matlab曲线拟合人口增长模型及其数量预测

合集下载

matlab曲线拟合人口增长模型及其数量预测

matlab曲线拟合人口增长模型及其数量预测

实验目的[1] 学习由实际问题去建立数学模型的全过程;[2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解其中的数学模型;[4] 提高论文写作、文字处理、排版等方面的能力;通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。

应用实验(或综合实验)一、实验内容从1790—1980年间美国每隔10年的人口记录如表综2.1所示:表综2.1年 份 1790 1800 1810 1820 1830 1840 1850 人口(×106)3.9 5.3 7.2 9.6 12.9 17.1 23.2 年 份 1860 1870 1880 1890 1900 1910 1920 人口(×106)31.4 38.6 50.2 62.9 76.0 92.0 106.5 年 份 193019401950196019701980人口(×106)123.2 131.7 150.7 179.3 204.0 226.5用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。

二、问题分析1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。

记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程:⎪⎩⎪⎨⎧==0)0(d d x x rxtx2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(d d xx x x rx t xm三、数学模型的建立与求解根据Malthus 模型的基本假设,和Logistic 模型,我们可以分别求得微分方程的解析解,y1=x0*exp(r*x);y2= xm/(1+x0*exp(-r*x))对于1790—1980年间美国每隔10年的人口记录,分别用matlab 工具箱中非线性拟合函数的命令作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 进行拟合,检验结果进一步讨论模型的改进,预测美国2010年的人口数量。

matlab曲线拟合函数并预测

matlab曲线拟合函数并预测

Matlab曲线拟合函数并预测一、背景介绍(300-500字)在科学研究和工程领域,我们经常需要对实验数据进行分析和预测。

而Matlab作为一种强大的数学软件工具,提供了丰富的函数和工具,可以对实验数据进行曲线拟合和预测。

本文将介绍Matlab中的曲线拟合函数,并结合实际案例来展示如何使用这些函数进行数据分析和预测。

二、Matlab曲线拟合技术(800-1000字)1. 数据导入和处理在进行曲线拟合之前,我们首先需要将实验数据导入Matlab,并进行处理。

这包括数据的清洗、预处理以及数据结构的转换等。

Matlab提供了丰富的数据导入和处理函数,可以帮助我们快速地将实验数据准备好,以便进行后续的分析和拟合。

2. 曲线拟合函数在Matlab中,曲线拟合函数是实现曲线拟合的核心工具。

通过这些函数,我们可以根据实验数据的特征以及我们对拟合曲线的要求,选择合适的曲线模型,并进行拟合。

Matlab提供了多种曲线拟合函数,包括多项式拟合、指数拟合、对数拟合等,以满足不同需求的实验数据分析。

3. 曲线拟合参数估计除了选择合适的曲线模型外,曲线拟合还需要进行参数估计。

Matlab提供了丰富的参数估计函数,可以帮助我们对拟合曲线的参数进行准确的估计,从而得到最优的拟合结果。

4. 曲线拟合质量评价作为对曲线拟合结果的评价,我们需要进行拟合质量的评估。

Matlab提供了多种曲线拟合质量评价指标,包括均方差、决定系数等,可以帮助我们评估拟合结果的准确性和可靠性。

三、曲线拟合与预测实例分析(1200-1500字)以某种实验数据为例,我们通过Matlab进行曲线拟合和预测分析。

我们将实验数据导入Matlab,并进行预处理;选择合适的曲线模型进行拟合,并进行参数估计;我们评价拟合结果的质量,并得出结论;基于拟合曲线,我们进行预测分析,并与实际数据进行对比。

通过这个实例分析,我们可以更加深入地理解Matlab曲线拟合技术的应用和价值。

matlab曲线拟合人口增长模型及其数量预测

matlab曲线拟合人口增长模型及其数量预测

matlab曲线拟合人口增长模型及其数量预测随着人口数量的不断增加,人口增长的预测成为了重要的社会话题。

为了了解和预测人口的发展趋势,人们需要建立各种数学模型,以帮助他们分析人口变化的规律。

首先,我们需要了解什么是曲线拟合。

曲线拟合是一种数学方法,用于找到能够用已知数据点经过的曲线最佳地描述这些数据点的方程。

接下来,我们需要选择合适的模型,以描述人口增长。

常用的模型有线性模型、指数模型、对数模型和幂函数模型。

在这里,我们选择使用幂函数模型,其数学表达式为y=ax^b,其中y表示人口数量,x表示时间,a和b是拟合参数。

为了得到在该模型下的最佳参数值,我们需要使用matlab中的“拟合曲线工具箱”。

该工具箱提供各种函数,可用于拟合各种类型的数据,包括基于模型的数据点。

在使用该工具箱进行拟合之前,我们需要先准备好我们的数据。

我们可以使用已知的人口数量数据,以确定模型的参数,然后在没有人口数量数据的情况下进行预测。

接下来,我们使用“拟合曲线工具箱”中的“幂函数拟合”函数进行拟合。

该函数会自动计算最佳参数值,并提供了一些工具,用于优化和调整拟合曲线。

此外,对于得到的拟合曲线,我们还可以使用matlab中的“预测函数”来预测不同时间点的人口数量。

该函数将基于已知的拟合参数值,预测给定时间点的人口数量。

在得到拟合和预测结果之后,我们可以使用matlab的图表工具,将结果可视化。

这将有助于我们更好地了解数据点和拟合曲线之间的关系,以及预测结果的准确性。

总之,在制定人口增长规划时,建立数学模型是非常重要的。

使用matlab曲线拟合人口增长模型及其数量预测,可以快速、准确地得到所需的结果,帮助社会决策者制定更好的政策。

基于matlab的中国人口预测(修改版)

基于matlab的中国人口预测(修改版)

目录摘要 (1)关键词 (1)引言 (1)1引言 (1)1.1 论文研究的背景 (2)1.2论文研究的意义 (2)2人口预测模型 (4)2.1 MALTHUS模型 (4)2.2 LOGISTIC模型 (5)3 MATLAB仿真计算 (6)3.1人口预测模型及参数的选定 (6)3.2计算人口环境容纳量 (7)4. 结论 (15)参考文献:.......................................... 错误!未定义书签。

Abstract (1)Key words (1)基于MATLAB的中国人口预测信息与计算科学专业张良指导教师:卢月莉[摘要]以MATLAB为人口预测的仿真计算平台,采用MALTHUS和LOGISTIC模型对中国人口进行了预测和比较,分析了人口增长率的变化率、远期人口预测的相对误差及LOGISTIC 模型的人口发展趋势,给出了合理的人口环境容纳量,修正了预测模型的相对误差,提高了人口预测的准确度。

[关键词]MATLAB仿真;人口预测;误差; MALTHUS模型; LOGISTIC模型;环境容纳量1引言1.1 论文研究的背景人口问题是长期以来制约中国社会发展的最为关键的因素之一。

从新中国成立至今,中国人口己经由5.4亿增至13.3亿,人口总量增加了近8亿。

在中国人口的各发展阶段过程中,人口数据受限于人口基数而表现了结构的变化,自建国初期到70年代,是中国人口由原来的高出生率、高死亡率进入到高出生率、低死亡率的人口增长时期。

特别是受多年的人口结构积累的影响,近年来的中国人口发展出现了老龄化进程加速的态势,预计未来还将进一步地延伸该态势,对中国社会还将持续发生较大的影响作用。

基于现实来看,现代中国处于全面建设小康社会的快速转型期,人口的发展将使中国从总体资源丰富的大国步入人均资源占有量不足的境地,势必抑制国民整体生活水平的快速增长。

诸如此类因素,都将影响中国的未来,因而,有效的分析与科学预测中国人口的发展与变化显得既紧迫又重要。

数学实验与数学建模基础(MATLAB实现)6-4-数据拟合之人口拟合

数学实验与数学建模基础(MATLAB实现)6-4-数据拟合之人口拟合
数据拟合之——人口增长问题拟合
目录
1 数据拟合问题简介 2 人口增长问题的数据拟合方法
一、数据拟合问题简介
数据拟合:从一大堆看上去杂乱无章的数 据中找出规律性来,即设法构造一条曲线 (拟合曲线)反映所给数据点总的趋势, 以消除其局部波动。
常用拟合方法:多项式拟合
存在问题:并不是所有问题都可以用多项 式作拟合,比如人口增长问题。
程序运行结果:
p= 0.0074 -12.3390
Z= 2.6864
即 a 12.3390,
b 0.0074
代入拟合函数

当t=2020时,N=14.6787
即到2020年时,全国总人口数将达到14.6787亿。
这一数据虽然不十分准确,但是基本反 映了人口变化趋势。
分析:据人口增长的统计资料和人口理论数 学模型知,当人口总数N不是很大时,在不 太长的时期内,人口增长接近于指数增长。
故采用指数函数对数据进行拟合
N eabt
为了计算方便,将上式两边同时取对数,得
ln N a bt
令 y ln N
变换后的拟合函数为
y(t ) a bt
由人口数据表对人口取对数,计算得
二、人口增长问题的数据拟合方法
问题:已知1996-2004年全国人口总数如 下表,试根据表中数据预测2020年全国人 口总数。(单位:亿)
年 1996 1997
1998
1999
2000
人口 12.2389 12.3626 12.4761 12.5876 12.6743
2001 2002 2003 2004 12.7627 12.8453 12.9227 13.0000
t 1996 1997 1998 1999 y 2.5046 2.5147 2.5238 2.5327 2000 2001 2002 2003 2004 2.5396 2.5465 2.5530 2.5590 2.5649

Logistic人口模型的检验与中国未来人口的预测与控制

Logistic人口模型的检验与中国未来人口的预测与控制

数学建模大作业——人口模型班级:周一、周三姓名:石星宇学号:02123010学院:电子工程学院任课教师:李伟Logistic人口模型的检验与中国未来人口的预测与控制摘要本文利用已有的Logistic人口模型,对中国近年来的人口数据进行了分析。

用MATLAB数学软件对人口数据做曲线拟合,得到三次多项式如下:33269=-+⨯-⨯+⨯.y x x x0.7011 4.1738108.280910 5.475510±,可见该模型根据实际人口数和计算人口数的比较得知,最大的误差为0.5能够很好地预测人口发展趋势,由此验证了Logistic人口模型的正确性。

并用得到的三次多项式对今年年末的人口进行预测,计算结果为132850万人。

本文最后还对当前国内的人口政策做出了一定的讨论,论述了控制人口发张的一些方法及策略。

例如,提倡一对夫妇只生一个孩子、晚婚晚育等。

还对近年来提出的“单独二胎”、“双独二胎”政策做了相应的讨论。

得出结论:这些政策的实施将会导致婴儿出生率短期内显著回升,有望在5年内新增750万新生儿,在人口结构方面,政策调整将使2030年增加2200万劳动年龄人口。

关键词:Logistic人口模型曲线拟合人口预测与控制1、问题重述人口问题是当今世界上最令人关注的问题之一。

一些发展中国家的人口出生率过高,越来越严重的威胁着人类的正常生活,而有些发达国家的自然生长率趋于零,甚至变为负数,造成劳动力短缺,也是不容忽视的问题。

由于我国20世纪50~60年代人口政策方面的失误,不仅造成人口总数增长过快,而且年龄结构也不合理,使得对人口增长的严格控制会导致人口老化问题严重。

因此,在首先保证人口有限增长的前提下适当控制人口老化,把年龄结构调整到合适的水平,是一项长期而又艰巨的任务。

我们目前面对的问题有:(1)检验Logistic人口模型的正确性;(2)预测中国未来人口的发展状况;(3)评价中国现有的人口政策。

MATLAB之数学建模人口预测

MATLAB之数学建模人口预测
先前我国人口基数大,国家推行了计划生育政策,提倡少生优生晚生。近年来,
于人口老龄化问题严重,国家现以开放二胎政策,鼓励人们生育。相信大家只要
关注新闻都有些了解。 我们小组成员平常时候也是极喜爱阅读,通过腾讯新闻,微博等对开放二胎政策 略有些了解,正巧遇上MATLBA作业,于是我们的数学建模原型由此而来。
下面从机理上分析人口问题的模型。人口的出生率b和死亡率d可设为常数 N(t+△t)——N(t)=(b—d)*N(t) 令r=b—d,△t→0,可得:
N’(t)=rN(t)
假设N(t0)=N0exp(r(t-t0)) 此为人口学Malthus模型。可见对数据图的推测是有道理的。
(2)修正
最后利用历史数据来确定参数和r。如果只有两个数据,则和r 是唯一的。问题是有很多数据, 而且这些数据并不在同一数据线上。事实上,由于政策、经济、
%----------------------------------------
------------function N=li4_17fun(c,t) N=c(1)*exp(c(2)*t)
其优化结果如下表
初始值 拟合结果
1949年人口N0(BW)
541.7
609.2
2021年人口N24(BW)
N=c(1)*exp(c(2)*t)
其实现的MATELAB的程序代码如下: function youhua clear all;clc t=0:1:21;
N=[54167 57482 61465 65346 66457 70499 76032 82542 88761 9326
101654 105851 111026 115823 119850 123626 126743 129227 13144

基于MATLAB的人口预测的研究(可编辑)

基于MATLAB的人口预测的研究(可编辑)

基于MATLAB的人口预测的研究学校代码:年度专业硕士学位论文学号:荦象吁筇天擎基于的人口预测研究院系:筮往堂瞳类别:王猩亟±一领域:达住王猩指导教师:杜直褪副塾援申请人:位艳荭年月完成.基于的人口预测研究:’:..:,丛垒墨主曼垦塾旦曼曼煎旦::墨鱼型坌匡星曼堕堕星星煎望::.华东师范大学学位论文原创性声明上厶酌人谈砌‘孑旰凳》,郑重声明:本人呈交的学位论文《墓弓是在华东师范大学攻读砚生/博士请勾选学位期间,在导师的指导下进行的研究工作及取得的研究成果。

除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。

对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

日期:劫,口年/,月动日作者签名:兰立主垒蒸华东师范大学学位论文著作权使用声明》系本人在华东师范大学攻读《查亍卜’厶髟尺竣伽?夺手完学位期间在导师指导下完成的砜左/博士请勾选学位论文,本论文的研究成果归华东师范大学所有。

本人同意华东师范大学根据相关规定保留和使用此学位论文,并向主管部门和相关机构如国家图书馆、中信所和“知网”送交学位论文的印刷版和电子版;允许学位论文进入华东师范大学图书馆及数据库被查阅、借阅:同意学校将学位论文加入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于请勾选.经华东师范大学相关部门审查核定的“内部”或“涉密学位论文?,于年月日解密,解密后适用上述授权。

∽.不保密,适用上述授权。

枷乏歌导师签名本人签名兰进塞盘讪年具如宰“涉密学位论文应是已经华东师范大学学位评定委员会办公室或保密委员会审定过的学位论文需附获批的《华东师范大学研究生申请学位论文“涉密审批表》方为有效,未经上述部门审定的学位论文均为公开学位论文。

此声明栏不填写的,默认为公开学位论文,均适用上述授权。

基于的人口预测研究付艳茹硕士学位论文答辩委员会成员名单姓名职称单位备注教授主席曹健交通大学黄国兴教授华东师范大学软件学院研究员朱明华华东师范大学软件学院全红艳副教授华东师范大学软件学院金澈清华东师范大学软件学院副教授基于的人口预测研究摘要本文是采用仿真计算平台对人口预测的应用问题所进行的一些研究,其研究工作基础与研究背景源自本人承担的年浙江省教育厅科研课题项目《基于仿真预测模型及犯罪数量实测研究》的前期工作、年浙江警官职业学院科研课题项目《基于曲线拟合分析研究》与《基于人口预测分析研究》以及多年来从事《数学实验》的教学工作。

基于MATLAB的人口预测研究

基于MATLAB的人口预测研究

基于MATLAB的人口预测研究一、本文概述1、人口预测的背景和意义在当今社会,人口预测已经成为一个至关重要的研究领域。

随着全球化的推进和科技的飞速发展,各国政府、企业和研究机构越来越意识到人口数据对未来战略规划的重要性。

人口预测不仅仅是关于数量的预测,更是对人口结构、年龄分布、性别比例、迁移趋势等多维度的综合分析。

背景上,全球人口正在经历前所未有的变化。

一些国家面临人口老龄化的严峻挑战,而另一些国家则正在经历人口爆炸式增长。

这些变化对经济发展、社会福利、环境保护等诸多方面产生深远影响。

因此,准确预测人口变化,为政策制定者提供科学依据,已成为现代社会不可或缺的任务。

在意义方面,人口预测对于国家和地区的发展至关重要。

通过人口预测,政府可以合理规划教育资源、医疗资源和社会保障资源,确保人民的基本生活需求得到满足。

人口预测对于经济发展也具有重要意义。

例如,预测劳动力市场的变化可以帮助企业调整人力资源策略,应对潜在的人才短缺或过剩问题。

人口预测还有助于环境保护和城市规划。

通过预测人口分布和迁移趋势,政府可以制定更加合理的环境保护政策和城市规划方案,实现可持续发展。

因此,基于MATLAB的人口预测研究具有重要的理论价值和现实意义。

MATLAB作为一种强大的数学计算软件,具有强大的数据处理能力和丰富的算法库,为人口预测提供了有力的工具。

通过MATLAB,研究人员可以更加准确、高效地分析人口数据,为政府决策和企业战略提供有力支持。

2、MATLAB在人口预测中的应用及优势MATLAB作为一种功能强大的科学计算与数据分析软件,其在人口预测研究中的应用越来越广泛。

MATLAB提供了丰富的数据处理和算法实现工具,使得人口预测模型的构建、参数估计、结果分析和可视化展示等过程变得高效且直观。

MATLAB在数据处理方面具有显著优势。

人口预测研究通常涉及大量的历史人口数据,这些数据往往需要进行清洗、整合和变换。

MATLAB 提供了强大的数据处理功能,包括数据导入、数据清洗、数据转换等,使得研究者能够迅速完成数据预处理工作,为后续的人口预测模型建立提供可靠的数据基础。

matlab人口预测与数据曲线拟合

matlab人口预测与数据曲线拟合
4、通过对实际问题进行分 析研究,初步掌握建立数 据拟合数学模型的方法。
实验问题
据人口统计年鉴,知我国从1949 年至1994年人口数据资料如下: (人口数单位为:百万)
1954 1959 1964 1969 602.66 672.09 704.99 806.71 1979 1984 1989 1994 975.42 1034.75 1106.76 1176.74
xt e a bt ln x t a bt
解:

x t e
a bt
ln( x ) a bt
问题转化为求参数 a, b 使得
J (a , b) (a bti ln xi )2
10 i 1
取得最小值.其中, t i 表示年份,xi x t i 表示人口数量。
计算得
a -27.9047, b 0.0176
从而得到人口数与年份的函数关系为
ye
27.9047 0.0176* x
指数预测模型
并预测2000,2005,2010年的人口
年份 预测(百万) 真实值(百万) 2000 1363.6 1295.33 2005 1488.8 1306.28 2010 1625.4 1370.5
2 2 [ f ( x ) y ] i i i i 1 i 1 n n
达到最小。
最小二乘准则
数据插值
已知一组(二维)数据,即平面上的 n 个点( xi , yi ) ,
y f ( x) i 1,2, L, n, xi 互不相同,寻求一个函数(曲线)
使f ( x )在观察点x1 ,L, xn 处满足f ( xi ) yi , i 1,L, n,

人口数据分析matlab报告

人口数据分析matlab报告

数值分析设计报告人口数据的分析 一.问题叙述根据1959年到2008年中国人口的数据,改变思路,从人口增长速度方面进行数据分析,并预测未来人口。

二.问题分析表1 中国1959年至2008年人口表格(单位:亿)人口增长速度即为人口与时间的微分,则可以利用数据微分的知识进行微分估计,得到一组人口增长速度表。

由于普通的一阶微分精度较低,且端点数据不好处理,我们可以采用不同的多项式插值方法来估计微分。

对于中间的数据点,根据数值分析讲义第七章知识,可以采用四次多项式插值公式来获得微分:)88(121)(2112++---+-≈'j j j j j f f f f hx f (1)对于端点的数据,可以采用二次多项式插值公式来获得微分:)]()(4)(3[21)(2100x f x f x f hx f -+-≈'……………. (2) )](3)(4)([21)(2102x f x f x f hx f +-≈' ……………. (3) 通过使用上述公式进行人口增长速度计算,能够达到更高的精度。

接下来根据得到的人口增长速度表,可以通过数据拟合得到人口速度与时间的曲线图,这里采用9次多项式拟合。

………………….(4) (4)式中令n=9,得到9次多项式拟合。

那么接下来通过数值曲线积分可以估计未来几年人口增长的数量,从而得到未来几年的人口。

三.实验程序1. 输入人口数据;t=[1959:2008]; %输入年份数据p=[6.72,6.62,6.59,6.73,6.91,7.04,7.25,7.45,7.63,7.85,8.07,8.30,8.52,8.71,8.92,9.09,9.24,9.37,9.5,9.63,9.75,9.87,10.01,10.17,10.30, 10.44, 10.59, 10.75,10.93,11.10,11.27,11.43,11.58,11.71,11.85,11.98, 12.11, 12.23, 12.36, 12.47,12.57,12.67,12.76,12.85,12.92,13.00,13.08,13.14,13.21,13.28];%输入人口数据t=t-1950; %处理数据v=ones(1,50); %定义速度初始值2.对人口数据直接进行多项式拟合m=polyfit(t,p,9); %9次多项式系数组n=linspace(5,65,1000); %加密数据点c=polyval(m,n); %求多项式的拟合值plot(n,c); %作出人口与年份拟合曲线xlabel('时间/年')ylabel('人口/亿')3.进行人口增长速度计算通过上面(1)式对中间数据进行处理,得到速度值;(2)式对开始两个端点数据进行处理,(3)式对最后两个数据进行处理。

matlab综合案例 人口增长模型

matlab综合案例  人口增长模型

综合案例 人口增长模型据人口学家们预测,到2033年 ,世界人口将突破100亿,每年增加近1亿人,以后还会迅猛增长。

人们开始考虑,我们赖以生存的地球究竟是否能承受如此的增长。

让我们建立数学模型来预测人口的增长。

我们关心任意时刻的人口总数N (t ),即t 时刻人口中生命个体的总数,而忽略他们的年龄和性别。

影响总人口数的最显著的因素是个体的出生、死亡、以及进出我们所研究区域的个体数。

为了简化问题,我们忽略迁入与迁出的人口,仅考虑时间段∆t 内人口数的变化情况。

很明显,出生和死亡人数的变化将依赖于以下因素:(1) 时间间隔∆t 的长短;(2) 时间间隔开始时的人口总数。

做最简单的假设是正比关系,即时间间隔∆t 内的出生人数= bn(t)∆t 时间间隔∆t 内的死亡人数=dn(t)∆t这里b 和d 分别是出生率和死亡率。

我们得到一个初始模型为N(t+∆t)-N(t)=(b -d)N (t) ∆t (2.35)现在可根据时间区间∆t 的两种情况进一步研究模型. 一种是确定一个有限的时间单位,比如∆t=1年,令N k = N(k)=N (k ∆t), k=1,2,3,… 这样方程(2.35)便是一个关于序列N K ,k=1,2,3, …的差分方程: N k+1= (b -d+1)N k k=1,2,3,…我们可以根据上一年的人口数推算出第二年的人口数以及逐年的人口数。

另一种是考虑很短的时间区间∆t 内的人口变化。

由于一个广阔区域的人口数量很大,可认为人口数N(t)是一个连续变量,因为当N(t)很大时,对应的曲线具有很小的跃变可视为平滑的,这样的处理即简化了模型又不会引起严重误差。

先将式(2.35)改写为tt N t t N t N ∆-∆+)()()(1=b -d令∆t →0,则有d b dtdN N -=1 (2.36)等式左端的表达式可以理解为“相对增长率”,对其作不同的假设可以建立不同的数学模型。

基于MATLAB的人口预测模型

基于MATLAB的人口预测模型

基于 MATLAB 的人口预测模型摘要本文以 1980-2014 年中国年终总人口数据资料为依据,分别使用了一次拟合、灰色预测模型和时间序列模型进行拟合,最终得出时间序列模型的效果最优,得到了中国人口数量逐年增长,但同时增长速度逐渐放缓的结论,为政府制定人口、经济政策提供了一定的依据。

关键词:人口数量;一次拟合;灰色预测;时间序列前言世界人口的迅猛增长引起了许多问题。

特别是一些经济不发达国家的人口过度增长,影响了整个国家的经济发展、社会安定和人民生活水平的提高,给人类生活带来许多问题。

为了解决人口增长过快的问题,人类必须控制自己,做到有计划地生育,使人口的增长与社会、经济的发展相适应,与环境、资源相协调。

我国是世界上人口最多的发展中国家。

人口数量多、增长快、可耕地少、国家底子薄,这是我国的基本国情。

人口增长过快,严重制约着我国经济和社会发展的进程,影响着人民生活的改善和民族素质的提高。

从而造成社会再生产投入不足,严重影响国民经济的可持续发展。

认真分析我国目前的人口现状和特点,采取切实可行的措施控制人口的高速增长,提高人口的整体素质,已成为我国目前经济发展中需要解决的首要问题。

本文以中国近 35 年的人口数据尝试建立模型,分别建立了一次模型、灰色预测 GM(1,1)模型和时间序列 AR 模型,最终选取了拟合效果最好的时间序列模型,用于说明我国人口问题以及预测短期内人口数量变化,以及为我国即将面临的人口问题提供一些建议。

概念与引理定义 1[1]:人口问题,是由于人口在数量、结构、分布等方面快速变化,造成人口与经济、社会以及资源、环境之间的矛盾冲突。

人口数量问题,主要由非均衡生育(多子化和少子化)以及人口迁移造成,只有通过均衡生育(发达国家 2.17 胎,发展中国家 2.3 胎)和调控迁移来解决。

人口结构问题,主要包括年龄、性别、收入、人种、民族、宗教、教育程度、职业、家庭人数等人口结构问题;其中最为突出的是年龄(多子化、少子高龄化)、性别(男女比例失调)和收入(基尼系数高、中产塌陷)结构问题。

人口问题数据拟合的MATLAB程序

人口问题数据拟合的MATLAB程序

人口问题数据拟合的MATLAB程序拟合%拟合数据人口问题x=[1949 1954 1959 1964 1969 1974 1979 1984 1989 1994];y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];% 1 线性模型%用一阶多项式b=polyfit(x,y,1)z=b(2)+b(1).*x;plot(x,y,'r*',x,z),xlabel('x')%用矩阵运算A=[ones(size(x))', x'];b=A\y'z=b(1)+b(2).*x;plot(x,y,'r*',x,z),xlabel('x')%用线性回归A=[ones(size(x))', x'];[b,c,r,j,R] =regress(y',A)% b 回归系数 c 回归系数的置信区间r 残差j 拟合数据的置信区间R 相关系数F值、p值z=b(1)+b(2).*x;z1=z+j(:,1)';z2=z+j(:,2)';plot(x,y,'r*',x,z,x,z1,x,z2),xlabel('x')e=sqrt(sum((y-z).^2)/8)zz1=z-1.96*e; zz2=z+1.96*e;plot(x,y,'r*',x,z,x,zz1,x,zz2)% 2 非线性模型y=b(2)exp(b(1)x)%转化为线性函数A=[ones(size(x))', x'];y1=log(y);[b1,r,j,R]=regress(y1',A)b=[exp(b1(1)) b1(2)]z=b(1).*exp(b(2).*x);e=sqrt(sum((y-z).^2)/8)z1=z-1.96*e; z2=z+1.96*eplot(x,y,'r*',x,z,x,z1,x,z2)%用非线性函数拟合(缺点初值不合适,就得不到解)x=[49 54 59 64 69 74 79 84 89 94];y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];fun=inline('b(1).*exp(b(2).*x)','b','x');b0=[2 0.01];[b,r,j]=nlinfit(x,y,fun,b0)z=b(1).*exp(b(2).*x);plot(x,y,'r*',x,z)nlintool(x,y,fun,b0) %拟合曲线图。

人口各省预测模型matlab_利用matlab编程求解人口预测模型.doc

人口各省预测模型matlab_利用matlab编程求解人口预测模型.doc

⼈⼝各省预测模型matlab_利⽤matlab编程求解⼈⼝预测模型.doc利⽤matlab编程求解⼈⼝预测模型.doc利⽤matlab编程求解⼈⼝预测模型⼀、名词和符号说明名词解释:(1)拟合: 对于某个变化过程中的多个相互依赖的变量,可建⽴适当的数学模型,⽤于分析预报决策或控制该过程.对于两个变量可通过⽤⼀个⼀元函数去模拟这两个变量的取值.⽤不同的⽅法可得到不同的模拟函数.下⾯使⽤图表介⽤Mathematica做曲线拟合。

(2)差分⽅程:含有⾃变量,未知函数以及未知函数差分的函数⽅程,称为差分⽅程。

(3)迭代法:是⽜顿在17世纪提出的⼀种求解⽅程f(x)=0.多数⽅程不存在求根公式,从⽽求精确根⾮常困难,甚⾄不可能,从⽽寻找⽅程的近似根就显得特别重要。

设r是f(x)=0的根,选取x0作为r初始近似值,过点(,f())做曲线y=f(x)的切线L,L的⽅程为,求出L与x轴交点的横坐标 ,称为r的⼀次近似值,过点(,f())做曲线y=f(x)的切线,并求该切线与x轴的横坐标称为r的⼆次近似值,重复以上过程,得r的近似值序列{Xn},其中,称为r的n+1次近似值。

上式称为⽜顿迭代公式。

符号说明:第 k年i岁的⼥性总⼈数⼥性⼈⼝的(按年龄)分布向量第k年i岁的⼥性⽣育率第k年i岁的⼥性死亡率第 k年i岁的⼥性存活率i岁⼥性的⽣育模式 k年总和⽣育率(控制⼈⼝数量的主要参数)A 存活率矩阵B ⽣育模式矩阵⼆、模型假设针对本题中出现的数据的代表意义和建⽴模型时能够使问题理想化、简单化,我们应⽤已知数据,将其时间离散化,由于⼥性是影响总⼈⼝变化的主要因素 ,因此本模型从考虑⼥性⼈⼝的发展变化出发, 我们在不失科学性的前提下作出如下合理的基本假设:假设⼥性最⼤年龄为90岁,最⼩年龄为0岁,以1岁为1个年龄组,1年为1个时段,不考虑同⼀时间间隔内⼈⼝数量的变化。

(2) 中短期内,总和⽣育率、死亡率和出⽣性别⽐不会发⽣⼤的波动,可以以往年平均值代替预测值;(3) 长期⼈⼝预测的参数主要由政策决定;(4) 死亡率只与年龄有关,不考虑⽣存空间等⾃然资源的制约,不考虑意外灾难等因素对⼈⼝变化的影响。

MATLAB人口数量预测

MATLAB人口数量预测

MATLAB人口数量预测实验报告一,实验目的:1.、学会用matlab软件进行数据拟合;2、了解利用最小二乘法进行数据拟合的基本思想,掌握用数据拟合法寻找最佳拟合曲线的方法;3、了解多元函数的机制在数据拟合法中的应用;4、通过对实际问题进行分析研究,初步掌握建立数据拟合数学模型的方法。

二.问题分析及建立模型1.多项式拟合对于已知数据点,如果选用拟合基函数为幂函数类1,x,x2,x3….xm,则拟合函数为一个m次多项式函数。

y=f(x)=a m*x m+a m-1*x m-1+…a1*x+a0根据最小二乘法你和思想,问题归结为求m+1元函数Q(a0,a1,…a m)=∑(a m*x i m a m-1*x i m-1+…+a1*x+a0)2的最小值问题,同样的,利用多元可微函数求得极值的必要条件得到法方程组∂Q(a0,a1,…a m)/∂a k=0; k=0,1,2,3…m;此时,矩阵G为一范德蒙矩阵,解此方程可以求的多项式系数a=[a m,a m-1,a0]T模型假设美国的人口满足函数关系x=f(t), f(t)=e a+bt,a,b为待定常数,根据最小二乘拟合的原理,a,b是函数∑=-=niiix tfbaE12))((),(的最小值点。

其中x i是t i时刻美国的人口数。

这是第一种模型。

3.Logistic模型上述模型可以在短时间内较好地拟合实际人口数量,但也存在问题。

即人口是呈指数规律无止境地增长,此时人口的自然增长率随人口的增长而增长,这不可能。

一般说来,当人口较少时增长得越来越快,即增长率在变大;人口增长到一定数量以后,增长就会慢下来,即增长率变小。

这是因为自然资源环境条件等因素不允许人口无限制地增长,它们对人口的增长起着阻滞作用,而且随着人口的增加,阻滞作用越来越大。

而且人口最终会饱和,趋于某一个常数x,假设人口的静增长率为r(1-x(t)/x ),即人口的静增长率随着人口的增长而不断减小,当t 时,静增长率趋于零。

MATLAB第5次 案例及实验2:人口增长预测

MATLAB第5次 案例及实验2:人口增长预测

影响因素
个 体 的 出 生 、 死 亡
迁 入 、 迁 出
年 龄 结 构
性 别 比 例
……
2/9
人口增长模型——机理分析方法 现仅考虑出生和死亡对人口数的影响。
在时间段t内,出生和死亡人口数的变化 将依赖于以下因素: 建模过程 1.时间间隔t的长短; 2.时间间隔开始时的人口基数。
1 dN b d N dt
• 人口增长因素 • 仅考虑出生、死亡对人口数的影响
7/9
模型建立
模型建立
出生率b和死亡率d:
• 时间间隔t内的出生人数= b N(t)t • 时间间隔t内的死亡人数= d N(t)t
t时间内人口变换量N:
N(t+t)N(t) = (bd)N (t) t

Nk= N (k t), k=0,1,2,3,…
3.若r=0 时 N(t)=N0 。
6/9
rt
人口增长问题——离散方法
问题提出
据人口学家们预测,到2033年,世界人口将突破100亿,每年
增加近1亿人口,以后还会迅猛增长.人们开始考虑,我们赖 以生存的地球究竟是否能承受如此的增长. 现建立数学模 型来预测人口的增长.
问题分析
目标:N(t) 条件与数据:
3.5 x 10
11
马尔萨斯模型人口预测
3
2.5
象。
2
N/人
几何级数的增长
1.5
1
0.5
0 1950
2000
2050 t/年
2100
2150
2200
5/9
得到Logistic模型
N 0 Ke K N (t ) rt rt K K N 0 (e 1) 1 ( N0 1)e

人口发展模型matlab实现

人口发展模型matlab实现

实验二:人口发展模型实验目的:理解马尔萨斯模型和Logistic模型,利用中国人口数据,进行参数估计,并比较模型的优劣。

实验题目:据统计,建国以来我国人口增长情况如表1:更适合人口的长期预测?并预测2006年至2015年各年人口总数。

马尔萨斯模型假设单位时间内人口增长量与当前时刻人口数成正比,即有,其中,代表增长率,为时刻人口总量,易得,这表明人口按指数变化规律增长。

Logistic模型假设人口增长率是当时人口数量的线性递减函数。

表示按自然资源和环境条件的最大人口容量;表示固有增长率,即人口很少时的增长率;当时,;当时,。

由此建立Logistic模型,求解模型得.实验程序及注释%马尔萨斯模型T=1954:2005;N=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80. 7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104. 357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85, 121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.98 8,130.756];y=log(N); %计算对数值p=polyfit(T,y,1); %线性拟合Malthus=exp(polyval(p,T)); %求线性函数值plot(T,N,'o',T,Malthus) %对原始数据和拟合后的值作图RM=sum((N-Malthus).^2) %求残差平方和%Logistic模型b0=[ 241.9598, 0.02985]; %初始参数值fun=inline('b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*(t-1954)))','b','t');b1=nlinfit(T,x,fun,b0);Logistic=b1(1)./(1+( b1(1)/60.2-1).*exp( -b1(2).*(T-1954))); %非线性拟合的方程plot(T,x,'*',T,Logistic) %对原始数据与曲线拟合后的值作图RL=sum((N-Logistic).^2) %求残差平方和实验数据结果及分析马尔萨斯模型Logistic模型图1 实验结果由上图可以看出,Logistic模型对人口的拟合更加确切,其误差130.8740较马尔萨斯模型的误差757.4464更小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验目的
[1] 学习由实际问题去建立数学模型的全过程;
[2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解
其中的数学模型;
[4] 提高论文写作、文字处理、排版等方面的能力;
通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。

应用实验(或综合实验)
一、实验内容
从1790—1980年间美国每隔10年的人口记录如表综2.1所示:
表综2.1
用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。

二、问题分析
1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。

记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程:
⎪⎩⎪⎨⎧==0
)0(d d x x rx
t
x 2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人
口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程:
⎪⎩
⎪⎨⎧=-=0)0()1(d d x
x x x rx t x
m
三、数学模型的建立与求解
根据Malthus 模型的基本假设,和Logistic 模型,我们可以分别求得微分方程的
解析解,
y1=x0*exp(r*x);
y2= xm/(1+x0*exp(-r*x))
对于1790—1980年间美国每隔10年的人口记录,分别用matlab 工具箱中非线性拟合函数的命令作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 进行拟合,检验结果进一步讨论模型的改进,预测美国2010年的人口数量。

四、实验结果及分析
对于Malthus 模型 作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 得到拟合函数为y=(3.54e-011)*exp(0.0149*x), 当x=2010时,预测的人口为359.4916
由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,运用Logistic 模型对微分方程的解进行拟合,得到y2= 360.4/(1+53.11 *exp(-0.02342*(x-1790)))
到2010年时,预计人口数量为y2 = 275.6894,
作图可以看出两条曲线拟合程度较高相比基本模型,改进模型更接近实际。

1780
1800
1820
1840
1860
1880
1900
1920
1940
1960
1980
0 50
100
150
200
250
x
y
五、附录(程序等)
Malthus 模型 1、
编写拟合函数的文件fitful2.m function y=fitful2(a,x)
y=a(1).*exp(a(2).*x);
2、 运行的脚本文件
clc,clear a0=[50,0.02];
xdata=[1790:10:1980];
ydata=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5];
x
y
[a,resnorm,residual,flag,output]=lsqcurvefit('fitful2',a0,xdata,ydata )
xi=[1790:10:1980];
yi=fitful2(a,xdata)
plot(xdata,ydata,'r-o',xi,yi,'b-+')
xlabel('x'),ylabel('y=f(x)');
Logistic模型
程序:
x=[1790:10:1980]';
y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5]';
st_ = [500 30 0.2 ];
ft_ = fittype('a/(1+b*exp(-k*(x-1790)))',...
'dependent',{'y'},'independent',{'x'},...
'coefficients',{'a', 'b','k'});
cf_ = fit(x,y,ft_,'Startpoint',st_)
plot(cf_,'fit',0.95);hold on,plot(x,y,'*')。

相关文档
最新文档