如,三角形 ABC 和三角形 A'B'C',如果角 A =角 A',角 B =角 B',角 C =角 C',并且 AB / A'B' = BC / B'C' = AC / A'C',那么三角形 ABC 和三角形 A'B'C'就是相似三角形。

二、相似三角形的判定1、两角分别相等的两个三角形相似。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

3、三边成比例的两个三角形相似。

如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

三、相似三角形的性质1、相似三角形的对应角相等,对应边成比例。

这是相似三角形的基本性质,也是判定两个三角形相似的依据。

2、相似三角形的对应高的比,对应中线的比与对应角平分线的比都等于相似比。

相似比是指两个相似三角形对应边的比值。

3、相似三角形的周长比等于相似比。

设三角形 ABC 和三角形 A'B'C'相似,相似比为 k,则三角形 ABC 的周长与三角形 A'B'C'的周长之比为 k。

4、相似三角形的面积比等于相似比的平方。

若两个相似三角形的相似比为 k,那么它们的面积比为 k²。

四、相似三角形的应用1、测量高度在实际生活中,当我们需要测量一些无法直接到达顶部的物体的高度时,如大树、高楼等,可以利用相似三角形的原理。

(完整版)相似三角形-基本知识点+经典例题(完美打印版)

(完整版)相似三角形-基本知识点+经典例题(完美打印版)

相似三角形知识点知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d cb =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a ccd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

相似三角形知识点归纳(全)

相似三角形知识点归纳(全)

《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即12AC BC AB AC ==简记为:长短=全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形周长的比等于相似比.E BD DB C(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

相似三角形知识点总结

相似三角形知识点总结

相似三角形知识点总结相似三角形是初中数学中的重要内容之一,学好相似三角形的知识对于解决各种几何问题非常有帮助。

相似三角形包含了多个知识点,接下来将对这些知识点进行总结。

1. 相似三角形的定义和判定相似三角形的定义是:如果两个三角形的对应角相等,并且对应边成比例,那么这两个三角形就是相似的。

用符号表示为∆ABC∼∆DEF。

判定两个三角形相似的方法有几种:(1)AAA相似判定法:如果两个三角形的三个角分别相等,则这两个三角形相似。

(2)SAS相似判定法:如果两个三角形的一个角相等,而这个角的两边分别与另一个角的两边成比例,则这两个三角形相似。

(3)SSS相似判定法:如果两个三角形的对应边分别成比例,则这两个三角形相似。

2. 相似三角形的性质(1)相似三角形的对应角相等。

相似三角形的对应角相等是相似的基本性质,也是判定相似三角形的一个重要标志。

如果两个三角形的对应角分别相等,那么这两个三角形就是相似的。

(2)相似三角形的对应边成比例。

相似三角形的对应边成比例是相似三角形的另一个重要性质。

即使两个三角形的对应边依次成比例,那么这两个三角形就是相似的。

(3)相似三角形的边比例与面积比例的关系。

如果两个三角形相似,那么它们的边比例的平方等于它们的面积比例。

即若∆ABC∼∆DEF,则AB/DE = BC/EF = AC/DF,并且[(AB/DE)^2] = [(BC/EF)^2] = [(AC/DF)^2] = ∆ABC的面积/∆DEF的面积。

3. 相似三角形中的一些重要定理(1)相似三角形的高定理如果两个三角形相似,那么它们的高也成比例。

具体地说,若∆ABC∼∆DEF,则(AD/DF) = (BE/EF) = (CF/DF),其中AD、BE和CF分别是∆ABC和∆DEF的高。

(2)相似三角形的角平分线定理如果两个三角形相似,那么它们的内角的角平分线也成比例。

具体地说,若∆ABC∼∆DEF,则∠BAC的平分线与∠EDF的平分线相交于点K,而∠ABC的平分线与∠DEF的平分线相交于点L,则AK/KE = BL/LF。

相似三角形知识点总结

相似三角形知识点总结

相似三角形知识点总结相似三角形知识点总结知识点1:相似形的概念相似图形是指形状相同的图形,其中最简单的是相似三角形。

如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形就是相似多边形。

相似多边形对应边长度的比叫做相似比(相似系数)。

知识点2:比例线段的相关概念比例线段是指四条线段a、b、c、d中,如果a和b的比等于c和d的比,那么这四条线段a、b、c、d叫做比例线段。

比例线段是有顺序的,如果说a是b、c、d的第四比例项,那么应得比例式为bdac=。

在比例式(a:b=c:d)中,a、d叫比例外项,b、c叫比例内项,a、c叫比例前项,b、d叫比例后项,d叫第四比例项。

如果b=c,即a:b=b:d,那么b叫做a、d的比例中项,此时有b²=ad。

黄金分割是把线段AB分成两条线段AC、BC(AC>BC),且使AC是AB和BC的比例中项,即AC²=AB×BC,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC=(5-1)/2×AB≈0.618AB。

黄金三角形是顶角是36°的等腰三角形。

黄金矩形是宽与长的比等于黄金数的矩形。

知识点3:比例的性质比例的基本性质有:a:b=c:d⟺ad=bc;a:b=b:c⟺b²=a×c。

比例的反比性质是把比的前项、后项交换。

比例的等比性质是如果知识点4:比例线段的有关定理三角形中平行线分线段成比例定理是指平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例。

例如,由DE∥BC可得:ADAEBDECADAE=或=。

结论:如果一条直线平行于三角形的一边,并且和其它两边相交,那么所截得的三角形的三条边与原三角形的三条边成比例。

逆定理:如果一条直线截取三角形的两条边(或两条边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

这个定理提供了一种证明两条直线平行的方法,即使用比例式来证明平行线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形知识点总结1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方有疑问的题目请发在“51加速度学习网”上,让我们来为你解答()51加速度学习网 整理相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段dc b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BCAB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC == 简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abc db d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nmf e d c b a ΛΛ,那么ban f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:baf d b e c a f e d c b a f e d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或B注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三..角形三边....对应成比例. ②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

知识点5 相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例. 注:①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的. ③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.知识点 6 三角形相似的等价关系与三角形相似的判定定理的预备定理(1)相似三角形的等价关系:①反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.②对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.③传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆ (2) 三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:B D B用数学语言表述是:BC DE //Θ, ∴ ADE ∆∽ABC ∆.知识点7 三角形相似的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似. 6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=CD ·BC 。

知识点8 相似三角形常见的图形1、下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)DBC(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共角型”、“反A共角共边型”、“蝶型”)(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

2、几种基本图形的具体应用:(1)若DE∥BC(A型和X型)则△ADE∽△ABC(2)射影定理若CD为Rt△ABC斜边上的高(双直角图形)则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB;(3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB.(4)当AD AEAC AB或AD·AB=AC·AE时,△ADE∽△ACB.BEACD12ABCDE12AABB C CDDEE12412BBC(D)(3)DB知识点9:全等与相似的比较:知识点10 相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.注:相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等.知识点11 相似三角形中有关证(解)题规律与辅助线作法1、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系2、证明题常用方法归纳:(1)总体思路:“等积”变“比例”,“比例”找“相似”(2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。

相关文档
最新文档