世界数学经典名题
23道数学经典名题
23道经典名题1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。
请你很快回答出他至少用了多少天?2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔。
这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。
24道经典小学奥数名题
24道经典名题1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。
请你很快回答出他至少用了多少天?2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔。
这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。
数学名题:圆圈标数经典系列
数学名题:圆圈标数经典系列————————————————————————————————作者:————————————————————————————————日期:[阅读材料] 圆圈标数经典系列在教学过程中一些同类型的题见得多了,可以挖掘一下,整理出来,供读者参考。
现给大家献上在直线与圆圈上写数以及二者之间关系的系列名题。
题目1. 今要在一个圆周上标出一些数,第一次先把圆周二等分,在两个分点旁分别标上3121和,第二次把两段半圆弧二等分,在分点旁标上相邻两分点旁所标两数的和312165+=,第三次把4段圆弧二等分,并在4个分点旁标上相邻两分点旁所标两数的和6531611,6521311+=+=如此继续下去,当第八次标完数以后,圆周上所有已标数的总和是多少?解析:碰到这样的题,可先把3121和改作A 与B ,整个探索过程不把每一个复杂的和算出,只是数出A 与B 的总个数。
这样第一次为A 与B 和的一倍,第二次后为3A+ 3B ,第三次标完后为9A+9B ,……… 这样能较容易地发现规律:每次新的结果总是原来的3倍。
正是因为增加的每个数都是原来相邻两个数之和,所以每次增加数的总和恰好是原来所有数总和的2倍,也就是说每次标完数后圆周上所有数的总和是前一步标完数后圆周上所有数的总和的3倍,例如:二分之一它在左边算了一次,在右边算了一次,本身一次,所以二分之一在下次标完后已成为原为的3倍了,其它数也是如此。
于是第八次标完数后圆周上所有数的总和是:7111()31822232+⨯=. 变化一题目2. 今要在一条线段上标出一些数,第一次在两个端点旁分别标上3121和,第二次把线段二等分,在中点旁标上两边所标两数的和312165+=,第三次把2段线段各二等分,并在2个分点旁标上相邻两分点旁所标两数的和6531611,6521311+=+=,即每次都在已写上的两个相邻数之间,写上这两个相邻数之和,如此继续下去,当第八次标完数以后,线段上所有已标数的总和是多少?解析:与上题一样先把3121和改作A 与B ,次数与A+B 的个数填入下表: 写数的次数 1 2 3 4 5 A+ B 的个数1392781写数的次数 1 2 3 4 5 A+ B 的个数1251441这串数有什么规律吗?可以看出后一数总是前一个数的3倍减1,则可算出第八次为:1094个A+B,代入计算可得32911。
世界数学经典名题
世界数学经典名题有哪些?1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。
请你很快回答出他至少用了多少天?2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨•班•达依尔。
这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。
经典数学名题欣赏
第十四节 经典数学名题(2课时)第1课时1. 鸡兔同笼。
今有鸡兔同笼,上有35个头,下有94只脚。
鸡兔各几只?解:设鸡有x 只,则免有(35)x -只,依题意得:24(35)94x x +-=解之得:23x =则:3512x -=答:鸡有23只,则免有12只.2.求碗问题。
我国古代《孙子算经》中有一道著名的“河上荡杯”题(注:荡杯即洗碗)。
题目意思是:一位农妇在河边洗碗。
邻居问:“你家里来了多少客人,要用这么多碗?”她答道:“客人每两位合用一只饭碗,每三位合用一只汤碗,每四位合用一只菜碗,共享65只碗。
”她家里究竟来了多少位客人?解:设客人是x 人,依题意得:11165234x x x ++= 解之得:60x = 答:她家来了60位客人3.有女善织。
有一位善于织布的妇女,每天织的布都比上一天翻一番。
五天共织了5丈(50尺)布,她每天各织布多少尺?想:若把第一天织的布看作1份,可知她第二、三、四、五织的布分别是2、4、8、16份。
根据织布的总尺数和总份数,能先求出第一天织的尺数,再求出以后几天织布的尺数。
解:设第一天织x 尺,则第二天织2x 尺,第三天织4x 尺,第四天织8x 尺,第五天织16x 尺,依题意得:2481650x x x x x ++++= 解之得:5031x =则:100231x =,200431x =,400831x =,8001631x = 答:第一天织5031尺,第二天织10031尺,第三天织20031尺,第四天织40031尺,第五天织80031尺。
4.托尔斯泰问题。
俄国大文学家托尔斯泰对数学很感兴趣,曾经编过这样一道题:一组割草人要把两块草地的草割掉,大的一块草地比小的一块大一倍。
全体组员用半天时间割大的一块,下午他们便对半分开,一半组员仍留在大块草地上,到傍晚时把草割完了。
另外一半组员到小草地上割草,到傍晚时还剩下一块,这块由一个割草人又用了一天时间才割完。
假若每人割草的进度都相同,这组割草人共有多少? 解:设这组割草人共有x 人,每人每天割草量为a ,依题意得:111112()22222ax a x a x a +⨯=⨯+ 解之得:8x =答:这组割草人共有8人。
中外经典数学名题集锦
中外经典数学名题集锦1.鸡兔同笼。
今有鸡兔同笼,上有35个头,下有94只脚。
鸡兔各几只?2.韩信点兵。
今有物,不知其数。
三三数之剩二,五五数之剩三,七七数之剩二。
问物几何。
这是我国古代名著《孙子算经》中的一道题。
意思是:一个数除以3余2,除以5余3,除以7余2。
求适合这些条件的最小自然数。
3.三阶幻方。
把1—9这九个自然数填在九空格里,使横、竖和对角在线三个数的和都等于15。
4.兔子问题。
十三世纪,意大利数学家伦纳德提出下面一道有趣的问题:如果每对大兔每月生一对小兔,而每对小兔生长一个月就成为大兔,并且所有的兔子全部存活,那么有人养了初生的一对小兔,一年后共有多少对兔子?想:第一个月初,有1对兔子;第二个月初,仍有一对兔子;第三个月初,有2对兔子;第四个月初,有3对兔子;第五个月初,有5对兔子;第六个月初,有8对兔子……。
把这此对数顺序排列起来,可得到下面的数列:1,1,2,3,5,8,13,……观察这一数列,可以看出:从第三个月起,每月兔子的对数都等于前两个月对数的和。
根据这个规律,推算出第十三个月初的兔子对数,也就是一年后养兔人有兔子的总对数。
5.求碗问题。
我国古代《孙子算经》中有一道著名的“河上荡杯”题(注:荡杯即洗碗)。
题目意思是:一位农妇在河边洗碗。
邻居问:“你家里来了多少客人,要用这么多碗?”她答道:“客人每两位合用一只饭碗,每三位合用一只汤碗,每四位合用一只菜碗,共享65只碗。
”她家里究竟来了多少位客人?6.三女归家。
今有三女,长女五日一归,中女四日一归,少女三日一归。
问三女何日相会?这道题也是我国古代名著《孙子算经》中为计算最小公倍数而设计的题目。
意思是:一家有三个女儿都已出嫁。
大女儿五天回一次娘家,二女儿四天回一次娘家,小女儿三天回一次娘家。
三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?想:从刚相会到最近的再一次相会的天数,是三个女儿间隔回家天数的最小公倍数。
7.有女善织。
(完整版)初一数学趣味题24道经典名题
趣味性作业设计1.有人编写了一个程序,从1开始,交替做乘法或加法,(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或是加3;每次乘法,将上次运算结果乘2或乘3,例如30,可以这样得到:1 +3 =4*2=8+2=10*3=30,请问怎样可以得到:2的100次+2的97次-2解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-22.下诗出于清朝数学家徐子云的著作,请算出诗中有多少僧人?巍巍古寺在云中,不知寺内多少僧。
三百六十四只碗,看看用尽不差争。
三人共食一只碗,四人共吃一碗羹。
请问先生明算者,算来寺内几多僧?解答:三人共食一只碗:则吃饭时一人用三分之一个碗,四人共吃一碗羹:则吃羹时一人用四分之一个碗,两项合计,则每人用1/3+1/4=7/12个碗,设共有和尚X人,依题意得:7/12X=364解之得,X=6243.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。
在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。
它一到达另一辆自行车车把,就立即转向往回飞行。
这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。
如果每辆自行车都以每小时1O 英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?解答:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。
苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。
数学史上的24道经典名题
数学史上的24道经典名题1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请XXX教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。
请你很快回答出他至少用了多少天?2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣XXX。
这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?4.公主出题古时候,传说捷克的公主XXX出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”5.XXX猜测XXX是二百多年前德国的数学家。
世界思维名题大全集
世界思维名题大全集《世界思维名题大全集》是一本介绍世界各地经典思维名题的书籍,这些名题包括了许多著名的数学问题、逻辑问题、智力游戏等等。
通过解答这些名题,可以帮助人们锻炼思维能力、提高智力水平。
以下是一些著名的世界思维名题:1. 哥尼斯堡七桥问题:这是由哥尼斯堡的一个市民提出的问题,旨在探索从哥尼斯堡的一个地方开始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
这个问题由欧拉解决,他证明了这样的遍历是不可能的。
2. 麦凯莱布的毛驴过河问题:麦凯莱布描述了一头毛驴过河的场景,河中有一些木板,毛驴需要利用这些木板走过去,但每次只能携带一块木板,并需要返回到岸边取另一块。
问题是如何让毛驴安全地过河。
3. 印度象与国际象棋盘问题:这是一个古老的印度传说,讲述了一头大象如何在国际象棋棋盘上放自己的身体,以显示自己的力量。
问题是,大象应该放在哪个格子上?4. 汉诺塔问题:这是一个经典的递归问题,涉及三个柱子和一系列不同大小的圆盘。
目标是把这些圆盘从一根柱子移动到另一根柱子上,但在移动过程中必须遵守一些规则。
5. 囚犯的帽子问题:一个监狱里有若干囚犯和帽子,狱警让囚犯排成一排并闭上眼睛。
然后狱警给每个囚犯戴上一顶帽子,有的帽子是红色的,有的帽子是蓝色的。
狱警要求囚犯睁开眼睛后猜出自己帽子的颜色。
这个问题涉及到逻辑推理和判断。
6. 祖敉问题:一个古老的数学问题涉及到一块矩形地块和三个等面积的小矩形地块。
问题是如何把这三个小矩形拼凑在一起,形成一个新的大矩形,而且面积不变。
这些世界思维名题不仅有趣,而且可以激发人们的思考和创造力。
通过解答这些名题,人们可以锻炼自己的逻辑思维、数学思维和创造性思维等方面的能力。
同时,这些名题也可以作为文化交流和知识普及的工具,帮助人们更好地了解世界各地的文化和历史。
一元一次方程应用题_古今中外名趣题欣赏
7. 九章算术·共买鸡
今有共买鸡,人出九,盈十一,人出六,不足 十六,问人数、物价各几何?
8. 九章算术·两鼠穿墙
今有垣厚五尺,两鼠对穿。大鼠日一尺,小鼠 也日一尺。大鼠日自倍,小鼠日自半。问何 日相逢,各穿几尺?
9. 捷克古题·分李子
传说古代捷克的公主柳布莎,决定自己未来的 驸马必须能解决下面的问题:一只篮中有若 干李子,取它的一半又一枚给第一个人,再 取其余的一半又一枚给第二个人,又取最后 所余的一半又一枚给第三个人,那么篮内的 李子就没有剩余,问篮内原有李子多少枚?
12. 普通代数学·牛吃草
三个牧场,分别是10/3公顷,10公顷和24公顷。 这三个牧场种草的条件完全相同,种草的方 法和草的生长状况也相同。在第一个牧场里 有12头牛饲养了4周,草就全部吃完了;第二 个牧场有21头牛饲养了9周,草也全部吃完了。 每头牛的食量都是相同的,那么第三个牧场 18周内能饲养多少头牛?
5. 四元玉鉴·及时梨果
九百九十九文钱,及时梨果买一千, 一十一文梨九个,七枚果子四文钱。 问:梨果多少价几何?
6. 唐阙史·杨损考吏
有人在树林间夕阳小路上散步,无意中听到一 些盗贼在树中讨论怎样分配偷来的布匹。他 们说,如果每人分六匹,就会余下五匹,如 果每人分七匹又短少八匹,问林中有多少盗 贼,多少布匹?
一元一次方程应用题古今中外名趣题欣赏2020623前言在数学史的天空中闪烁着许多有趣的经典问题它们的年代或许不如夜空中的星辰那么久远然而它们的光芒却不逊于星辰的明亮和美丽
一元一次方程应用题
——古今中外名趣题欣赏
2021/3/17
前言
在数学史的天空中,闪烁着许多有趣的经典问 题,它们的年代,或许不如夜空中的星辰那 么久远,然而它们的光芒,却不逊于星辰的 明亮和美丽。今天展示给大家的,只是沧海 之一粟,也没有什么高难度的问题,只是希 望透过这些问题,大家能体会到前人的智慧 和数学的妙趣。
数学史上的24道经典名题
数学史上的24道经典名题1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。
请你很快回答出他至少用了多少天?2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔。
这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。
经典数学名题欣赏
经典数学名题欣赏————————————————————————————————作者:————————————————————————————————日期:第十四节 经典数学名题(2课时)第1课时1. 鸡兔同笼。
今有鸡兔同笼,上有35个头,下有94只脚。
鸡兔各几只?解:设鸡有x 只,则免有(35)x -只,依题意得:24(35)94x x +-=解之得:23x =则:3512x -=答:鸡有23只,则免有12只.2.求碗问题。
我国古代《孙子算经》中有一道著名的“河上荡杯”题(注:荡杯即洗碗)。
题目意思是:一位农妇在河边洗碗。
邻居问:“你家里来了多少客人,要用这么多碗?”她答道:“客人每两位合用一只饭碗,每三位合用一只汤碗,每四位合用一只菜碗,共享65只碗。
”她家里究竟来了多少位客人? 解:设客人是x 人,依题意得:11165234x x x ++= 解之得:60x = 答:她家来了60位客人3.有女善织。
有一位善于织布的妇女,每天织的布都比上一天翻一番。
五天共织了5丈(50尺)布,她每天各织布多少尺?想:若把第一天织的布看作1份,可知她第二、三、四、五织的布分别是2、4、8、16份。
根据织布的总尺数和总份数,能先求出第一天织的尺数,再求出以后几天织布的尺数。
解:设第一天织x 尺,则第二天织2x 尺,第三天织4x 尺,第四天织8x 尺,第五天织16x 尺,依题意得:2481650x x x x x ++++= 解之得:5031x =则:100231x =,200431x =,400831x =,8001631x = 答:第一天织5031尺,第二天织10031尺,第三天织20031尺,第四天织40031尺,第五天织80031尺。
4.托尔斯泰问题。
俄国大文学家托尔斯泰对数学很感兴趣,曾经编过这样一道题:一组割草人要把两块草地的草割掉,大的一块草地比小的一块大一倍。
全体组员用半天时间割大的一块,下午他们便对半分开,一半组员仍留在大块草地上,到傍晚时把草割完了。
鸽巢问题经典例题10道
鸽巢问题经典例题10道鸽巢问题是一种组合数学中的经典问题,也被称为鸽笼原理。
它源于一个直观的问题:如果在一个有限的鸽巢中放入超过鸽巢数量的鸽子,必定会有至少一个鸽巢中放入了多只鸽子。
在具体的问题中,鸽子可以表示为对象,而鸽巢可以表示为容器。
鸽巢问题的核心思想是,如果将多个对象放入少量的容器中,那么必然会有其中某一个容器中放入了多个对象。
以下是鸽巢问题的经典例题及其解析:1. 有五个鸽巢,但有六只鸽子,证明至少有一个鸽巢有两只鸽子。
假设每个鸽巢最多只能放一只鸽子,那么最多只能放五只鸽子。
然而,我们有六只鸽子,所以至少有一个鸽巢有两只鸽子。
2. 在一群人中,证明至少有两个人生日相同。
假设有365天的一年中有365个鸽巢(代表每天),而有超过365人。
根据鸽巢原理,至少有一个鸽巢中有两个人,也就是至少有两个人生日相同。
3. 在一副标准的扑克牌中,证明至少有五张牌的花色相同。
一副标准扑克牌共有52张牌,而有四种花色(鸽巢)。
根据鸽巢原理,如果我们从这副牌中选择了五张牌,那么至少有两张牌的花色相同。
4. 在一群人中,证明至少有两人的朋友数量相同。
假设一群人中的每个人代表一个鸽子,而每个人的朋友数量代表一个鸽巢。
如果我们有超过鸽巢数量的人(鸽子),那么根据鸽巢原理,至少有两个人的朋友数量相同。
5. 在一个装有11个苹果和5个橙子的框中,证明至少有一个水果箱中有两种水果。
假设我们有两种鸽子,分别代表苹果和橙子,而水果箱代表鸽巢。
如果我们将这16个水果放入11个水果箱(鸽巢)中,根据鸽巢原理,至少有一个水果箱中有两种水果。
6. 在一个装有50个球的袋子中,有10个红球、20个蓝球和20个绿球。
证明至少要从袋子中取出几个球,才能确保至少有两个颜色相同的球。
假设我们将红球、蓝球和绿球分别看作三种鸽子,而袋子中的球看作鸽巢。
根据鸽巢原理,如果我们从袋子中取出多于三种鸽巢数量的球,那么至少有两个颜色相同的球。
因此,取出四个球即可确保至少有两个颜色相同的球。
从古代延续下来的数学题
从古代延续下来的数学题
有许多古代的数学题目至今仍被广泛研究和讨论,这些题目不仅展示了古代数学家的智慧,也为我们提供了理解古代数学文化的重要窗口。
以下是一些从古代延续下来的著名数学题:
1.毕达哥拉斯定理(勾股定理):这个定理在中国、古埃及、巴比伦和印度都有独立的发展,但最为人所知的可能是古希腊数学家毕达哥拉斯的名字。
它指出在一个直角三角形中,直角边的平方和等于斜边的平方。
2.费马最后定理:由17世纪的法国数学家皮埃尔·德·费马提出,他声称已经找到了一个证明,但始终没有公布。
这个定理在358年后被安德鲁·怀尔斯解决,成为数学史上的一个里程碑。
3.黄金分割比例:这个概念可以追溯到古希腊数学家欧几里得,它指的是一个线段被分割成两部分,使得较长部分与整体的比值等于较短部分与较长部分的比值。
这个比例在自然界和艺术作品中广泛出现。
4.七桥问题:这个问题起源于18世纪的普鲁士,是关于一个城市中的七座桥的问题。
欧拉通过图论的方法解决了这个问题,为图论的发展奠定了基础。
5.鸡兔同笼问题:这个问题最早出现在中国的《孙子算经》中,它涉及到代数和逻辑推理。
问题描述了一个笼子里面有一些鸡和兔子,只能看到头和脚,需要确定鸡和兔子的具体数量。
以上只是从古代延续下来的数学题目中的一小部分,实际上还有许多其他的古代数学问题,如“阿基米德求圆面积”、“丢番图方程”等,都在数学史上留下了深远的影响。
数独经典回顾历史上最有名的数独题目
数独经典回顾历史上最有名的数独题目数独是一种经典的数字游戏,最早在18世纪末由瑞士数学家蔡米尔·德·萨卢(Leonhard Euler)发明。
它的目标是在9x9的方格中填入1至9的数字,使得每一行、每一列以及每个3x3的九宫格内的数字都不重复。
本文将回顾历史上最有名的数独题目,并探讨它们的解决方法。
1. 第一道题目:Euler's Number Game在18世纪末,蔡米尔·德·萨卢发明了第一个数独游戏,被称为Euler's Number Game。
这个问题是一个部分填充的数独棋盘,拥有唯一解。
这道题目为数独的普及与流行做出了巨大贡献。
解决方法:通过观察已经填入的数字,使用逻辑推理和试错的方式将缺失的数字填入,直到找到唯一解。
2. 第二道题目:Arto Inkala's 17-clue数独在2012年,芬兰数学教授Arto Inkala创建了一道仅使用17个初始数字的数独题目,并证明了这是最少初始数字数目的数独。
这道题目的挑战在于仅有17个初始数字,但依然有唯一解。
解决方法:由于初始数字数量较少,通过猜测和试错的方式填入数字,同时排除不符合规则的数字,直到找到唯一解。
3. 第三道题目:AI EscargotAI Escargot是一道由程序员兰斯洛特·费尔德(Lancelot Feggs)创建的数独谜题。
这道题目在2006年获得了“世界上最难数独题目”的称号。
它的独特之处在于没有提供任何初始数字,而是通过计算机程序生成。
解决方法:由于没有初始数字,通过复杂的数学规则和逻辑推理的方式,通过试错找出唯一解。
4. 第四道题目:The Miracle Sudoku2018年,芬兰杂志"Sanoman Sarjakuva"出版了一道Miracle Sudoku 谜题,被称为“世界上最困难的数独题目”。
这道题目的挑战在于其独特的规则,以及复杂的数字排列。
解析几何经典名题
解析几何经典名题
解析几何是数学中的一个分支,主要研究的是平面和空间内图形的性质和变换规律。
在解析几何中,有许多经典的名题,这些名题经过数学家们的探索和研究,成为了解析几何中经典而有代表性的例子。
下面我们就来看看几个著名的解析几何名题。
1. 平面内两直线的交点坐标公式。
在平面内,两直线的交点可以用坐标公式来表示。
这个公式是通过解两条直线的联立方程组得到的,其表达式为:
x = (b2-b1)/(k1-k2)
y = k1x+b1
其中,k1、k2分别为两条直线的斜率,b1、b2分别为它们在y 轴上的截距。
2. 点到直线的距离公式。
在解析几何中,点到直线的距离公式是一个重要的名题。
这个公式可以用来计算一个点到一条直线的最短距离,其表达式为:
d = |ax0 + by0 + c| / √(a + b)
其中,(x0,y0)为点的坐标,a、b、c为直线的一般式方程系数。
3. 点到平面的距离公式。
点到平面的距离公式是解析几何中的另一个重要名题。
这个公式可以用来计算一个点到一个平面的最短距离,其表达式为:
d = |ax0 + by0 + cz0 + d| / √(a + b + c)
其中,(x0,y0,z0)为点的坐标,a、b、c、d为平面的一般式方程系数。
这些经典的解析几何名题,不仅是数学研究中的重要问题,而且在实际生活中也有广泛的应用。
通过学习这些名题,我们可以更深入地理解解析几何的知识,提高自己的数学素养。
维维亚尼定理的六个经典例题
维维亚尼定理的六个经典例题维维亚尼定理,听着就像个高大上的名字,但其实它背后隐藏的故事,简直就像一部悬疑片,没错,今天咱们就来聊聊这个定理的六个经典例题,轻松搞定它们,谁说数学不能有点乐趣呢?得说说维维亚尼定理的基本概念。
想象一下,咱们有一个三角形,里面还有个点,哎,这个点是个啥呢?它的特点就是和三角形的三条边的距离有关系。
也就是说,这个点到三条边的距离之和,恰好等于三角形的高。
这听起来有点复杂,但其实就像把三角形的每个角落都打量一遍,确保没啥遗漏。
简单点说,就像你去饭店点菜,想尝遍每样美食,心里默念着“都得尝尝”,维维亚尼定理就是让你不漏掉任何一个“美味”。
咱们就从第一个经典例题说起。
设想一下,一个等边三角形,边长都是6。
想象一下,傻傻的把这三条边都画出来,心里默念着“我真是个画家”。
然后,找一个点,这个点的距离分别是2、2、2。
现在,咱们就可以应用维维亚尼定理了。
嗯,简单一算,距离和果然等于高,瞬间觉得这定理就像你的老朋友,熟悉又亲切。
第二个例子则是在一个直角三角形里,假如边长分别是3和4,那斜边当然是5咯。
别担心,心里默念“斜边在此”,找个点到三条边的距离分别是1、2、3。
呃,没关系,继续算吧,最后的结果又一次让人感叹,哇,维维亚尼定理果然不出所料,真是个“靠谱”的家伙。
第三个例题呢,带点小挑战。
想象一下,一个五边形里,咱们把它分成几个三角形,再把维维亚尼定理搬上去。
这样一来,虽然有点繁琐,但道理依旧简单,简直就是在玩拼图,拼出一个个小三角,最后再把它们的距离和拿出来,结果令人欣慰。
第四个经典例子,不妨换个场景,咱们去户外吧!想象一个三角形的草地,上面有个小孩在玩,随便找个地方站着。
只要他站的位置不同,距离自然也会变化。
用维维亚尼定理计算距离和高,哎呀,这就是数学的魅力,让你感受到生活的无处不在。
再说说第五个例题,这回咱们来个趣味挑战。
一个三角形的内心,咱们要找个点,看看这点到三条边的距离会不会让咱们的心情像过山车一样起伏不定,心里想“这点怎么还不来呢”。
经典数学智力名题:九片竹篱笆数学智力趣味题
经典数学智力名题:九片竹篱笆数学智力趣味题有9片竹篱笆,长度分别是1米、2米、3米、4米、5米、6米、7米、8米和9米。
从中取出若干片,顺次连接,围出一块正方形场地,共有多少种不同取法?题目问“共有多少种”,不能有遗漏。
为此,可以首先估计一下正方形边长的最大值和最小值,确定搜索范围。
先计算篱笆的总长度,得到1+2+3+4+5+6+7+8+9=45(米)。
由于4×11< 45<4×12,可见所得正方形边长最大不超过11米。
这样就确定了,正方形的边长可能取值范围是从7米到11米。
在这范围内,可以列举出全部可能取法如下:边长为7:(7,6+1,5+2,4+3),1种。
边长为8:(8,7+1,6+2,5+3),1种。
边长为9:(9,8+1,7+2,6+3),(9,8+1,7+2,5+4),(9,8+1,6+3,5+4),(9,7+2,6+3,5+4),(8+1,7+2,6+3,5+4),5种。
边长为10:(9+1,8+2,7+3,6+4),1种。
边长为11:(9+2,8+3,7+4,6+5),1种。
省心WTT声明:1、本网站所刊载的各类形式(包括但不仅限于文字、图片、图表)的作品全部来自互联网、百度和由您提供,如您(单位或个人)认为本网站某部分内容有侵权嫌疑,敬请立即通知我们,我们将在第一时间予以更改或删除。
2、本文仅代表作者个人观点,与本网站无关。
其原创性以及文中陈述文字和内容未经wtt证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性wtt不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
3、wtt 所提供的一切资料均共交流参考使用,如有其它用途,请与作者本人联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界数学经典名题有哪些?
1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。
他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。
接着他又写出两组数字,用竖式连乘,两种计算结果相同。
回到座位上,全体会员以暴风雨般的掌声表示祝贺。
证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。
有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。
请你很快回答出他至少用了多少天?
2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨•班•达依尔。
这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。
陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。
说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。
……还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。
但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。
算算看,国王应给象棋发明人多少粒麦子?
3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。
题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。
然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?
4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”
5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。
他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。
如:10=3+7,16=5+11等等。
他检验了很多偶数,都表明这个结论是正确的。
但他无法从理论上证明这个结论是对的。
1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。
因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想。
世界上许多数学家为证明这个猜想作了很大努力,他们由“1+4”→“1+3”到1966年我国数学家陈景润证明了“1+2”。
也就是任何一个充分大的偶数,
都可表示成两个数的和,其中一个是素数,另一个或者是素数,或者是两个素数的积。
你能把下面各偶数,写成两个素数的和吗?(1)100=(2)50=(3)20=
6.贝韦克的七个7二十世纪初英国数学家贝韦克友现了一个特殊的除式问题,请你把这个特殊的除式填完整。
7.刁藩都的墓志铭刁藩都是公元后三世纪的数学家,他的墓志铭上写到:“这里埋着刁藩都,墓碑铭告诉你,他的生命的六分之一是幸福的童年,再活了十二分之一度过了愉快的青年时代,他结了婚,可是还不曾有孩子,这样又度过了一生的七分之一;再过五年他得了儿子;不幸儿子只活了父亲寿命的一半,比父亲早死四年,刁藩都到底寿命有多长?
8.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。
结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢?
9.布哈斯卡尔的算术题公园里有甲、乙两种花,有一群蜜蜂飞来,在甲花上落下1/5,在乙花上落下1/3,如果落在两种花上的蜜蜂的差的三倍再落在花上,那么只剩下一只蜜蜂上下飞舞欣赏花香,算算这里聚集了多少蜜蜂?
10.马塔尼茨基的算术题有一个雇主约定每年给工人12元钱和一件短衣,工人做工到7个月想要离去,只给了他5元钱和一件短衣。
这件短衣值多少钱?
11.托尔斯泰的算术题俄国伟大的作家托尔斯泰,曾出过这样一个题:一组割草人要把二块草地的草割完。
大的一块比小的一块大一倍,上午全部人都在大的一块草地割草。
下午一半人仍留在大草地上,到傍晚时把草割完。
另一半人去割小草地的草,到傍晚还剩下一块,这一块由一个割草人再用一天时间刚好割完。
问这组割草人共有多少人?(每个割草人的割草速度都相同)
12.涡卡诺夫斯基的算术题(一)一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离相同,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?
13.涡卡诺夫斯基的算术题(二)有人问船长,在他领导下的有多少人,他回答说:“2/5去站岗,2/7在工作,1/4在病院,27人在船上。
”问在他领导下共有多少人?
14.数学家达兰倍尔错在哪里传说18世纪法国有名的数学家达兰倍尔拿两
个五分硬币往下扔,会出现几种情况呢?情况只有三种:可能两个都是正面;可能一个是正面,一个是背面,也可能两个都是背面。
因此,两个都出现正面的概率是1∶3。
你想想,错在哪里?
15.埃及金字塔世界闻名的金字塔,是古代埃及国王们的坟墓,建筑雄伟高
大,形状像个“金”字。
它的底面是正方形,塔身的四面是倾斜着的等腰三角形。
两千六百多年前,埃及有位国王,请来一位名子叫法列士的学者测量金字塔的高度。
法列士选择一个晴朗的天气,组织测量队的人来到金字塔前。
太阳光给每一个测量队的人和金字塔都投下了长长的影子。
当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(CB)。
他根据塔的底边长度和塔的阴影长度,很快算出金字塔的高度。
你会计算吗?
16.一笔画问题在18世纪的哥尼斯堡城里有七座桥。
当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次。
这就是世界上很有名的哥尼斯堡七桥问题。
你能一次走遍这七座桥,而又不重复吗?
17.韩信点兵传说汉朝大将韩信用一种特殊方法清点士兵的人数。
他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。
他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。
如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?
18.共有多少个桃子著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。
在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。
于是大家同意先去睡觉,明天再说。
夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。
第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了。
第三、第四、第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。
问一共有多少个桃子?注:这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来。
19.《九章算术》里的问题《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个题目。
其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?
20.《张立建算经》里的问题《张立建算经》是中国古代算书。
书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。
现在用100元钱买100只鸡。
问这100只鸡中,公鸡、母鸡、小鸡各有多少只?
21.《算法统宗》里的问题《算法统宗》是中国古代数学著作之一。
书里有这样一题:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。
”请您算算这只牧羊人赶的这群羊共有多少只?
22.洗碗(中国古题)有一位妇女在河边洗碗,过路人问她为什么洗这么多
碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。
你能从她家的用碗情况,算出她家来了多少客人吗?
23.和尚吃馒头(中国古题)大和尚每人吃4个,小和尚4人吃1个。
有大小和尚100人,共吃了100个馒头。
大、小和尚各几人?各吃多少馒头?
24.百蛋(外国古题)两个农民一共带了100只蛋到市场上去出卖。
他们两人所卖得的钱是一样的。
第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”。
第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采。
”问他们俩人各有多少只蛋?。