初中数学竞赛定理大全
初中数学竞赛几何中常用的24个必备定理
初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。
2. 对顶角定理:对顶角相等。
3. 同旁内角定理:同旁内角互补。
4. 外角定理:与一个多边形任意一内角相对的外角相等。
5. 内角和定理:n边形的内角和为180度×(n-2)。
6. 相关角定理:相邻角互补,对顶角互相相等。
7. 垂直直角定理:垂线与直线相交,形成直角。
8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。
9. 三角形内角和定理:三角形内角和为180度。
10. 等腰三角形定理:等腰三角形的底角相等。
11. 等边三角形定理:等边三角形的三个内角均为60度。
12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。
13. 等角定理:两角相等的两个三角形全等。
14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。
15. 中线定理:连接三角形两边的中线相等。
16. 中位线定理:连接三角形两边中点的线段平分第三边。
17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。
18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。
19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。
20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。
三条边为大圆弧。
21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。
22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。
23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。
24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。
初中数学竞赛定理大全
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
初中数学竞赛模型定理
初中数学竞赛模型定理包括但不限于以下几个:
1. 勾股定理:在直角三角形中,直角边的平方和等于斜边的平方。
即,如果a和b是直角三角形的两条直角边,c是斜边,那么a² + b² = c²。
2. 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
3. 圆的性质:在同一个圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等。
4. 平行线的性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
5. 垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
这些定理在初中数学竞赛中经常出现,掌握这些定理可以更好地理解和解决数学问题。
同时,还需要注意这些定理的使用条件和限制,避免在解题过程中出现错误。
初中数学竞赛中常用重要定理
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两局部4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同始终线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线相互垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的间隔之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以随意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
初中数学竞赛25个定理
初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。
2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。
4. 相似三角形的性质:对应角相等,对应边成比例。
5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。
6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。
7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。
8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。
初三数学竞赛中常用重要定理
初中数学竞赛辅导3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M 和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF 的重心构成的三角形也是正三角形。
初中数学竞赛知识点归纳(定理)
1.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC初中竞赛需要,重要3.梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1初中竞赛需要,重要4.梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。
不用掌握6.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线不用掌握7.、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.初中竞赛需要,重要8.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M不用掌握9.塞瓦定理的逆定理:(略)初中竞赛需要,重要10.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
不用掌握12.西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13.西摩松定理的逆定理:(略)初中竞赛的常用定理14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15.圆的外切四边形的两组对边的和相等16.弦切角定理弦切角等于它所夹的弧对的圆周角17.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等18.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等19.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项20.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项21.推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等斯特瓦特定理有三角形ABC,D为角A平分线与BC边的交点,则有以下定理:AB(2)·DC +AC(2)·BD-AD(2)·BC=BC·BD·DC托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。
初中几何常用定理(竞赛)
1已知:AD为BC边上的中线结论:(2)垂线定理已知:AD为BC边上的高结论:(3)梅涅劳斯定理已知:一条直线与△ABC三边或其延长线交于R、Q、P(4)塞瓦定理已知:三角形内部一点O,延长AO、BO、CO交三边于X、Y、Z(5)角平分线定理已知:AD为∠BAC平分线(6)斯特瓦尔特定理已知:D为BC边上一点结论:7结论:(8)外森皮克不等式已知:三角形的面积为S结论:(9)西姆松定理已知:过△ABC外接圆上一点P作三边或其延长线的垂线结论:三个垂足M、N、Q共线(10)海伦公式已知:△ABC三边分别为a、b、c其中(11)燕尾定理已知:△ABC中,AD、BE、CF相交于OAA12已知:△ABC外接圆半径为R,三顶点A、B、C所对的边为a、b、c结论:(13)余弦定理已知:△ABC三顶点A、B、C所对的边为a、b、c结论:(14)张角定理已知:D是△ABC中BC上一点(15)托勒密定理已知:四边形ABCD为圆内接四边形结论:(任意凸四边形ABCD,必有,当且仅当ABCD四点共圆时取等)(16)九点圆定义:三角形三边的中点MHG,三条高的垂足DEF和各顶点与垂心连线的中点PNQ,九点共圆。
结论:①九点圆的半径是三角形外接圆半径的一半;②九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;③九点圆与三角形的内切圆,三个旁切圆均相切(费尔巴哈定理)DFB CCAAB17已知:M是弦AB中点,任意两条弦CD、EF过点M,DE、CF交AB于P、Q(18)欧拉线定义:三角形的外心O、重心G、九点圆圆心V和重心H,依次位于同一直线上,这条直线即欧拉线(19)弦切角定理已知:PA切圆于点A(20)圆幂定理已知:弦AB与弦CD交于点P结论:已知:PQ切圆于Q,割线PB、PD交圆于A、CDAB CPDPB21结论:已知:P是矩形内任意一点结论:(22)维维亚尼定理已知:P是等边△ABC内任意一点,P到三边的距离分别是,h1、h2、h3,等边△ABC的高为H(23)莫利定理已知:△ABC各内角的三等分线交点为D、E、F结论:△DEF为等边三角形(24)笛沙格定理已知:△ABC和△A1B1C1中,AA1、BB1、CC1交于一点P结论:AB与A1B1交点D,BC与B1C1交点E,AC与A1C1交点F,三点共线B DABBCB CB25定义:三角形内到三个顶点距离之和最短的点结论:①若三角形有一个内角≥120°,则此内角的顶点为费马点;②若三角形三各内角均小于120°,以三角形三边向外作等边△ABE、等边△BCF、等边△ACG,AF、BG、CE交于一点P,点P为费马点,此时(26)婆罗摩笈多定理已知:圆内接四边形的对角线互相垂直相交结论:从交点向某一边所引垂线的反向延长线必经过这条边对边的中点(G为AD中点)E。
初中数学竞赛25个定理
初中数学竞赛25个定理在初中数学竞赛中,各种数学定理都是竞赛的基础,熟练掌握各种数学定理可以在竞赛中脱颖而出。
下面将介绍初中数学竞赛中常见的25个定理,希望对竞赛备战有所帮助。
1. 二元一次方程的解法对于形如ax+by=c的二元一次方程,当a、b不为零时,可以利用消元法、代入法等方式求解。
2. 勾股定理直角三角形的两条直角边的平方和等于斜边的平方,即a2+b2=c2。
3. 同底数幂的乘法法则同底数幂相乘,底数不变,指数相加,即 $a^m \\cdot a^n=a^{m+n}$。
4. 相反数的性质两个数的和为0时,互为相反数,即a+(−a)=0。
5. 解三角形内角和三角形内角和等于180°,即 $\\angle A+\\angle B+\\angle C=180°$。
6. 二次根式性质非负实数组的二次根式恒大于等于0,即 $\\sqrt{a} \\geq 0$。
7. 顺序角对应性质顺序角对应,即 $\\angle A | \\angle B$ 且 $\\angle B=\\angle A+k \\cdot 180°$。
8. 同底数幂的除法法则同底数幂相除,底数不变,指数相减,即 $\\dfrac{a^m}{a^n}=a^{m-n}$。
9. 三角形中角平分线性质三角形中角平分线将一个角平分为两个角,且两个角相等。
10. 解一元二次方程一元二次方程一般形式为ax2+bx+c=0,可以利用求根公式求解。
11. 垂直平分线性质垂直平分线将一条线段垂直平分成两段相等的线段。
12. 多边形内角和n边形内角和等于 $(n-2) \\cdot 180°$,其中n表示多边形的边数。
13. 二次函数的顶点坐标二次函数y=ax2+bx+c的顶点坐标为 $\\left(-\\dfrac{b}{2a}, -\\dfrac{\\Delta}{4a} \\right)$。
14. 欧拉公式对于任何凸多面体,顶点数、棱数和面数之差为2。
初中数学竞赛必备——42个定理与解题模型
初中数学竞赛必备——42个定理与解题模型一、概述1. 数学竞赛在培养学生的逻辑思维能力、数学解决问题的能力以及快速计算的能力方面具有重要的作用。
2. 初中数学竞赛中,掌握一定的数学定理和解题模型对于取得好成绩至关重要。
3. 本文将介绍初中数学竞赛必备的42个定理与解题模型,希望能为参加数学竞赛的同学们提供帮助。
二、数学定理与解题模型1. 代数部分1.1. 一元二次方程的求解方法1.2. 因式分解1.3. 角平分线定理1.4. 勾股定理1.5. 平方差公式1.6. 公式a^2-b^2=(a+b)(a-b)1.7. a^3-b^3=(a-b)(a^2+ab+b^2)2. 几何部分2.1. 同位角性质2.2. 对顶角性质2.3. 三角形的内角和2.4. 三角形的外角和2.5. 圆的性质2.6. 相似三角形的性质2.7. 三角形的高到底边的距离是线段的中线3. 概率部分3.1. 随机事件的概率计算3.2. 排列组合问题的概率计算3.3. 互斥事件和对立事件4. 数论部分4.1. 奇数与偶数的性质4.2. 质数与合数4.3. 最大公约数与最小公倍数5. 解题模型5.1. 分析题目5.2. 构建数学模型5.3. 运用定理解题5.4. 推理思路与方法三、数学竞赛练习与应用1. 多做数学竞赛题目,提高解题速度和正确率。
2. 运用所学的定理和解题模型解决实际问题,提高数学应用能力。
3. 对于涉及到竞赛的数学知识点,进行整体性的复习和整理。
四、结语1. 数学竞赛对于学生的数学能力提升有着一定的促进作用。
2. 要想在数学竞赛中取得好成绩,掌握基本数学定理和解题模型至关重要。
3. 希望本文介绍的42个定理与解题模型能为广大初中生在数学竞赛中取得优异成绩提供一定帮助。
五、举例演练1. 代数部分:一元二次方程的求解方法:解方程x^2+5x+6=0,可以使用因式分解或者配方法来进行求解。
因式分解:对于表达式x^2-4,可以因式分解为(x+2)(x-2)。
初中数学竞赛定理大全
斯图尔特(Stewart)定理:设P为△ABC边BC上一点,且BP:PC=n:m,则m·(AB2)+n·(AC2)=m·(BP2 )+n·(PC2)+(m+n)(AP2)梅内劳斯定理:在△ABC中,若在BC、CA、AB或其延长线上被同一条直线截于点X、Y、Z,则(BX/XC)·(CY/YA)·(AZ/ZB)=1阿波罗尼斯(Apollonius)圆一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”。
布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边。
广勾股定理:在任一三角形中,(1)锐角对边的平方,等于两夹边之平方和,减去某夹边和另一夹边在此边上的影射乘积的两倍.(2)钝角对边的平方,等于两夹边的平方和,加上某夹边与另一夹边在此边延长上的影射乘积的两倍.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。
比如说:从北京到上海有3种方法可以直接到达上海,1:火车k12:飞机k23:轮船k3,那么从北京-上海的方法N = k1+k2+k3乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有m·n不同的方法.那么完成这件事共有 N=m1·m2·m3…mn 种不同的方法.正弦定理在一个三角形中,各边和它所对角的正弦的比相等。
即a/sinA=b/sinB=c/sinC=2R (2R 在同一个三角形中是恒量,是此三角形外接圆的直径)这一定理对于任意三角形ABC ,都有a/sinA=b/sinB=c/sinC=2R (R 为三角形外接圆半径)余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a, b, c 三角为A,B,C ,则满足性质:a 2=b 2+c 2-2bc ·Cos A b 2=a 2+c 2-2ac ·Cos B c 2=a 2+b 2-2ab ·Cos C Cos C= (a 2+b 2-c 2)/2ab Cos B= (a 2+c 2-b 2)/2acCos A= (c ^2+b ^2-a ^2)/2bc解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=2、 平行线间距离:若0C B y A x :l ,0C B y A x :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。
初中数学竞赛几何中常用的24个必备定理
初中数学竞赛几何中常用的24个必备定理在初中数学竞赛中,几何部分是一个重要的考察内容。
在几何题中,经常会涉及到一些常用的定理,掌握这些定理不仅能够帮助我们解题,还能够提高我们的解题速度和准确性。
下面列举了初中数学竞赛中常用的24个必备定理,希望能够帮助大家在竞赛中取得更好的成绩。
1. 垂径定理:直径是直角,半径垂直于弦。
2. 圆心角定理:圆心角是弦对圆心的角,两倍弦对圆心的角等于弧度。
3. 等腰三角形底角定理:等腰三角形的底角相等。
4. 等腰三角形等腰定理:等腰三角形的底边相等。
5. 等边三角形定理:等边三角形的三边相等。
6. 同位角定理:同位角相等。
7. 同旁内角定理:同旁内角相等。
8. 同旁外角定理:同旁外角相等。
9. 余角定理:余角相等。
10. 三角形内角和定理:三角形的内角和等于180度。
11. 三角形外角和定理:三角形的外角和等于360度。
12. 三角形角平分定理:角平分线把角分成两个相等的角。
13. 同角的角平分定理:同角的角平分线相等。
14. 三角形角平分线定理:角平分线相等。
15. 等角三角形角平分线定理:等角三角形角平分线相等。
16. 三角形中线定理:三角形的中线平行于底边,且等于底边的一半。
17. 三角形角平分线定理:角平分线交角的角度相等。
18. 三角形角平分线定理:角平分线角度相等。
19. 三角形角平分线定理:角平分线角度相等。
20. 三角形角平分线定理:角平分线角度相等。
21. 三角形角平分线定理:角平分线角度相等。
22. 三角形角平分线定理:角平分线角度相等。
23. 三角形角平分线定理:角平分线角度相等。
24. 三角形角平分线定理:角平分线角度相等。
这些定理是初中数学竞赛中常用的定理,掌握这些定理可以帮助我们更好地理解和解题。
希望大家在备战初中数学竞赛的过程中,能够充分掌握这些定理,提高自己的数学水平,取得理想的成绩。
祝大家都能在数学竞赛中取得好成绩!。
初中数学竞赛中常用重要定理
3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。
数学竞赛25个定理
数学竞赛25个定理1. 费马大定理:对于n>2时,方程a^n+b^n=c^n没有正整数解。
2. 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 柯西不等式:对于n维向量a和b,有|a·b|≤||a||·||b||,其中||a||和||b||分别表示向量a和b的模长。
4. 无理数的存在性:根号2是一个无理数,即不可表示为有理数的分数形式。
5. 威尔逊定理:如果p是质数,则(p-1)!+1能够被p整除。
6. 欧拉公式:对于任意实数x,有e^(ix)=cosx+isinx。
7. 线性规划:在一定条件下,线性规划问题可以通过线性规划算法有效地求解。
8. 奥托-康托定理:对于任意正整数n和正整数m,可以将1~n的全排列映射到1~m的m进制数中。
9. 科赫曲线:科赫曲线是一条典型的分形曲线,具有无限细节和自相似性质。
10. 柯西-黎曼方程:复函数必须满足柯西-黎曼方程,才能够进行解析运算。
11. 供求关系:供求关系是微观经济学中的一个基本概念,描述了在市场中商品的价格和数量之间的关系。
12. 投影定理:向量b在向量a的方向上的投影等于向量a与b的内积除以向量a的模长。
13. 黎曼假设:黎曼猜想认为,所有非平凡的自然数零点都在一条竖线上,即1/2+it,其中t为实数。
14. 矩阵行列式:矩阵的行列式可以表示为对角线上的乘积减去反对角线上的乘积。
15. 平均值不等式:对于正实数a和b,有(a+b)/2≥(ab)^(1/2)。
16. 裴蜀定理:对于整数a和b,存在整数x和y,使得ax+by=(a,b),其中(a,b)表示a和b的最大公约数。
17. 黑斯托夫定理:将一个整数的各位数字全部平方后求和所得到的数,如果最终能够得到1,则该数为幸福数;否则就会进入一个循环,永远无法得到1。
18. 莫比乌斯函数:莫比乌斯函数是数论中一种重要的函数,可以用于求解许多数论问题。
19. 皮克定理:计算凸多边形的面积需要知道其内部的点数和边上的点数,皮克定理给出了一种简单的求解方法。
-初中数学竞赛定理大全
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
(完整版)初中数学竞赛定理大全
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
初中数学竞赛定理大全
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
初中数学竞赛公式定理大全
1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1 直角三角形的两个锐角互余19.推论2 三角形的一个外角等于和它不相邻的两个内角的和20.推论3 三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS) 有三边对应相等的两个三角形全等26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27.定理1 在角的平分线上的点到这个角的两边的距离相等28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3 等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1 三个角都相等的三角形是等边三角形36.推论2 有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1 关于某条直线对称的两个图形是全等形43.定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1 平行四边形的对角相等53.平行四边形性质定理2 平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3 平行四边形的对角线互相平分56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60.矩形性质定理1 矩形的四个角都是直角61.矩形性质定理2 矩形的对角线相等62.矩形判定定理1 有三个角是直角的四边形是矩形63.矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1 四边都相等的四边形是菱形68.菱形判定定理2 对角线互相垂直的平行四边形是菱形69.正方形性质定理1 正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1 关于中心对称的两个图形是全等的72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3 三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2 相似三角形周长的比等于相似比98.性质定理3 相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
海伦(Heron)公式:塞瓦(Ceva)定理:在△ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。
密格尔(Miquel)点:若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点,构成四个三角形,它们是△ABF、△AED、△BCE、△DCF,则这四个三角形的外接圆共点,这个点称为密格尔点。
葛尔刚(Gergonne)点:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点,这个点称为葛尔刚点。
西摩松(Simson)线:已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足,则D、E、F三点共线,这条直线叫做西摩松线。
黄金分割:把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。
帕普斯(Pappus)定理:已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于点Z,则X、Y、Z三点共线。
笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线;其逆亦真摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则△DEF是正三角形,这个正三角形称为摩莱三角形。
已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC、EF 延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线。
托勒密(Ptolemy)定理:在圆内接四边形中,AB·CD+AD·BC=AC·BD(任意四边形都可!哇哈哈)设P为△ABC边BC上一点,且BP:PC=n:m,则m·(AB2)+n·(AC2)=m·(BP2 )+n·(PC2)+(m+n)(AP2)梅内劳斯定理:在△ABC中,若在BC、CA、AB或其延长线上被同一条直线截于点X、Y、Z,则(BX/XC)·(CY/YA)·(AZ/ZB)=1阿波罗尼斯(Apollonius)圆一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”。
布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边。
广勾股定理:在任一三角形中,(1)锐角对边的平方,等于两夹边之平方和,减去某夹边和另一夹边在此边上的影射乘积的两倍.(2)钝角对边的平方,等于两夹边的平方和,加上某夹边与另一夹边在此边延长上的影射乘积的两倍.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,……,在第N类办法中有M(N)种不同的方法,那么完成这件事情共有M1+M2+……+M(N)种不同的方法。
比如说:从北京到上海有3种方法可以直接到达上海,1:火车k12:飞机k23:轮船k3,那么从北京-上海的方法N = k1+k2+k3乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2不同的方法,……,做第n步有m·n不同的方法.那么完成这件事共有 N=m1·m2·m3…mn 种不同的方法.正弦定理在一个三角形中,各边和它所对角的正弦的比相等。
即a/sinA=b/sinB=c/sinC=2R (2R 在同一个三角形中是恒量,是此三角形外接圆的直径)这一定理对于任意三角形ABC ,都有a/sinA=b/sinB=c/sinC=2R (R 为三角形外接圆半径)余弦定理:对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积,若三边为a, b, c 三角为A,B,C ,则满足性质:a 2=b 2+c 2-2bc ·Cos A b 2=a 2+c 2-2ac ·Cos B c 2=a 2+b 2-2ab ·Cos C Cos C= (a 2+b 2-c 2)/2ab Cos B= (a 2+c 2-b 2)/2acCos A= (c ^2+b ^2-a ^2)/2bc解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。
3、 点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 变形后:yy y y x x x x --=λ--=λ2121或6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。
(2)l 1⊥l 2时,夹角、到角=2π。
(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。
7、 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→→,,夹角b a ;(3)直线l 与平面]20[π∈ββα,,的夹角;(4)l 1与l 2的夹角为θ,∈θ]20[π,,其中l 1//l 2时夹角θ=0;(5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,8、 直线的倾斜角α与斜率k 的关系a) 每一条直线都有倾斜角α,但不一定有斜率。
b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。
9、 直线l 1与直线l 2的的平行与垂直(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2②l 1⊥l 2⇔ k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l若A 1、A 2、B 1、B 2都不为零① l 1//l 2⇔212121C C B B A A ≠=; ② l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③ l 1与l 2相交⇔2121B B A A ≠ ④ l 1与l 2重合⇔212121C C B B A A ==; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。
10、 直线方程的五种形式名称 方程 注意点斜截式: y=kx+b 应分①斜率不存在 ②斜率存在 点斜式: )( x x k y y -=- (1)斜率不存在: x x = (2)斜率存在时为)( x x k y y -=-两点式: 121121x x x x y y y y --=--截距式:1=+bya x 其中l 交x 轴于)0,(a ,交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:(1)截距=0 设y=kx (2)截距=0≠a 设1=+ay a x 即x+y=a 一般式: 0=++C By Ax (其中A 、B 不同时为零)11、直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种若22BA C Bb Aa d +++=,0<∆⇔⇔>相离r d0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d13、圆锥曲线定义、标准方程及性质 (一)椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。
定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。
标准方程:12222=+by a x)0(>>b a定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c准线方程:ca x 2±=焦半径:)(21ca x e PF +=,)(22x ca e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。
)注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。