桩基础课程设计书
桩基础课程设计指导书

造配筋。
2.设计图纸设计图纸包括以下内容:(1)桩基平面布置图。
(2)承台大样图。
(3)桩身大样图。
(4)设计说明。
4.1.7 参考资料(1)《建筑结构荷载规范》(GB 50009—2006),中国建筑工业出版社,2007。
(2)《建筑地基基础设计规范》(GB 50007—2002),中国建筑工业出版社,2002。
(3)《建筑桩基技术规范》(JGJ 94—2008),中国建筑工业出版社,2008。
(4)《混凝土结构设计规范》(GB 50010—2002),中国建筑工业出版社,2002。
(5)赵明华,《土力学与基础工程》(第 2 版),武汉理工大学出版社,2003。
4.2 桩基础课程设计指导书桩是将建筑物的荷载全部或部分传递给地基土或岩层,具有一定刚度和抗弯能力的传力杆件。
桩的性质随桩身材料、制桩方法和桩的截面大小而异,具有很大的适应性。
桩基础通常作为荷载较大的建筑物基础,与其他深基础相比,其适用范围最广,可归纳为以下场合:(1)地基的上层土质太差而下层土质较好,地基软硬不均或荷载不均,不能满足上部结构对不均匀变形的要求。
(2)地基软弱,不适合采用地基加固措施;或地基土性质特殊,例如存在可液化土层、自重湿陷性黄土、膨胀土及季节性冻土等。
(3)除了存在较大的垂直荷载外,尚有较大的偏心荷载、水平荷载、动力荷载及周期性荷载作用。
(4)上部结构对基础的不均匀沉降相当敏感,或建筑物受到相邻建筑物、大面积地面超载的影响。
(5)地下水位很高,采用其他深基础形式施工时排水困难;或位于水中的构筑物基础,例如桥梁、码头和钻采平台等。
(6)需要长期保存、具有重要历史意义的建筑物。
4,2.1 桩基基本设计规定桩基基本设计规定如下。
(1)桩基础应按以下两类极限状态设计:1)承载能力极限状态:桩基达到最大承载能力、整体失稳或发生不适于继续承载的变形。
2)正常使用极限状态:桩基达到建筑物正常使用所规定的变形限值或达到耐久性要求的某项限值。
桩基础课程设计计算书[详细]
![桩基础课程设计计算书[详细]](https://img.taocdn.com/s3/m/ca7b43ba7cd184254a353525.png)
基础工程课程设计任务书题目名称桩基础设计课程名称基础工程学生姓名学号系、专业指导教师2012 年4月30 日基础工程课程设计任务书年级专业学生姓名学号题目名称桩基础课程设计设计时间一周课程名称基础工程课程编号设计地点一、课程设计(论文)目的地基基础设计的目的是根据上部结构的使用功能和结构形式在确定的场地条件下选择适宜的地基基础方案并确定其技术细节,使设计的地基基础在预定的使用期限内和规定的使用条件下能够安全正常地工作,在此基础上满足降低造价和保护环境的要求.基础工程是土木工程专业的学科基础课,在土木工程学科的知识体系中占据了重要地位.课程设计对理解和掌握工程基本原理具有十分重要的作用,也是同学们由理论学习通往工程实践的一座桥梁.因此,通过本次课程设计,同学们可以更好地理解和巩固学习到的各种理论和方法,有意识地培养自己的工程意识和解决实际工程问题的能力.二、已知技术参数和条件1、上部结构资料某教学实验楼,上部结构为7层框架,其框架主梁、次梁均为现浇整体式,混凝土强度等级C30.底层层高3.4米(局部10米,内有10t桥式吊车,其余层高3.3米,底层柱网平面布置及柱底荷载如图2所示.2、建筑物场地资料(1)拟建建筑物场地位于市区内,地势平坦,建筑物平面位置如图1所示图1建筑物平面位置示意图(4)柱网平面布置及柱底荷载示意图(如图2所示)基础工程课程设计指导书题目名称桩基础设计课程名称基础工程学生姓名学号系、专业指导教师年月日内容提要本设计是某教学实验楼第○5—A号桩的设计,不考虑地震影响.桩承台尺寸为2300米米×2300米米×1000米米,桩采用静压预制桩,桩长22米,分两段,每段长11米.本设计的内容涉及到桩承台承载力的计算、桩顶作用验算、桩基础沉降验算、桩身结构设计计算、承台设计以及预制桩的施工图的绘制等.这些内容都是对我们土力学桩基础设计和钢筋混凝土设计的复习和巩固,使我们对CAD等绘图软件的运用更加熟练,锻炼了我们独立思考和自主创新的能力.本设计为我们以后从事桩基础的施工和设计奠定了基础.关键字:承台静压预制桩承载力沉降目录1 .设计资料 (1)1.1 上部结构资料 (1)1.2 建筑物场地资料 (1)2 .选择桩型、桩端持力层、承台埋深 (2)2.1 选择桩型 (2)2.2 选择桩的几何尺寸以及承台埋深 (2)3 .确定单桩极限承载力标准值 (3)3.1 确定单桩极限承载力标准值 (3)4 .确定桩数和承台底面尺寸 (4)4.1 ○5—A柱的桩和承台的确定 (4)5 .确定复合基桩竖向承载力设计值 (5)5.1 无桩承台承载力计算(○5—A承台) (6)6 .桩顶作用验算 (7)6.1 五桩承台验算(○5—A承台) (7)7 .桩基础沉降验算 (8)7.1 A柱沉降验算 (8)8 .桩身结构设计计算 (10)8.1 桩身结构设计计算 (10)9 .承台设计 (11)9.1 五桩承台设计(A柱) (11)10.参考文献 (14)1.设计资料1.1 上部结构资料某教学实验楼,上部结构为七层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30.底层层高3.4米(局部10米,内有10 t桥式吊车),其余层高3.3米,底层柱网平面布置及柱底荷载见附图.1.2 建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震区,不考虑地震影响. 场地地下水类型为潜水,地下水位离地表2.1米,根据已有资料,该场地地下水对混凝土没有腐蚀性.建筑地基的土层分布情况及各土层物理、力学指标见表1.1.表1.1地基各土层物理、力学指标2. 选择桩型、桩端持力层、承台埋深2.1 选择桩型因为框架跨度大而且不均匀,柱底荷载大 ,不宜采用浅基础.根据施工场地、地基条件以及场地周围环境条件,选择桩基础.因转孔灌注桩泥水排泄不便,为减少对周围环境污染,采用静压预制桩,这样可以较好的保证桩身质量,并在较短的施工工期完成沉桩任务,同时,当地的施工技术力量、施工设备以及材料供应也为采用静压桩提供可能性.2.2 选择桩的几何尺寸以及承台埋深依据地基土的分布,第②层是灰褐色粉质粘土,第③层是灰色淤泥质的粉质粘土,且比较厚,而第④层是黄褐色粉土夹粉质粘土,所以第④层是较适合的桩端持力层.桩端全断面进入持力层1.0米(>2d),工程桩入土深度为h.故:m++=5.1=+22h8.3.8112由于第①层厚1.5米,地下水位为离地表2.1米,为了使地下水对承台没有影响,所以选择承台底进入第②层土0.6米,即承台埋深为 2.1米,桩基得有效桩长即为22.8-2.1=20.7米.桩截面尺寸选用:由于经验关系建议:楼层<10时,桩边长取300~400,故取350米米×350米米,由施工设备要求,桩分为两节,上段长11米,下段长11米(不包括桩尖长度在内),实际桩长比有效桩长长 1.3米,这是考虑持力层可能有一定的起伏以及桩需要嵌入承台一定长度而留有的余地.桩基以及土层分布示意如图2.2.1.图2.1土层分布示意3 .确定单桩极限承载力标准值3.1 确定单桩极限承载力标准值本设计属于二级建筑桩基,当根据土的 物理指标与承载力参数之间的 经验关系确定单桩竖向极限承载力标准值时,宜按下式计算:uk sk pk sik i pk p Q Q Q u q l q A =+=+∑式中sikq --- 桩侧第层土的 极限侧阻力标准值如无当地经验值时可按《建筑桩基技术规范》JGJ 94-94中表5.2.8-1(桩的 极限侧阻力标准值)取值.pkq ---― 极限端阻力标准值如无当地经验值时可按表《建筑桩基技术规范》JGJ 94-94中表GE5.2.8-2(桩的 极限端阻力标准值)取值.对于尚未完成自重固结的 填土和以生活垃圾为主的 杂填土不计算其桩侧阻力sikq .根据表1.1地基各土层物理、力学指标,按《建筑桩基技术规范》JGJ 94-94查表得极限桩侧、桩端阻力标准值(表2.1).表2.1 极限桩侧、桩端阻力标准值按经验参数法确定单桩竖向承载力极限承载力标准值:uk sk pk Q Q Q =+=sik i pk p u q l q A +∑=[]428.13910.35 18.3812912.56)6.03.8(552.4235.042⨯+⨯+⨯+-⨯⨯⨯=450.170152.1469+ =1639.602 kN估算的 单桩竖向承载力设计值(65.1==p s γγ)kN Q ppks698.99365.1602.1639Q R sk==+=γγ所以最终按经验参数法计算单桩承载力设计值,即采用kN R 698.993=,初步确定桩数.4 .确定桩数和承台底面尺寸柱底荷载设计值如下:最大轴力组合: 最大轴力4043kN, 弯矩104 kN •米, 剪力56kN 最大弯矩组合: 轴力 3963 kN, 最大弯矩203 kN •米, 剪力81kN最大轴力标准值:3110 kN4.1 ○5-A 柱桩数和承台的 确定最大轴力组合的 荷载:F=4043 kN ,米= 104kN •米,Q=56 kN初步估算桩数,由于柱子是偏心受压,故考虑一定的 系数,规范中建议取1.1~1.2,现在取1.1的 系数, 即: ()4043n 1.1 1.1 4.47993.698F R ≥⨯=⨯=根 取n =5根,桩距 1.05m 3d =≥a S ,桩位平面布置如图4.1,承台底面尺寸为 2.3米×2.3米图4.1五桩桩基础5. 确定复合基桩竖向承载力设计值该桩基属于非端承桩,并n>3,承台底面下并非欠固结土,新填土等,故承台底面不会与土脱离,所以宜考虑桩群、土、承台的 相互作用效应,按复合基桩计算竖向承载力设计值.目前,考虑桩基的 群桩效应的 有两种方法.《地基规范》采用等代实体法,《桩基规范》采用群桩效应系数法.下面用群桩效应系数法计算复合基桩的 竖向承载力设计值5.1五桩承台承载力计算(○5—A 承台)承台净面积:2222.340.35 4.8c A m =-⨯=.承台底地基土极限阻力标准值: 22110220ck k q f KPa ==⨯= 220 4.8211.25ck c ck q A Q kN n ⨯=== 1469.152sk sik i Q u q l kN ==∑ 170.450pk p p Q A q kN ==分项系数: 1.65, 1.70s p c γγγ===因为桩分布不规则,所以要对桩的 距径比进行修正,修正如下:2.6S a d ===2.30.11120.7Bc l == 群桩效应系数查表得: 0.8, 1.64s p ηη==承台底土阻力群桩效应系数: i ei e c cc cc c cA A A A ηηη=+ 承台外区净面积:2222.3(2.30.35) 1.4875e c A m =--= 承台内区净面积: 4.8 1.4875 3.3125i e c c c A A A =-=-=米2 查表0.11,0.63i e c c ηη==3.3125 1.48750.110.630.2714.8 4.8i ei e c cc cc c c A A A A ηηη=+=+= 那么,A 复合桩基竖向承载力设计值R:1469.152170.450211.20.8 1.640.271915.401.65 1.65 1.70pkskckspcspcQ Q Q R kN ηηηγγγ=++=⨯+⨯+⨯=6 .桩顶作用验算6.1五桩承台验算(○5—A 承台)(1)荷载取A 柱的 max N 组合:F= 4043kN ,米= 104kN •米,Q=56 kN 承台高度设为1米等厚,荷载作用于承台顶面. 本工程安全等级为二级,建筑物的 重要性系数0λ=1.0.由于柱处于①轴线,它是建筑物的 边柱,所以室内填土比室外高,设为0.3米,即室内高至承台底2.4米,所以承台的 平均埋深d=1/2(2.1+2.4)=2.25米 作用在承台底形心处的 竖向力有F,G,但是G 的 分项系数取为1.2.24043 2.3 2.2520 1.24043285.664328.66F G kN +=+⨯⨯⨯=+=作用在承台底形心处的 弯矩:104561160M kN =+⨯=∑·米 桩顶受力计算如下:max max 224328.661600.8915.7325()40.8i M y F G N kN n y ⨯+⨯=+=+=⨯∑∑ max min 224328.661600.8815.7325()40.8i M y F G N kN n y ⨯+⨯=-=-=⨯∑∑ 4328.66865.7325F G N kN n +=== max 0915.732 1.2 1.2915.401098.48N kN R kN γ=<=⨯=min 00N γ>0865.732915.40N kN R kN γ=<= 满足要求(2)荷载取max M 组合:F=3936kN ,米= 203kN ·米,Q=81 kN23963 2.3 2.2520 1.23963285.664248.66203811284F G kNM kN m+=+⨯⨯⨯=+==+⨯=•∑桩顶受力计算如下:max max 224248.662840.8849.73288.75938.485()40.8i M y F G N kN n y ⨯+⨯=+=+=+=⨯∑∑ max min 224248.662840.8849.73288.75760.9825()40.8iM y F G N kN n y ⨯+⨯=-=-=-=⨯∑∑ 4248.66849.7325F G N kN n +=== max 0938.482 1.2 1.2915.401098.48N kN R kN γ=<=⨯= min 00N γ>0849.732915.40N kN R kN γ=<= 满足要求7. 桩基础沉降验算采用长期效应组合的 荷载标准值进行桩基础的 沉降计算.由于桩基础的 桩中心距小 于6d,所以可以采用分层总和法计算最终沉降量.7.1 ○5-A 柱沉降验算竖向荷载标准值3110F kN =基底处压力3110 2.3 2.3 2.2520637.9022.3 2.3F G p kPa A ++⨯⨯⨯===⨯ 基底自重压力15.5 1.517.30.62.133.632.1d kPa γ⨯+⨯=⨯=基底处的 附加应力0637.90233.63604.272P P d kPa γ=-=-= 桩端平面下的 土的 自重应力c σ和附加应力z σ(04p z ασ=)计算如下: ①.在z=0时:15.5 1.517.30.6(17.310)7.7(16.210)12(18.310)1c i i h σγ==⨯+⨯+-⨯+-⨯+-⨯∑=172.54kPa021,0,0.25,440.25604.272604.272z l z p kPa b b ασα=====⨯⨯=②.在m z 2=时:kPa h i i c 14.189)103.18(254.172=-⨯+==∑γσ0241, 1.74,0.10152,440.10152604.272245.382.3z l z p kPa b b ασα======⨯⨯=③.在m z 3.4=时kPa h i i c 23.208)103.18(3.454.172=-⨯+==∑γσ08.621, 3.74,0.0305,440.0305604.27273.7212.3z l z p kPa b b ασα======⨯⨯= ④.在m z 7.5=时kPa h i i c 69.220)109.18()3.47.5(23.208=-⨯-+==∑γσ011.421, 4.96,0.01818,440.01818604.27243.942.3z l z p kPa b b ασα======⨯⨯=将以上计算资料整理于表7.1表7.1z c σσ,的 计算结果(5-A 柱)在z=5.7米处,43.940.1990.2220.69zc σσ==<,所以本基础取m Z n 7.5=计算沉降量.计算如表7.2表7.2计算沉降量(○5-A 柱)故:S ’=82.07+29.79+6.545=117.915米米 桩基础持力层性能良好,去沉降经验系数0.1=ψ.短边方向桩数 2.236bn==,等效距径比2.6Sad===,长径比,承台的20.759.140.35ld==长宽比0.1=BcLc,查表得:59.17,9.1,031.0210===CCC122.23610.0310.062(1) 1.9(2.2361)17.59bebnCC n Cψ-=+=+=-+-+所以,五桩桩基础最终沉降量'SSeψψ==1.00.062117.9157.31mm⨯⨯=满足要求8.桩身结构设计计算8.1 桩身结构设计计算两端桩长各11米,采用单点吊立的强度进行桩身配筋设计.吊立位置在距桩顶、桩端平面0.293L(L=11米)处,起吊时桩身最大正负弯矩2max0429.0KqLM=,其中K=1.3; ./675.32.12535.02mkNq=⨯⨯=.即为每延米桩的自重(1.2为恒载分项系数).桩身长采用混凝土强度C30,Φ级钢筋,所以:MkNKqLM.8.2411675.33.10429.00429.022max=⨯⨯⨯==桩身截面有效高度00.350.040.31h m=-=11(1(10.973522sγ=+=+=桩身受拉主筋6224.8102740.9735300310s yMAs mmf hγ⨯===⨯⨯选用22214(308274)sA mm mmΦ=>,因此整个截面的主筋用2414,615sA mmΦ=,配筋率为6150.566350310ρ==⨯%>min0.4ρ=%.其他构造要求配筋见施工图.桩身强度RkNAfAfsycc>=⨯+⨯⨯⨯⨯=+05.1736)6153003103503.140.1(0.1)(ψϕ=915.40kN故满足要求9.承台设计承台混凝土强度等级采用C20,承台是正方形,双向配筋相同.9.1五桩承台设计(○5-A 柱)由于桩的 受力可知,桩顶最大反力max 938.482N kN =,平均反力865.732N kN =,桩顶净反力:max max 285066938.482881.3554043808.65j j G N N kN n G F N N kNn n =-=-==-===9.11 柱对承台的 冲切由图9.1,325ox oy a a mm ==,承台厚度H=1.0米,计算截面处的 有效高度mm h 9208010000=-=,承台底保护层厚度取80米米.冲垮比: 03250.3533920ox ox oy a h λλ==== 当00000000;20.020.0h a h a h a h a =>=<时,取当时,取,λ满足0.2—1.0 ∵ox a =325米米 >0.200h = 0.20184920=⨯米米且ox a =325米米<920米米 故取ox a =325米米.即:冲垮比03250.3533920ox ox oy a h λλ==== 冲切系数0.720.721.30.20.35330.2ox oy ox ααλ====++A 柱截面取2600600mm ⨯,混凝土的 抗拉强度设计值1100t f kPa = 冲切力设计值4043808.63234.4l i F F Q kN =-=-=∑4(600325)3700 3.7m u mm m =⨯+==001.31100 3.70.924867.723234.4t m l f u h kN F kN αγ=⨯⨯⨯=>= (满足要求) 9.12 角桩对承台的 冲切由图9.1, 1112325,525x y a a mm c c mm ==== 角桩冲垮比11103250.3533920x x y a h λλ====, λ满足0.2—1.0,故取λ=0.3533. 角桩的 冲切系数1110.480.480.86750.20.35330.2x y x ααλ====++0111121)]2()2([h f a c a c t xy yx +++αα 0.32520.8675(0.525)11000.922=⨯⨯+⨯⨯ 0max 1207.16881.35j kN N kN γ=>= 满足要求 9.13斜截面抗剪验算计算截面为I-I,截面有效高度m h 92.00=,截面的 计算宽度0 2.3b m =,混凝土的 抗压强度kPa MPa f c 96006.9==,该计算截面的 最大剪力设计值:max 22881.351762.7j V N kN ==⨯=325x y a a mm == 剪跨比 03250.3533920x x y a h λλ==== (介于0.3~1.4之间) 当3.0≤λ时,取λ=0.3;当0.3≥λ时,取 3.0λ= 故取0.3533λ= 剪切系数0.120.120.18370.30.35330.3x βλ===++0000.18379600 2.30.923731.261762.7c f b h kN V kN βγ=⨯⨯⨯=>= 满足要求 9.14受弯计算承台I-I 截面处最大弯矩max 0.3521762.7(0.325)881.35.2j M N y kN m ==⨯+= 二级钢筋2300/y f N mm =,9.6c f MPa =.620881.35103548.10.90.9300920s y M A mm f h ⨯===⨯⨯选用221816,36183548.1s A mm mm Φ=>整个承台宽度范围内用钢筋取18根,即1816Φ(双向布置) 9.15承台局部受压验算A 柱截面面积,20.60.60.36t A m =⨯=局部受压净面积,210.36n t A A m ==局部受压计算面积 2,(30.6)(30.6) 3.24b b A A m =⨯⨯⨯= 混凝土的 局部受压强度提高系数 3.24,30.36b t A A ββ=== l 11.35 1.353 1.096000.3613996.84030c n C f A kN F kN ββ=⨯⨯⨯⨯=>= 满足条件图9.1五桩承台结构计算图10、参考文献【1】中华人民共和国国家标准.《建筑桩基础技术规范(JGJ94—94) 》.北京,中国建筑工业出版社,2002【2】中华人民共和国国家标准.《建筑地基基础设计规范(GB50007—2002)》.北京,中国建筑工业出版社,2002【3】中华人民共和国国家标准.《混凝土结构设计规范(GB20010—2002)》.北京,中国建筑工业出版社,2002【4】丁星编著.《桩基础课程设计指导与设计实例》.成都:四川大学建筑与环境学院,2006【5】王广月,王盛桂,付志前编著.《地基基础工程》.北京:中国水利水电出版社,2001【6】赵明华主编,徐学燕副主编.《基础工程》.北京:高等教育出版社,2003 【7】陈希哲编著.《土力学地基基础》.北京:清华大学出版社,2004【8】熊峰,李章政,李碧雄,贾正甫编著.《结构设计原理》.北京:科学出版社,2002。
桩基础课程设计书

一,设计资料1.1上部结构资料哈市近郊单层工业厂房,室内室外地面高差0.3m ,室外设计地面与天然地面一致,两跨,第一跨度为30m ,有两台50顿桥式吊车,另一跨跨度为24m ,有两台30顿桥式吊车,柱距为12m ,预制中柱截面600×1200mm2,作用于杯口顶面的荷载设计值为:,4.55,103.10,29902KN V m KN M KN F =⋅⨯==底层柱网平面布置及柱底荷载见设计任务书内附图。
1.2建筑物场地资料土层分布和物理力学性质如任务书内附表二,选择桩型,桩端持力层,承台埋深2.1选择桩型根据施工场地的地质条件,采用静压预制桩。
2.2选择桩的几何尺寸及承台埋深如图1所示,承台埋深2.3m ,桩长10m ,桩边长取400×400。
三,确定单桩极限承载力标准值本设计属于二级建筑桩基,根据土的物理指标与承载力参数之间的关系, 单桩竖向极限承载力标准值:26004.0)6.41004.536(4.0421⨯+⨯+⨯⨯⨯=+⋅=+=∑p pk i sik pk sk uk A q l q Q Q Q μ KN 04.14636.404.1047=+=估算单桩承载力设计值(65.1,65.1==p s γγ) KN Q Q R p pk s sk69.88665.104.1463==+=γγ 以此初步确定桩数四,确定桩数和承台底面尺寸4.1桩数及承台的确定荷载,4.55,103.10,29902KN V m KN M KN F =⋅⨯==初步估算桩数,柱子偏心受压考虑。
37.369.8862990==≥R F n (根)取4=n 柱距.2.13m d S a =≥承台底面尺寸3.0m ×2.4m ,边距3002002=d 满足要求。
五,确定复合桩基竖向承载力设计值该桩基属于非端承桩.3 n 按复合基桩计算竖向承载力设计值,采用群桩效应计算复合基桩承载力设计值5.1四桩承台力计算承台净面积:2256.64.044.20.3m A c =⨯-⨯=承台低地基极限阻力标准值,a ck kp q 160= a c ck ck kp n A q Q 4.262456.6160=⨯== a sk kp Q 04.1047=a sk kp Q 416= 分项系数70.1,65.1===c p s γγγ因为桩分布不规则,所以要对桩的距径进行修正,0.34.044.20.3886.0886.0=⨯⨯⨯==b n A d s c a 2.124.2==l B c 群桩效应系数查表得64.1,8.0==p s ηη 承台底土阻力群桩效应系数c e c e c c i c i cc A A A A ηηη+= 承台外正净面积:281.1)5.04.2()5.03(56.6m A e c =-⨯--=承台内正净面积:275.481.156.6m i A i c =-=查表得63.0,11.0==e c i c ηη 25.056.681.163.056.675.411.0=+=+=c e c e c c i c icc A A A A ηηη 则,复合桩基竖向承载力设计值R:KN Q Q Q R c ck c p pk p s sk s723.9597.14.26225.065.141664.165.104.10478.0=++=++=γηγηγη六,单桩设计吊运及吊运采用单点吊桩的强度进行桩身配筋计算,吊点位置在距桩顶,桩端平面处0.293L (L=10m ),起吊时桩身的最大正负弯矩:m kN q k kql M 8.42.1254.0,3.1,,0429.022max =⨯⨯===桩身采用c30混凝土,Ⅱ级钢,m kN kql M ⋅==8.260429.02max桩身截面有效高度:36.004.04.0=-=o h03615.02==o c s bh f M α 查表得9816.0=s γ 2253mm h f M A o y s s ==γ选用2Φ18(2253509mm A s >=)整个主筋为4Φ1821018mm A s =配筋率%6.0%636.0min =>=ρρ满足要求桩身强度:kN R KN A f A f s y c c 691.8866.2364)10183003604003.140.1(0.1)(=>=⨯+⨯⨯⨯=+ϕϕ满足要求七,桩顶作用验算7.1中心受压计算KN G F 6.32996.30929902015.24.20.32990=+=⨯⨯⨯+=+kN n G F N 9.82446.3299==+= kN R N o 69.8869.8249.8240.1=<=⨯=γ7.2偏心荷载计算KN KN M n G F N i6.5812.106875.0475.0103046.329)(22maxmin max =⨯⨯±=⨯±+=∑∑γγ 0,03.10642.112.1068min max >=≈=N KN R KN N o o γγ满足要求八,承台设计8.1承台尺寸柱插入深度1000mm ,柱底与杯底距50mm ,承台厚1450mm ,采用c30混凝土,钢筋采用二级钢,台底保护层厚100mm8.2冲切承载力验算承台底面在45°范围之内,可不进行冲切验算8.3 受弯计算由桩受力可知,2.1068max KN N =平均受力KN N 9.824= KN n G N N j 8.99046.3092.1068max max =-=-= KN n F n G N N j 5.74742990===-= 承台1-1截面处最大弯矩m KN y N M j ⋅=+⨯==64.792)24.02.0(6.19812max 22175)1001050(3009.0792640009.0mm h f M A o y s =-⨯⨯== 选配15Φ14221752308mm A s >=承台2-2截面处最大弯矩m KN y N M j ⋅=+⨯==64.792)24.02.0(6.19812max 选配15Φ14221752308mm A s >=8.4受剪承载力计算mm a y 200=,mm a x 200=,3.015.01350200<====o x y x h a λλ 取2.03.012.0,3.0=+==λβλ ○1KN h f f o y c 4.92661035.14.23.142.06=⨯⨯⨯⨯=β KN v o 4.92666.19818.99020.1<=⨯⨯=γ○2KN h f f o y c 115831035.133.142.06=⨯⨯⨯⨯=β KN v o 115836.19818.99020.1<=⨯⨯=γ。
桩基础课程设计(1)

桩基础课程设计(1)一、概述桩基础是现代建筑中广泛应用的一种地基处理方式。
桩基础不仅具有承受建筑荷载的能力,而且可有效地降低地基沉降,防止地基侧移,提高建筑的抗震能力。
本课程旨在通过教授桩基础的原理、设计方法和施工技术,培养学生对桩基础的深刻理解。
二、课程大纲2.1 桩基础原理•桩基础的定义•桩基础的分类•桩基础的荷载传递机理•桩基础的作用2.2 桩基础设计•桩基础设计的基本原理和方法•桩基础的荷载-位移特性分析•桩基础的设计参数选择•不同种类桩基础应用场合与设计方法2.3 桩基础施工技术•桩基础施工前的准备工作•桩基础施工过程•桩基础施工质量控制•桩基础施工常见问题解决方法三、教学方法3.1 理论讲授本课程通过理论讲授,传授桩基础的原理、设计方法和施工技术,使学生对桩基础有系统、全面的了解,为后续的实践操作打下坚实的基础。
3.2 实践操作为了提高学生的实操能力和解决实际问题的能力,本课程安排了大量的实践操作环节,包括桩基础的施工现场观摩、桩基础施工质量检查和实操演练等。
四、考核方法考核方法主要包括两种方式:理论考试和实践操作。
4.1 理论考试理论考试采用笔试方式进行,考察学生对桩基础原理、设计方法和施工技术的掌握程度以及理论基础的扎实程度。
4.2 实践操作实践操作主要考察学生的实操能力和解决实际问题的能力,通过桩基础施工现场观摩和实操演练等方式进行。
五、教学资源为了保证教学质量,本课程所需要的教学资源包括:•一份通俗易懂的桩基础设计教材•一份桩基础设计软件——STAAD.Pro•一份桩基础施工操作手册六、教学成果通过本课程的学习,学生应掌握以下知识与技能:•理解桩基础的定义、分类和作用•掌握桩基础设计的基本原理和方法•能够分析和计算桩基础的荷载-位移特性•熟练掌握桩基础施工过程和质量控制方法•具备解决桩基础施工常见问题的能力七、桩基础是建筑结构中不可或缺的组成部分,学习桩基础课程对建筑专业学生具有重要意义。
桩基础课程设计计算书

一、教学内容
《土木工程基础》第五章:桩基础的设计与计算
1.桩基础的类型与构造特点
-预制桩
-现场浇筑桩
-混合桩
2.桩基础的设计原则与要求
-桩长度的确定
-桩径的选择
-桩间距的确定
3.桩基础的计算方法
-单桩承载力计算
-桩群承载力计算
-桩基沉降计算
4.桩基础施工质量控制
-施工准备
-钻孔、灌注桩施工
-预制桩打桩施工
5.桩基础工程实例分析
-工程背景
-设计与计算方法
-施工过程及质量控制
本章节内容紧密围绕桩基础的设计与计算,结合教材内容,旨在让学生掌握桩基础的基本知识、设计原则和计算方法,提高解决实际工程问题的能力。
2、教学内容
《土木工程基础》第五章:桩基础课程设计计算书
6.桩基础设计所需参数的确定
-桩基与地基处理技术的结合
19.桩基础设计的创新思维培养
-设计方案的创新方法
-解决问题的创新策略
-跨学科合作与交流
20.课程总结与评价
-学生设计作品展示
-设计过程中的经验与教训
-教学效果反馈与改进
本部分教学内容着重于实践应用和安全质量控制,同时强调创新思维的培养。通过桩基础与其他基础形式的结合应用,拓宽学生的知识面,并结合课程总结与评价,提高教学质量和学生的学习效果。
4、教学内容
《土木工程基础》第五章:桩基础课程设计计算书
16.桩基础施工中的安全措施
-施工现场安全管理
-施工人员安全培训
-应急预案制定
17.桩基础施工中的质量控制
-施工过程中的质量检测
-桩基工程的验收标准
-质量问题处理方法
桩基础课程设计任务及指导书

吉首大学张家界学院课程设计任务书及任务书课程名称学生姓名学号学部专业年级指导教师填写时间一.课程设计题目:公路桥梁双柱式桥墩钻孔灌注桩基础设计二.适用专业、班级、时间:张家界学院学院建筑工程专业三.课程设计目的及任务:(一)设计目的:通过本课程设计,掌握承受竖向和水平力作用的桩基础的设计与计算,对相应规范有一定的了解。
(二)设计任务:1.设计资料:⑴地质与水文资料最大冲刷线位于河床线下 2.8m,地基土上层为硬塑粘性土,其地基比例系数m=15000kN/m4;桩周土极限摩阻力τ=60kPa;下层土为中密砾砂:桩周土极限摩阻力τ=50kPa;容许承载力[σ0]=220kPa;地基土的平均有效重度γ′=8.0kN/m3;(已考虑浮力),地面标高为342.00m,常水位标高为344.00m,最大冲刷线标高为339.20m。
⑵桩、墩尺寸与材料墩帽顶标高为350.00m,桩顶标高为344.00m,墩柱顶标高为348.90m。
墩柱直径 1.00m,混凝土强度等级为C20,混凝土弹性模量E H=2.6*107KN/m2.⑶荷载情况桥墩为双柱式桥墩,桥面净宽7m,附0.75m人行道,人行荷载3.00KN/m2,设计汽车荷载为公路-Ⅱ级。
上部为30m预应力钢筋混凝土梁,每根桩上承受的荷载(标准值)为:①两跨恒载反力:N1=1***.53KN②盖梁自重反力:N2=183.10KN③系梁自重反力:N3=48.00KN④一根墩柱自重:N4=187.30KN⑤桩每延米自重:16.96KN/m(已扣除浮力)⑥活载反力a.两跨活载反力:N5=536.68KNb.单跨活载反力:N6=409.21KN车辆荷载反力已按偏心受压原理考虑横向分布的分配影响。
N6在顺桥向引起的弯矩M=126.00KN.m。
c.制动力T=45.00KN,作用点在支座中心,距桩顶距离为6.197m。
d.纵向风力盖梁部分W1=2.65KN,对桩顶力臂为5.45m。
桩基础课程设计计

Mk
,
1.2建筑场地资料
市郊,地势平坦,已完成场地平整,建 筑位于非地震区,不考虑地震作用。 1.3主要材料 砼:垫层C10,承台C30, C10 C30 钢筋:受力钢筋采用HRB335,箍筋采用 HPB235
2.选择桩型
2.1选择桩的类型 根据地质勘察报告,本工程地质情况从 上至下分布为:填土、粘土、粉土,砂层, 砾石,卵石层,埋深5∼8米处为卵石层,厚 度较大,分布连续稳定,以中密密实卵石层 为主,承载力高。本工程采用打入式砼预制 桩,桩端持力层为中密卵石层。根据地区经 验采用端承桩,不考虑侧阻力,中密卵石层 极限端阻力标准值为 qpk =
4.2桩数计算
××轴线××柱独立承台基础预制桩桩 数计算
n=
5.桩位布置并确定承台尺寸 5.1确定桩的中心距
3d~ 4d
5.2确定承台平面尺寸及承台埋深 5.2.1承台平面尺寸 5.2.2承台埋深 因本工程总高度在15m左右,根据工艺 要求同时综合考虑承台顶标高为室外地坪 以下 −0.8m。
6.桩基础承载力验算 6.1 计算公式 6.2验算桩基承载力 7.承台设计 承台高度 H = 500 ∼ 900 7.1受弯计算 7.2受冲切验言 • 课程设计的重要性 • 课程设计的目的及要求 任务与分析 • 基础课程设计的题目 • 本课程设计的内容 • 本课程设计的要求与目的
1.设计资料 设计资料 1.1 上部结构 1.1.1 工程概况 参照单层工业厂房—工程概况 1.1.2 建筑平面布置 见图1-1(绘图,要求手绘) 1.1.3荷载资料 ××轴线××柱传至柱底内力值为
2.2确定桩的截面尺寸 确定桩的截面尺寸 04G361《预制钢筋混凝土方桩》 截面250×250或300×300 3.确定单桩竖向承载力特征值 确定单桩竖向承载力特征值
桩基设计书籍

桩基设计书籍桩基作为土木工程中常用的一种基础形式,在建筑、桥梁、港口、大型机械设备等领域中都扮演着重要的角色。
随着工程的不断发展和规模的扩大,对桩基设计的要求也日益提高。
针对桩基设计相关的理论与实践,不同的书籍提供了丰富的知识与经验。
本文将介绍一些优秀的桩基设计书籍,以供工程师和学习者参考学习。
1.《桩基基础设计》《桩基基础设计》是由黄茂胜、黄跃平等作者合著的书籍。
该书详细介绍了桩基础的基本理论、设计方法、计算原则和施工工艺等内容。
在书中,作者通过大量的实例和分析,系统地阐述了桩基的各种设计方法和工程实践经验。
此外,该书还从桩基设计的角度,对土工和结构设计进行了综合讨论,增加了桩基设计的全面性和综合性。
2.《桩基工程实施与监理手册》《桩基工程实施与监理手册》是由邓健、高皓炜合著的书籍。
该书以桩基工程的实施和监理为切入点,全面介绍了桩基的施工工艺、监理要点、验收标准和质量控制等内容。
在书中,作者结合自身多年的实践经验,详细讲解了桩基施工的各个环节,并提供了大量实用的建议和技巧。
该书既适合桩基工程师参考学习,也适合监理人员和施工人员作为参考手册使用。
3.《桩基工程设计》《桩基工程设计》是由林伯华、周明等作者合著的书籍。
该书系统地介绍了桩基工程设计的基本原理、设计方法和应用技术。
从桩基的分类、桩基设计的目标和要求到桩基的承载力计算、桩身的稳定性和桩基的振动与沉降等问题,该书都进行了详细论述。
通过数学推导和工程实例,该书提供了严谨而全面的桩基设计理论和实践指南。
4.《桩基设计与施工手册》《桩基设计与施工手册》是由宋志远、吴长体等作者合著的书籍。
该书涵盖了桩基设计的各个环节,旨在为工程师提供一本实用、规范和全面的参考手册。
作者从桩基的选择、桩基的力学计算、桩基的施工以及桩基质量的控制等方面进行了详细讲解,并通过大量的实例和图表进行了说明。
该书以简洁明了的语言和图表,提供了桩基设计与施工的全面指导。
总结:以上介绍了几本优秀的桩基设计书籍,它们涵盖了桩基设计的各个方面,从理论到实践,从设计到施工,都提供了丰富的知识与经验。
基础工程基础工程桩基础课程设计精选全文完整版

可编辑修改精选全文完整版1.设计资料柱底荷载标准组合:Fk=1403KN,M kx=30kN,H kx=22kNM ky=-42kN H ky=-34kN柱底荷载基本组合=柱底荷载标准组合×1.352.选择桩端持力层、承台埋深根据上表土层条件,以碎石混砂层为桩尖持力层,采用钢筋混凝土预制桩,型号。
桩端进入持力层1.0m(>2d).工程桩桩入土深度h=0.5+3.5+6+11+1=22m,则桩基有效长度为L=22-2.0=20m.桩基尺寸选择400mm x400mm。
本工程桩身混凝土强度等级为C80。
承台用C20级混凝土桩,取f t=1100kPA配置HRB335级ƒy=300N/mm²。
3.确定单桩极限承载力标准值极限侧阻力标准值q sk粘土q s1k=24kpa淤泥q s2k=12kpa淤泥质粘土q s3k=20kpa碎石混砂q s4k=40kpa极限端阻力标准值q pk q pk=2300kpa=2300x0.42+4x0.4x(24x2+12x6+20x11+40x1)=976kNK取2单桩竖向承载力特征值:R a=Q uk/K=976/2=488kNA-⑦4.确定桩的根数、布桩及承台尺寸 桩距:s=4d=4x400=1600mm,取s=1.6m. 预设承台尺寸:承台的边长a=b=(0.4+0.8)x2=2.4m 。
承台为边长=2.4m 的正方形。
初设承台埋深2m ,承台高度h=1.2m ,桩顶伸入承台50mm ,钢筋保护层取70mm 。
承台的有效高度为:h 0=1.2-0.07=1.13m=1130mm 取承台及其上土的平均重度。
3.34=48822.42.420+1403R G +F ≥n a k K ⨯⨯⨯= 暂取 n=4根。
5.计算桩顶荷载取承台及其上土的平均重度桩顶平均竖向力:Q k =(F k +G k )/n=(1403+20x2.4x2.4x2)/4=408.35KN<R a =488kN{585.6KN =1.2Ra <416.6KN 400.1KN25.87517.625±408.35=)(4x0.80.81.2)-34+(-42±)(4x0.80.8)1.222+30(±408.35=x ∑x )h H +(M ±y ∑y )h H +M (±Q =Q 222i i k y k y 2i i k x k x k max min =⨯⨯⨯⨯=相应于作用的基本组合是作用于柱底的荷载设计值为: F=1.35F k =1.35x1403=1894.05kN M=1.35M kx =1.35x30=40.5kN =1.35M ky =1.35x -42=-56.7kN H=1.35H kx =1.35x22=29.7kN =1.35H ky =1.35x -34=-45.9kN扣除承台和其上填土自重后的桩顶竖向设计值: N=F/n=473.5kN2iik y k y 2i i k x k x max minx ∑x )h H +(M ±y ∑y )h H +M (±N =N=473.5±23.834.9 ={kN kN6.4844.4626.承台受冲切承载力验算①柱边冲切计算:冲切力 kN N F F i l 05.1894005.1894=-=-=∑ 受冲切承载力截面高度影响系数=hp β计算 因为h 0=2m 所以=hp β0.9 冲垮比λ与系数β的计算310.013.135.0000===h a x x λ 647.12.0310.084.02.084.0x 00=+=+=λx β310.013.135.0000===h a y y λ 647.12.0310.084.02.084.0y 00=+=+=λy β)(05.1894626413.111009.0)]35.05.0(647.1)35.05.0(647.1[2h f ]a a [20t hp y 0c y 0y 0c 0可以β)(β)(βkN F kN b b l x =>=⨯⨯⨯+⨯++⨯=+++ ②角柱向上冲切,c 1=c 2=0.6m,a 1x =a 0x =a 1y =a 0y =0.35,λ1x =λ0x =λ1y =λ0y =0.310098.12.0310.056.02.056.0098.12.0310.056.02.056.0y 11x 11=+=+==+=+=λλyx ββ)(6.484190413.111009.0)]2/35.06.0(098.1)2/35.06.0(098.1[h f ]a 2/a [max 0t hp 11y 1y 121可以β)(β)(βkN N kN c c x x =>=⨯⨯⨯+⨯++⨯=+++ 7.承台受剪切承载力计算 剪跨比与以上冲切跨比相同。
桩基础课程设计计算书

桩基础课程设计计算书一、引言桩基础是土木工程中常用的一种基础形式,用于承受建筑物或其他结构的重力和水平力。
本文旨在通过桩基础课程设计计算书,对桩基础的设计和计算过程进行详细介绍。
二、桩基础设计原则1.选取合适的桩型:根据工程场地的地质条件和设计要求,选择适合的桩型,常见的桩型有钢筋混凝土灌注桩、预制桩和钢管桩等。
2.确定桩的数量和布置:根据建筑物或结构的荷载和地质条件,确定桩的数量和布置方式,以保证桩基础的稳定性和承载能力。
3.计算桩的承载力:根据桩的类型和地质条件,采用适当的计算方法计算桩的承载力,包括桩身承载力和桩端承载力。
4.考虑桩与土的相互作用:在桩基础设计中,需要考虑桩与土之间的相互作用,包括桩身的摩擦阻力和桩端的土的阻力等。
5.确定桩的长度和直径:根据桩的承载力和桩身的应力条件,确定桩的长度和直径,以满足设计要求。
三、桩基础设计计算书的内容1.工程概况:包括工程名称、地理位置、建设单位、设计单位等基本信息。
2.设计依据:包括国家相关标准、规范和技术要求等。
3.地质勘察报告摘要:根据地质勘察报告的结果,对地质条件进行简要描述。
4.荷载计算:根据建筑物或结构的荷载标准,计算垂直和水平荷载,包括永久荷载、活荷载和地震荷载等。
5.桩的类型和布置:根据地质条件和设计要求,确定桩的类型和布置方式。
6.桩身承载力计算:根据所选桩的类型和地质条件,计算桩身的承载力,包括桩身的摩擦阻力和桩身的承载力等。
7.桩端承载力计算:根据所选桩的类型和地质条件,计算桩端的承载力,包括桩端的土的阻力和桩端的承载力等。
8.桩的长度和直径计算:根据桩的承载力和桩身的应力条件,计算桩的长度和直径。
9.桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性等。
10.施工及验收规范:根据国家相关标准和规范,列出桩基础施工的要求和验收标准。
四、桩基础设计计算书的编写要点1.准确性:设计计算书应准确描述桩基础的设计和计算过程,避免歧义或错误信息的出现。
桩基础课程设计任务书.doc

桩基础课程设计任务书一、设计目的《地基基础》课程设计是在学习《土力学与地基基础》和《钢筋混凝土》的基础上,应用所学的知识独立完成基础工程的设计任务。
其目的是培养学生综合应用基础理论和专业知识的能力,同时培养学生独立分析和解决基础工程设计问题的能力。
通过课程设计,对桩基础设计内容和过程有较全面的了解和掌握,熟悉桩基础的设计规范、规程、手册和工具书。
二、设计题目:某综合楼桩基础设计三、设计资料1、工程概况某综合楼,框架结构,柱下拟采用桩基础。
柱尺寸400X400,柱网平面布置见图1。
室外地坪标高同自然地面,室内外高差450mm。
上部结构传至柱底的荷载效应见表1、表2,表中弯矩、水平力的作用方向均为横向。
对于任意一位学生,荷载效应的取值为表内值加学号的后两位乘以10。
如某同学学号后两位是21,则该同学在计算①轴交B轴处的柱荷载效应标准组合的取值为:轴向力=1765+21×10=1975 kN,相应的计算弯矩和水平荷载以及荷载效应的基本组合值。
表1 柱底荷载效应标准组合值编号A轴B轴C轴A轴B轴C轴A轴B轴C轴①1580 2630 1910 198 205 241 150 140 138②1940 3100 2200 205 210 243 154 145140③2030 3180 2490 210 211 223 164 155 150④2120 3210 2780 215 214 238 181 166 174⑤2350 3360 3220 253 228 244 193 175 188⑥1710 3290 3130 286 251 266 204 188 196图1 柱网平面布置2、工程与水文地质条件建筑场地平整,地层及物理力学参数见表3。
场地抗震设防烈度为7度,场地内砂土不会发生液化现象。
拟建场区地下水位深度位于地表下3.5m,地下水对混凝土结构无腐蚀性。
表3 地基岩土物理力学参数土层编号土的名称厚度(m)孔隙比e液性指数I L标准贯入锤击数N天然容重γ(kN/m3)压缩模量Es(MPa)地基承载力特征值f ak(KPa) 素填土 1.5---18.0 5.0 503、其他本次设计规范采用《建筑桩基技术规范》JGJ94—2008,桩基础设计等级为乙级。
桩基础课程设计计算书

桩基础课程设计计算书一、引言桩基础是一种通过深埋桩体来传递建筑物或其他结构物荷载到地下的基础形式。
它通过桩与土层之间的摩擦力和桩端的承载力来支撑结构物。
桩基础的设计和计算是确保工程安全可靠的重要环节。
二、桩基础的类型桩基础可分为承载桩和摩擦桩两种类型。
承载桩主要通过桩端的承载力来支撑荷载,而摩擦桩主要通过桩身与土层之间的摩擦力来传递荷载。
根据桩体材料的不同,桩基础又可分为钢筋混凝土桩、预应力混凝土桩、木桩等。
三、桩基础的设计步骤1. 确定设计荷载:根据工程要求和土层特性,确定设计荷载的大小和分布情况。
2. 选择桩型和桩长:根据设计荷载和土层条件,选择合适的桩型和桩长。
3. 桩身计算:根据桩型和桩长,计算桩身的抗弯强度和抗剪强度。
4. 桩端计算:根据桩型和桩长,计算桩端的承载力和桩身与桩端的转换段的承载力。
5. 桩身与土层的摩擦力计算:根据土层性质和桩身形状,计算桩身与土层之间的摩擦力。
6. 桩身与土层的稳定性计算:根据桩身形状和土层特性,计算桩身与土层之间的稳定性。
四、桩基础的计算方法1. 桩身抗弯强度的计算:根据横截面形状和材料强度,采用梁理论计算桩身的抗弯强度。
2. 桩身抗剪强度的计算:根据横截面形状和材料强度,采用剪切理论计算桩身的抗剪强度。
3. 桩端承载力的计算:根据桩端形状和土层特性,采用承载力公式计算桩端的承载力。
4. 桩身与桩端转换段承载力的计算:根据桩型和土层特性,采用承载力公式计算转换段的承载力。
5. 桩身与土层的摩擦力的计算:根据土层性质和桩身形状,采用摩擦力公式计算桩身与土层之间的摩擦力。
6. 桩身与土层的稳定性的计算:根据土层特性和桩身形状,采用稳定性公式计算桩身与土层之间的稳定性。
五、桩基础设计实例以某建筑物的桩基础设计为例,设计要求为承载力为1000kN,桩的直径为600mm,桩长为12m。
根据土层特性和建筑物的荷载情况,选择了钢筋混凝土桩作为基础形式。
根据设计要求,计算桩身的抗弯强度和抗剪强度,采用梁理论和剪切理论进行计算。
公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)

公路桥梁桩基础课程设计任务书(桩柱式桥墩,含计算书)桥梁桩基础课程设计任务书一、桩基础课程设计资料该公路桥梁采用桩柱式桥墩,预计尺寸如下图1所示。
桥面宽7米,两边各0.5米人行道。
设计荷载为公路Ⅱ级,人群:3.5kN/m2.1、桥墩组成该桥墩基础由两根钻孔灌注桩组成。
桩径采用φ=1.2m,墩柱直径采用φ=1.0m。
桩底沉淀土厚度t=(0.2~0.4)d。
局部冲刷线处设置横系梁。
2、地质资料标高25m以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=21%,液限ωl=22.7%,塑限ωp=16.3%。
标高25m以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN/m3,土粒比重G=2.70g/cm3,天然含水量ω=17.8%,液限ωl=22.7%,塑限ωp=16.3%。
3、桩身材料桩身采用25号混凝土浇注,混凝土弹性模量Eh=2.85×104MPa,所供钢筋有Ⅰ级钢和Ⅱ级钢。
4、计算荷载1)一跨上部结构自重G=2350kN;2)盖梁自重G2=350kN;3)局部冲刷线以上一根柱重G3应分别考虑最低水位及常水位情况;4)公路Ⅱ级:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。
支座对桥墩的纵向偏心距为b=0.3m(见图2)。
计算汽车荷载时考虑冲击力。
5)人群荷载:双孔布载,以产生最大竖向力;单孔布载,以产生最大偏心弯矩。
6)水平荷载(见图3)制动力:H1=22.5kN(4.5);盖梁风力:W1=8kN(5);柱风力:W2=10kN(8)。
采用常水位并考虑波浪影响0.5m,常水位按45m计,以产生较大的桩身弯矩。
W2的力臂为11.25m。
活载计算应在支座反力影响线上加载进行。
支座反力影响线见图4.5、设计要求确定桩的长度,进行单桩承载力验算。
桥梁桩基础课程设计计算书一、恒载计算(每根桩反力计算)在进行恒载计算时,需要计算上部结构横载反力N1、盖梁自重反力N2、系梁自重反力N3、一根墩柱自重反力N4以及桩每延米重N5.其中,需要考虑浮力对桩每延米重的影响。
桩基础课程设计方案任务书

《土力学基础工程》课程设计任务书班级:姓名:学号:指导教师:时间:土木工程学院2018.11《基础工程》课程设计任务书一、课程设计的性质、目的和任务1、课程设计的性质本课程设计的内容是锻炼学生进行基础设计能力的教案活动,同时也是土木工程专业教案计划中的一项重要实践环节。
2、课程设计的目的通过本次课程设计,使学生进一步了解桩基础设计的基本概念,将土力学与地基基础课程中理论部分和实践相结合,进一步深化结构基本知识,为以后的工作打下良好基础。
3、课程设计的任务要求学生掌握桩基础设计方法,要求手工进行计算,同时还要求学生进行CAD绘图,这也是学生掌握CAD绘图这个基本技能的重要环节。
二、课题1、工程地质条件某工程位于软土地区,采用桩基础。
建筑场地土层厚度及物理力学指标如表1-1所示。
地下水位位于地表下2.0m处。
土层的主要物理力学指标表1-1土层名称厚度含水天然重度孔隙液性直剪实验(直快>压缩模量承载力特代号m量w(%>(kN/m3>比eqskkPaqpkkPa指数IL内摩擦角ϕ︒粘聚力c(kPa>Es(MPa>征值fk(kPa>1杂填土2.2018.822 6.0902淤泥质土938.218.91.0222 1.02112 4.8803灰黄色粉质粘土526.719.60.75602000.620167.02204粉砂夹粉质粘土>121.620.10.547022000.425158.22602、桩基础设计资料建筑桩基安全等级为二级。
已知柱截面800×500mm2。
由上部结构传至基础顶面的荷载值见表1。
采用钢筋混凝土预制桩,预制桩断面尺寸自选。
桩身材料:混凝土为C30,轴心抗压强度设计值fc=15MPa,弯曲抗压强度设计值fm=16.5MPa。
承台材料:混凝土为C30,轴心抗压强度设计值fc=15MPa,弯曲抗压强度设计值fm=16.5MPa;抗拉强度设计值ft=1.5MPa。
桩基础课程设计

基础工程课程设计—-桩基础设计指导老师:班级:学号:姓名:日期:土木工程与力学学院目录1.设计资料 (1)1.1地质资料 (1)2计算 (1)2. 1选择桩型桩端持力层承台埋深 (2)2. 2确定单桩极限承载力标准值 (2)2. 3确定桩数和承台底面尺寸 (5)2. 4确定桩基竖向承载力特征值 (5)2. 5桩顶作用验算 (6)2. 6桩基础沉降验算 (7)2. 7桩身结构设计计算 (9)2. 8承台设计 (10)3.参考文献 (12)《基础工程》课程设计1设计资料1.1地质资料:地下水位离地表1. 0m;表1各层土的物理性质及力学指标N=5800+50n(kN)M=680+5n ( kNn)n=601・3柱截面尺寸:600mM 800mm2计算2.1选择桩型、桩端持力层、承台埋深2. 1. 1选择桩型因为框架跨度大而且不均匀,柱底荷载大,不宜采用浅基础。
根据施工场地、地基条件以及场地周围环境条件,选择桩基础。
因转孔灌注桩泥水排泄不便,为减少对周围环境污染,采用静压预制桩,这样可以较好的保证桩身质量,并在较短的施工工期完成沉桩任务,同时,当地的施工技术力量、施工设备以及材料供应也为采用静压桩提供可能性。
2. 1. 2选择桩的几何尺寸以及承台埋深桩截面尺寸选用:由于经验关系建议:楼层〈10时,桩边长取300-400, 400mrrK 400mm 由施工设 备要求,桩分为两节,上段长10m 下段长10m (不包括桩尖长度在内) 。
图2-2桩基及土层分布示意图依据地基土的分布,第一层为褐黄色粉质粘土但离地面太近不能作为持力层。
而二三四六层都是流塑或软塑的粘土,五层是暗绿草黄色粉质粘土,是可塑的,所以选择第五层为持力层。
但持力层不是非常厚不能满足桩端全断面进入持力层深度到达该土层桩端阻力的临界深度。
选用低承台基础(低承台桩基础,一般初选d 二广2 m ),因为地下水是埋深是lm 而上部荷载较大,初选 承台埋深为2m 。
桩基设计书籍

以下是几本关于桩基设计的书籍,供您参考:
1.《桩基工程设计》-作者:刘奎,出版社:中国建筑工业出版社
这本书详细介绍了桩基工程设计的理论和实践,包括桩基施工方法、桩基承载力计算、桩基稳定性分析等内容。
2.《桩基础设计与应用》-作者:张旺礼,出版社:人民交通出版社
该书从桩基础设计的基本原理出发,介绍了桩基础的类型、设计方法、施工要点以及桩基础在各种土质条件下的应用。
3.《桩基础与地基处理设计手册》-作者:王国栋,出版社:中国建筑工业出版社
这本手册系统地介绍了桩基础设计的各个方面,包括桩基础的选择原则、计算方法、荷载试验和监测以及地基处理技术等内容。
4.《桩基础设计导则》-作者:李金波,出版社:中国铁道出版社
该书以案例为基础,详细讲解了桩基础的设计流程和方法,包括静力荷载试验、动力触探试验、桩身侧摩阻力计算等。
5.《桩基础设计与实例》-作者:李宝振,出版社:科学出版社
这本书以实际工程为背景,介绍了桩基础设计的理论和实践,包括桩基础的设计原则、计算方法、施工技术和质量控制等内容。
这些书籍涵盖了桩基础设计的基本理论和实践经验,适合工程师、研究人员和学生参考。
请根据自己的需求选择适合的书籍进行学习和参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桩基础课程设计书(2013级岩土班)非常不错的桩基础课程设计,值得一看。
班级:土木135日期:2017年1月9日目录桩基础课程设计书 (1)(2013级岩土班) (1)1.设计资料 (3)1.1地形条件及其参数 (3)1.2设计题目 (3)1.3设计荷载 (3)2灌注桩基设计 (3)2.1单桩承载力计算 (4)2.1.1单桩竖向极限承载力标准值计算 (4)2.1.2.基桩竖向承载力设计值计算 (4)2.2初步拟定承台尺寸 (5)2.3桩基竖向承载力验算 (5)2.4承台的设计计算 (8)2.4.1 C轴柱下的承台设计计算(含桩身设计) (8)2.4.2 B轴柱下承台设计计算(含桩身设计) (16)2.4.3 A轴柱下承台设计计算(含桩身设计) (21)2.4.3.1桩承台设计计算 (21)3设计图纸 (27)1.设计资料1.1地形条件及其参数地层条件及其参数详见桩基设计任务书。
1.2设计题目灌注桩基础课程设计1.3设计荷载题号:荷载6 ,层厚1。
(1)柱底荷载效应标准组合值如下:○A轴荷载:Fk =2175kN,Mxk=258kN m⋅,V k=155kN。
○B轴荷载:Fk =2480kN,Mk=227 kN m⋅,V k=160kN。
○C轴荷载:Fk =2700kN,Mk=230kN m⋅,V k=150kN。
(2)柱底荷载效应基本组合值如下。
○A轴荷载:F k=2780kN,M k=270 kN m⋅,V k=199N。
○B轴荷载:F k=3675kN,M k=240kN m⋅,V k=181kN。
○C轴荷载:F k=3275kN,M k=255 kN m⋅,V k=192kN。
设计○B、○A、○C轴柱下桩基。
2灌注桩基设计建筑物基础设计方案采用混凝土沉管灌注桩,具体设计方案如下:室外地坪标高为-0.45m,自然地面标高同室外地坪标高。
根据设计资料,该建筑桩基属丙级建筑桩基,拟采用直径为400mm的混凝土沉管桩基础,选用○5号土层粉砂层为持力层,桩尖伸入持力层0.6m(对于砂土不小于1.5d=600mm),设计桩长15.0m,预制桩尖长0.5m ,初步设计承台高0.95m ,承台底面埋置深度-1.60m ,桩顶伸入承台50mm 。
2.1单桩承载力计算根据以上设计,桩顶标高为-1.6m ,桩底标高为-16.6m ,桩长为15m 。
2.1.1单桩竖向极限承载力标准值计算单桩竖向极限承载力标准值按下式计算:Q u uk sk pk p sik i p pk Q Q q l A q =+=+∑由于23.140.40.3522 3.328 6.645 4.2600.670869.2k 13.140.42400301.44869.2301.41170.6sk pk uk Q N Q kNQ kN=⨯⨯⨯+⨯+⨯+⨯+⨯==⨯⨯⨯==+=()2.1.2.基桩竖向承载力设计值计算承台底部地基土为较松软的填土,压缩性大,因此本工程不考虑承台土效应,即取0=c η,则有1170.6585.32uk a Q R R kN K ==== 根据上部荷载初步估算桩数为:2175248027003.7,4.2, 4.6585.3585.3585.3kA A B C a F n n n R =======则A 轴和B 轴柱下的设计桩数为5根,C 轴的设计桩数为6根。
2.2初步拟定承台尺寸桩距取:3.5 3.50.4 1.4a S d m ==⨯=按承台构造要去:边桩中心至承台边缘的距离不小于桩的直径或者边长,且桩的外边缘至承台边缘的距离不应小于150mm 。
承台长边:2(0.4 1.4) 3.62(0.40.7) 2.2a m b m =⨯+==⨯+=取承台埋深1.65m,承台高度950hmm =,桩顶伸入承台50mm ,钢筋保护层厚度70mm ,则承台的有效高度为:095070880h mm =-=2.3桩基竖向承载力验算根据《建筑桩基技术规范》(JGJ94—2008),当按单桩承载力特征值进行计算时,荷载应取其效应的标准组合值。
由于桩基所处场地的抗震设防烈度为7度,且场地内无可液化砂土、粉土问题,因此可不进行地震效应的竖向承载力验算。
矩形承台,边长为2.2m ⨯3.6m ,矩形布桩,桩中心距取1.4m ,桩心距承台边缘均为400mm(见图2.1和图2.2所示)。
图2.1 C轴下的承台尺寸图图2.2 A轴(或B轴)线下的承台图承台及其上填土的总重: 2.2 3.6 1.620253.4kG kN =⨯⨯⨯=计算时取荷载的标准组合值,则 A 轴:2175253.4485.68585.36k k kA a F G N R kN n ++===<=max max 22max min 22(1550.95258) 1.4485.68558.044 1.4(1550.95258) 1.4485.68413.314 1.4ik kA ik kAMy N N kN yMy N N kN y⨯+⨯=+=+=⨯⨯+⨯=-=-=⨯∑∑因此min 558.04 1.2 1.2585.3702.36)413.310kmaax k N kN R kN N kN =<=⨯==>B 轴:2480253.4546.68585.35k k k a F G N R kN n ++===<=max max 22max min 22(1600.95227) 1.4546.68614.364 1.4(1600.95227) 1.4485.68418.004 1.4ik kB ik kBMy N N kN yMy N N kN y⨯+⨯=+=+=⨯⨯+⨯=-=-=⨯∑∑min 614.36 1.2 1.2585.3702.36)418.000kmaax k N kN R kN N kN =<=⨯==>C 轴:2700253.4492.23585.36k k kA a F G N R kN n ++===<= max max 22max min 22(1550.95258) 1.4492.23558.044 1.4(1500.95230) 1.4492.23425.714 1.4ik kA ik kAMy N N kN yMy N N kN y⨯+⨯=+=+=⨯⨯+⨯=-=-=⨯∑∑min 558.04 1.2 1.2585.3702.36)425.710kmaax k N kN R kN N kN =<=⨯==>满足设计要求,故初步设计是合理的。
2.4承台的设计计算根据以上桩基设计及构造要求,承台尺寸为 2.2m ⨯3.6m ,初步设计承台厚0.95m ,承台混凝土选用C25,22/9.11,/27.1mm N f mm N f c t ==;承台钢筋选用HRB335级,2/300mm N f y =。
2.4.1C 轴柱下的承台设计计算(含桩身设计)2.4.1.1.桩承台设计计算1.承台内力计算:承台内力计算荷载采用荷载效应基本组合值,则基桩净反力设计值为:'max22'min22'3275(2551920.95) 1.4623.9464 1.43275(2551920.95) 1.4467.7264 1.43275545.836y i i y i i M y F N kN n y M y F NkN n y F N kNn +⨯⨯=+=+=⨯+⨯⨯=-=-=⨯===∑∑ 2.承台厚度及受冲切承载力验算为防止承台产生冲切破坏,承台应具有一定的厚度,初步设计承台厚0.95m ,承台保护层厚度60mm ,则h 0=950-60=890mm 。
分别对柱边冲切和角桩冲切进行计算,以验算承台厚度的合理性。
由于基础为圆形桩,计算时应将截面换算成方桩,则换算方桩截面边宽为mm d b p 3204008.08.0=⨯==图2.3所示承台计算简图中的基桩即是换算后边长为320mm 的方桩。
图2.3 C 轴线柱下桩承台计算简图 (1)柱对承台的冲切承台受桩冲切的承载力应满足下式:00000)]()([2h f a h a b F t hp x c y y c x l βββ+++≤ 由于327503275li F F N kN =-=-=∑,则冲垮比为382.089.034.0000===h a x x λ(在0.25~1.0之间) 0169.189.004.100>===h a oy y λ 取y 0λ=1.0。
冲切系数为70.02.00.184.02.084.044.12.0382.084.02.084.00000=+=+==+=+=y y x x λβλβ000002[()()]2[1.44(0.4 1.04)0.7(0.40.34)]112700.895858.63275)x c y y c x hp t l b a h a f h kN F kN βββ+++=⨯⨯++⨯+⨯⨯⨯=>=故厚度为0.95m 的承台能够满足柱对承台的冲切要求。
(2)角桩对承台的冲切验算承台受角桩冲切的承载力应满足下式:0111121)]2()2([h f a c a c N t hp xy yx l βββ+++≤由于'max 623.94lF N kN ==,从角桩内边缘至承台外边缘距离为12111101100.160.400.56(0.340.890.340.3820.890.891.00.89x y x x yy c c m a m a ma h a h λλ==+=========角桩内边缘到承台外边缘的距离)y 1λ在0.25~1.之间。
467.02.00.156.02.056.0962.02.0382.056.02.056.01111=+=+==+=+=y x x x λβλβ1112110[()()]220.890.34[0.962(0.56)0.467(0.56)]112700.89221478623.94y xx y hp t l a a c c f h kN N kN βββ+++=⨯++⨯+⨯⨯⨯=>= 故厚度为0.95m 的承台能够满足角桩对承台的冲切要求。
(3)承台受剪切承载力计算承台剪切破坏发生在柱边与桩边连线所形成的斜截面处,对于Ⅰ—Ⅰ截面,00 1.20 1.350.89oyy a h λ===(介于0.25~3之间)剪力系数为774.0135.175.1175.1=+=+=λα 受剪切承载力高度影响系数为974.0)890800()800(25.025.00===h hs β Ⅰ—Ⅰ截面剪力为'max 22623.941247.88V N kN =⨯=⨯=则V kN bh f t hs >=⨯⨯⨯⨯⨯=180289.02.21027.1744.0974.030αβ满足抗剪切要求。