天津市滨海新区2017-2018学年八年级下学期期末考试数学试题-含答案
2017-2018天津市部分区八(下)期末数学试卷
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,)1.如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.下列二次根式;5;;;;.其中是最简二次根式的有()A.2个B.3个C.4个D.5个3.计算的结果为()A.±3B.﹣3C.3D.94.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上) 13.计算(4+)÷3的结果是 .14.在△ABC 中,∠C =90°,AB =10,其余两边长是两个相邻的偶数,则这个三角形的周长为 .15.每本书的厚度为0.62cm ,把这些书摞在一起总厚度h (单位:cm )随书的本数n 的变化而变化,请写出h 关于n 的函数解析式 .16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4 5 6 8 户数5753则这组数据的中位数是 .17.已知一次函数y =mx +n (m ≠0,m ,n 为常数),x 与y 的对应值如下表:x ﹣2 ﹣1 0 1 2 3 y﹣11234那么,不等式mx +n <0的解集是 .10.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( ) A .AD =BC ,AD ∥BC B .AD ∥BC ,AB =DCC .AD =BC ,AB =DCD .AD ∥BC ,AB ∥DC11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED 为( ) A .45° B .15°C .10°D .125°12.如图是甲、乙两个探测气球所在位置的海拔y (单位:m ),关于上升时间x (单位:min )的函数图象.有下列结论: ①当x =10时,两个探测气球位于同一高度;②当x >10时,乙气球位置高;③当0≤x <10时,甲气球位置高。
天津市滨海新区八年级下期末数学试卷
天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C第2页,共6页【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2第4页,共6页∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.第6页,共6页【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
天津市滨海新区2017-2018学年八年级(下)期末数学试卷(含解析)
2017-2018学年天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x −2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC,∴DF=BC,∵CA=CB,∴AC=DF ,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM=43(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y=−12x+4,令x=0,得到y=4,∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4, 解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
2018年天津市滨海新区八年级下期末数学试卷(含答案)
2017-2018学年天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()C. √0.2D. √27A. √5B. √122.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=123.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=65.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 489.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A. y<−4B. −4<y<0C. y<2D. y<010.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A. 5B. 6C. 8D. 1011.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A. 5元B. 10元C. 20元D. 10元或20元12.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A. 3B. 4C. 5D. 6二、填空题(本大题共6小题,共18.0分)13.若√x−2在实数范围内有意义,则x的取值范围为______.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】116.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:×√6;(Ⅰ)√12+3√2(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A 运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.x+4分别与x轴、y轴交于点A、点B,且与直25.在平面直角坐标系中,直线l1:y=−12线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017-2018学年天津市滨海新区八年级(下)期末数学试卷解析一、选择题(本大题共12小题,共36.0分)26.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.27.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.28.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.29.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.30.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.31.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.32.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y 1>y 2B. y 1<y 2C. y 1=y 2D. 不能确定 【答案】A【解析】解:∵一次函数y =kx 中,k <0,∴函数图象经过二、四象限,且y 随x 的增大而减小, ∵x 1<x 2, ∴y 1>y 2. 故选:A .先根据题意判断出一次函数的增减性,再根据x 1<x 2即可得出结论. 本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.33. 菱形的两条对角线长分别为6和8,则菱形的面积是( )A. 10B. 20C. 24D. 48 【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.34. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.35.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A. 5B. 6C. 8D. 10【答案】A【解析】解:∵四边形ABCD是矩形,∴∠D=90∘,∵O是矩形ABCD的对角线AC的中点,OM//AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC=√AD2+CD2=10,∴BO=1AC=5.2故选:A.已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.36.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A. 5元B. 10元C. 20元D. 10元或20元【答案】C【解析】解:设每件衬衫应降价x元,则每天可销售(20+2x)件,根据题意得:(40−x)(20+2x)=1200,解得:x1=10,x2=20.∵扩大销售,减少库存,∴x=20.故选:C.设每件衬衫应降价x元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.37.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD 沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A. 3B. 4C. 5D. 6【答案】C【解析】解:∵菱形ABCD的顶点A(2,0),点B(1,0),∴点D的坐标为(4,1),当y=1时,x+3=1,解得x=−2,∴点D向左移动2+4=6时,点D在EF上,∵点D落在△EOF的内部时(不包括三角形的边),∴4<m<6,∴m的值可能是5.故选:C.根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D移动到MN 上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)38.若√x−2在实数范围内有意义,则x的取值范围为______.【答案】x≥2【解析】解:由题意得:x−2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.39.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.40.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.41.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;3k+b=8,∴{8k+b=18k=2;解得{b=2所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.42.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,BC,∴DE=12∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.43.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)44.计算下列各题:×√6;(Ⅰ)√12√2(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.45.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)46.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.47.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM=4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.48.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.49.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A 运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,CD=t;∴DF=12(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=1AC=6cm,2∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.50. 在平面直角坐标系中,直线l 1:y =−12x +4分别与x 轴、y 轴交于点A 、点B ,且与直线l 2:y =x 于点C .(Ⅰ)如图①,求出B 、C 两点的坐标;(Ⅱ)若D 是线段OC 上的点,且△BOD 的面积为4,求直线BD 的函数解析式. (Ⅲ)如图②,在(Ⅱ)的条件下,设P 是射线BD 上的点,在平面内是否存在点Q ,使以O 、B 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4,∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83, ∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m),∵△BOD 的面积为4,∴12×4×m =4,解得m =2,∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4,解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB为菱形的边时,OB=PB=4,可得P(2√2,4−2√2),Q(2√2,−2√2).②当P′B为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB为菱形的边时,点P″与D重合,P、Q关于y轴对称,Q″(−2,2),综上所述,满足条件的Q的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B坐标,利用方程组求出点C坐标即可;(Ⅱ)设D(m,m),构建方程求出m即可解决问题,再利用待定系数法求出直线的解析式;(Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。
天津市部分区2017-2018学年八年级下学期期末考试数学试题(解析版)
天津市部分区2017-2018学年八年级下学期期末考试数学试题一、选择题.(本大题共12小题,每小题3分,共36分)1.如果有意义,那么()A. a≥B. a≤C. a≥﹣D. a【答案】C【解析】【分析】被开方数为非负数,列不等式求解即可.【详解】根据题意得:,解得.故选:.【点睛】本题考查二次根式有意义的条件,二次根式的被开方数是非负数.2.下列二次根式;5;;;;.其中,是最简二次根式的有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】根据最简二次根式的定义即可判断.【详解】,,,、、是最简二次根式.故选:.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.3.计算的结果为()A. ±3B. -3C. 3D. 9【答案】C【分析】根据=|a|进行计算即可.【详解】=|-3|=3,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A. 6,7,8B. 5,6,8C. ,,D. 4,5,6【答案】C【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】,,,能组成直角三角形的一组数是、、.故选:.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.【点睛】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A. (,0),(0,5)B. (﹣,0),(0,5)C. (,0),(0,﹣5)D. (﹣,0),(0,﹣5)【答案】A【解析】【分析】分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标. 【详解】令,则,解得,故此直线与轴的交点的坐标为;令,则,故此直线与轴的交点的坐标为.故选:.【点睛】本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.【详解】时,,随的增大而减小,函数图象从左往右下降,,,,即函数图象与轴交于正半轴,这个函数的图象不经过第三象限.故选:.【点睛】本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85 93 93 86S2 3 3 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A. 赵研B. 钱进C. 孙兰D. 李丁【答案】B【解析】【分析】根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.9.在▱ABCD中,∠C=32°,则∠A的度数为()A. 148°B. 128°C. 138°D. 32°【答案】D【解析】【分析】根据平行四边形的性质:对角相等即可求出的度数.【详解】四边形是平行四边形,,,.故选:.【点睛】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.10.下列条件中,不能判断四边形ABCD是平行四边形的是()A. AB=CD,AD∥BCB. AB∥CD,AB=CDC. AB=CD,AD=BCD. AB∥CD,AD∥BC【答案】A【解析】分析:由平行四边形的判定方法得出B、C、D能判断四边形ABCD是平行四边形,A不能判断,即可得出结论.详解:∵AB=CD,AD∥BC,∴四边形ABCD是等腰梯形,不一定是平行四边形,∴A不能判断;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),∴B能判断;∵AB=CD,AD=BC,∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形),∴C能判断;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),∴D能判断;故选:A.点睛:本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法,并能进行推理论证是解决问题的关键.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...A. 45°B. 15°C. 10°D. 125°【答案】A【解析】【分析】由等边三角形的性质可得,进而可得,又因为,结合等腰三角形的性质,易得的大小,进而可求出的度数.【详解】是等边三角形,,,四边形是正方形,,,,,,.故选:.【点睛】本题考查了正方形的性质,等边三角形的性质,三角形的内角和定理,等腰三角形的性质和判定的应用,解此题的关键是求出的度数,难度适中.12.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A. 3个B. 2个C. 1个D. 0个【答案】A【解析】【分析】根据图象进行解答即可.【详解】①当时,两个探测气球位于同一高度,正确;②当时,乙气球位置高,正确;③当时,甲气球位置高,正确.故选:.【点睛】本题考查了一次函数的应用、解题的关键是根据图象进行解答.二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.计算(4+)÷3的结果是_____.【答案】2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【详解】原式.故答案为:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.【解析】【分析】设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.15.每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式_____.【答案】h=0.62n【解析】【分析】依据这些书摞在一起总厚度()与书的本数成正比,即可得到函数解析式.【详解】每本书的厚度为,这些书摞在一起总厚度()与书的本数的函数解析式为.故答案为:.【点睛】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨 4 5 6 8户数 5 7 5 3则这组数据的中位数是_____.【答案】5吨【分析】找中位数要把数据从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】表中数据为从小到大排列,吨处在第10位、第11位,为中位数,故这组数据的中位数是吨.故答案为:吨.【点睛】考查了中位数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.17.已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x ﹣2 ﹣1 0 1 2 3y ﹣1 0 1 2 3 4那么,不等式mx+n<0的解集是_____.【答案】x<﹣1【解析】【分析】由表格得到函数的增减性后,再得出时,对应的的值即可.【详解】当时,,根据表可以知道函数值随的增大而增大,故不等式的解集是.故答案为:.【点睛】此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间联系.理解一次函数的增减性是解决本题的关键.18.在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的A¢处,折痕为PQ,当点A¢在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A¢在BC边上可移动的最大距离为_________.【解析】如图1,当点D与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,如图2,当点P与点B重合时,根据翻折对称性可得A′B=AB=5,∵5-1=4,∴点A′在BC边上可移动的最大距离为4.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)【答案】(Ⅰ)33;(Ⅱ)6﹣5.【解析】【分析】(Ⅰ)利用平方差公式计算可得;(Ⅱ)先化简二次根式,再合并同类二次根式即可得.【详解】(Ⅰ)原式=(3)2﹣(2)2=45﹣12=33;(Ⅱ)原式=5﹣2﹣3+1=6﹣5.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质与运算法则及平方差公式.20.某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试实践能力成长记录甲90 83 95乙88 90 95【答案】乙学生将被评为优秀的学生【解析】【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【详解】甲学生的学期总评成绩为=90.1,乙学生的学期总评成绩为=90.5,所以乙学生将被评为优秀的学生.【点睛】本题考查了加权成绩的计算.加权成绩等于各项成绩乘以不同的权重的和.21.如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【答案】见解析【解析】【分析】根据平行四边形的性质:平行四边的对边相等,可得,,根据一组对边平行且相等的四边形是平行四边形,可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.【点睛】本题考查了平行四边形的判定与性质,根据条件选择适当的判定方法是解题关键.22.如图,四边形ABCD为菱形,已知A(3,0),B(0, 4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.【答案】(Ⅰ)点C的坐标为(0,﹣1);(Ⅱ)y=﹣x﹣1.【解析】【分析】(Ⅰ)根据、的坐标求出线段的长度,由于菱形的四条边都相等,点位于轴上,即可得到点坐标;(Ⅱ)根据菱形四条边相等且对边平行,求出的坐标,再用待定系数法即可得到答案.【详解】(Ⅰ)∵四边形ABCD为菱形,∴AB=BC,∵A(3,0),B(0,4),∴AB==5,∴B C=5,∴OC=1,∴点C的坐标为(0,﹣1);(Ⅱ)∵四边形ABCD为菱形,∴AD=AB=5,AD∥CB,∴点D的坐标为(3,﹣5),设经过点C,D两点的一次函数的解析式为y=kx+b,把(0,﹣1),(3,﹣5)代入得:,解得:,∴经过点C,D两点的一次函数的解析式为y=﹣x﹣1.【点睛】本题考查菱形的性质和待定系数法求一次函数解析式,正确观察和分析图象和掌握待定系数法求一次函数解析式是解决本题的关键.23.某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为_____;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【答案】(Ⅰ)40;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总认识求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.24.某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg 以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表购买量/kg 0 50 100 150 200 …付款金额/元0 250 _ 700 __ …(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.【答案】(1). 【答案】(Ⅰ)500(2). 900;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)根据图表的规律解答即可;(Ⅱ)根据图表得出函数解析式即可;(Ⅲ)把代入解析式解答即可.【详解】(Ⅰ)由图表可得苹果100kg时,付款金额为500元,苹果200kg时,付款金额为500+100×5×0.8=900元;(Ⅱ)设购买量为xkg,付款金额为y元,当0≤x≤100时,y=5x;当x>100时,y=100×5+(x﹣100)×5×0.8=4x+100;(Ⅲ)把y=2100代入y=4x+100得:2100=4x+100,解得:x=500,答:如果某人付款2100元,其购买苹果的数量为500kg.故答案为:500;900.【点睛】此题主要考查了一次函数解析式的求法,以及一次函数的最值的求法,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.25.如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】【分析】(Ⅰ)连接,由菱形的性质结合,可得出,和,进而可得出(),根据全等三角形的性质可得出,由等边三角形的性质可得出,由邻补角互补及三角形内角和定理,可得出,进而可证出;(Ⅱ)由(Ⅰ)的结论可得出,,,进而可证出(),根据全等三角形的性质可得出,利用等边三角形的性质可得出,由可得出.【详解】(I)证明:在图(1)中,连接AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD,CA平分∠BCD.∵∠B=60°,∴△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.∵AB∥CD,∴∠ACD=∠BAC=60°,∴∠B=∠ACD=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠CEF+∠AEB=120°.∵∠BAE+∠AEB=120°,∴∠BAE=∠CEF.(II)解:∠BAE=∠CEF.在图(2)中,连接AC,由(I)知:∠ABC=∠ACD=60°,∠EAF=∠BAC=60°,AB=AC,∴∠ABE=∠ACF=120°,∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°.∵∠AEB+∠BAE=∠ABC=60°,∴∠BAE=∠CEF.【点睛】本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质以及角的计算,解题的关键是:(1)利用全等三角形的判定定理证出;(2)利用全等三角形的性质结合角的计算找出.。
2018年天津市滨海新区八年级下期末数学试卷(含答案解析)
푏 =‒ 4 ∴ 一次函数解析式为푦 = 2푥 ‒ 4. ∵ 푘 = 2 > 0, ∴ 该函数 y 值随 x 值增加而增加, ∴ 푦 < 2 × 2 ‒ 4 = 0. 故选:D. 由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性, 代入푥 < 2即可得出结论. 本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本 题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解 析式是关键.
于 x 的一元二次方程,解之取其较大值即可得出结论. 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
12. 如图,在平面直角坐标系 xOy 中,菱形 ABCD 的顶点 A 的坐标为 (2,0),点 B 的坐标为(0,1),点 C 在第一象限,对角线 BD 与 x 轴平 行.直线푦 = 푥 + 3与 x 轴、y 轴分别交于点 E,퐹.将菱形 ABCD 沿 x 轴 向左平移 m 个单位,当点 D 落在 △ 퐸푂퐹的内部时(不包括三角形的边 ),m 的值可能是( )
11. 某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为扩大销售,尽快减少库存,商
场决定釆取降价措施,调查发现,每件衬衫,每降价 1 元,平均每天可多销售 2 件,若商场每天要盈
天津市滨海新区八年级(下)期末数学试题(解析版)
八年级(下)期末数学试卷一.选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中,运算正确的是( )A. =B. 6=C. 7=-D. = 【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的性质对C 进行判断;利用分母有理化对D 进行判断.【详解】A A 选项错误;B 、原式B 选项错误;C 、原式=7,所以C 选项错误;D 、原式=5,所以D 选项正确, 故选D .【点睛】本题考查了二次根式的运算,涉及了二次根式的加减法,二次根式的化简,分母有理化,正确把握相关的运算法则是解题的关键.2.下列四组线段中,可以构成直角三角形的是( ) A. 1,2,3B. 4,5,6C. 9,12,15D. 【答案】C【解析】【分析】 根据勾股定理的逆定理,看较小两条边的平方和是否等于最长边的平方即可判断.【详解】A 、12+22≠32,不能构成直角三角形,故不符合题意;B 、42+52≠62,不能构成直角三角形,故不符合题意;C 、92+122=152,能构成直角三角形,故符合题意;1+≠,不能构成直角三角形,故不符合题意,D、222故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列曲线中能表示y是x的函数的为()A. B. C. D.【答案】D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断.【详解】A、B、C选项,一个x的值对应有两个y值,故不能表示y是x的函数,错误,D选项,x的每一个值,y都有唯一确定的值与它对应,正确,故选D.【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.在实数范围内有意义,则x的取值范围是()A. x>-4B. x≥-4C. x>-4且x≠1D. x≥-4且x≠-1【答案】D【解析】【分析】直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.在实数范围内有意义,则x+4≥0且x+1≠0,解得:x≥-4且x≠-1,故选D .【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键. 5.一次函数y =﹣3x +5的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】一次项系数-3<0,则图象经过二、四象限;常数项5>0,则图象还过第一象限.【详解】解:∵-3<0,∴图象经过二、四象限;又∵5>0,∴直线与y 轴的交点在y 轴的正半轴上,图象还过第一象限.所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.故选:C .【点睛】一次函数的图象经过第几象限,取决于x 的系数及常数是大于0或是小于0.可借助草图分析解答. 6.用配方法解方程x 2-8x+9=0时,原方程可变形为( )A. (x-4)2=9B. (x-4)2=7C. (x-4)2=-9D. (x-4)2=-7 【答案】B【解析】【分析】方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形得到结果,即可做出判断.【详解】方程x 2-8x+9=0,变形得:x 2-8x=-9,配方得:x 2-8x+16=7,即(x-4)2=7,故选B .【点睛】本题考查了解一元二次方程-配方法,熟练掌握配方法的一般步骤以及完全平方公式的结构特征是解本题的关键.7.如图,已知函数1y 3x b =+和2y ax 3=-的图象交于点()P 2,5--,当12y y >时,x 的取值范围( )A. x 2>-B. x 2<-C. x 5>-D. x 5<-【答案】A【解析】【分析】 结合函数图象,写出函数1y 3x b =+图象在函数2y ax 3=-图象上方所对应的自变量的范围即可.【详解】解:当12y y >时,x 的取值范围为x 2>-.故选:A .【点睛】考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.8.关于x 的一元二次方程kx 2-3x+1=0有两个不相等的实数根,则k 的取值范围( ) A. 94k < B. 94k <且k≠0 C. 94k ≤ D. 94k ≤且k≠0 【答案】B【解析】【分析】根据一元二次方程定义和根的判别式得出k≠0且△=(-3)2-4k×1>0,求出即可. 【详解】∵关于x 的一元二次方程kx 2-3x+1=0有两个不相等的实数根,∴k≠0且△=(-3)2-4k×1>0,解得:k <94且k≠0, 故选B .【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键. 9.已知P 1(-1,y 1),P 2(-2,y 2)是一次函数y=2x+3图象上两个点,则y 1,y 2的大小关系是( )A. y 1>y 2B. y 2>y 1C. y 1=y 2D. 不能确定【解析】【分析】由函数解析式y=2x+3可知k>0,则y随x的增大而增大,比较x的大小即可确定y的大小.【详解】y=2x+3中k>0,∴y随x的增大而增大,∵-1>-2,∴y1>y2,故选A.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的k与函数值之间的关系是解题的关键.10.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AD、AB边上的中点,连接EF,若OC=2,则菱形ABCD的面积为()A. B. C. D.【答案】B【解析】【分析】由三角形中位线定理可得AC⊥BD,AC=2AO=4,由菱形的面积公式可求解.【详解】∵E、F分别是AD、AB边上的中点,∴∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=2,∵菱形ABCD的面积=12×AC×,故选B.【点睛】本题考查了菱形的性质,三角形中位线定理,熟练运用菱形的面积公式是本题的关键.11.甲,乙两名选手参加长跑比赛,乙从起点出发匀速跑到终点,甲先快后慢,半个小时后找到适合自己的速度,匀速跑到终点,他们所跑的路程y(单位:km)随时间x(单位:h)变化的图象,如图所示,则下列结论错误的是()A. 在起跑后1h内,甲在乙的前面B. 跑到1h时甲乙的路程都为10kmC. 甲在第1.5时的路程为11kmD. 乙在第2h时的路程为20km 【答案】C 【解析】【分析】由图象即可判断A,B.通过计算可知甲在第1.5h时的行程为12km,故可判断C错误,求出乙2小时的路程即可判断D.【详解】由图象可知,在起跑后1h内,甲在乙的前面,故A正确;跑到1h时甲乙的路程都为10km,故B正确;∵y乙=10x,当0.5<x<1.5时,y甲=4x+6,x=1.5时,y甲=12,故C错误,x=2时,y乙=20,故D正确,故选C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.12.如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC②四边形BEFG是平行四边形③EG=GF④EA平分∠GEF其中正确的是()A. ①②③B. ①②④C. ①③④D. ②③④【答案】B【解析】【分析】由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD是平行四边形,∴BO=DO=12BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E 是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=12 CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=12AB=AG=BG,∴EG=EF=AG=BG,无法证明GE=GF,故③错误,∵BG=EF,BG∥EF∥CD,∴四边形BEFG是平行四边形,故②正确,∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,故选B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.二.填空题(本大题共6小题,每小题3分,共18分)13.________________.【答案】【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式=故答案为:【点睛】本题考查了二次根式的乘法运算,正确化简二次根式是解题关键.14.直线y=3x-2与x轴的交点坐标为____________________【答案】(23,0)【解析】【分析】交点既在x轴上,又在直线直线y=3x-2上,而在x轴上的点其纵坐标为0,因此令y=0,代入关系式求出x 即可.【详解】当y=0时,即3x-2=0,解得:x=23,∴直线y=3x-2与x轴的交点坐标为(23,0),故答案为:(23,0).【点睛】本题考查直线与x轴的交点坐标,实际上就是令y=0,求x即可,数形结合更直观,更容易理解.15.已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.【答案】4【解析】【分析】根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.【详解】解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则4a﹣14﹣2=0,即4a﹣16=0,解得,a=4.故答案是:4.【点睛】考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.16.如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为____________________.【答案】135°【解析】【分析】根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,进而得出答案.【详解】连接AC,在Rt△ABC中,由勾股定理得:AC==,∵AB=BC,∴∠BAC=∠ACB=45°,∵CD=1,AD=3,,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠DCB=90°+45°=135°,故答案为:135°.【点睛】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.17.如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=,则线段OE的长为_____.【答案】1.【解析】【分析】分析题目需要添加辅助线,先过E作EF⊥AD于F,设OE=x,则EH=AH=x,AE x,x+x,在Rt△ABO中,根据勾股定理列方程求解即可.【详解】如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,∵DE平分∠ODA,EO⊥DO,EH⊥DH,∴OE=HE,设OE=x,则EH=AH=x,AE x,x+x,在Rt△ABO中,AO2+BO2=AB2,x+x)2+x+x)2)2,解得x=1(负值已舍去),∴线段OE的长为1.故答案为:1.【点睛】此题考查正方形的性质,解决问题的关键是作辅助线构造直角三角形,运用勾股定理列方程进行计算;18.有20个边长为1的小正方形,排列形式如图所示,请将其分割,拼接成一个正方形,求拼接后的正方形的边长.【答案】【解析】【分析】利用正方形的面积公式先求出拼接后的正方形的边长,观察边长可知是直角边长分别为2和4的直角三角形的斜边,由此可对图形进行分割,然后再进行拼接即可.【详解】因为20个小正方形的面积是20,所以拼接后的正方形的边长22+42=20,所以如图①所示进行分割,拼接的正方形如图②所示.【点睛】本题考查作图-应用与设计,正方形的判定和性质等知识,解题的关键是学会用数形结合的思想解决问题.三.解答题(本大题共7小题,共66分解答应写出文字说明、演算步骤或推理过程) 19.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【解析】【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式)÷=1;(2)原式=5-3-(12-4+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.解下列方程(1)3x2-9x=0(2)4x2-3x-1=0【答案】(1)x1=0,x2=3;(2)x1=1,x2=-14.【解析】【分析】(1)直接利用提取公因式法分解因式进而解方程得出答案;(2)直接利用十字相乘法分解因式解方程得出答案.【详解】(1)3x2-9x=0,3x(x-3)=0,解得:x1=0,x2=3;(2)4x2-3x-1=0,(4x+1)(x-1)=0,解得:x1=1,x2=-14.【点睛】本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.21.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB(1)求证:四边形ABCD是矩形;(2)若AB=5,∠AOB=60°,求BC的长.【答案】(1)证明见解析;(2)【解析】【分析】(1)根据平行四边形的性质得到OA=OC=12AC,OB=OD=12BD,推出AC=BD,于是得到结论;(2)根据已知条件得到△AOB是等边三角形,求得OA=OB=AB=5,解直角三角形即可得到结论.【详解】(1)∵四边形ABCD 是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵OA=OB,∴AC=BD,∴平行四边形ABCD是矩形;(2)∵OA=OB,∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∵四边形ABCD是矩形,∴AC=2OA=10,∠ABC=90°,∴BC==【点睛】本题考查了矩形的判定和性质,勾股定理,平行四边形的性质,熟练掌握矩形的判定和性质定理是解题的关键.22.在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F(1)如图①,求证:OE=OF;(2)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由四边形ABCD是平行四边形,得到OB=OD,AB∥CD,根据全等三角形的性质即可得到结论;(2)根据对角线互相平分的四边形是平行四边形先判定四边形BEDF是平行四边形,继而根据对角线互相垂直的平行四边形是菱形即可得结论.【详解】(1)∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD,∴∠EBO=∠FDO,在△OBE与△ODF中,EBO FDO OB ODBOE DOF ∠∠⎧⎪⎨⎪∠∠⎩===,∴△OBE≌△ODF(ASA),∴OE=OF;(2)∵OB=OD,OE=OF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.23.某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m的篱笆围成.已知墙长为18m(如图所示),设这个苗圃园垂直于墙的一边AB为xm(1)用含有x的式子表示AD,并写出x的取值范围;(2)若苗圃园的面积为192m2平方米,求AB的长度.【答案】(1)AD=40-2x.11≤x<20.(2)若苗圃园的面积为192平方米,则AB的长度为12米.【解析】【分析】(1)由矩形的周长公式求得AD的长度;由AD长度意义求得x的取值范围;(2)根据矩形的面积公式,即可得出关于x的一元二次方程,解之即可得出x的值,再由(1)中x的取值范围即可确定x的值.【详解】(1)AD=40-2x,∵0<40-2x≤18,∴x的取值范围为:11≤x<20;(2)根据题意得:x(40-2x)=192,整理,得x2-20x+96=0,解得:x1=8,x2=12,∵11≤x<20,当x=8时,40-2x=40-16=24>18,∴不合题意,舍去;∴x=12,即AB的长度为12,答:若苗圃园的面积为192平方米,则AB的长度为12米.【点睛】本题考查了一元二次方程的应用、矩形的面积以及一次函数的应用,解题的关键是:(1)根据篱笆长度得出用含有x的式子表示BC的式子;(2)利用矩形的面积公式,找出关于x的一元二次方程.24.某单位要印刷“市民文明出行,遵守交通安全”的宣传材料.甲印刷厂提出:每份材料收1.5元印刷费,另收120元的制版费:乙印刷厂提出:每份材料收3元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表(2)设选择甲印刷厂的费用为y1元,选择乙印刷厂的费用为y2元,分别写出y1,y2关于x的函数关系式;(3)在印刷品数量大于500份的情况下选哪家印刷厂印制省钱?请说明理由.【答案】(1)135,150,15,60;(2)y1=120+1.5x,y2=3x;(3)在印刷品数量大于500份的情况下选甲家印刷厂印制省钱.【解析】【分析】(1)根据题意,可以将表格中的数据计算出来并将表格补充完整;(2)根据题意可以直接写出y1,y2关于x的函数关系式;(3)先判断,然后根据题意说明理由即可,理由说法不唯一,只要合理可以说明判断的结果即可.【详解】(1)由题意可得,当x=10时,甲印刷厂的费用为:120+1.5×10=135(元),当x=20时,甲印刷厂的费用为:120+1.5×20=150(元),当x=5时,乙印刷厂的费用为:3×5=15(元),当x=20时,乙印刷厂的费用为:3×20=60(元),故答案为:135,150,15,60;(2)由题意可得,y1=120+1.5x,y2=3x;(3)在印刷品数量大于500份的情况下选甲家印刷厂印制省钱,理由:当x=500时,y1=120+1.5×500=870,y2=3×500=1500,∵870<1500,甲每多印刷一份需要交付1.5元,乙每多印刷一份需要交付3元,∴在印刷品数量大于500份的情况下选甲家印刷厂印制省钱.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25.如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动23秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE= ,OF= (用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=0.求S与b之间的函数关系式,并求出自变量b的取值范围.【答案】(1)6-t,23+t;(2)①直线DE的解析式为:y=-31544x+;②151521542152152b bSb b⎧⎛⎫-+<⎪⎪⎪⎝⎭=⎨⎛⎫⎪->⎪⎪⎝⎭⎩…【解析】【分析】(1)由O(0,0),A(6,0),C(0,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据E点与F点的运动速度与运动时间即可用含t的代数式表示OE,OF;(2)①由翻折的性质可知:△OPF≌△DPF,进而可得:DF=OF,然后由t=1时,DF=OF=53,CF=OC-OF=43,然后利用勾股定理可求CD的值,进而可求点D和E的坐标;利用待定系数可得直线DE的解析式;②先确定出k的值,再分情况计算S的表达式,并确认b的取值.【详解】(1)∵O(0,0),A(6,0),C(0,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点F从O点以每秒1个单位长的速度沿OC向终点C运动,运动23秒时,动点E从点A出发以相等的速度沿AO向终点O运动,∴当点E的运动时间为t(秒)时,AE=t,OF=23+t,则OE=OA-AE=6-t,故答案为:6-t,23+t;(2)①当t=1时,OF=1+23=53,OE=6-1=5,则CF=OC-OF=3-53=43,由折叠可知:△OEF≌△DEF,∴OF=DF=53,由勾股定理,得:CD=1,∴D(1,3);∵E(5,0),∴设直线DE的解析式为:y=mx+n(k≠0),把D(1,3)和E(5,0)代入得:350mx nm n+⎧⎨+⎩==,解得:34154mn⎧-⎪⎪⎨⎪⎪⎩==,∴直线DE的解析式为:y=-315 44x+;②∵MN∥DE,∴MN的解析式为:y=-34x b+,当y=3时,-34x b+=3,x=43(b-3)=43b-4,∴CM=43b-4,分三种情况:i)当M在边CB上时,如图2,∴BM=6-CM=6-(43b-4)=10-43b,DM=CM-1=43b-5,∵0≤DM<5,即0≤43b-5<5,∴154≤b<152,∴S=12BM•AB=12×3(10−43b)=15-2b=-2b+15(154≤b<152);ii)当M与点B重合时,b=152,S=0;iii)当M在DB的延长线上时,如图3,∴BM=CM-6=43b-10,DM=CM-1=43b-5,∵DM>5,即43b-5>5,∴b>152,∴S=12BM•AB=12×3(43b−10)=2b-15(b>152);综上,151521542152152b bSb b⎧⎛⎫-+<⎪⎪⎪⎝⎭=⎨⎛⎫⎪->⎪⎪⎝⎭⎩….【点睛】本题是四边形和一次函数的综合题,考查了动点的问题、矩形的性质、全等三角形的判定与性质等知识,解(1)的关键是:明确动点的时间和速度;解(2)的关键是:由翻折的性质可知:△OEF≌△DEF,并采用了分类讨论的思想,注意确认b的取值范围.。
2017-2018学年人教版数学八年级第二学期期末考试试题及答案
2017-2018学年八年级(下)期末考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1 •若式子土2有意义,则x的取值范围为()x—3A. x >2B . x工3 C. x>2 或x工3 D . x>2 且X M 32•下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A . a=亡2 ,b= J3 ,c= /5 B. a=1.5,b=2,c=3C. a=6,b=8,c=10 D . a=3,b=4,c=53. 下列计算错误的是()A. 3+2 2 =5 2 B . . - 2=、、2 C.、、2 X、3 =/〕D . J” ■ = , 24. 设n为正整数,且n v — v n+1,则n的值为()A. 5B. 6C. 7D. 85. 若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A . 2,2B . 4迁C . 4D . 86 .如图,在平行四边形ABCD中,/ B=80°,AE平分/ BAD交BC于点E,CF// AE 交AD 于点F,则/ 1=()A . 40°B . 50°C . 60°D . 80°7. 小刚与小华本学期都参加5次数学考试(总分都为120分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的()A.方差B .平均数C .众数D .中位数8. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A .当AB=BC时,平行四边形ABCD是菱形B. 当AC丄BD时,平行四边形ABCD是菱形C. 当AC=BD时,平行四边形ABCD是正方形D. 当/ ABC=90时,平行四边形ABCD是矩形9. 关于一次函数y= - 2x+3,下列结论正确的是()A .图象过点(1,- 1)B .图象经过一、二、三象限C. y随x的增大而增大D .当x>;时,y v 010. 如图,菱形ABCD中,AB=2,/ B=120°,点M是AD的中点,点P由点A出发,沿LB-CF 作匀速运动,到达点D停止,则△ APM的面积y与点P 经过的路程x 之间的函数关系的图象大致是()二、填空题(共6小题,每小题4分,满分24分)11. ______________________ 比较大小:-2並-3 (填V”或“ =或>”12. 将正比例函数y=- 2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_______ .13. _____ 在平面直角坐标系中,A (- 4,3),点O为坐标原点,则线段OA的长为_________ .14. 如图所示,DE ABC的中位线,点F在DE 上,且/ AFB=90°,若AB=5,15. 如图,在△ ABC 中,/ ACB=90 , AC=6 , AB=10 , AB 的垂直平分线DE则CE的长等于16. 如图,在平面直角坐标系中有一个边长为1的正方形OABC,边OA, OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB i C i,再以对角线OB i为边作第三个正方形OB1B2C2,…,照此规律作下去,则点B6的坐标三、解答题(共3小题,满分18分)17. (6 分)计算:心:畀匸(一 -1)- 30- | - - 2| .1 218. (6分)先化简,再求值:(1-丄),其中a W3 - 1.a a -119. (6分)如图,在平行四边形ABCD中,已知AD > AB .(1)实践与操作:作/ BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.四、简答题20. ( 7 分)已知:x=2+ 一 , y=2- 一 .(1)求代数式:x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?21. (7分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10 分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.22. ( 7分)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5, 0),直线y=2x - 4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x - 4>kx+5的解集;(3)求厶ADC的面积.五、简答题23. (9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费•小英家1月份用水20吨,交水费49元;2月份用水22吨,交水费56元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?24. (9分)已知如图1,P为正方形ABCD的边BC上任意一点,BE丄AP于点E,在AP的延长线上取点F,使EF=AE,连接BF,Z CBF的平分线交AF 于点G.(1)求证:BF=BC ;(2)求证:△ BEG是等腰直角三角形;(3)如图2,若正方形ABCD的边长为4,连接CG,当P点为BC的中点时,求CG的长.图1 图225. (9分)如图,矩形OABC在平面直角坐标系内(_0为坐标原点),点A 在x轴上,点C在y轴上,点B的坐标为(-4,- 4 •「),点E是BC的中点, 现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使/ CEF=6C° .(1)求证:△ EFC^A GFO;(2)求点D的坐标;(3)若点P (x, y)是线段EG上的一点,设△ PAF的面积为s,求s与x的函数关系式并写出x的取值范围.备用图、选择题(每小题3分,共30分)题号12345678910答案D B A C C B A C D B、填空题(每小题4分,共24分)11.> 12 .y=—2x+5 . 13.5.714. 2 . 15. 4 . 16.( 8, -8)三、解答题(每小题6分,共18分)17.解:原式 =.4・・.3 ■ 3-分3-1 ■〔3-2____________ 」4 3.................. .............. 6分18. 解:原式2 (2)条形的统计图补充如图: 4分a -1 a ------- x ---------------------------a (a 1)(a -1) a "a 1 当 a 二、.3 _1 时 原式二上3-1.3+1-13-、、3319. ..................................................................................... 解:(1)如图AE 就是所要求的角平分线。
新人教版2017-2018八年级下学期数学期末试卷及其答案
=--=2017—2018学年度(下)学期期末教学质量检测八年级数学试卷参考答案考试时间:90分钟 试卷满分:100分一、选择题(每小题2分,共20分)1.D 2.C 3.D 4.A 5.C 6.C 7.B 8.D 9.A 10.B二.填空题(每小题2分,共16分)11.x ≥1 12.0 13.四 14.22cm 或26cm 15.0<a <21617.25dm 18. 425三、解答题(19题8分,20题8分,共计16分)19.(1)解: -------------------------3(2)解:∵1x =-∴1x +=∴22223(1)22527x x x ++=++=+=+=--------------420.设旗杆高度为x ,----------------------------------------------------------1 则AC=AD=x ,AB=(x ﹣2)m ,BC=8m ,-----------------------------------------2 在Rt △ABC 中,AB 2+BC 2=AC 2,即(x ﹣2)2+82=x 2,------------------------------6 解得:x=17,-------------------------------------------------------------7 即旗杆的高度为17米.----------------------------------------------------8四、解答题(21题8分,22题8分,共计16分)21.证明:连接BD,交AC于点O,-------------------------------------------1 ∵四边形ABCD是平行四边形,-----------------------------------------------2 ∴OA=OC,OB=OD,----------------------------------------------------------3 ∵AE=CF,-----------------------------------------------------------------4 ∴OA﹣AE=OC﹣CF,---------------------------------------------------------6 即OE=OF,-----------------------------------------------------------------7 ∴四边形DEBF是平行四边形.-----------------------------------------------822.(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;-----------------2 (2)185型的学生人数为:50-3-15-15-10-5=50-48=2(名),补全统计图如图所示;--------------------------------------------------------------5(3)185型校服所对应的扇形圆心角为:×360°=14.4°;------------------6 (4)165型和170型出现的次数最多,都是15次,故众数是165和170;---------------------------------------------------------------7 共有50个数据,第25、26个数据都是170,故中位数是170.---------------------------------------------------------------------8五、解答题(8分)23.解:(1)------------------------------------4(2)根据图象可知小李2h后到达离家最远的地方,此时离家30km;--------5 (3)当t=1.5或t=4时,小李与家相距20km;---------------------------7答:小李离家1.5小时或4小时时,小李与家相距20km.(4)小李这次出行的平均速度为=12(km/h).-------------------8六、解答题(8分)24.解:(1)设直线AC的解析式为y AC=k1x+b1,将点A(0,5)、C(20,25)代入y AC=k1x+b1得:,解得:,∴直线AC的解析式为y AC=x+5,----------------------------------------2 当x=10时,y AC=10+5=15;设直线BC的解析式为y BC=k2x+b2,将点B(0,15)、C(20,25)代入y BC=k2x+b2得:,解得:,∴直线BC的解析式为y BC=x+15,-------------------------------------4当x=10时,y BC=×10+15=20.----------------------------------------5 答:当两气球上升10分钟时,1号气球离地15米,2号气球离地20米.----6(2)当x<20时,y BC﹣y AC=x+15﹣(x+5)=﹣x+10,令y BC﹣y AC=5,即﹣x+10=5,解得:x=10;-------------------------------------------------------7当x>20时,y AC﹣y BC=x+5﹣(x+15)=x﹣10,令y AC﹣y BC=5,即x﹣10=5,解得:x=30.-------------------------------------------------------8 答:此时气球上升的时间为10分钟或者30分钟.七、解答题(8分)25.(1)证明:∵四边形ABCD为正方形∴BA=BC,AD=CD,∠ABC=∠ADC=90°-------------------------------1∴∠ABE=180°-∠ABC=90°=∠ABC∴∠E+∠BAE=90°又CF⊥AE∴∠EFC=∠AFC=90°∴∠E+∠BCG=90°∴∠BAE=∠BCG--------------------------------------------------2∴△BAE≌△BCG(ASA)------------------------------------------3∴BE=BG--------------------------------------------------------4 (2)延长FC到H,使HC=FA------------------------------------------------5 ∴∠FAD+∠FCD=360°-∠AFC-∠ADC=360°-90°-90°=180°∵∠DCH+∠FCD=180°∴∠DCH=∠FAD又AD=CD∴△AFD≌△CHD(SAS)-----------------------------------------------6 ∴FD=HD,∠ADF=∠CDH∴∠FDH=∠FDC+∠CDH=∠FDC+∠ADF=90°-------------------------------7∴==∴∴八、解答题(8分)26.(1)设直线AB的解析式是y=kx+b,根据题意得:,-------------------------------------------------1解得:,---------------------------------------------------------2 则直线的解析式是:y=﹣x+6; -------------------------------------------3 (2)在y=﹣x+6中,令x=0,解得:y=6,所以OC=6S△OAC=×6×4=12;-----------------------------------------------------5 (3)(2,1),(-2,-1),(10,5)-------------------------------------8。
滨海初二期末数学试卷答案
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -5/2B. √2C. 3D. -1/3答案:B2. 下列分式无意义的是()A. 1/xB. 1/(x+1)C. 1/(x-1)D. 1/(x^2)答案:C3. 已知a+b=5,a-b=1,则a^2-b^2的值为()A. 16B. 18C. 20D. 22答案:B4. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°答案:C5. 下列方程中,解集不为空集的是()A. x^2+1=0B. x^2-4=0C. x^2+2x+1=0D. x^2+3x+2=0答案:B6. 下列函数中,是二次函数的是()A. y=2x^3+3x+1B. y=x^2+2x+1C. y=x^2-2x-3D. y=x^2+2x+3答案:B7. 已知函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若点A的坐标为(-1,0),点B的坐标为(0,2),则k的值为()A. 1B. 2C. -1D. -2答案:B8. 下列不等式中,正确的是()A. -3<2B. -3>2C. 3<2D. 3>2答案:A9. 下列几何图形中,是圆的是()A. 矩形B. 正方形C. 圆D. 三角形答案:C10. 下列关于平行四边形的说法正确的是()A. 对角线互相平分B. 对边互相平行C. 对角线互相垂直D. 对边互相垂直答案:A二、填空题(每题5分,共25分)11. 计算:-3 + (-5) × 2 - 4 ÷ 2 = _______答案:-1112. 已知方程2x-3=5的解为x=_______答案:413. 若|a|=5,则a的值为_______和_______答案:5和-514. 已知函数y=2x-1,当x=3时,y的值为_______答案:515. 在△ABC中,若∠A=90°,AB=6cm,AC=8cm,则BC的长度为_______答案:10cm三、解答题(每题15分,共45分)16. 解下列方程组:$$\begin{cases}2x+y=7 \\3x-2y=1\end{cases}$$答案:首先,我们可以通过消元法解这个方程组。
2017-2018天津市部分区八(下)期末数学试卷
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,)1.如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.下列二次根式;5;;;;.其中是最简二次根式的有()A.2个B.3个C.4个D.5个3.计算的结果为()A.±3B.﹣3C.3D.94.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386 S233 3.5 3.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.计算(4+)÷3的结果是.14.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:月用水量/吨4568户数5753则这组数据的中位数是.17.已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:x﹣2﹣10123y﹣101234那么,不等式mx+n<0的解集是.18.如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N 分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.纸笔测试实践能力成长记录甲908395乙88909521.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表购买量/kg050100150200…付款金额/元0250700…(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.。
2017-2018八年级数学下试题及答案
八年级数学试题 第 1 页 (共 7 页)2017-2018学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.式子3-x 在实数范围内有意义,则x 的取值范围是( ) A .3≥xB .3>xC .3≤xD .3≠x 2.下列根式中,不能与3合并的是( )A .34B .34 C .32D .12 3. 甲、乙、丙、丁四名同学在三次诊段考试中数学成绩的方差分别为2=1.2S 甲,39.02=乙S ,18.02=丙S ,2=3.5S 丁,则这四名同学发挥最稳定的是( ) A .甲 B .乙 C .丙 D .丁4. 若正比例函数kx y =的图像经过第二、四象限,则k 的值可以是( ) A .2B .2-C .2±D .20-或5.下列各组数不能作为直角三角形三边长的是( )A .3,4, 5B .3,4,5C .5,12,13D .1,2, 3 6.不能判定一个四边形是平行四边形的条件是( ) A .两组对边分别平行B .一组对边平行,另一组对边相等C .一组对边平行且相等D .两组对边分别相等 7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O , ∠ACB =60°,则∠AOB 的大小为( ) A .30°B .60°C .120°D .150°8.已知菱形的周长为cm 20,两对角线的长度之比是4:3,那么两对角线的长分别为( ) A.cm cm 4,3 B.cm cm 8,6 C.cm cm 16,12 D.cm cm 32,24 9.关于一次函数22+-=x y ,下列结论正确的是( )A .函数图象不经过第一象限B .图象与x 轴的交点是)2,0(OAD CB)7(题图八年级数学试题 第 2 页 (共 7 页)C .y 随x 的增大而增大D .图象过点)4,1(- 10. 如图,直线)0(≠=k kx y 和直线)0(≠+=m n mx y 相交于 点)3,2(A ,则不等式n mx kx +≤的解集为( ) A .3x ≥B .3x ≤C .2x ≥D .2x ≤11.如图,用菱形纸片按规律依次拼成下列图案.由图知,第1个图案中有5个菱形纸片;第2个图案中有9个菱形纸片;第3个图形中有13个菱形纸片.按此规律,第6个图案中有()个菱形纸片.A .21B .23C .25D .2912. 若关于x 的一次函数3)1(--=x k y ,y 随x 的增大而减小,且关于x 的不等式组⎩⎨⎧<+≥+0752k x x 无解,则符合条件的所有整数k 的值之和是( ) A. 2- B. 1- C. 0 D. 1二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.计算:=-2)3( .14.将直线2+-=x y 向下平移3个单位长度后所得直线的解析式是 .15.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占%30,期末卷面成绩占%70,小明的两项成绩(百分制)依次是90分,80分,则小明这学期的数学成绩是 _________分.16.一次函数42+-=x y 的图象与两坐标轴所围成的三角形面积是 . 17. 如图所示,DE 为ABC ∆的中位线,点F 在DE 上,且 90=∠AFB , 若8=AB ,14=BC ,则EF 的长为 .18. 如图, 在正方形ABCD 中,对角线AC 的长为cm 16,P 是BC 上 任意一点,AC PE ⊥,BD PF ⊥,则PF PE +的值为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.(17题图)nmx y +=xk y =)3,2(A )10(题图CD)18(题图八年级数学试题 第 3 页 (共 7 页)19.计算: 6223427⨯-+20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额 进行统计调查,并绘制了统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是 ______元/人;众数是_____元;中位数是_______元; (2)据统计该校的1800人中,每周零花钱为15元的学生 约有多少人?四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21. 如图,在ABCD 中,点E 、F 是对角线AC 上的两点,且DF BE //,求证:四边形BEDF 是平行四边形.22.如图,直线l 与x 轴正半轴交于点A ,与y 轴负半轴交于点B ,其中A 点坐标是)0,3(,且 13=AB .(1)求直线l 的解析式;(2)求O 到直线l 的距离.23.我区为推行节约用水,决定从2018年起1月起实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按基本优惠价收费;每月超过12吨时,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费90元;2月份用水20吨,交水费6.73元. (1)求每吨水的基本优惠价和市场调节价分别是多少元?(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式.24.阅读理解:定义:有三个内角相等的四边形叫“和谐四边形”.(1)在“和谐四边形”ABCD 中,若135=∠B ,则A ∠=__________;)20(题图)21(题图D八年级数学试题 第 4 页 (共 7 页)(2)如图,折叠平行四边形纸片DEBF ,使顶点E ,F 分别落在边BE ,BF 上的点A ,C 处,折痕分别为DG ,DH .求证:四边形ABCD 是“和谐四边形”.25. 如图1,在矩形ABCD 中,过矩形ABCD 对角线AC 的中点O 作AC EF ⊥分别交AB 、DC 于E 、F 点. (1)求证:CFAE =; (2)如图2,若G 为AE 的中点,且 30=∠AOG ,求证:OGDC 3=.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26. 如图,在平面直角坐标系中,一次函数()0y m x n m =+≠的图象与x 轴交于点)0,3(-A ,与y 轴交于点B ,且与正比例函数x y 2=的图象交于点)6,3(C . (1)求一次函数y m x n=+的解析式; (2)点P 在x 轴上,当PCPB +最小时,求出点P 的坐标; (3)若点E 是直线AC 上一点,点F 是平面内一点,以O 、C 、E 、F 四点为顶点的四边形是矩形,请直接写出点F(25题图))24(题图八年级数学试题 第 5 页 (共 7 页)2017-2018学年度第二学期期末检测七年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.假 14. 169 15. 0≥a 16 . 2∠ 17. )25,23(- 18. 5-三、解答题:(本大题共2个小题,每小题8分,共16分) 19.解:原式()()13223-+--+=………………………………………………4分13223-+--=……………………………………………………6分 23-=.………………………………………………………………8分20.解:原方程组化为6912642x y x y ⎧+=⎪⎨+=⎪⎩①②,由①-②得:510y =,……………………4分所以,2y =,代入方程321x y +=得3221x +⨯=, 解得1x =-, 故原方程组的解为12x y =-⎧⎨=⎩.………………………………8分四、解答题:(本大题共5个小题,每小题10分,共50分)21. 解:由4)2(3-≥-x x 得22≥x ,∴1≥x , ………………3分 由1312->+x x 得3312->+x x ,∴4<x ,………………6分 故原不等式组的解为41<≤x ,在数轴上表示为:……………8分八年级数学试题 第 6 页 (共 7 页)22. 解:(1)如图三角形ABC 为所求, ………(3分) (2)如图三角形,'''C B A 为所求………(6分))2,5(',)3,0('--C B ………(8分)(3) 三角形'''C B A 的面积是: 614212421=⨯⨯+⨯⨯……………(10分)23.(1)300%2060=÷(人).…………3分(2)%44 , %3…………7分(3)条形统计图补充正确.…………10分24.证明: E ∠=∠2 (已知)∴ AD ∥ BC( 内错角相等,两直线平行 ) ∴∠=∠3 DAC ( 两直线平行,内错角相等 ) ∵43∠=∠(已知)∴∠=∠4 DAC ( 等量代换 ) ∵21∠=∠(已知)∴CAF CAF ∠+∠=∠+∠21 即∠=∠BAF DAC∴∠=∠4 BAF (等量代换)∴ AB ∥ CD (同位角相等,两直线平行) (每空1分)25. 解:(1)设蔬菜有x 吨,水果有y 吨,根据题意得:⎩⎨⎧=-=+1735y x y x …………………………………………………(2分)解得:⎩⎨⎧==926y x ……………(4分)答:蔬菜有26吨,水果有9吨……………(5分)(2)设租用A 种货车a 辆,则租用B 种货车(8-a )辆,根据题意得:ABC'A 'B 'C八年级数学试题 第 7 页 (共 7 页)⎩⎨⎧≥-+≥-+9)8(226)8(24a a a a ……………………(7分)解得:75≤≤a …………………………(8分) ∵a 取整数 ∴a =5,6,7当a =5时,租车费用为:2000×5+1300×(8-5)=13900(元) 当a =6时,租车费用为:2000×6+1300×(8-6)=14600(元) 当a =7时,租车费用为:2000×7+1300×(8-7)=15300(元)∴租用A 种货车5辆,B 种货车3辆,可使运费最少,最少为13900元………(10分) 五、解答题:(本大题共1个小题,共12分)26.解:(1)A (-2,0) B (3,0)……………(4分) (2)∠PQD+∠OPQ+∠POB=360°…………………(5分) 证明:过点P 作PE ∥AB 由平移的性质可得AB ∥CD ∴AB∥PE ∥CD∴∠PQD+∠EPQ=180°,∠OPE+∠POB=180° ∴∠PQD+∠EPQ+∠OPE+∠POB=360°即∠PQD+∠OPQ+∠POB=360°……………(8分)(3)存在符合条件的M 点,坐标为(-7,0),(3,0)(0,-3),(0,7) (答对一点得1分)…………………………………………………(12分)2图。
2017-2018年第二学期八年级数学期末试卷(参考答案)
∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
2017-2018学年天津市部分区八年级(下)期末数学试卷(解析版)
2017-2018学年天津市部分区八年级(下)期末数学试卷一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a2.(3分)下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个3.(3分)计算的结果为()A.±3B.﹣3C.3D.94.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,65.(3分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个6.(3分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)7.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4+)÷3的结果是.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式.16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:则这组数据的中位数是.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:那么,不等式mx+n<0的解集是.18.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.21.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.2017-2018学年天津市部分区八年级(下)期末数学试卷参考答案与试题解析一、选择题.(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中)1.(3分)如果有意义,那么()A.a≥B.a≤C.a≥﹣D.a【解答】解:根据题意得:3a+5≥0,解得a≥.故选:C.2.(3分)下列二次根式;5;;;;.其中,是最简二次根式的有()A.2个B.3个C.4个D.5个【解答】解:=,=,=2∴5、、是最简二次根式,故选:B.3.(3分)计算的结果为()A.±3B.﹣3C.3D.9【解答】解:=3,故选:C.4.(3分)如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.6,7,8B.5,6,8C.,,D.4,5,6【解答】解:∵()2+()2=5、()2=5,∴()2+()2=()2,∴能组成直角三角形的一组数是、、,故选:C.5.(3分)下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个B.2个C.3个D.4个【解答】解:①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有:①y=5x;②y=﹣2x﹣1;④y=x﹣6共3个.故选:C.6.(3分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是()A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)【解答】解:令y=0,则﹣2x+5=0,解得x=,故此直线与x轴的交点的坐标为(,0);令x=0,则y=5,故此直线与y轴的交点的坐标为(0,5);故选:A.7.(3分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x1<x2时,y1>y2,∴y随x的增大而减小,函数图象从左往右下降,∴m﹣1<0,∴m<1,∴2﹣m>0,即函数图象与y轴交于正半轴,∴这个函数的图象不经过第三象限.故选:C.8.(3分)八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研B.钱进C.孙兰D.李丁【解答】解:从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进,故选:B.9.(3分)在▱ABCD中,∠C=32°,则∠A的度数为()A.148°B.128°C.138°D.32°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠C=32°,∴∠A=32°,故选:D.10.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.11.(3分)如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为()A.45°B.15°C.10°D.125°【解答】解:∵△ADE是等边三角形,∴∠DAE=60°,AD=AE=DE,∵四边形ABCD是正方形,∴∠EAB=90°,AD=AB∴∠BAE=90°+60°=150°,AE=AB∴∠AEB=30°÷2=15°,∴∠BED=60°﹣15°=45°,故选:A.12.(3分)如图是甲、乙两个探测气球所在位置的海拔y(单位:m),关于上升时间x(单位:min)的函数图象.有下列结论:①当x=10时,两个探测气球位于同一高度②当x>10时,乙气球位置高;③当0≤x<10时,甲气球位置高其中,正确结论的个数是()A.3个B.2个C.1个D.0个【解答】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:A.二、填空题.(本题包括6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)计算(4+)÷3的结果是2.【解答】解:原式=(4+2)÷3=6÷3=2.故答案为2.14.(3分)在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为24.【解答】解:设其余两边长分别为n、n+2,由勾股定理得,n2+(n+2)2=102,整理得,n2+2n﹣48=0,解得,n1=﹣8(舍去),n2=6,则其余两边长分别为6、8,则这个三角形的周长=6+8+10=24,故答案为:24.15.(3分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式h=0.62n.【解答】解:∵每本书的厚度为0.62cm,∴这些书摞在一起总厚度h(cm)与书的本数n的函数解析式为h=0.62n,故答案为:h=0.62n16.(3分)为了解某小区居民的用水情况,随机抽查了20户家庭的月用水量,结果如下表:则这组数据的中位数是5吨.【解答】解:表中数据为从小到大排列,5吨处在第10位、第11位,为中位数.故这组数据的中位数是5吨.故答案为:5吨.17.(3分)已知一次函数y=mx+n(m≠0,m,n为常数),x与y的对应值如下表:那么,不等式mx+n<0的解集是x<﹣1.【解答】解:当x=﹣1时,y=0,根据表可以知道函数值y随x的增大而增大,故不等式mx+n<0的解集是x<﹣1.故答案为:x<﹣118.(3分)如图,在矩形纸片ABCD中,BC=5,CD=13,折叠纸片,使点D落在AB边上的点H处,折痕为MN,当点H在ABM边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为4.【解答】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,在Rt△HCB中,HC2=BC2+HB2,即132=(13﹣AH)2+52,解得:AH=1,所以点H在AB上可移动的最大距离为5﹣1=4.故答案为:4.三、解答题.(本题包括7小题,共46分.解答应写出文字说明、演算步骤或证明过程)19.(6分)计算.(I)(3+2)(3﹣2)(Ⅱ)﹣﹣(﹣)【解答】解:(Ⅰ)原式=(3)2﹣(2)2=45﹣12=33;(Ⅱ)原式=5﹣2﹣3+1=6﹣5.20.(6分)某校为了考察学生的综合素质,将学生成绩分为三项,分别是纸笔测试、实践能力、成长记录,且各项成绩均按百分制计,然后将纸笔测试、实践能力、成长记录按5:2:3的比例计入学期总评成绩(百分制).甲、乙两名学生的各项成绩如下表,两名学生中学期总评成绩高的将被评为优秀,请计算两名学生的学期总评成绩并确定出被评为优秀的学生.【解答】解:甲学生的学期总评成绩为=90.1,乙学生的学期总评成绩为=90.5,所以乙学生将被评为优秀的学生.21.(6分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.22.(6分)如图,四边形ABCD为菱形,已知A(3,0),B(0,4).(I)求点C的坐标;(Ⅱ)求经过点C,D两点的一次函数的解析式.【解答】解(Ⅰ)∵四边形ABCD为菱形,∴AB=BC,∵A(3,0),B(0,4),∴AB==5,∴BC=5,∴OC=1,∴点C的坐标为(0,﹣1);(Ⅱ)∵四边形ABCD为菱形,∴AD=AB=5,AD∥CB,∴点D的坐标为(3,﹣5),设经过点C,D两点的一次函数的解析式为y=kx+b,把(0,﹣1),(3,﹣5)代入得:,解得:,∴经过点C,D两点的一次函数的解析式为y=﹣x﹣1.23.(6分)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为40;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;24.(8分)某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.(I)请填写下表(Ⅱ)写出付款金额关于购买量的函数解析式;(Ⅲ)如果某人付款2100元,求其购买苹果的数量.【解答】解:(Ⅰ)由图表可得苹果100kg时,付款金额为500元,苹果200kg时,付款金额为500+100×5×0.8=900元;(Ⅱ)设购买量为xkg,付款金额为y元,当0≤x≤100时,y=5x;当x>100时,y=100×5+(x﹣100)×5×0.8=4x+100;(Ⅲ)把y=2100代入y=4x+100得:2100=4x+100,解得:x=500,答:如果某人付款2100元,其购买苹果的数量为500kg.故答案为:500;900.25.(8分)如图(1),在菱形ABCD中,E、F分别是边CB,DC上的点,∠B=∠EAF=60°,(I)求证:∠BAE=∠CEF;(Ⅱ)如图(2),若点E,F分别移动到边CB,DC的延长线上,其余条件不变,请猜想∠BAE与∠CEF的大小关系,并给予证明.【解答】(I)证明:在图(1)中,连接AC.∵四边形ABCD是菱形,∴AB=BC,AB∥CD,CA平分∠BCD.∵∠B=60°,∴△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.∵AB∥CD,∴∠ACD=∠BAC=60°,∴∠B=∠ACD=60°.∵∠EAF=60°,∴∠BAE+∠EAC=∠EAC+∠CAF=60°,∴∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠CEF+∠AEB=120°.∵∠BAE+∠AEB=120°,∴∠BAE=∠CEF.(II)解:∠BAE=∠CEF.在图(2)中,连接AC,由(I)知:∠ABC=∠ACD=60°,∠EAF=∠BAC=60°,AB =AC,∴∠ABE=∠ACF=120°,∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,∴△AEF为等边三角形,∴∠AEF=60°,∴∠AEB+∠CEF=60°.∵∠AEB+∠BAE=∠ABC=60°,∴∠BAE=∠CEF.。
(13份试卷合集)天津市2017-2018学年数学八下期末试卷汇总word可编辑
2018-2019学年八年级下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共16小题,每小题3分,满分48分)1.在函数y=1x x 中,自变量x 的取值范围是( ) A .x ≥1 B .x ≤1且x ≠0C .x ≥0且x ≠1D .x ≠0且x ≠1 2.在平行四边形ABCD 中,已知AB=5,BC=3,则它的周长为( )A .8B .10C .14D .163.下列调查中适合采用全面调查的是( )A .调查市场上某种白酒的塑化剂的含量B .调查鞋厂生产的鞋底能承受弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看辽宁卫视的时间4.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b=( )A .﹣1B .4C .﹣4D .15.一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是( )A .0.1B .0.2C .0.3D .0.46.一次函数y=x ﹣1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知P 1(﹣3,y 1),P 2(2,y 2)是一次函数y=2x ﹣b 的图象上的两个点,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定8.已知▱ABCD ,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )A.∠DAE=∠BAE B.∠DEA=12∠DAB C.DE=BE D.BC=DE9.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形.A.3个 B.4个 C.1个 D.2个10.如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()11.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是多少()A.30° B.15° C.18° D.20°12.如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则C点的坐标为()A.(3,3) B.(3,5) C.(3,4) D.(4,4)13.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8 B.25 C.4 D.2214.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图l1,l2分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分)变化的函数图象,以下说法①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的有()A.4个 B.3个 C.2个 D.1个15.如图,矩形OABC的顶点O与原点重合,点A,C分别在x轴,y轴上,点B的坐标为(﹣5,4),点D 为边BC上一动点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为()A.(﹣5,3) B.(﹣5,4) C.(﹣5,52) D.(﹣5,2)16.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.5二、细心填一填,一锤定音(每小题3分,共12分)17.已知点A(3,﹣4),则点A到y轴的距离是.18.由图中所表示的已知角的度数,可知∠α的度数为.19.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.20.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2.则AC长是cm.三、解答题(共6小题,满分60分)21.(8分)某车间有120名工人,为了了解这些工人日加工零件数的情况,随机抽出其中的30名工人进行调查.整理调查结果,绘制出不完整的条形统计图(如图).根据图中的信息,解答下列问题:(1)在被调查的工人中,日加工9个零件的人数为名;(2)在被调查的工人中,日加工12个零件的人数为名,日加工个零件的人数最多,日加工15个零件的人数占被调查人数的%;(3)依据本次调查结果,估计该车间日人均加工零件数和日加工零件的总数.22.(8分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(10分)“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油盘Q(升)的关系式;(2)当x=280(千米)时,求剩余油量Q的值;(3)当油箱中剩余油盘低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.24.(10分)如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,E C.(1)求证:四边形BECD是平行四边形;(2)当∠BOD= °时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD= °时,四边形BECD是矩形.25.(12分)如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速倒入乙容器中.图2中,线段AB、线段CD分别表示容器中的水的深度h(厘米)与倒入时间t(分钟)的函数图象.(1)请说出点C的纵坐标的实际意义;(2)经过多长时间,甲、乙两个容器中的水的深度相等?(3)如果甲容器的底面积为10cm2,求乙容器的底面积.26.(12分)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM(1)菱形ABCO的边长(2)求直线AC的解析式;(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S (S≠0),点P的运动时间为t秒,①当0<t<52时,求S与t之间的函数关系式;②在点P运动过程中,当S=3,请直接写出t的值.参考答案一、选择题(共16小题,每小题3分,满分48分)1.C;2.D;3.C;4.D;5.A;6.B;7.A;8.C;9.A;10.A;11.C;12.B;13.C;14.B;15.A;16.C;二、细心填一填,一锤定音(每小题3分,共12分)17.3; 18.50°; 19.x<﹣2; 20.43;三、解答题(共6小题,满分60分)2018-2019学年八年级下学期数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2017-2018学年八年级(下)期末数学试卷含答案
2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。
天津市滨海新区2017-2018学年八年级下期末考试数学试题含答案
A.y1 <y2 B.1y >2y
C.y1 =2y D.不能确定
8.菱形的两条对角线长分别为 6 和 8,则菱形的面积是( )
A.10
B.20
C.24
D.48
9.已知一次函数 y=kx+b 的图象如图所示,当 x<2 时,y 的取值范围是( )
A.y<Ⅰ Ⅰ
B.Ⅰ Ⅰ <y<0
C.y<0 D.y<2
C.a=1,b=1,c=3 D.a=5,b=12, 3.下列各式中,y 不是 x 的c=函1数2 的是( )
A.y=|x|
B.y=x C.y=Ⅰx+1 D.y=±x
4.用配方法解方程 x2 ⅠⅠxⅠ==0 变形后为( A.(xⅠⅠ)2=6 B.(xⅠ2)2 =6
) C.(xⅠ22)=2
D.(x+2)2=6
25.(10 分)在平面直角坐标系中,直线 1l :y=Ⅰ x+4 分别与 x 轴、y 轴交于点 A、点 B,且与直线 l2 :y=x 于点 C. (Ⅰ)如图①,求出 B、C 两点的坐标; (Ⅰ)若 D 是线段 OC 上的点,且△BOD 的面积为 4,求直线 BD 的函数解析式. (Ⅰ)如图②,在(Ⅰ)的条件下,设 P 是射线 BD 上的点,在平面内是否存在点 Q,使 以 O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点 Q 的坐标;若不存在, 请说明理由.
2017-2018 学年天津市滨海新区八年级(下)期末数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.下列二次根式中,属于最简二次根式的是( )
各组线段 a、b、c 中,能组成直角三角形的是( ) A.a=4,b=5,c=6 B.a=1,b= ,c=2
2018-2019学年天津市滨海新区八年级(下)期末数学试卷
2018-2019学年天津市滨海新区八年级(下)期末数学试卷一.选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各式中,运算正确的是()A.+=B.﹣=6C.=﹣7D.=2.(3分)下列四组线段中,可以构成直角三角形的是()A.1,2,3B.4,5,6C.9,12,15D.1,,3.(3分)下列曲线中能表示y是x的函数的为()A.B.C.D.4.(3分)若在实数范围内有意义,则x的取值范围是()A.x>﹣4B.x≥﹣4C.x>﹣4且x≠1D.x≥﹣4且x≠﹣1 5.(3分)一次函数y=﹣4x+5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)用配方法解方程x2﹣8x+9=0时,原方程可变形为()A.(x﹣4)2=9B.(x﹣4)2=7C.(x﹣4)2=﹣9D.(x﹣4)2=﹣7 7.(3分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A.x>﹣2B.x<﹣2C.x>﹣5D.x<﹣58.(3分)关于x的一元二次方程kx2﹣3x+1=0有两个不相等的实数根,则k的取值范围()A.(k<)B.(k<且k≠0)C.(k≤)D.(k≤且k≠0)9.(3分)已知P1(﹣1,y1),P2(﹣2,y2)是一次函数y=2x+3图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y2>y1C.y1=y2D.不能确定10.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AD、AB边上的中点,连接EF.若EF=,OC=2,则菱形ABCD的面积为()A.B.4C.6D.811.(3分)甲,乙两名选手参加长跑比赛,乙从起点出发匀速跑到终点,甲先快后慢,半个小时后找到适合自己的速度,匀速跑到终点,他们所跑的路程y(单位:km)随时间x (单位:h)变化的图象,如图所示,则下列结论错误的是()A.在起跑后1h内,甲在乙的前面B.跑到1h时甲乙的路程都为10kmC.甲在第1.5时的路程为11kmD.乙在第2h时的路程为20km12.(3分)如图,▱ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论①BE⊥AC②四边形BEFG是平行四边形③EG=GF④EA平分∠GEF其中正确的是()A.①②③B.①②④C.①③④D.②③④二.填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算•=.14.(3分)直线y=3x﹣2与x轴的交点坐标为15.(3分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是.16.(3分)如图,在四边形ABCD中,AB=BC=2,CD=1,AD=3,若∠B=90°,则∠BCD的度数为.17.(3分)如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为.18.(3分)有20个边长为1的小正方形,排列形式如图①,请将其分割,拼接成一个正方形(I)拼接后的正方形的边长等于;(II)在图①中画出分割线,在图②中画出拼接后的正方形(网格中小正方形的边长为1)三.解答题(本大题共7小题,共66分解答应写出文字说明、演算步骤或推理过程)19.(8分)计算下列各题(I)(2﹣6)÷2(Ⅱ)(+)(﹣)﹣(2﹣)220.(8分)解下列方程(I)3x2﹣9x=0(II)4x2﹣3x﹣1=021.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB (Ⅰ)求证:四边形ABCD是矩形;(Ⅱ)若AB=5,∠AOB=60°,求BC的长.22.(10分)在▱ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F(I)如图①,求证:OE=OF;(II)如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.23.(10分)某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m的篱笆围成.已知墙长为18m(如图所示),设这个苗圃园垂直于墙的一边AB为xm(I)用含有x的式子表示AD,并写出x的取值范围;(Ⅱ)若苗圃园的面积为192m2平方米,求AB的长度.24.(10分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料.甲印刷厂提出:每份材料收1.5元印刷费,另收120元的制版费:乙印刷厂提出:每份材料收3元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(Ⅰ)根据题意,填写下表一次印制数量(份)51020…甲印刷厂收费(元)127.5…乙印刷厂收费(元)30…(Ⅱ)设选择甲印刷厂的费用为y1元,选择乙印刷厂的费用为y2元,分别写出y1,y2关于x的函数关系式;(Ⅲ)在印刷品数量大于500份的情况下选哪家印刷厂印制省钱?请说明理由.25.(10分)如图,将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C (0,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(I)OE=,OF=(用含t的代数式表示)(II)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=0.求S与b之间的函数关系式,并求出自变量b的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年天津市滨海新区八年级(下)期末数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列二次根式中,属于最简二次根式的是()
A.B.C.D.
2.下列各组线段a、b、c中,能组成直角三角形的是()
A.a=4,b=5,c=6 B.a=1,b=,c=2
C.a=1,b=1,c=3 D.a=5,b=12,c=12
3.下列各式中,y不是x的函数的是()
A.y=|x|B.y=x C.y=﹣x+1 D.y=±x
4.用配方法解方程x2﹣4x﹣2=0变形后为()
A.(x﹣4)2=6 B.(x﹣2)2=6 C.(x﹣2)2=2 D.(x+2)2=6
5.一次函数y=x+2的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
6.一元二次方程x2﹣8x+20=0的根的情况是()
A.没有实数根B.有两个相等的实数根
C.只有一个实数根D.有两个不相等的实数根
7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()
A.y1<y2B.y1>y2C.y1=y2D.不能确定
8.菱形的两条对角线长分别为6和8,则菱形的面积是()
A.10 B.20 C.24 D.48
9.已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()
A.y<﹣4 B.﹣4<y<0 C.y<0 D.y<2
10.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()
A.5 B.6 C.8 D.10
11.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()
A.5元B.10元C.20元D.10元或20元
12.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()
A.2 B.3 C.4 D.5
二、填空题(本大题共6小题,每小题3分,共18分)
13.若在实数范围内有意义,则x的取值范围为.
14.将直线y=﹣2x+4向下平移5个单位长度,平移后直线的解析式为.
15.已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为.
16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:
(Ⅰ)该地区出租车的起步价是元;
(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式.
17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为.
18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
(Ⅰ)∠ABC的大小为(度);
(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AE C.
三、解答题(本大题共7小题,共66分.解笞应写出文字说明、演算步骤或推演过程)19.(8分)计算下列各题:
(Ⅰ)+×;
(Ⅱ)(+)(﹣)﹣(+)2.
20.(8分)解下列方程:
(Ⅰ)x2+3=2x
(Ⅱ)x(x﹣2)+x﹣2=0.
21.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在边BC上有一点M,将△ABM
沿直线AM折叠,点B恰好落在AC延长线上的点D处.
(Ⅰ)AB的长=;
(Ⅱ)CD的长=;
(Ⅲ)求CM的长.
22.(10分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.
(Ⅰ)如图①,求证四边形AECF是平行四边形;
(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.
23.(10分)某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍
设购买A种奖品x件.
(Ⅰ)根据题意,填写下表:
3070 x
购买A种奖
品的数量/件
300
购买A种
奖品的费用/
元
450
购买B种
奖品的费用/
元
(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;
(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?
24.(10分)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(I)试用含t的式子表示AE、AD、DF的长;
(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;
(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.
25.(10分)在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.
(Ⅰ)如图①,求出B、C两点的坐标;
(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.
(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.。