高考物理整体法隔离法解决物理试题解题技巧分析及练习题
高中物理整体法隔离法解决物理试题题20套(带答案)及解析
高中物理整体法隔离法解决物理试题题20套(带答案)及解析一、整体法隔离法解决物理试题1.在如图所示的电路中,闭合开关,将滑动变阻器的滑片向右移动一段距离,待电路稳定后,与滑片移动前比较A.灯泡L变亮B.电容器C上的电荷量不变C.电源消耗的总功率变小D.电阻R0两端电压变大【答案】C【解析】A、C、滑动变阻器的滑片向右移动一点,变阻器接入电路的电阻增大,外电路总电阻增大,根据闭合电路欧姆定律分析得知,流过电源的电流减小,则由知电源的总功率变小,且流过灯泡的电流减小,灯泡L亮度变暗,故A错误,C正确;B、电源的路端电压U=E-Ir增大,即电容器电压增大将充电,电荷量将增大.故B错误.D、电阻R0只有在电容器充放电时有短暂的电流通过,稳定状态无电流,则其两端的电压为零不变,D错误;C、.故C正确.故选C.【点睛】本题电路动态变化分析问题.对于电容器,关键是分析其电压,电路稳定时,与电容器串联的电路没有电流,电容器的电压等于这条电路两端的电压.2.最近,不少人喜欢踩着一种独轮车,穿梭街头,这种独轮车全名叫电动平衡独轮车,其中间是一个窄窄的轮子,两侧各有一块踏板,当人站在踏板上向右运动时,可简化为如图甲、乙所示的模型。
关于人在运动中踏板对人脚的摩擦力,下列说法正确的是()A.考虑空气阻力,当人以如图甲所示的状态向右匀速运动时,脚所受摩擦力向左B.不计空气阻力,当人以如图甲所示的状态向右加速运动时,脚所受摩擦力向左C.考虑空气阻力,当人以如图乙所示的状态向右匀速运动时,脚所受摩擦力可能为零D.不计空气阻力,当人以如图乙所示的状态向右加速运动时,脚所受摩擦力不可能为零【解析】【详解】A .考虑空气阻力,当人处如图甲所示的状态向右匀速运动时,根据平衡条件,则脚所受摩擦力为右,故A 错误;B .不计空气阻力,当人处如图甲所示的状态向右加速运动时,合力向右,即脚所受摩擦力向右,故B 错误;C .当考虑空气阻力,当人处如图乙所示的状态向右匀速运动时,根据平衡条件,则重力、支持力与空气阻力处于平衡,则脚所受摩擦力可能为零,故C 正确;D .当不计空气阻力,当人处如图乙所示的状态向右加速运动时,根据牛顿第二定律,脚受到的重力与支持力提供加速度,那么脚所受摩擦力可能为零,故D 错误。
高考物理方法应用系列-整体法与隔离法-专题练习三(解析版)
高考物理方法应用系列-整体法与隔离法-专题练习三一、计算题1.如图所示,物体A、B叠放在水平桌面上,A与B接触面之间的动摩擦因数为0.1,B与地面的动摩擦因数为0.2,A物体的重力是50N,B的重力为100N,A的左端用水平细线拉住,细线另一端固定于墙上.(1)现用水平力F将物体B从A下方匀速拉出,求水平拉力F的大小;(2)如果在A物体上再放一个50N重的物体C,且假设A与B之间,B与地面之间最大静摩擦力均等于滑动摩擦力,则通过计算说明,用一个水平拉力F=46N能否将B从A下方拉出.【答案】(1)35N (2)不能将B从A下方拉出【解析】【分析】(1)对物体B受力分析,受重力、支持力、拉力、A对B的滑动摩擦力,地面对B的滑动摩擦力,根据平衡条件列式求解拉力;(2)在A物体上再放一个50N重的物体C,AC整体对B的压力增加,ABC整体对地面的压力也增加,求解出AB间、B与地面间的最大静摩擦力,根据平衡条件列式分析.【详解】(1)物体A对B的压力等于重力,为50N,故f AB=μ1G A=0.1×50=5N,物体AB整体对地面压力等于重力,为150N,故f BD=μ2(G A+G B)=0.2×(50+100)=30N,对B分析,受重力、支持力、支持力和两个向左的摩擦力,根据平衡条件,有:F=f AB+f BD=5N+30N=35N;(2)在A物体上再放一个50N重的物体C,AC整体对B的压力为100N,故AB间的最大静摩擦力大小为:f AB′=μ1(G A+G C)=0.1×(50+50)N=10N,物体AB整体对地面压力等于重力,为200N,故f BD′=μ2(G A+G B+G C)=0.2×(50+100+50)N=40N,故如果将物体拉出,拉力的最小值为:F min=f AB′+f BD′=10N+40N=50N>46N,故用46N的力无法将物体拉出;【点睛】本题是力平衡问题,关键是采用整体法和隔离法灵活选择研究对象,根据平衡条件列式求解.通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法.有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用.2.如图所示,某人用轻绳牵住一只质量m=0.6kg的氢气球,因受水平风力的作用,系氢气球的轻绳与水平方向成37°角.已知空气对气球的浮力为15N,人的质量M=50kg,且人受的浮力忽略不计(sin37°=0.6,cos37°=0.8).求:(1)水平风力的大小;(2)人对地面的压力大小;(3)若水平风力增强,人对地面的压力如何变化?(要求说明理由)【答案】(1)12N (2)491N (3)若水平风力增强,人对地面的压力不变【解析】试题分析:(1)对气球受力分析应用平衡条件可求水平风力的大小;(2)当风力变大时我们可以通过选整体为研究对象来判断人对地面压力的变化.解:(1)对氢气球进行受力分析如图,设氢气球受绳子拉力为T,水平风力为F风,由平衡条件列式:竖直方向:F浮=mg+Tsin37°;水平方向:F风=Tcos37°;解得:F风=12N,T=15N.(2)把人与气球视为整体,受力分析可得:N=mg+Mg﹣F浮,若风力增强,人对地面压力不变.答:(1)气球的受力分析图,如图所示,水平风力的大小为12N;(2)若水平风力增强,人对地面的压力不变.【点评】对气球和人进行受力分析,运用力的合成或分解结合共点力平衡条件解决问题.选择合适的研究对象是关键,如何选择需要再做题中不断积累经验.3.如图所示,物体A 、B 叠放在倾角为α=37°的斜面上.A 、B 的质量分别为m A =2kg ,m B =2.5kg .A 、B 之间的动摩擦因数μ1=0.5,B 与斜面之间的动摩擦因数μ2=0.4.拉着物体A 的绳子沿水平方向固定在斜面顶端.现在用平行斜面向下的拉力F 把B 物体匀速拉动(A 静止).求(1)A 、B 之间滑动摩擦力的大小; (2)所需拉力F 的大小.【答案】(1)T=40N ,f=20N (2)29N 【解析】试题分析:(1)对A 进行分析根据平衡条件可以得到:cos sin A T f G αα=+,sin cos N A F T G αα=+,N f F μ= 得sin cos 40cos sin T mgN αμααμα+==-,20f N =。
新高考备战2024年高考物理抢分秘籍02共点力的静态平衡动态平衡临界和极值问题整体法和隔离法教师届
秘籍02共点力的静态平衡、动态平衡、临界和极值问题、整体法和隔离法一、共点力的平衡1.平衡状态:物体受到几个力作用时,如果保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。
【注意】“静止”和“v=0”的区别和联系当v=0时:①a=0时,静止,处于平衡状态②a≠0时,不静止,处于非平衡状态,如自由落体初始时刻2.共点力平衡的条件(1)条件:在共点力作用下物体平衡的条件是合力为0。
(2)公式:F合=03.三个结论:①二力平衡:二力等大、反向,是一对平衡力;②三力平衡:任两个力的合力与第三个力等大、反向;③多力平衡:任一力与其他所有力的合力等大、反向。
二、静态平衡与动态平衡的处理方法1.静态平衡与动态平衡态而加速度也为零才能认为平衡状态。
物理学中的“缓慢移动”一般可理解为动态平衡。
2.静态平衡的分析思路和解决方法方法内容合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反。
分解法物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件。
正交分解法物体受到三个或三个以上力的作用而平衡,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件。
力的三角形法对受三个力作用而平衡的物体,将力的矢量图平移使三个力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力。
3.动态平衡的分析思路和解决方法方法内容解析法对研究对象的任一状态进行受力分析,建立平衡方程,求出已知力与未知力的函数式,进而判断各个力的变化情况图解法①分析物体的受力及特点;②利用平行四边形定则,作出矢量四边形;③根据矢量四边形边长大小作出定性分析;相似三角形法①分析物体的受力及特点;②利用平行四边形定则,作三力矢量三角形;③根据矢量三角形和几何三角形相似作定性分析;拉密定理法①分析物体的受力及特点;②利用平行四边形定则,作三力矢量三角形;③利用正弦或拉密定理作定性分析;三、共点力平衡中的临界极值问题1.临界或极值条件的标志有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点。
整体法与隔离法解题原理及技巧
方法 整体法
隔离法
研究对象 系统:将相互作用的几个 物体作为研究对象 物体:将系统中的某一物 体为研究对象
选择原则 求解物体系整体的 加速度和所受外力 求解物体之间的内 力或加速度
二、系统牛顿第二定律 对系统运用牛顿第二定律的表达式为:
F合 m1a1 m2a2 m3a3 mn an
即系统受到的合外力(系统以外的物体对系统内物体作用 力的合力)等于系统内各物体的质量与其加速度乘积的矢 量和。
若系统内物体具有相同的加速度,表达式为:
F合 (m1 m2 mn ) a
练习2 (2004年全国)如图所示,两个用轻线相连的位于
光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2 方向相反,与轻线沿同一水平直线,且F1>F2。试求在两 个物块运动过程中轻线的拉力T。
解析:设两物块一起运动的加速度为a,则有 F1-F2=(m1+m2)a ① 根据牛顿第二定律,对质量为m1的物块有 F1-T=m1a ②
加速度为( )
A.gsiห้องสมุดไป่ตู้α/2
B.Gsinα
C.3gsinα/2 D.2gsinα
[解析]方法一、隔离法 此题可先分析猫的受力情况,再分析 木板的受力情况,再用牛顿第二定律 求得结果。
对猫由力的平衡条件可得: f= mgsinα 对木板由牛顿第二定律可得: f +Mgsinα=Ma 式中M=2m,联立解得,木板的 加速度a=3gsinα/2
(M+m)gsinα=Ma+0
(M+m)g
高考物理整体法隔离法解决物理试题试题类型及其解题技巧及解析
高考物理整体法隔离法解决物理试题试题类型及其解题技巧及解析一、整体法隔离法解决物理试题1.如图所示,水平挡板A 和竖直挡板B 固定在斜面C 上,一质量为m 的光滑小球恰能与两挡板和斜面同时解除,挡板A 、B 和斜面C 对小球的弹力大小分别为A B F F 、和C F .现使斜面和物体一起在水平面上水平向左做加速度为a 的匀加速直线运动.若A B F F 、不会同时存在,斜面倾角为θ,重力加速度为g ,则下列图像中,可能正确的是A .B .C .D .【答案】B【解析】【分析】【详解】对小球进行受力分析当tan a g θ<时如图一,根据牛顿第二定律,水平方向: sin C F ma θ=①竖直方向:cos C A F F mg θ+=②,联立①②得:tan A F mg ma θ=-,sin C F ma θ=,A F 与a 成线性关系,当a=0时,A F =mg ,当tan a g θ=时,0A F =C F 与a 成线性关系,所以B 图正确当tan a g θ>时,受力如图二,根据牛顿第二定律,水平方向sin C B F F ma θ+=③,竖直方向:cos C F mg θ=④,联立③④得:tan B F ma mg θ=-,cos C mg F θ=,B F 与a 也成线性,C F 不变,综上C 错误,D 正确【点睛】本题关键要注意物理情景的分析,正确画出受力分析示意图,考查了学生对牛顿运动定律的理解与应用,有一定难度.2.质量为m 的光滑圆柱体A 放在质量也为m 的光滑“V 型槽B 上,如图,α=60°,另有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连,现将C 自由释放,则下列说法正确的是( )A .若A 相对B 未发生滑动,则A 、B 、C 三者加速度相同B .当M =2m 时,A 和B 共同运动的加速度大小为gC .当3(31)M +=时,A 和B 之间的正压力刚好为零D .当(31)M m =时,A 相对B 刚好发生滑动【答案】D【解析】【分析】由题中“有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连”可知,本题考查牛顿第二定律和受力分析,运用整体法和隔离法可分析本题。
高中物理计算题解题步骤技巧
高中物理计算题解题步骤技巧高中物理计算题力学综合力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高。
具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及运动学、动力学、功能关系等多个规律的综合运用。
解题策略:(1)多体问题:整体法和隔离法。
选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象需根据不同的条件,或采用隔离法,把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。
(2)多过程问题:合分合。
“合”:初步了解全过程,构建大致运动图景。
“分”:将全过程进行分解,分析每个过程的规律(包括物体的受力情况、状态参量等)。
“合”:找到子过程之间的联系,寻找解题方法(物体运动的速度、位移、时间等)。
观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。
(3) 隐含条件类问题:注重审题,深究细琢,努力挖掘隐含条件。
我们有一期是专门关于隐含条件的总结,仍然不熟悉的同学可以再找来看一下。
(4)分类讨论类问题:认真分析制约条件,周密探讨多种情况。
解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。
(5)数学技巧类问题:耐心细致寻找规律,熟练运用数学方法。
耐心寻找规律、选取相应的数学方法是关键。
求解物理问题,通常采用的数学方法包括:图象法、几何法、方程法、比例法、数列法、不等式法、函数极值法和微元分析法等,在众多数学方法的运用上必须打下扎实的基础。
(6)一题多解类问题:开拓思路避繁就简,合理选取最优解法。
避繁就简、选取最优解法是顺利解题、争取高分的关键,特别是在受考试时间限制的情况下更应如此。
物理整体法隔离法解决物理试题专题练习(及答案)含解析
A.竖直挡板对球的弹力为 m g a
B.斜面对球的弹力为 2mg C.加速度越大斜面对球的弹力越大.
F 2mg 8ma ,
代入 F ,解得 3mg
故 C 项错误; D.对 8 个滑块,有
a F , 24m
F mg 8ma ,
解得
a g 4
再以 6、7、8 三个小滑块作为整体,由牛顿第二定律有
故 D 项正确;
F 3ma F , 4
5.如图所示,一个物体恰能在斜面体上沿斜面匀速下滑,可以证明出此时斜面不受地面的 摩擦力作用,若沿斜面方向用力 F 向下推此物体,使物体加速下滑,斜面依然保持静止, 则斜面受地面的摩擦力是( )
小滑块之间的轻杆上的弹力大小为 F 4
【答案】D 【解析】 【详解】 A.将匀速运动的 8 个小滑块作为一个整体,有
F 3mg 0 ,
解得
F , 3mg
故 A 项错误; B.当滑块匀速运动时,处在光滑地带上的滑块间的轻杆上的弹力都为零,处在粗糙地带上 的滑块间的轻杆上的弹力不为零,且各不相同,故 B 项错误; C.对 8 个滑块,有
变低,故 C 错误;
D 项:将 R1 和电源等效为一个新的电源,新电源的内阻为 r+R1,电压表测的为新电源的路
U
端电压,如果电流表测的也为总电流,则
I总
r
R1 ,由 A 分析可知 I总 =IR3
I A ,
由于总电流增大,并联部分的电压减小,所以 R3 中的电流减小,则 IA 增大,所以
物理整体法隔离法解决物理试题题20套(带答案)及解析
物理整体法隔离法解决物理试题题20套(带答案)及解析一、整体法隔离法解决物理试题1.如图所示,质量为M的木板,上表面水平,放在水平桌面上,木板上面有一质量为m的物块,物块与木板及木板与桌面间的动摩擦因数均为,若要以水平外力F将木板抽出,则力F的大小至少为()A.mgB.(M+m)gC.(m+2M)gD.2(M+m) g【答案】D【解析】【详解】对m与M分别进行受力分析如;如图所示;对m有:f1=ma1 …①f1=μmg…②由①和②得:a1=μg对M进行受力分析有:F-f-f2=M•a2…③f1和f2互为作用力与反作用力故有:f1=f2=μ•mg…④f=μ(M+m)•g…⑤由③④⑤可得a2=-μg要将木板从木块下抽出,必须使a2>a1解得:F>2μ(M+m)g故选D。
【点睛】正确的受力分析,知道能将木板从木块下抽出的条件是木板产生的加速度比木块产生的加速度来得大这是解决本题的关键.2.如图所示,水平面上O 点的左侧光滑,O 点的右侧粗糙。
有 8 个质量均为m 的完全相同的小滑块(可视为质点),用轻质的细杆相连,相邻小滑块间的距离为L,滑块 1 恰好位于O 点左侧,滑块 2、3……依次沿直线水平向左排开。
现将水平恒力 F 作用于滑块 1上。
经观察发现,在第 3 个小滑块完全进入粗糙地带后到第 4 个小滑块进入粗糙地带前这一过程中,小滑块做匀速直线运动,已知重力加速度为 g ,则下列判断中正确的是( )。
A .粗糙地带与滑块间的动摩擦因数为FmgB .滑块匀速运动时,各段轻杆上的弹力大小相等C .第 2 个小滑块完全进入粗糙地带到第 3 个小滑块进入粗糙地带前这一过程中,8 个小滑块的加速度大小为12F mD .第 1 个小滑块完全进入粗糙地带到第 2 个小滑块进入粗糙地带前这一过程中,5 和 6两个小滑块之间的轻杆上的弹力大小为4F 【答案】D 【解析】 【详解】A.将匀速运动的8个小滑块作为一个整体,有30F mg μ-=,解得3Fmgμ=, 故A 项错误;B.当滑块匀速运动时,处在光滑地带上的滑块间的轻杆上的弹力都为零,处在粗糙地带上的滑块间的轻杆上的弹力不为零,且各不相同,故B 项错误;C.对8个滑块,有28F mg ma μ-=,代入3Fmgμ=,解得 24Fa m=, 故C 项错误; D.对8个滑块,有8F mg ma μ'-=,解得4ga μ'=再以6、7、8三个小滑块作为整体,由牛顿第二定律有34F F ma ''==, 故D 项正确;3.质量为m 的光滑圆柱体A 放在质量也为m 的光滑“V 型槽B 上,如图,α=60°,另有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连,现将C 自由释放,则下列说法正确的是( )A .若A 相对B 未发生滑动,则A 、B 、C 三者加速度相同 B .当M =2m 时,A 和B 共同运动的加速度大小为g C .当3(31)M +=时,A 和B 之间的正压力刚好为零 D .当(31)M m =时,A 相对B 刚好发生滑动 【答案】D 【解析】 【分析】由题中“有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连”可知,本题考查牛顿第二定律和受力分析,运用整体法和隔离法可分析本题。
高考物理整体法隔离法解决物理试题答题技巧及练习题
高考物理整体法隔离法解决物理试题答题技巧及练习题一、整体法隔离法解决物理试题1.如图所示,质量为M 的板置于水平地面,其上放置一质量为m 的物体,物体与板,板与地面间的滑动摩檫系数分别为μ、2μ。
当作用在板上的水平拉力为F 时能将板从物体下拉出,则F 的取值范围为( )A .F >mg μB .F >()m M g μ+C .F >2()m M g μ+D .F >3()m M g μ+【答案】D【解析】【详解】当M 和m 发生相对滑动时,才有可能将M 从m 下抽出,此时对应的临界状态为:M 与m 间的摩擦力为最大静摩擦力m f ,且m 运动的加速度为二者共同运动的最大加速度m a ,对m 有:m m f mg a g m mμμ===,设此时作用与板的力为F ',以M 、m 整体为研究对象,有:()()2m F M m g M m a μ'-+=+,解得()3F M m g μ'=+,当F F '>时,才能将M 抽出,即()3F M m g μ>+,故D 正确,ABC 错误。
2.如图所示,质量相等、材料相同的两个小球A 、B 间用一劲度系数为k 的轻质弹簧相连组成系统,系统穿过一粗糙的水平滑杆,在作用在B 上的水平外力F 的作用下由静止开始运动,一段时间后一起做匀加速运动,当它们的总动能为4E k 时撤去外力F ,最后停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力.则在从撤去外力F 到停止运动的过程中,下列说法正确的是( )A .撤去外力F 的瞬间,弹簧的压缩量为2F k B .撤去外力F 的瞬间,弹簧的伸长量为F kC .系统克服摩擦力所做的功小于系统机械能的减少量D .A 克服外力所做的总功等于2E k【答案】D【解析】【分析】根据受力分析与牛顿第二定律分析弹簧的伸长量;根据动能定理分析A 克服外力所做的总功;根据功能关系分析系统克服摩擦力所做的功.【详解】AB .当A 与B 一起做加速运动的过程中,对整体:F -2f =2ma对小球A :kx-f=ma联立得: x= 2F k 即撤去外力F 的瞬间,弹簧的伸长量为 2F k.故A B 错误; C .根据功能关系可知,整个的过程中,系统克服摩擦力所做的功等于A 、B 的动能以及弹簧减少的弹性势能的和,即等于系统机械能的减少量.故C 错误.D .A 克服外力所做的总功等于A 的动能,由于是当它们的总动能为4E k 时撤去外力F ,所以A 与B 开始时的动能都是2E k ,即A 克服外力所做的总功等于2E k .故D 正确; 故选D .【点睛】此题考查了两个物体被弹簧连接的连接体问题,明白F 在拉动B 运动时,由于杆的摩擦力,A 物体会瞬时不动,从而弹簧就有拉长,存在弹性势能,是解决此题的关键.3.如图所示,A 、B 两物体质量均为m ,叠放在轻质弹簧上(弹簧下端固定于地面上)。
高考物理模型101专题讲练:第7讲 应用整体法与隔离法解决连接体模型
第7讲 应用整体法与隔离法解决连接体模型1.(2022·海南)我国的石桥世界闻名,如图,某桥由六块形状完全相同的石块组成,其中石块1、6固定,2、5质量相同为m ,3、4质量相同为m′,不计石块间的摩擦,则m :m′为( )A .√32B .√3C .1D .22.(2022·浙江)如图所示,水平放置的电子秤上有一磁性玩具,玩具由哑铃状物件P 和左端有玻璃挡板的凹形底座Q 构成,其重量分别为G P 和G Q 。
用手使P 的左端与玻璃挡板靠近时,感受到P 对手有靠向玻璃挡板的力,P 与挡板接触后放开手,P 处于“磁悬浮”状态(即P 和Q 的其余部分均不接触),P 与Q 间的磁力大小为F 。
下列说法正确的是( )A .Q 对P 的磁力大小等于G PB .P 对Q 的磁力方向竖直向下C .Q 对电子秤的压力大小等于G Q +FD .电子秤对Q 的支持力大小等于G P +G Q 一.知识总结一.模型特点及解决问题的方法、技巧、思路 1.连接体的类型 (1)弹簧连接体(2)物物叠放连接体(3)物物并排连接体(4)轻绳连接体(5)轻杆连接体2.连接体的运动特点(1)轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
(2)轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
一般情况下,连接体沿杆方向的分速度相等。
(3)轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
3.连接体的受力特点轻绳、轻弹簧的作用力沿绳或弹簧方向,轻杆的作用力不一定沿杆。
4.处理连接体问题的方法(1)整体法若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。
高考物理整体法隔离法解决物理试题技巧(很有用)及练习题含解析
高考物理整体法隔离法解决物理试题技巧(很有用)及练习题含解析一、整体法隔离法解决物理试题1.如图所示,倾角为θ的斜面A固定在水平地面上,质量为M的斜劈B置于斜面A上,质量为m的物块C置于斜劈B上,A、B、C均处于静止状态,重力加速度为g.下列说法错误的是( )A.BC整体受到的合力为零B.斜面A受到斜劈B的作用力大小为Mgcosθ+mgC.斜劈B受到斜面A的摩擦力方向沿斜面A向上D.物块C受到斜劈B的摩擦力大小为mgcosθ【答案】B【解析】【分析】【详解】A、斜劈B和物块C整体处于平衡状态,则整体受到的合力大小为0,A正确.B、对B、C组成的整体进行受力分析可知,A对B的作用力与B、C受到的重力大小相等,方向相反.所以A对B的作用力大小为Mg+mg,根据牛顿第三定律可知,斜面A受到斜劈B的作用力大小为Mg+mg,故B错误.C、根据B和C的整体平衡可知A对B的静摩擦力沿斜面向上,大小等于两重力的下滑分力,C正确.D、C受到B对C的摩擦力为mg cosθ,方向垂直斜面A向上,D正确.本题选错误的故选B.【点睛】若一个系统中涉及两个或者两个以上物体的问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.2.质量为m的光滑圆柱体A放在质量也为m的光滑“V型槽B上,如图,α=60°,另有质量为M的物体C通过跨过定滑轮的不可伸长的细绳与B相连,现将C自由释放,则下列说法正确的是()A.若A相对B未发生滑动,则A、B、C三者加速度相同B.当M=2m时,A和B共同运动的加速度大小为gC.当3(31)2M m+=时,A和B之间的正压力刚好为零D.当(31)M m=+时,A相对B刚好发生滑动【答案】D【解析】【分析】由题中“有质量为M的物体C通过跨过定滑轮的不可伸长的细绳与B相连”可知,本题考查牛顿第二定律和受力分析,运用整体法和隔离法可分析本题。
高中物理计算题解题步骤技巧
高中物理计算题解题步骤技巧高中物理计算题力学综合力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高。
具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及运动学、动力学、功能关系等多个规律的综合运用。
解题策略:(1)多体问题:整体法和隔离法。
选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象需根据不同的条件,或采用隔离法,把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。
(2)多过程问题:合分合。
“合”:初步了解全过程,构建大致运动图景。
“分”:将全过程进行分解,分析每个过程的规律(包括物体的受力情况、状态参量等)。
“合”:找到子过程之间的联系,寻找解题方法(物体运动的速度、位移、时间等)。
观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。
(3) 隐含条件类问题:注重审题,深究细琢,努力挖掘隐含条件。
我们有一期是专门关于隐含条件的总结,仍然不熟悉的同学可以再找来看一下。
(4)分类讨论类问题:认真分析制约条件,周密探讨多种情况。
解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。
(5)数学技巧类问题:耐心细致寻找规律,熟练运用数学方法。
耐心寻找规律、选取相应的数学方法是关键。
求解物理问题,通常采用的数学方法包括:图象法、几何法、方程法、比例法、数列法、不等式法、函数极值法和微元分析法等,在众多数学方法的运用上必须打下扎实的基础。
(6)一题多解类问题:开拓思路避繁就简,合理选取最优解法。
避繁就简、选取最优解法是顺利解题、争取高分的关键,特别是在受考试时间限制的情况下更应如此。
010应用整体法与隔离法解决连接体模型 精讲精练-2022届高三物理一轮复习疑难突破微专题
一.模型特点及解决问题的方法、技巧、思路1.连接体的类型(1)弹簧连接体(2)物物叠放连接体(3)物物并排连接体(4)轻绳连接体(5)轻杆连接体2.连接体的运动特点(1)轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
(2)轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
一般情况下,连接体沿杆方向的分速度相等。
(3)轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
3.连接体的受力特点轻绳、轻弹簧的作用力沿绳或弹簧方向,轻杆的作用力不一定沿杆。
4.处理连接体问题的方法(1)整体法若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合力,应用牛顿第二定律求出加速度(或其他未知量)。
(2)隔离法若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解。
(3)整体法、隔离法交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力。
即“先整体求加速度,后隔离求内力”。
若已知物体之间的作用力,求连接体所受外力,则“先隔离求加速度,后整体求外力”。
5.应用整体法和隔离法的解题技巧(1)如图所示,一起加速运动的物体系统,若力作用于m1上,则m1和m2间的相互作用力为F12=m2Fm1+m2。
此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
(2)通过跨过滑轮的绳连接的连接体问题:若要求绳的拉力,一般都必须采用隔离法。
绳跨过定滑轮连接的两物体的加速度虽然大小相同但方向不同,故采用隔离法。
高考回归复习—力学选择之整体法与隔离法解决共点力平衡问题 含答案
高考回归复习—力学选择之整体法与隔离法解决共点力平衡问题1.如图所示,在水平地面上放着一个左侧截面为半圆的光滑柱状物体A ,在物体A 与竖直墙面之间放着一个光滑斜面体B ,斜面体B 未接触地面,整个装置在水平力F 作用下处于静止状态,现推动物体A 缓慢向左移动一小段距离,在此过程中,下列说法正确的是( )A .水平力F 大小不变B .地面对物体A 的支持力不变C .斜面体B 对物体A 的压力逐渐增大D .墙面对斜面体B 的支持力逐渐减小2.如图所示,一根粗糙的水平杆上套有A 、B 两个轻环,系在两环上的等长细绳拴住课本。
已知AB AC ,圆环、课本始终静止,下列说法正确的是( )A .缩短A 、B 之间的距离,圆环所受支持力变小 B .剪断细绳BC 的瞬间,环A 受到的支持力大小不变 C .将杆的左端略微抬起,环A 所受的摩擦力变大D .若使系统水平向右加速运动,环B 受到的支持力大于环A 受到的支持力3.如图所示,在倾角为30°的光滑斜面上,A 、B 两个质量均为m 的滑块用轻质弹簧相连,弹簧的劲度系数为k ,水平力F 作用在滑块B 上,使A 、B 相对斜面静止,此时弹簧长度为l ,且在弹性限度内,则下列说法正确的是( )A .弹簧原长为l +2mgk B .弹簧原长为l +mgkC .力FD .力F mg4.如图所示,半圆柱体P 放在粗糙的水平地面上,其右端有一竖直挡板MN 。
在二者之间夹着一个光滑均质的小圆柱体Q ,整个装置处于静止状态。
现使MN 保持竖直并且缓慢地向右平移,在Q 滑落到地面之前,P 始终保持静止。
则在此过程中,下列说法正确的是( )A .MN 对Q 的弹力逐渐减小B .P 对Q 的弹力逐渐增大C .地面对P 的摩擦力逐渐增大D .Q 所受的合力逐渐增大5.如图所示,粗糙斜面体C 静止在水平地面上,轻质细线跨过滑轮其顶端的光滑定滑轮。
细线一段拴接物块A ,另一端与另外两根细线结于O 点,形成死结。
河南省鹤壁市淇县第一中学高中物理高中物理解题方法:整体法隔离法压轴题易错题
河南省鹤壁市淇县第一中学高中物理高中物理解题方法:整体法隔离法压轴题易错题一、高中物理解题方法:整体法隔离法1.如图所示,电动势为E,内阻为r的电源与滑动变阻器R1、定值电阻R2、R3、平行板电容器及电流表组成闭合电路,当滑动变阻器R1触头向左移动时,则()A.电流表读数减小B.电容器电荷量增加C.R2消耗的功率增大D.R1两端的电压减小【答案】D【解析】【详解】A、变阻器R的触头向左移动一小段时,R1阻值减小,回路的总电阻减小,所以回路的总电流增大,电流表读数增大,故A错误.B、外电路总电阻减小,路端电压U减小,所以路端电压减小,电容器的带电量减小,故B 错误.C、由于R1和R2并联,由分析可得则R2电压减小,又由于R2电阻不变,所以R2消耗的功率减小,故C错误.D、路端电压减小,而干路电流增加导致R3两端电压增大,由串联分压可得R1两端的电压减小,故D正确.故选D.【点睛】本题考查闭合电路欧姆定律的动态分析,要熟练掌握其解决方法为:局部-整体-局部的分析方法;同时注意部分电路欧姆定律的应用.2.如图所示,一个“V”形槽的左侧挡板A竖直,右侧挡板B为斜面,槽内嵌有一个质量为m的光滑球C.“V”形槽在水平面上由静止开始向右做加速度不断减小的直线运动的一小段时间内,设挡板A、B对球的弹力分别为F1、F2,下列说法正确的是( )A.F1、F2都逐渐增大B.F1、F2都逐渐减小C.F1逐渐减小,F2逐渐增大D .F 1、F 2的合外力逐渐减小【答案】D【解析】光滑球C 受力情况如图所示:F 2的竖直分力与重力相平衡,所以F 2不变;F 1与F 2水平分力的合力等于ma ,在V 形槽在水平面上由静止开始向右做加速度不断减小的直线运动的一小段时间内,加速度不断减小,由牛顿第二定律可知F 1不断减小,F 1、F 2的合力逐渐减小,故D 正确,A 、B 、C 错误;故选D .【点睛】以光滑球C 为研究对象,作出光滑球C 受力情况的示意图;竖直方向上受力平衡,水平方向根据牛顿第二定律求出加速度的大小,结合加速度的变化解答.3.如图所示,等边直角三角形斜边上竖直挡板挡住质量为m 的球置于斜面上,现用一个恒力F 拉斜面,使斜面在水平面上向右做加速度为a 的匀加速直线运动,忽略一切摩擦,重力加速度为g, 以下说法中正确的是A .竖直挡板对球的弹力为()m g a +B .斜面对球的弹力为2mgC .加速度越大斜面对球的弹力越大.D .斜面、挡板对球的弹力与球的重力三者的合力大于m a【答案】A【解析】A 、B 、C 、对球受力分析如图所示:由牛顿第二定律得F N1-F N2sin θ=ma ,F N2cos θ=mg ,45θ=︒ ,由以上两式可得:1()N F m g a =+,22N F mg =,即竖直挡板对球的弹力为()m g a +,斜面对球的弹力为2mg ,且加速度越大斜面对球的弹力不变,故A 正确,B 、C 均错误.D 、由牛顿第二定律可知,斜面、挡板对球的弹力与球的重力三者的合力等于ma .故D 错误.故选A.【点睛】本题考查牛顿第二定律的应用和受力分析规律的应用,要注意明确加速度沿水平方向,竖直方向上的合力为零,分别对两个方向进行分析求解即可.4.如图所示,水平挡板A 和竖直挡板B 固定在斜面C 上,一质量为m 的光滑小球恰能与两挡板和斜面同时解除,挡板A 、B 和斜面C 对小球的弹力大小分别为A B F F 、和C F .现使斜面和物体一起在水平面上水平向左做加速度为a 的匀加速直线运动.若A B F F 、不会同时存在,斜面倾角为θ,重力加速度为g ,则下列图像中,可能正确的是A .B .C .D .【答案】B【解析】【分析】【详解】对小球进行受力分析当tan a g θ<时如图一,根据牛顿第二定律,水平方向: sin C F ma θ=①竖直方向:cos C A F F mg θ+=②,联立①②得:tan A F mg ma θ=-,sin C F ma θ=,A F 与a 成线性关系,当a=0时,A F =mg ,当tan a g θ=时,0A F =C F 与a 成线性关系,所以B 图正确当tan a g θ>时,受力如图二,根据牛顿第二定律,水平方向sin C B F F ma θ+=③,竖直方向:cos C F mg θ=④,联立③④得:tan B F ma mg θ=-,cos C mg F θ=,B F 与a 也成线性,C F 不变,综上C 错误,D 正确【点睛】本题关键要注意物理情景的分析,正确画出受力分析示意图,考查了学生对牛顿运动定律的理解与应用,有一定难度.5.质量为m 的光滑圆柱体A 放在质量也为m 的光滑“V 型槽B 上,如图,α=60°,另有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连,现将C 自由释放,则下列说法正确的是( )A .若A 相对B 未发生滑动,则A 、B 、C 三者加速度相同B .当M =2m 时,A 和B 共同运动的加速度大小为gC .当3(31)M +=时,A 和B 之间的正压力刚好为零D .当(31)M m =时,A 相对B 刚好发生滑动【答案】D【解析】【分析】由题中“有质量为M 的物体C 通过跨过定滑轮的不可伸长的细绳与B 相连”可知,本题考查牛顿第二定律和受力分析,运用整体法和隔离法可分析本题。
2020届高考物理计算题复习《整体法和隔离法在平衡问题中的应用》(解析版)
《整体法和隔离法在平衡问题中的应用》一、计算题1.如图所示,两根相同的轻弹簧、,劲度系数,弹簧原长悬挂的重物的质量分别为,若不计弹簧质量,取,则平衡时弹簧、的长度分别为多少?均不超过弹簧的弹性限度2.如图所示,两个用轻弹簧相连的位于光滑水平面上的物块A、B,质量分别为和,在拉力F的作用下一起向右作匀加速运动。
求:两个物块一起运动的加速度大小;某时刻撒去拉力B,求该时刻两个物块的加速度大小。
3.把质量为2kg的物体A放到倾角为的斜面上,如图所示。
已知物体A与斜面间的动摩擦因数为,设最大静摩擦力等于滑动摩擦力。
通过计算判断图中物体A处于运动状态还是静止状态。
现用细线系住物体A,并平行于斜面向上绕过光滑的定滑轮,另一端系住物体B,如图所示。
若要使A在斜面上保持静止,物体B质量的范围是多少?4.如图所示,放在粗糙斜面上的物块A和悬挂的物块B均处于静止状态,轻绳AO绕过光滑的定滑轮与轻质弹簧的右端及轻绳BO的上端连接于O点轻质弹簧中轴线沿水平方向,轻绳的OC段与竖直方向的夹角,斜面倾角,物块A 和B的质量分别为,,弹簧的劲度系数为,重力加速度求弹簧的伸长量x;物块A受到的摩擦力f的大小和方向.5.如图所示,两根相同的轻弹簧、,劲度系数分别为,,悬挂重物的质量分别为和,若不计弹簧质量,取,则平衡时弹簧、的伸长量分别为多少?6.如图所示,质量为的物体A压在放于地面上的竖直轻弹簧上,上端与轻弹簧相连,轻弹簧上端与质量为的物体B相连,物体B通过轻绳跨过光滑的定滑轮与轻质小桶P相连,A、B均静止.现缓慢地向小桶P内加入细砂,当弹簧恰好恢复原长时,小桶一直未落地求:小桶P内所加入的细砂质量;小桶在此过程中下降的距离.7.如图所示,质量为M的半球体放在粗糙水平地面上,细绳一端固定在天花板上,另一端拴住质量为m的可视为质点的光滑小球,小球置于半球体上的A点,细绳与半球体恰好相切,半径OA与水平面的夹角,M、m都处于静止状态,当地重力加速度大小为g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理整体法隔离法解决物理试题解题技巧分析及练习题一、整体法隔离法解决物理试题1.如图所示,三个物体质量分别为m =1.0 kg 、m 2=2.0 kg 、m 3=3.0 kg ,已知斜面上表面光滑,斜面倾角θ=30°,m 1和m 2之间的动摩擦因数μ=0.8.不计绳和滑轮的质量和摩擦.初始用外力使整个系统静止,当撤掉外力时,m 2将(g =10 m/s 2,最大静摩擦力等于滑动摩擦力)( )A .和m 1一起沿斜面下滑B .和m 1一起沿斜面上滑C .相对于m 1下滑D .相对于m 1上滑【答案】C【解析】假设m 1和m 2之间保持相对静止,对整体分析,整体的加速度()()312212313101210302 2.5/123m g m m gsin a m s m m m ⨯-+⨯⨯-+︒===++++.隔离对m 2分析,根据牛顿第二定律得,f-m 2gsin30°=m 2a ;解得f=m 2gsin30°+m 2a=2.0×(10×0.5+2.5)N=15N ;最大静摩擦力f m =μm 2gcos30°=0.8×2×10×3N =83N ,可知f >f m ,知道m 2随m 1一起做加速运动需要的摩擦力大于二者之间的最大静摩擦力,所以假设不正确,m 2相对于m 1下滑.故C 正确,ABD 错误.故选C .2.最近,不少人喜欢踩着一种独轮车,穿梭街头,这种独轮车全名叫电动平衡独轮车,其中间是一个窄窄的轮子,两侧各有一块踏板,当人站在踏板上向右运动时,可简化为如图甲、乙所示的模型。
关于人在运动中踏板对人脚的摩擦力,下列说法正确的是( )A .考虑空气阻力,当人以如图甲所示的状态向右匀速运动时,脚所受摩擦力向左B .不计空气阻力,当人以如图甲所示的状态向右加速运动时,脚所受摩擦力向左C .考虑空气阻力,当人以如图乙所示的状态向右匀速运动时,脚所受摩擦力可能为零D .不计空气阻力,当人以如图乙所示的状态向右加速运动时,脚所受摩擦力不可能为零【答案】C【解析】【详解】A .考虑空气阻力,当人处如图甲所示的状态向右匀速运动时,根据平衡条件,则脚所受摩擦力为右,故A 错误;B .不计空气阻力,当人处如图甲所示的状态向右加速运动时,合力向右,即脚所受摩擦力向右,故B 错误;C .当考虑空气阻力,当人处如图乙所示的状态向右匀速运动时,根据平衡条件,则重力、支持力与空气阻力处于平衡,则脚所受摩擦力可能为零,故C 正确;D .当不计空气阻力,当人处如图乙所示的状态向右加速运动时,根据牛顿第二定律,脚受到的重力与支持力提供加速度,那么脚所受摩擦力可能为零,故D 错误。
故选C 。
【点睛】此题考查根据不同的运动状态来分析脚受到力的情况,掌握物体的平衡条件以及加速度与合外力的关系,注意人水平方向向右运动时空气阻力的方向是水平向左的。
3.如图所示,等边直角三角形斜边上竖直挡板挡住质量为m 的球置于斜面上,现用一个恒力F 拉斜面,使斜面在水平面上向右做加速度为a 的匀加速直线运动,忽略一切摩擦,重力加速度为g, 以下说法中正确的是A .竖直挡板对球的弹力为()m g a +B .斜面对球的弹力为2mgC .加速度越大斜面对球的弹力越大.D .斜面、挡板对球的弹力与球的重力三者的合力大于m a【答案】A【解析】A 、B 、C 、对球受力分析如图所示:由牛顿第二定律得F N1-F N2sin θ=ma ,F N2cos θ=mg ,45θ=︒ ,由以上两式可得:1()N F m g a =+,22N F mg ,即竖直挡板对球的弹力为()m g a +,斜面对球的弹力为2mg ,且加速度越大斜面对球的弹力不变,故A 正确,B 、C 均错误.D 、由牛顿第二定律可知,斜面、挡板对球的弹力与球的重力三者的合力等于ma .故D 错误.故选A.【点睛】本题考查牛顿第二定律的应用和受力分析规律的应用,要注意明确加速度沿水平方向,竖直方向上的合力为零,分别对两个方向进行分析求解即可.4.如图所示的电路中,电源电动势为E ,内阻为r (212R r R R <<+),电表均视为理想电表。
闭合开关S 后,调节R 的阻值,使电流表A 1的示数增大了I ∆1,在这一过程中,电流表的A 2示数变化量的大小为I ∆2,电压表示数的变化量的大小为U ∆,则A .A 2增大,且I ∆2<I ∆1B .1U I ∆∆的大小变大C .电源的效率降低了1I r E ∆⋅ D .电源的输出功率一定增大了【答案】C【解析】【详解】 A .要使电流表A 1示数增大,则R 应减小;因总电流增大,则内阻及R 2分压增大,并联部分电压减小,则流过R 1的电流减小,因此流过R 的电流增大,即A 2的示数变大,因211()()()R I I I +=Z ]Z则21I I ∆>∆故A 错误。
B .根据1r E U U =+可得:r U U ∆=∆则11r U U r I I ∆∆==∆∆ 故其大小不会随R 的变化而变化;故B 错误。
C .电源的效率100%U Eη=⨯因电压的改变量为△I 1r ;故说明电源的效率降低了1I r E∆⋅;故D 正确。
D .当内外电阻相等时,电源的输出功率最大;因不明确内外电阻的关系,故无法明确功率的变化情况;故D 错误。
故选C 。
5.如图电路中,电源的内电阻为r ,R 1、R 3、R 4均为定值电阻,电表均为理想电表. 闭合电键S ,当滑动变阻器R 2的滑动触头向右滑动时,下列说法中正确的是( )A .电压表的示数变小B .电流表的示数变大C .电流表的示数变小D .R 1中电流的变化量一定大于R 4中电流的变化量【答案】C【解析】【分析】【详解】设R 1、R 2、R 3、R 4的电流分别为I 1、I 2、I 3、I 4,电压分别为U 1、U 2、U 3、U 4.干路电流为I 总,路端电压为U ,电流表电流为I .A .当滑动变阻器R 2的滑动触头P 向右滑动时,R 2变大,外电路总电阻变大,I 总变小,由U =E -Ir 可知,U 变大,则电压表示数变大.U 变大,I 3变大,故A 错误;BC .因I 4=I 总-I 3,则I 4变小,U 4变小,而U 1=U -U 4,U 变大,U 4变小,则U 1变大,I 1变大.又I 总=I +I 1,I 总变小,I 1变大,则I 变小.所以R 1两端的电压变大,电流表的示数变小.故B 错误,C 正确.D .由I 4=I 1+I 2,I 4变小,I 1变大,则I 2变小,则|△I 1|<|△I 2|,|△I 2|>|△I 4|,则不能确定R 1中电流的变化量与R 4中电流的变化量的大小.故D 错误.【点睛】本题是电路的动态分析问题;解题时按“局部→整体→局部”的顺序进行分析,采用总量的方法分析电流表示数的变化.6.如图,斜面体a 放置在水平地面上。
一根跨过光滑定滑轮的轻绳,左侧平行斜面与斜面 上的物块b 相连,另一端与小球c 相连,整个系统处于静止状态。
现对c 施加一水平力F ,使小球缓慢上升一小段距离,整个过程中a 、b 保持静止状态。
则该过程中( )A .轻绳的拉力一定不变B .a 、b 间的摩擦力一定增大C .地面对a 的摩擦力可能不变D .地面对a 的弹力一定减小【答案】D【解析】【详解】A .对小球c受力分析,如图所示:三个力构成动态平衡,由图解法可知,绳的拉力T F 逐渐增大,水平力F 逐渐增大,故A 错误;B .对b 物体分析,由于不知变化前b 所受摩擦力方向,故绳的拉力增大时,b 物体的滑动趋势无法确定,则a 、b 间的摩擦力可能增大或减小,故B 错误;CD .以a 、b 为整体分析,如图所示:由平衡条件可得:cos T f F θ=地sin T a b N F G G θ+=+地因绳的拉力T F 变大,可知a 与地间的摩擦力一定增大,地面对a 的弹力一定减小,故C 错误,D 正确;故选D 。
7.如图所示,质量为m 的物体放在斜面体上,在斜面体以加速度a 水平向右做匀加速直线运动的过程中,物体始终与斜面体保持相对静止,则斜面体对物体的摩擦力Ff 和支持力FN 分别为(重力加速度为g )( )A .Ff =m (gsinθ+acosθ) FN =m (gcosθ-asinθ)B .Ff =m (gsinθ+acosθ) FN=m (gcosθ-acosθ)C .Ff =m (acosθ-gsinθ) FN=m (gcosθ+asinθ)D .Ff =m (acosθ-gsinθ) FN =m (gcosθ-acosθ)【答案】A【解析】对物体受力分析,受重力、支持力、摩擦力(沿斜面向上),向右匀加速,故合力大小为ma ,方向水平向右;采用正交分解法,在平行斜面方向,有:F f -mg sin θ=ma cos θ,在垂直斜面方向,有:mg cos θ-F N =ma sin θ,联立解得:F f =m (g sin θ+a cos θ),F N =m (g cos θ-a sin θ);故A 正确,B,C,D 错误;故选A.【点睛】解决本题的关键能够正确地受力分析,抓住物体与斜面的加速度相等,结合牛顿第二定律进行求解.8.如图所示,A 、B 两物体质量均为m ,叠放在轻质弹簧上(弹簧下端固定于地面上)。
对A 施加一竖直向下、大小为F (F >2mg )的力,将弹簧再压缩一段距离(弹簧始终处于弹性限度内)而处于平衡状态。
现突然撤去力F ,设两物体向上运动过程中A 、B 间的相互作用力大小为F N 。
不计空气阻力,关于F N 的说法正确的是(重力加速度为g )( )A .刚撤去力F 时,F N =2mg FB .弹簧弹力大小为F 时,F N =2F C .A 、B 的速度最大时,F N =mgD .弹簧恢复原长时,F N =0 【答案】BCD【解析】【详解】A.在突然撤去F 的瞬间,AB 整体的合力向上,大小为F ,根据牛顿第二定律,有:F =2ma 解得:2F a m= 对物体A 受力分析,受重力和支持力,根据牛顿第二定律,有:F N -mg =ma 联立解得:2N F F mg =+,故A 错误; B.弹簧弹力等于F 时,根据牛顿第二定律得:对整体有:F -2mg =2ma 对A 有:F N -mg =ma联立解得:2N F F =,故B 正确; D.当物体的合力为零时,速度最大,对A ,由平衡条件得F N =mg ,故C 正确。
C.当弹簧恢复原长时,根据牛顿第二定律得:对整体有:2mg =2ma对A 有:mg -F N =ma联立解得 F N =0,故D 正确;9.如图,平行金属板中带电质点P 原处于静止状态,不考虑电流表和电压表对电路的影响,选地面的电势为零,当滑动变阻器R 4的滑片向b 端移动时,下列说法正确的是( )A .电压表读数减小B .小球的电势能减小C .电源的效率变高D .若电压表、电流表的示数变化量分别为U ∆ 和I ∆ ,则1U r R I ∆<+∆【答案】AD【解析】A 项:由图可知,R 2与滑动变阻器R 4串联后与R 3并联后,再由R 1串连接在电源两端;电容器与R 3并联;当滑片向b 移动时,滑动变阻器接入电阻减小,则电路中总电阻减小;由闭合电路欧姆定律可知,电路中电流增大;路端电压减小,同时R 1两端的电压也增大;所以并联部分的电压减小,故A 正确;B项:由A项分析可知并联部分的电压减小,即平行金属板两端电压减小,根据UEd =,平行金属板间的场强减小,小球将向下运动,由于下板接地即下板电势为0,由带电质点P 原处于静止状态可知,小球带负电,根据负电荷在电势低的地方电势能大,所以小球的电势能增大,故B错误;C项:电源的效率:=P IU UP IE Eη==出总,由A分析可知,路端电压减小,所以电源的效率变低,故C错误;D项:将R 1和电源等效为一个新的电源,新电源的内阻为r+R1,电压表测的为新电源的路端电压,如果电流表测的也为总电流,则1Ur RI∆=+∆总,由A分析可知3=R AI I I总∆∆+∆,由于总电流增大,并联部分的电压减小,所以R3中的电流减小,则I A增大,所以AI I∆>∆总,所以1AUr RI∆<+∆,故D正确.点晴:解决本题关键理解电路动态分析的步骤:先判断可变电阻的变化情况,根据变化情况由闭合电路欧姆定律E U IR=+确定总电流的变化情况,再确定路端电压的变化情况,最后根据电路的连接特点综合部分电路欧姆定律进行处理.10.在如图所示的电路中,灯L1、L2的电阻分别为R1、R2,滑动变阻器的最大阻值为R0,若有电流通过,灯就发光,假设灯的电阻不变,当滑动变阻器的滑片P由a端向b端移动时,灯L1、L2的亮度变化情况是()A.当时,灯L1变暗,灯L2变亮B.当时,灯L1先变暗后变亮,灯L2先变亮后变暗C.当时,灯L1先变暗后变亮,灯L2不断变暗D.当时,灯L1先变暗后变亮,灯L2不断变亮【答案】AD【解析】【详解】AB.当时,灯L2与滑动变阻器的左部分串联的总电阻一定大于右部分的电阻,当变阻器的滑片P由a端向b端移动时,电路总电阻增大,总电流减小,所以通过灯L1的电流减小,灯L1变暗,通过灯L2的电流变大,灯L2变亮,故A项符合题意,B项不合题意;CD.当时,灯L2与滑动变阻器的左部分串联的总电阻先大于后小于右部分的电阻,则当滑动变阻器的滑片P由a端向b端移动时,总电阻先增大,后减小,所以总电流先减小后增大,所以通过灯L1的电流先减小后增大,故灯L1先变暗后变亮,而通过L2的电流一直变大,灯L2不断变亮,故C项不合题意,D项符合题意.11.如图,水平地面上有一楔形物块a,其斜面上有一小物块b,b与平行于斜面的细绳的一端相连,细绳的另一端固定在斜面上.a与b之间光滑,a和b以共同速度在地面轨道的光滑段向左运动.当它们刚运行至轨道的粗糙段时可能是()A.绳的张力减小,斜面对b的支持力减小,地面对a的支持力减小B.绳的张力减小,斜面对b的支持力增加,地面对a的支持力不变C.绳的张力减小,斜面对b的支持力增加,地面对a的支持力增加D.绳的张力增加,斜面对b的支持力增加,地面对a的支持力增加【答案】BC【解析】【详解】在光滑段运动时,物块a及物块b均处于平衡状态,对a、b整体受力分析,受重力和支持力,二力平衡;对b受力分析,如图,受重力、支持力、绳子的拉力,根据共点力平衡条件,有:F cosθ-F N sinθ=0 ①;F sinθ+F N cosθ-mg=0 ②;由①②两式解得:F=mg sinθ,F N=mg cosθ;当它们刚运行至轨道的粗糙段时,减速滑行,系统有水平向右的加速度,此时有两种可能;AB.(一)物块a、b仍相对静止,竖直方向加速度为零,由牛顿第二定律得:F sinθ+F N cosθ-mg=0 ③;F N sinθ-F cosθ=ma④;由③④两式解得:F=mg sinθ-ma cosθ,F N=mg cosθ+ma sinθ;即绳的张力F将减小,而a对b的支持力变大;再对a、b整体受力分析竖直方向重力和支持力平衡,水平方向只受摩擦力,重力和支持力二力平衡,故地面对a支持力不变;故A项错误,B项正确.CD.(二)物块b相对于a向上加速滑动,绳的张力显然减小为零,物体具有向上的分加速度,是超重,因此a对b的支持力增大,斜面体和滑块整体具有向上的加速度,也是超重,故地面对a的支持力也增大;故C项正确,D项错误。