自动控制理论 第四章根轨迹分析法PPT课件
合集下载
自动控制原理第四章 根轨迹

S ( S 2 )( S 4 )
① ∵有三个极点,根轨迹 有三条分支 ② ∵n=3, m=2 ∴有3-2=1条根 轨迹→∞, 2条终止于开环零点。 ③在实轴上不同段上取试 验点
-4 -3 -2 -1
jω
×
o
×
o ×
σ
§4-2绘制根轨迹的基本规则
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
1 1
在根轨迹与虚轴的交点处,在系统中出现 虚根。因此可以根据这一特点确定根轨迹与虚 轴的交点。可以用 s j 代入特征方程求解, 或者利用劳斯判据确定。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1 )( j 2 ) K j ( j
§4-1根轨迹的基本概念 将开环传递函数写成下列标准的因子式
K1 G (S )H (S )
j 1 n
m
(s z
j
)
i 1
(s pi )
注意这个形式和求 稳态误差的式子不 同,需变换成这种 形式.
z j -开环零点.
p i -开环极点.
此时,幅值条件和相角条件可写成
K
1
j 1 n
s 2 .3
2 . 3 0 . 7 1 . 64 1 . 64 4 . 33
6.求根轨迹在
p3
的出射角
p 180 ( 135 90 26 . 6 ) 431 . 6
( 减去 360 ,为 71 . 6 )
§4-3反馈控制系统的根轨迹分析 7.求根轨迹与虚轴的交点.
K1=6
① ∵有三个极点,根轨迹 有三条分支 ② ∵n=3, m=2 ∴有3-2=1条根 轨迹→∞, 2条终止于开环零点。 ③在实轴上不同段上取试 验点
-4 -3 -2 -1
jω
×
o
×
o ×
σ
§4-2绘制根轨迹的基本规则
五.根轨迹的渐近线
1.根轨迹中(n-m)条趋向无穷远处的分支的 渐近线的倾角为
1 1
在根轨迹与虚轴的交点处,在系统中出现 虚根。因此可以根据这一特点确定根轨迹与虚 轴的交点。可以用 s j 代入特征方程求解, 或者利用劳斯判据确定。
§4-2绘制根轨迹的基本规则 续例4-2,将 s j 代入特征方程。
j ( j 1 )( j 2 ) K j ( j
§4-1根轨迹的基本概念 将开环传递函数写成下列标准的因子式
K1 G (S )H (S )
j 1 n
m
(s z
j
)
i 1
(s pi )
注意这个形式和求 稳态误差的式子不 同,需变换成这种 形式.
z j -开环零点.
p i -开环极点.
此时,幅值条件和相角条件可写成
K
1
j 1 n
s 2 .3
2 . 3 0 . 7 1 . 64 1 . 64 4 . 33
6.求根轨迹在
p3
的出射角
p 180 ( 135 90 26 . 6 ) 431 . 6
( 减去 360 ,为 71 . 6 )
§4-3反馈控制系统的根轨迹分析 7.求根轨迹与虚轴的交点.
K1=6
自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
根轨迹法(自动控制原理)ppt课件精选全文完整版

1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
自动控制原理第四章-根轨迹分析法

jω
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
自动控制原理第四章--根轨迹法

G(s)H(s) 1
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
《自动控制原理》第4章_根轨迹分析法

一般有两个解,从中
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
(完整版)第四章根轨迹法

j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s3 不是根轨迹上的点。
根据相角方程得系 统的根轨迹为:
第一节 根轨迹的基本概念
作业习题: 4-2 4-3 4-7
返回
第四章 根轨迹分析法
第二节 绘制根轨迹的基本方法
根据根轨迹方程,无需对闭环特征方程式 求解,只需寻找所有满足相角方程的 s ,便可 得到闭环特征方程式根的轨迹。同时,可由幅
值方程来确定根轨迹所对应的Kr值。
闭s环s22 +特K2rs=征0+↑KKr 方1r=程s110 式 特征-2 方程-1的根0 σ
(1R)左(从s) 半根- 平轨s面(迹sK+r为2可) 稳C知(s定): 极点;右半平面为 不稳Kr定极s1点;虚s2轴 上为0临界0极点。-2
(2)有01<2呈Kr过<-11-阻1+时j 尼,状-系1-1-态j统。
根据根轨迹的基本特征和关键点,就能比较 方便地近似绘制出根轨迹曲线。
根轨迹基本特征为以下八条:
第二节 绘制根轨迹的基本方法
一、根轨迹的对称性和分布性 二、根轨迹的起点和终点 三、实轴上的根轨迹段 四、根轨迹的渐近线 五、根轨迹的分离点和会合点 六、根轨迹的出射角和入射角 七、根轨迹与虚轴的交点 八、开环极点与闭环极点的关系
p2
p1
-2
0σ
环传递函数的极点
第二节 绘制根轨迹的基本方法
2. 终点
根轨迹方程:
m
i
n=1((ss--pzji))=
-
1 Kr
m
j =1
Kr
i n=1((ss--pzji))=0
j =1
m
则 i =1(s-zi) =0 即 s=zi
8 8
m条根轨迹终止于开环传递函数的零点
另: s
n-m条根轨迹终 止于无穷远
m
i n=j =1
第二节 绘制根轨迹的基本方法
第四章 根轨迹分析法
第一节 根轨迹的基本概念
当系统的某个参数变化时,特征方程的根
随之在 S平面上移动,系统的性能也跟着变化。 研究S 平面上根的位置随参数变化的规律及其与
系统性能的关系是根轨迹分析法的主要内容。
一、根轨迹 二、根轨迹方程
第一节 根轨迹的基本概念
↑
一、根轨迹
K设r变系化统时的,闭结环构特如征图 根在RC((sss平))=面s∞2+上2K的s+jrωK轨r 迹:
s6
n个根形
成根n条轨根迹轨必迹定。对称于实轴。
第二节 绘制根轨迹的基本方法
二、根轨迹的起点和终点
1K则.r=起0 j点n=1(s-pjijmn==)11=((s根0s--pz轨ji)) =迹∞方程例::jiGmn==11(((sss-)-p=zji))s=(jωs-K+K1r2r )
即 s=pj 根轨迹起始于开
jω
2
-∑
(s–pj)=±(2k+1)π
j =1
设实轴上任意点s1
p2 θ2 s1 p1
-2
θ1 0 σ
s1与开环零、极点之间的矢量:
s1的相角方程为:
2
-∑ j =1
(s1–pj)=θ- 1θ- 2=-180º
s1为根轨迹上的点。 p1~p2 为根轨迹段。
第一节 根轨迹的基本概念
设复平面开环极点中线上任意点s2
s2与开环零、极点之间的矢量:
s2
s2的相角方程为:
2
-∑ j =1
(s2–pj)=θ- 1θ- 2
p2 θ2 -2 θ2
jω
θ1
p1
0σ
θ1
=θ- 1 -(180o-θ1 )=-180º
s3
中线上的点都是根轨迹上的点。 设任意点s3
s3的相角方程为:
2
-∑ j =1
(s3–pj) =θ- 1θ- 2 >-180º
精品课程
自动控制理论
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
第四章 根轨迹分析法
第四章 根轨迹分析法
第一节 根轨迹的基本概念 第二节 绘制根轨迹的基本方法 第三节 广义根轨迹 第四节 用根轨迹法分析系统性能 第五节 MATLAB用于根轨迹分析
*图根显轨然迹是的难定以实义现: 的,必须找到一种方便、
有效的系作统图的方一法个。或作多图个方参法数的由依零据变就到是无根 轨穷迹大方时程,。闭环特征方程的根在S平面上
移动的轨迹。
第一节 根轨迹的基本概念
二、根轨迹方程
设当根系s 轨满统迹足的方相结角程构方为程如时图, 必得系然该统RC能(Ks(闭ss满r找))nim=环=足(到11s(-s+传幅一p-Gzj)值G递i个)(=s(方K)-s函1H)r程值数(s。,)为使
-1
s1.2 =-1±Kr ∞
↑
1-Kr
(3) 当∞Kr=-11+时j∞,-系1-j∞统 呈临界阻尼状态 。
得相(4应) 1的<K闭r<环∞时特,征系根统值呈: 欠阻尼状态。
第一节 根轨迹的基本概念
**根根轨轨闭迹迹环法法特的的征基方分本程析的思手根路段的::位置与系统的
性能利是用密根切轨相迹关法的来,分当析系和统设的计某系个统参,数首 先发必生须变绘化制时出,系特统征的方根程轨的迹根图在,平而面采上用的求 解位方置程以根及的系方统法的来性绘能制将高随阶之系而统变的. 根轨迹
j =1
构根闭 分 相数闭所成的开环解角根等环满一有了轨环相特为方轨于特足般满闭 迹传角征幅程迹征开-足表环 。1递方方值。方相特方环达的函程角征程方程程传式s数方方式 程又即式递为程的程为 和可为的函的式s
R(s)幅-值m 方G(s程) C(s) 根轨开迹环K增jr传n=i1益=(H递1s(-(sp函)-mj)zi数) =零1 点 G(或s开)H环(sj传)n==i1m=(递1sK(-j nsr=p函i1-(j=)zs1数i(-)sp=-j极z)iK)1点r
∑i根m=1 。1(+sG-z即(i s))H∑j =n1(s)(=s0-pj)=±(2即k+1)πG(s)HK(=s()0=,1-,12…)
第一节 根轨迹的基本概念
例 已知系统的开环传递函数,根据相角方程确
定系统的根轨迹图。
解:开环零、极点分布为:
G(s)=
Kr s(s+2)
该系统的相角方程为:
第二节 绘制根轨迹的基本方法
一、根轨迹的对称性和分布性
1.根轨迹对称于实轴
jω
2. 闭n阶环系特统征有方n程条实根数轨根迹 分K布r取在某S一平数面值的时实,n阶轴特上征。方
程有复n数个确根定则的成根对。出现,实
s3 s1
s5
0 s2σ
部号续K相相r地=0等反向→其,。∞终虚每点部一移大个动小根,相形由等成始一符点条连根轨迹s,4