2016-2017学年山西省太原市七年级上学期数学期末试卷带答案

合集下载

(精选)山西省太原市七年级上期末考试数学试题有答案

(精选)山西省太原市七年级上期末考试数学试题有答案

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题 3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-3+1的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a +2b =5abB. 4m2n -2mn2=2mnC.5y2-3y2=2D. -12 +7=-53. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.9.536⨯1010美元B. 9.536⨯109美元C. 95.36⨯1010美元D. 9.536⨯1011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B 两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题 3 分,共15 分)把结果直接填在横线上.11. 若=3 是关于的方程2+a=4 的解,则a 的值为.12. 当=12,y=10 时,代数式(3y+5)-3(y+)的值为.13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q 分别是AM、AB 的中点.请从A、B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为.B.当点M 在直线AB 上时,则PQ 的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案 一、选择题 1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.﹣3的相反数是( )A .13- B .13 C .3- D .33.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯4.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 5.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a -7.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +1 8.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式10.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°12.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.15.若523m xy +与2n x y 的和仍为单项式,则n m =__________. 16.﹣213的倒数为_____,﹣213的相反数是_____. 17.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________18.计算:()222a -=____;()2323x x ⋅-=_____.19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.21.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).22.A 学校有m 个学生,其中女生占45%,则男生人数为________.23.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.24.若523m x y +与2n x y 的和仍为单项式,则n m =__________.三、解答题25.当x 取何值时,式子13x -的值比x+12的值大﹣1? 26.如图1,将一副直角三角板的两顶点重合叠放于点O ,其中一个三角板的顶点C 落在另一个三角板的边OA 上.已知90ABO DCO ∠=∠=,45AOB ∠=,60COD ∠=,作AOD ∠的平分线交边CD 于点E .(1)求∠BOE 的度数;(2)如图2,若点C 不落在边OA 上,当15COE ∠=时,求BOD ∠的度数.27.已知,,,A B C D 四点如图所示,请按要求画图.(1)画直线AB ;(2)若所画直线AB 表示一条河流,点,C D 分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB 上确定点P ,使得在点P 处开渠到两块稻田,C D 的距离之和最短,并说明理由.28.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少?(2)求此件商品的利润率.29.解方程:4x+2(x ﹣2)=12﹣(x+4)30.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.四、压轴题31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.33.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =, 12BC AB =,28AB x∴==.故答案为:C.【点睛】本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.5.A解析:A【解析】【分析】延长CD 交直线a 于E .由∠ADC =∠AED +∠DAE ,判断出∠ADC >70°即可解决问题.【详解】解:延长CD 交直线a 于E .∵a ∥b ,∴∠AED =∠DCF ,∵AB ∥CD ,∴∠DCF =∠ABC =70°,∴∠AED =70°∵∠ADC =∠AED +∠DAE ,∴∠ADC >70°,故选A .【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C解析:C【解析】【分析】分别表示出愿两位数和新两位数,进而得出答案.【详解】解:由题意可得,原数为:()10a b b ++;新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.故选C .【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C.【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.8.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.9.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意; D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B .本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.12.A解析:A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37 213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】 ﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.17.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.21.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.22.【解析】【分析】将男生占的比例:,乘以总人数就是男生的人数.【详解】男生占的比例是,则男生人数为55%,故答案是55%.【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其解析:55%m【解析】【分析】将男生占的比例:145%-,乘以总人数就是男生的人数.【详解】男生占的比例是145%55%-=,则男生人数为55%m ,故答案是55%m .【点睛】本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.23.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.【点睛】本题考查代数式的求值,利用整体代入思想解题是关键24.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.三、解答题25.25.【解析】【分析】根据题意列出方程,求出方程的解即可得到结果.【详解】根据题意得: x 11x 132-⎛⎫-+=- ⎪⎝⎭ ,即 x 11x 132---=- , 去分母得到:2(x ﹣1)﹣6x ﹣3=﹣6,去括号得:2x ﹣2﹣6x ﹣3=﹣6,移项合并得:﹣4x =﹣1,解得:x=0.25 ,则x=0.25时,13x -的值比12x + 的值大﹣1. 【点睛】本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.26.(1)75;(2)135.【解析】【分析】(1)根据角平分线的定义可求出∠AOE 的度数,根据角的和差关系即可求出∠BOE 的度数;(2)根据角的和差关系可求出∠DOE 的度数,根据角平分线的定义可求出∠AOD 的度数,进而根据角的和差关系即可求出∠BOD 的度数.【详解】(1)∵60AOD ∠=,OE 平分AOD ∠, ∴1302AOE AOD ∠=∠=∵45AOB ∠=∴75BOE AOE AOB ∠=∠+∠=(2)∵60COD ∠=,15COE ∠=,∴45DOE COD COE ∠=∠-∠=∵OE 平分AOD ∠,∴290AOD DOE ∠=∠=∵45AOB ∠=∴135BOD AOD AOB ∠=∠+∠=.【点睛】本题考查角平分线的定义及角的和与差,从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;熟练掌握定义是解题关键.27.(1)作图见解析;(2)作图见解析,理由:两点之间,线段最短.【解析】【分析】(1)根据直线的意义,画出直线AB 即可.(2)根据两点之间线段最短,连接CD,与直线AB 的交点即为所求.【详解】(1)直线AB 为所求.(2)画线段CD 交直线AB 于点P ,则点P 为所求.理由:两点之间,线段最短.【点睛】本题考查了直线的画法和线段公理即两点之间线段最短,解决本题的关键是正确理解题意,熟练掌握线段公理.28.(1)这件商品的成本价是150元;(2)此件商品的利润率是20%【解析】【分析】(1)设这件商品的成本价为x 元,根据售价=标价×80%,据此列方程.(2)根据利润率=100%⨯利润成本计算. 【详解】解:(1)设这件商品的成本价为x 元,由题意得,x(1+50%)×80%=180.解得:x=150,答:这件商品的成本价是150元;(2)利润率=180150150-×100%=20%.答:此件商品的利润率是20%.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.29.x=12 7【解析】【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【详解】去括号得:4x+2x﹣4=12﹣x﹣4,移项合并得:7x=12,解得:x=127.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1是解题的关键.此外还需要注意移项要变号.30.()1(42-8x)元,(28-4x)元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x)元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x元,则爱心气球的单价是(14-3x)元,根据题意得第②束气球的总价格是:x+3(14-3x)=x+42-9x=42-8x(元);第③束气球的总价格是:2x+2(14-3x)=2x+28-6x=28-4x(元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.四、压轴题31.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN =MP ﹣NP =12AP ﹣12BP =12(AP ﹣BP )=12AB =11, ∴线段MN 的长度不发生变化,其值为11.【点睛】 本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.33.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t +1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.。

山西省太原市七年级上期末考试数学试题有答案【精选】

山西省太原市七年级上期末考试数学试题有答案【精选】

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题 3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-3+1的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a +2b =5abB. 4m2n -2mn2=2mnC.5y2-3y2=2D. -12 +7=-53. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.9.536⨯1010美元B. 9.536⨯109美元C. 95.36⨯1010美元D. 9.536⨯1011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B 两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题 3 分,共15 分)把结果直接填在横线上.11. 若=3 是关于的方程2+a=4 的解,则a 的值为.12. 当=12,y=10 时,代数式(3y+5)-3(y+)的值为.13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q 分别是AM、AB 的中点.请从A、B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为.B.当点M 在直线AB 上时,则PQ 的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

山西省太原市七年级上期末考试数学试题有答案-精华版

山西省太原市七年级上期末考试数学试题有答案-精华版

太原市 2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含 10 小题,每题 3 分,共 30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a 2b 5abB. 4m2n 2mn22mnC.5y2y2-x x3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到 9536 亿美元.这个数据用科学记数法表示为()10美元9美元10美元11美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为 6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从 A、 B 两题中任选一题作答.A.由太原开往运城的 D5303 次列车,途中有 6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的 4 面小旗表示 4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含 5 个小题,每小题 3 分,共 15 分)把结果直接填在横线上.11. 若 x=3 是关于 x 的方程 2x+a=4 的解,则 a 的值为 .12. 当 x=12,y=10 时,代数式(3xy+5x)-3(xy+x)的值为 .13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点 B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是 .14. 如果一个零件的实际长度为 a,测量结果是 b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是 .15.已知线段 AB=16,AM=13BM,点 P、 Q 分别是 AM、 AB 的中点.请从 A、 B 两题中任选一题作答.A.如图,当点 M 在线段 AB 上时,则 PQ 的长为 .B.当点 M 在直线 AB 上时,则 PQ 的长为 .三、解答题(本大题含 8 个小题,共 55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

山西省太原市七年级上期末考试数学试题有答案-优质版

山西省太原市七年级上期末考试数学试题有答案-优质版

太原市 2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含 10 小题,每题 3 分,共 30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-31的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a 2b 5abB. 4m2n 2mn22mnC.5y23y2 2D. -12x 7x 5x3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到 9536 亿美元.这个数据用科学记数法表示为()A.9.5361010美元B. 9.536109美元C. 95.361010美元D. 9.5361011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为 6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从 A、 B 两题中任选一题作答.A.由太原开往运城的 D5303 次列车,途中有 6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的 4 面小旗表示 4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含 5 个小题,每小题 3 分,共 15 分)把结果直接填在横线上.11. 若 x=3 是关于 x 的方程 2x+a=4 的解,则 a 的值为 .12. 当 x=12,y=10 时,代数式(3xy+5x)-3(xy+x)的值为 .13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点 B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是 .14. 如果一个零件的实际长度为 a,测量结果是 b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是 .15.已知线段 AB=16,AM=13BM,点 P、 Q 分别是 AM、 AB 的中点.请从 A、 B 两题中任选一题作答.A.如图,当点 M 在线段 AB 上时,则 PQ 的长为 .B.当点 M 在直线 AB 上时,则 PQ 的长为 .三、解答题(本大题含 8 个小题,共 55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90° 2.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.53.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3805.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .8.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱9.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 10.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 11.单项式﹣6ab 的系数与次数分别为( ) A .6,1 B .﹣6,1C .6,2D .﹣6,212.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=213.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15014.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( )①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.单项式22ab 的系数是________.19.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.20.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.21.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.22.若方程11222m x x --=++有增根,则m 的值为____. 23.15030'的补角是______.24.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.25.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 26.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 27.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.28.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____. 29.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______.30.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.33.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.34.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.35.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.36.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.37.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.38.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案. 【详解】解:∵一个角的补角是130︒, ∴这个角为:50︒,∴这个角的余角的度数是:40︒. 故选:B . 【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.D解析:D 【解析】 【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案. 【详解】 根据题意可得:2.52 1.501-<-<-<<, 故答案为:D. 【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.3.D解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.4.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.5.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.8.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的9.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.10.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.11.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.13.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.14.A解析:A【解析】①项,因为AP =BP ,所以点P 是线段AB 的中点,故①项正确;②项,点P 可能是在线段AB 的延长线上且在点B 的一侧,此时也满足BP =12AB ,故②项错误;③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.故本题正确答案为①.15.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题16.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.17.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.19.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.20.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3解析:-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.21.2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解析:2; 0或3或6【解析】【分析】先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】解:∵第1次输出的结果为7+3=10,第2次输出的结果为12×10=5,第3次输出结果为5+3=8,第4次输出结果为12×8=4,第5次输出结果为12×4=2,第6次输出结果为12×2=1,第7次输出结果为1+3=4,第8次输出结果为12×4=2,……∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,∴第2018次输出的数是2,如图,若x=14x,则x=0;若x=12x+3,则x=6;若x=12(x+3),则x=3;故答案为:2、0或3或6.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.22.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键23.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.24.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.25.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.26.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.27.11cm.【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.28.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键29.5【解析】【分析】把方程的解代入方程即可得出的值.【详解】把代入方程,得∴故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.解析:5【解析】【分析】把方程的解代入方程即可得出m的值.【详解】x=代入方程,得把1m⨯-=141m=∴5故答案为5.【点睛】此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.30.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.32.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.33.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即。

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案
26.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD﹣∠BOF的值;
(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
3.在 , , , 这四个数中,最小的数是()
A. B. C. D.
4.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )
A.﹣9℃B.7℃C.﹣7℃D.9℃
5.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是( )
A.48°B.42°C.36°D.33°
17.定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为 (其中k是使 为奇数的正整数)并且运算重复进行,例如,n=66时,其“C运算”如下:
若n=26,则第2019次“C运算”的结果是_____.
18. __________.(用度、分、秒表示)
19.﹣30×( + )=_____.
(3)在(2)的条件下,当∠COF=14°时,t=秒.
27.如图1,线段AB的长为a.
(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)
(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M是BC的中点,点N是AD的中点,请求线段MN的长.
A.1
B.﹣1
C.±1
D.a≠1
二、填空题

太原市人教版七年级上册数学期末试卷及答案百度文库

太原市人教版七年级上册数学期末试卷及答案百度文库

太原市人教版七年级上册数学期末试卷及答案百度文库一、选择题1.对于方程12132x x+-=,去分母后得到的方程是( )A .112x x -=+B .63(12)x x -=+C .233(12)x x -=+D .263(12)x x -=+2.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .323.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .64.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( ) A .9a 9b -B .9b 9a -C .9aD .9a -5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°6.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2 B .8 C .6 D .0 7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣18.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 9.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( )A.0 B.1 C.12D.310.下列调查中,调查方式选择正确的是( )A.为了了解1 000个灯泡的使用寿命,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解生产的一批炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查11.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3 cm B.6 cm C.11 cm D.14 cm12.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.如图,点A在点B的北偏西30方向,点C在点B的南偏东60︒方向.则ABC∠的度数是__________.15.如图,点C在线段AB的延长线上,BC=2AB,点D是线段AC的中点,AB=4,则BD 长度是_____.16.单项式﹣22πa b的系数是_____,次数是_____.17.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 18.因式分解:32x xy -= ▲ . 19.16的算术平方根是 .20.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 21.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.23.钟表显示10点30分时,时针与分针的夹角为________.24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 三、解答题25.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______. 26.先化简, 再求值. 已知222213,222A x xy yB x y =-+=- ()1求2A B - ()2当3,1x y时,求2A B -的值27.计算(1)()547-- (2) 213(2)()24-⨯-28.某水果店用500元购进甲、乙两种水果共50kg ,这两种水果的进价、售价如下表所示 品名 甲种 乙种 进价(元/kg) 7 12 售价(元/kg)1016()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg ,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)29.解方程:x ﹣2=23x + 30.如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a ﹣30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 ,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC=2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.32.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.33.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x +-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.2.C解析:C 【解析】 【分析】把64代入转换器,根据要求计算,得到输出的数值即可. 【详解】64,是有理数, ∴继续转换, 38,是有理数, ∴继续转换,∵22,是无理数, ∴输出2, 故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.3.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.C解析:C 【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.5.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.B解析:B 【解析】 【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可. 【详解】 ∵2018÷4=504…2, ∴32018﹣1的个位数字是8, 故选B . 【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.7.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a2m b与ab是同类项,∴2m=1,∴m=12,故选C.【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.11.B解析:B【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.14.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.15.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.解:∵AB=4,BC =2AB ,∴B解析:【解析】【分析】先根据AB =4,BC =2AB 求出BC 的长,故可得出AC 的长,再根据D 是AC 的中点求出AD 的长度,由BD =AD ﹣AB 即可得出结论.【详解】解:∵AB =4,BC =2AB ,∴BC =8.∴AC =AB +BC =12.∵D 是AC 的中点,∴AD =12AC =6. ∴BD =AD ﹣AB =6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.16.﹣; 3.【解析】【分析】根据单项式的次数、系数的定义解答.【详解】解:单项式﹣的系数是﹣,次数是2+1=3,故答案是:﹣;3.【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】【分析】 根据单项式的次数、系数的定义解答.【详解】 解:单项式﹣22πa b 的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3.本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.17.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.18.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 20.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.21.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.22.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°.故答案为:135°.24.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、解答题25.(1)画图见解析,点A1(0,5)、B1(-1,2)、C1(3,2);(2)15.【解析】【分析】(1)将△ABC的三个顶点分别向上平移3个单位长度,然后再向右平移2个单位长度,连接各点,可以得到△A1B1C1,根据网格特点,找到各点横纵坐标即可找到△A1B1C1三个顶点的坐标;(2)四边形的面积可看成两个底为5,高为3的三角形的和,由三角形面积公式进行计算即可得. 【详解】(1) △A 1B 1C 1如图所示,点A 1(0,5)、B 1(-1,2)、C 1(3,2);(2)四边形A 1ACC 1的面积为:11535322⨯⨯+⨯⨯=15, 故答案为:15.【点睛】 本题考查了作图——平移变换,四边形的面积,熟练掌握平移的性质以及网格的结构特征是解题的关键.26.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】 解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(2264x xy y =--+;(2)当3,1xy 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.【点睛】本题主要考查整式的化简求值,解题的关键是利用法则化简整式.27.(1)8;(2)-1.【解析】【分析】(1)先计算括号内的减法,再进一步计算减法可得;(2)先计算乘方和括号内的减法,再计算乘法可得.【详解】解:()1原式()53538=--=+=;()2原式1414⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.28.(1) 购进甲种水果20千克,乙种水果30千克;(2) 175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克; ()()()210720*********(-⨯+-⨯=元).1800.150175(-⨯=元).答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.29.x =4【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:去分母得:3x ﹣6=x+2,移项合并得:2x =8,解得:x =4.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.(1)30,﹣6, 36;(2)6或﹣42;(3)当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.【解析】【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三种情况考虑,根据两点间的距离公式结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.【详解】(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×212+=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为6(06){3(6)6(636)tt t-<≤--<≤,(i)当0<t≤6时,点Q还在点A处,∴PQ=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.四、压轴题31.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 32.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.33.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

2016-2017太原市七上数学期末试卷

2016-2017太原市七上数学期末试卷

2016-2017学年山西省太原市七年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)1.(3分)下列各数中,比﹣1小的是()A.0 B.0.1 C.1 D.﹣522.(3分)如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A .B .C .D .3.(3分)下列计算结果正确的是()A.(﹣3)2=6 B.(﹣1)2017=﹣1 C.﹣2+3=﹣5 D.﹣|﹣3|=34.(3分)为了解太原市迎泽区老年人的健康状况,小颖准备采用抽样调查的方式,调查迎泽区部分老年人一年中生病的次数.下列抽取样本的方式中,最合理的是()A.在迎泽公园随机抽取100名老年人调查B.在迎泽区某医院随机抽取50名老年人调查C.在小颖家所在小区内,抽取10名老年邻居调查D.利用迎泽区公安局的户籍网,随机抽取本区10%的老年人调查5.(3分)下列各式运算结果正确的是()A.3x+3y=6xy B.﹣x+x=﹣2x C.9y2﹣6y2=3 D.﹣9a2b﹣9a2b=06.(3分)如图,数轴上的点A,点B分别表示有理数a、b.下列代数式的值为正数的是()A.a+b B.b﹣a C.a+b﹣1 D.ab7.(3分)下列方程的变形中,正确的是()A.将方程3x﹣5=x+1移项,得3x﹣x=1﹣5B.将方程﹣15x=5两边同除以﹣15,得x=﹣3C.将方程2(x﹣1 )+4=x去括号,得2x﹣2+4=xD .将方程=1去分母,得4x+3x=18.(3分)太原市文明办、太原市民政局等单位联合设置了“太原志愿者服务平台”,截止2016年12月1日,已有58800名志愿者进行了网上注册,58800用科学记数法表示为()A.5.88×105B.5.88×104C.58.8×103D.0.588×1059.(3分)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A .B .C .D .10.(3分)某商场购进一批服装,每件进价为1000元,由于换季滞销,商场决定将这种服装重新标价后按标价的7折销售.若想打折后每件服装仍能获利5%,该服装的标价应是()A.1500元B.1400元C.1300元D.1200元二、填空题(本大题含6个小题,每小题3分,共18分)11.(3分)为了解一批灯管的使用寿命,适合采用的调查方式是(填“普查”或“抽样调查”)12.(3分)如图,线段AB=16cm,点C是线段AB上一点.若点M是线段AC的中点,点N是线段BC 的中点,则线段MN的长度为cm.13.(3分)已知x+y=6,则代数式2x+2y﹣6的值等于.14.(3分)如图,一副三角尺放在桌面上且它们的直角顶点重合在点O处,若∠AOD=150°,则∠BOD 的度数为°.15.(3分)已知关于x的方程3x﹣4a=5﹣6x的解是x=1,则a的值为.16.(3分)已知:分别连接正方形对边的中点,能将正方形划分成四个面积相等的小正方形.用上述第1页(共3页)方法对一个边长为1的正方形进行划分:第1次划分得到图1,图1中共有5个正方形;第2次,划分图1左上角的正方形得到图2,图2中共有9个正方形;…;若每次都把左上角的正方形按上述方法依次划分下去.请从下列的A、B两题中任选一题作答.我选择题.A.第n次划分得到的图中共有个正方形.(用含n的式子表示)B.借助划分得到的图形,计算(+++…+)的结果为.(用含n的式子表示)三、解答题(本大题含8小题,共52分)写出必要的文字说明、演算步骤和推理过程)17.(15分)计算或化简求值:(1)2×(﹣3)+12×(﹣+)(2)1+9÷(﹣2﹣1)×(﹣)2(3)先化简,再求值:2(mn﹣3m2)﹣(mn+6m2)+2mn,其中m=1,n=﹣2.18.(8分)解方程:(1)3x﹣1=2(x﹣5)(2)=1﹣.19.(5分)如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.20.(5分)学校为了了解全校3000名学生每周进行课外阅读的时间,随机抽取若干名学生进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:请你根据“调查问卷”和统计图提供的信息,解答下列问题:(1)本次一共调查了名学生(2)补全条形统计图.扇形统计图中表示“B”的扇形的圆心角度数为°(3)请你根据此次调查结果,估计全校3000名学生中平均每周阅读时间在3小时以内的学生有多少人.21.(6分)学校为表彰在“2017年新年艺术节”书法比赛中成绩突出的学生,购买了30支钢笔和45支毛笔,共用1755元,每支毛笔比钢笔贵4元.钢笔和毛笔的单价各是多少元?22.(7分)某学校在一次环保知识宣传活动中,需印刷若干份调查问卷.印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:不收制版费,每印一份收印刷费0.12元.设共印刷调查问卷x份.(1)按甲种方式应收费元,按乙种方式应收费元;(用含x的代数式表示)(2)若共需印制500份调查问卷,通过计算说明选用哪种方式合算;(3)印刷多少份调查问卷时,甲、乙两种方式收费一样多?23.(7分)已知∠AOB=100°,射线OC在∠AOB的内部,射线OE,OF分别是∠AOC和∠COB的角平分线.第2页(共3页)(1)如图1,若∠AOC=30°,求∠EOF的度数;(2)请从下面A,B两题中任选一题作答,我选择题.A.如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为.B.若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC、∠BOC均是指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,直接写出∠EOF的度数.24.(9分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度;(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.请从下面A,B两题中任选一题作答,我选择题.A.设点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.B.设点M,N同向运动,当点M,N两点间的距离为14个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.第3页(共3页)。

【精编】山西省太原市七年级上期末考试数学试题有答案

【精编】山西省太原市七年级上期末考试数学试题有答案

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-3+1的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a +2b =5abB. 4m2n -2mn2=2mnC.5y2-3y2=2D. -12 +7=-53. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.9.536⨯1010美元B. 9.536⨯109美元C. 95.36⨯1010美元D. 9.536⨯1011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B 两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题 3 分,共15 分)把结果直接填在横线上.11. 若=3 是关于的方程2+a=4 的解,则a 的值为.12. 当=12,y=10 时,代数式(3y+5)-3(y+)的值为.13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q 分别是AM、AB 的中点.请从A、B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为.B.当点M 在直线AB 上时,则PQ 的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

太原市2016-2017学年第一学期七年级期末考试数学试题

太原市2016-2017学年第一学期七年级期末考试数学试题

19.( 本题 5 分)
如图,在同一平面内有四个点 A , B , C , D. (1) 利用尺规,接下面的要求作图.要求:不写画法,保
D•
留作图痕迹,不必写结论.①作射线 AC; ②连接 A.
.c
AB , BC , BD , 线段 BD 与射线 AC 相交于点。;
③在线段 AC 上作一条线段 σ,使 σ = AC-BD.
元,按乙种方式应收费
元; (用含 z 的代数式表示)
••
(2) 若共需印制 500 份调查问卷,通过计算说明选用哪种方式合算 ;
(3) 印刷多少份调查问卷时,甲、乙两种方式收费一样多?

F
赳E
23.( 本题 7 分)
悔问
已知 ζ AOB = 100. ,射线。c 在 ζ AOB 的内部,射线 OE , OF 分别是 ζ AOC 和 ζ COB
A
B
C
-3 -2 -1 0 1 2 3 4 5 6 7
(1)线段 AB 的长度为
个单位长度,线段 AC 的长度为
个单位长度;
(2) 点 P 是数轴上的一个动点,从 A 点出发,以每秒 1 个单位长度的速度,沿数轴的正方向
运动,运动时间为 t 秒 (0ζ t ~ 8). 用含 t 的代数式表示:线段 BP 的长为
生有多少人.
兮i

21. (本题 6 分)
学校为表彰在 "2017 年新年艺术节"书法比赛中成绩突出的学生,购买了 30 支钢笔和 45 支
E肖
毛笔,共用 1755 元,每支毛笔比钢笔贵 4 元.钢笔和毛笔的单价各是多少元?


七年级数学试卷 第 4 页(共 6 页)

2016-2017年七年级上学期期末考试数学试题及答案

2016-2017年七年级上学期期末考试数学试题及答案

2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。

山西省太原市七年级上期末考试数学试题有答案-最新精品

山西省太原市七年级上期末考试数学试题有答案-最新精品

太原市 2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含 10 小题,每题 3 分,共 30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a 2b 5abB. 4m2n 2mn22mnC.5y2y2-x x3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到 9536 亿美元.这个数据用科学记数法表示为()10美元9美元10美元11美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为 6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从 A、 B 两题中任选一题作答.A.由太原开往运城的 D5303 次列车,途中有 6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的 4 面小旗表示 4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含 5 个小题,每小题 3 分,共 15 分)把结果直接填在横线上.11. 若 x=3 是关于 x 的方程 2x+a=4 的解,则 a 的值为 .12. 当 x=12,y=10 时,代数式(3xy+5x)-3(xy+x)的值为 .13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点 B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是 .14. 如果一个零件的实际长度为 a,测量结果是 b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为 5.0cm,测量结果是 4.8cm,则本次测量的相对误差是 .15.已知线段 AB=16,AM=13BM,点 P、 Q 分别是 AM、 AB 的中点.请从 A、 B 两题中任选一题作答.A.如图,当点 M 在线段 AB 上时,则 PQ 的长为 .B.当点 M 在直线 AB 上时,则 PQ 的长为 .三、解答题(本大题含 8 个小题,共 55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案

太原市人教版七年级上册数学期末试卷及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1063.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( ) A .3秒B .4秒C .5秒D .6秒4.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .325.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3807.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查 D .对某品牌灯管寿命的调查 8.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯9.下列四个数中最小的数是( ) A .﹣1 B .0 C .2 D .﹣(﹣1) 10.若2m ab -与162n a b -是同类项,则m n +=( ) A .3B .4C .5D .711.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .112.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.14.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 15.9的算术平方根是________16.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________17.分解因式: 22xyxy +=_ ___________18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.20.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 22.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.23.钟表显示10点30分时,时针与分针的夹角为________.24.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.三、解答题25.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使50AOC ∠=︒,将一直角三角板的直角项点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.()1如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.此时BON ∠=__ 度;()2如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由;()3将图1中的三角板绕点O 按每秒5︒的速度沿逆时针方向旋转一周,在旋转的过程中,若第t 秒时,,,OA OC ON 三条射线恰好构成相等的角,则t 的值为__ (直接写出结果). 26.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.27.先化简,再求值:2(x 2y+xy 2)﹣2(x 2y ﹣x )﹣2xy 2﹣2y ,其中x=﹣2,y=2. 28.解方程:()2(-2)-3419(1)x x x -=-29.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x元,请用含x的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.30.如图,在数轴上有A 、B 、C 、D 四个点,分别对应的数为a ,b ,c ,d ,且满足a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.(1)填空:a =、b =、c =、d =;(2)若线段AB 以3 个单位/ 秒的速度向右匀速运动,同时线段CD 以1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C ,D 两个端点重合),若BD=2AC ,求t 的值;(3)在(2)的条件下,线段AB ,线段CD 继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使BC=3AD ?若存在,求t 的值;若不存在,说明理由.四、压轴题31.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

【精品】七年级数学上册试卷:山西省太原市七年级上期末考试数学试题含答案

【精品】七年级数学上册试卷:山西省太原市七年级上期末考试数学试题含答案

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-31的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a 2b 5abB. 4m2n 2mn22mnC.5y23y2 2D. -12 753. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.9.5361010美元B. 9.536109美元C. 95.361010美元D. 9.5361011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B 两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题3 分,共15 分)把结果直接填在横线上.11. 若=3 是关于的方程2+a=4 的解,则a 的值为.12. 当=12,y=10 时,代数式(3y+5)-3(y+)的值为.13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q 分别是AM、AB 的中点.请从A、B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为.B.当点M 在直线AB 上时,则PQ 的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

山西省太原市七年级上期末考试数学试题有答案-优选

山西省太原市七年级上期末考试数学试题有答案-优选

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-31的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a 2b 5abB. 4m2n 2mn22mnC.5y23y2 2D. -12x 7x 5x3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.9.5361010美元B. 9.536109美元C. 95.361010美元D. 9.5361011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B 两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题3 分,共15 分)把结果直接填在横线上.11. 若x=3 是关于x 的方程2x+a=4 的解,则a 的值为.12. 当x=12,y=10 时,代数式(3xy+5x)-3(xy+x)的值为.13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q 分别是AM、AB 的中点.请从A、B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为.B.当点M 在直线AB 上时,则PQ 的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

太原市人教版七年级上册数学期末试卷及答案-百度文库

太原市人教版七年级上册数学期末试卷及答案-百度文库

太原市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40°C .50°D .90°2.4 =( ) A .1B .2C .3D .43.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .16.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .87.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 8.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =9.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元10.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5B .2或10C .2.5D .211.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17.若523m xy +与2n x y 的和仍为单项式,则n m =__________.18.已知23,9n mn aa -==,则m a =___________.19.16的算术平方根是 .20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)23.规定:用{m}表示大于m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}=-1等;用[m] 表示不大于m 的最大整数,例如[72]= 3,[2]= 2,[-3.2]=-4,如果整数x 满足关系式:3{x}+2[x]=23,则x =________________.24.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=_____.三、解答题25.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③16的平方根.(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.26.温州市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题.(1)这次共抽取了名学生进行调查.(2)用时在2.45~3.45小时这组的频数是_ ,频率是_ .(3)如果该校有1000名学生,请估计一周电子产品用时在0.45~3.45小时的学生人数. 27.某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示品名甲种乙种进价(元/kg)712售价(元/kg)1016()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)28.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:时段8:00~9:0010:00~11:0012:00~13:0014:00~15:0016:00~17:00客流量(人)-21+33-12 +21+54(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?29.先化简,再求值:已知2(3xy﹣x2)﹣3(xy﹣2x2)﹣xy,其中x,y满足|x+2|+(y﹣3)2=0.30.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足2|2|(8)0a c++-=,1b=,(1)a=_____________,c=_________________;(2)若将数轴折叠,使得A点与B点重合,则点C与数表示的点重合.(3)在(1)(2)的条件下,若点P为数轴上一动点,其对应的数为x,当代数式||||||x a x b x c-+-+-取得最小值时,此时x=____________,最小值为__________________.(4)在(1)(2)的条件下,若在点B处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点C处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请表示出甲、乙两小球之间的距离d(用t的代数式表示)四、压轴题31.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.32.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a++|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.33.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案. 【详解】解:∵一个角的补角是130︒, ∴这个角为:50︒,∴这个角的余角的度数是:40︒. 故选:B . 【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.B解析:B 【解析】 【分析】根据算术平方根的概念可得出答案. 【详解】解:根据题意可得:,故答案为:B. 【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .5.D解析:D 【解析】 【分析】根据题意列出算式,计算即可得到结果. 【详解】解:∵A ,B ﹣1,∴A ,B ﹣1)=1; 故选:D . 【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.6.D解析:D 【解析】 【分析】 【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. 2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8. 故选D . 【点睛】本题考查数字类的规律探索.7.B解析:B【解析】 【分析】根据不等式的基本性质逐一进行分析判断即可. 【详解】A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;D.由 a<b ,当a>0,c ≠0时,a b c c <,当a<0时,a bc c>,故D 选项错误, 故选B. 【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.8.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.9.D解析:D 【解析】试题分析:设盈利的这件成本为x 元,则135-x=25%x ,解得:x=108元;亏本的这件成本为y 元,则y -135=25%y ,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.10.A解析:A 【解析】 【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案. 【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50, 解得:t=2;(2)当两车相遇后,两车又相距50千米时, 根据题意,得120t+80t=450+50, 解得t=2.5.综上,t 的值为2或2.5, 故选A. 【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.11.C解析:C 【解析】 【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断. 【详解】根据数轴可知:a <b <0<c ,且|a |>|c |>|b | 则A. a +b <0正确,不符合题意; B. a +c <0正确,不符合题意; C .a -b>0错误,符合题意; D. b -c<0正确,不符合题意; 故选C. 【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.D解析:D 【解析】 【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.16.10°.【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE =∠B ′PE ,∠CPF =∠C ′PF ,∴2∠B ′PE+2∠C ′PF ﹣∠B ′PC ′=180°,即2(∠B ′PE+∠C ′PF )﹣∠B ′PC ′=180°,又∵∠EPF =∠B ′PE+∠C ′PF ﹣∠B ′PC ′=85°,∴∠B ′PE+∠C ′PF =∠B ′PC ′+85°,∴2(∠B ′PC ′+85°)﹣∠B ′PC ′=180°,解得∠B ′PC ′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键. 17.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.18.27【解析】【分析】首先根据an =9,求出a2n =81,然后用它除以a2n−m ,即可求出am 的值.【详解】解:∵an =9,∴a2n =92=81,∴am =a2n÷a2n−m =81÷3=2解析:27【解析】首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.【详解】解:∵a n =9,∴a 2n =92=81,∴a m =a 2n ÷a 2n−m =81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 20.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,a2∴=,b3=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.21.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.22.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a ≠b ,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)①2;②-3;③±2;(2)图见解析,﹣3<﹣2<2<2.【解析】【分析】(1)利用算术平方根、平方根、立方根定义计算即可求出;(2)将各数表示在数轴上,按照从小到大顺序排列即可.【详解】解(1)①2的算术平方根是2;②﹣27的立方根是﹣3;③16=4,4的平方根是±2.(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣22<2.【点睛】此题考查了实数大小比较,以及实数与数轴,熟练掌握运算法则是解本题的关键.26.(1)400. (2)104; 0.26.(3)540【解析】【分析】(1)根据频数分布直方图得到各个时间段的频数,计算即可;(2)从频数分布直方图找出用时在2.45−3.45小时的频数,求出频率;(3)利用样本估计总体即可.【详解】解:(1)这次共抽取的学生数为:40+72+104+92+52+40=400(人),故答案为:400;(2)用时在2.45−3.45小时这组的频数为104,频率为:1040.26400,故答案为:104;0.26;(2)1000×4072104540400(人).答:估计1000名学生一周电子产品用时在0.45~3.45小时的学生人数为540人.【点睛】本题考查的是读频数分布直方图的能力和利用统计图获取信息的能力以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.27.(1) 购进甲种水果20千克,乙种水果30千克;(2) 175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克;()()()210720*********(-⨯+-⨯=元).1800.150175(-⨯=元).答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.28.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.【解析】【分析】(1)通过题目和表格中的数据,可以算出各个时间段的客流量,将各个时间段的客流量相加算出平均数,来估算出一天的客流量,从而估算出一周的客流量.(2)根据问题设出男顾客与女顾客购买服装的套数,再根据一天的客流量可算出问题的答案.(3)根据第二问提供的信息,可以估算出一周的营业额.【详解】(1)根据题目和表格可得8:00~9:00的客流量为:200-21=179(人)10:00~11:00的客流量为:200+33=233(人)12:00~13:00的客流量为:200-12=188(人)14:00~15:00的客流量为:200+21=221(人)16:00~17:00的客流量为:200+54=254(人)这几个时间段的客流量平均数为:(179+233+188+221+254)÷5=1075÷5=215(人)则一天的客流量为:215×(18-8)=215×10=2150(人)故一周的客流量为:2150×7=15050≈15100=1.51×104(人)(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,15x+20(135-x)=2150,解得,x=110,135-x=135-110=25.故这一天卖出男装25套,女装110套.(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元所以此店一周的营业额约为:[(25×120)+(110×80)]×7=[3000+8800]×7=11800×7=82600(元)故此店一周的营业额约为82600元.【点睛】本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位. 29.2xy+4x 2,4.【解析】【分析】把所给的整式去括号后合并同类项得到最简结果,再利用非负数的性质求出x 、y 的值,代入即可求解.【详解】解:原式=6xy ﹣2x 2﹣3xy+6x 2﹣xy ,=2xy+4x 2,∵|x+2|+(y ﹣3)2=0,∴x+2=0且y ﹣3=0,解得:x=﹣2、y=3,则原式=2×(﹣2)×3+4×(﹣2)2,=﹣12+16,=4.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练运用整式的加减运算法则把所给的整式化为最简是解本题的关键.30.(1)2-,8;(2)9-;(3)1;10;(4)82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧=⎨----=->⎩. 【解析】【分析】(1)根据两个非负数的和为零则这两个数均为零即可得出答案;(2)先求出AB =3,则折点为AB 的中点,故折点表示的数为B 点表示的数减去12AB ,即折点表示的数为:1-12×3=-0.5,再求出C 点与折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9;(3)当P 与点B 重合时,即当x =b 时,|x -a |+|x -b |+|x -c |取得最小值;(4)分小球乙碰到挡板之前和之后,即当0≤t ≤3.5,t >3.5时,表示出甲、乙两小球之间的距离d 即可.【详解】解:(1)2|2|(8)0a c ++-=,|2|0a +≥,2(8)0c -≥20a ∴+=,80c -=2a ∴=-,8c =;故答案为:2-,8;(2)因为2a =-,1b =,所以AB =1-(-2)=3,将数轴折叠,使得A 点与B 点重合,所以对折点为AB 的中点,所以对折点表示的数为:1-12×3=-0.5, C 点与对折点的距离为:8-(-0.5)=8.5,所以C 点对应的数为-0.5-8.5=-9,即点C 与数-9表示的点重合,故答案为:-9;(3)当x =b =1时,|x -a |+|x -b |+|x -c |=|x -(-2)|+|x -1|+|x -8|=10为最小值;故答案为:1;10;(4)t 秒后,甲的位置是2t --,乙的位置是82(0 3.5)12( 3.5)26( 3.5)t t t t t -≤≤⎧⎨+-=->⎩, 82(2)10(0 3.5)26(2)34( 3.5)t t t t d t t t t ----=-≤≤⎧∴=⎨----=->⎩. 【点睛】此题考查是列代数式,数轴上两点之间的距离,掌握数轴上两点之间的距离求法是解决问题的关键.四、压轴题31.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a 、x 的值,再根据第9个数是-2可得b =-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a +b =a +b +x ,解得x =6,a +b +x =b +x -1,∴a =-1,所以数据从左到右依次为6、-1、b 、6、-1、b ,第9个数与第三个数相同,即b =-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1. 故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k 个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k 的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.32.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6) 【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标.【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.33.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。

初一数学上册 山西省太原市七年级上期末考试数学试题含答案

初一数学上册 山西省太原市七年级上期末考试数学试题含答案

太原市2017—2018 学年第一学期七年级期末考试数学试卷一、选择题(本大题含10 小题,每题3 分,共30 分)下列各题给出的四个选项中,只有一项符合题目要求,请选出并填入下列相应的位置.1.计算-3+1的结果是()A. -4B. -2C. 2D. 42. 下列计算正确的是()A. 3a +2b =5abB. 4m2n -2mn2=2mnC.5y2-3y2=2D. -12x +7x =-5x3. 小颖调查该校九年级一班全体学生某周完成部分学科作业的时间,并把平均时间统计如下:为了更清楚地描述上述数据,还可以选择()A. 条形统计图B. 扇形统计图C.折线统计图或扇形统计图D. 条形统计图或扇形统计图4.下列几何图形与相应语言描述相符的个数有()A. 1 个B. 2 个C. 3 个D. 4 个5.穿过漫漫黄沙,越过滚滚碧涛,一个个蓝图节点正化为繁华的商贸重镇,纵横交织在古老的欧亚大陆.在“一带一路”建设中,贸易合作硕果累累.2016 年,我国与沿线国家贸易总额达到9536 亿美元.这个数据用科学记数法表示为()A.9.536⨯1010美元B. 9.536⨯109美元C. 95.36⨯1010美元D. 9.536⨯1011美元6. 过某个多边形一个顶点的所有对角线,将这个多边形分为6 个三角形,这个多边形是()A.九边形B.八边形C.七边形D.六边形7. 如图是由几个大小相同的小正方体搭成的几何体从上面看到的平面图形,正方形中的数字表示该位置小正方体的个数,则从左侧看到的该几何体的平面图形是()8.设分别表示三种不同的物体,如图(1),(2)所示,天平保持平衡,如果要使得图(3)中的天平也保持平衡,那么在右盘中应该放的个数为()A.6 个B.5 个C.4 个D.3 个9. 已知∠AOB=70°,∠BOC=30°,OM 平分∠AOB,ON 平分∠BOC,则∠MON 的度数等于()A.50°B.20°C.20°或50°D.40°或50°10. 请从A、B 两题中任选一题作答.A.由太原开往运城的D5303 次列车,途中有6 个停车站,这次列车的不同票价最多有()A.28 种B.15 种C.56 种D.30 种B.如图是一张跑步示意图,其中的4 面小旗表示4 个饮水点,跑步者在经过某个饮水点时需要改变的方向的角度最大,这个饮水点是()A.1B.2C.3D.4二、填空题(本大题含5 个小题,每小题3 分,共15 分)把结果直接填在横线上.11. 若x=3 是关于x 的方程2x+a=4 的解,则a 的值为.12. 当x=12,y=10 时,代数式(3xy+5x)-3(xy+x)的值为.13. 如图,在利用量角器画一个40°的∠AOB 的过程中,对于“先找点B,再画射线O B.”这一步骤的画图依据,小王同学认为是两点确定一条直线;小李同学认为是两点之间,线段最短. 说法正确的同学是.14. 如果一个零件的实际长度为a,测量结果是b,则称|b-a|为绝对误差,|b-a|a为相对误差.现有一零件实际长度为5.0cm,测量结果是4.8cm,则本次测量的相对误差是.15.已知线段AB=16,AM=13BM,点P、Q 分别是AM、AB 的中点.请从A、 B 两题中任选一题作答.A.如图,当点M 在线段AB 上时,则PQ 的长为 .B.当点M 在直线AB 上时,则PQ 的长为.三、解答题(本大题含8 个小题,共55 分)解答时应写出必要的文字说明、演算步骤或推理过程。

山西省太原市 学年第一学期七年级期末考试数学试题及答案

山西省太原市 学年第一学期七年级期末考试数学试题及答案
学校为了了解全校 3000 名学生每周进行课外阅读的时间,随机抽取若干名学生进行问卷
调查:
调查问卷
你平均每周进行课外阅读的时间是
问值含最小值不含最大位. )
A.O - 1 小时
B.l - 2 小时
学校将调查的结果制成如下的两幅统计图.
. (单项选择题,选项中的每组时
C.2 - 3 小时
0.3 小时以土
v
的角平分线.

AE C
AE C

m
F
F
b
A
只『

B

B
i~
图l
图2
(1)如图 1 ,若 ζ AOC = 30. ,求 ζ EOF 的度数;


B
因3
古主
(2) 请从下面 A , B 两题中任选一题作答,我选择
叩·
A. 如图 2 ,若射线。c 在 ζ AOB 的内部绕点。旋转,则 ζ EOF 的度数为
16.A.(4n + 1)
B.l- 去
三、解答题(本大题含 8 小题,共 52 分)
17. (本题 15 分)计算或化简求值: 解:(1)原式= - 6 + (- 9) + 10 = - 15 + 10
.. .... 3 分
.. 4 分 .. 5 分
9 (2) 原式= 1 + 9 -;- (- 3) x 9 = 1 + (- 3) x
18.( 本题 8 分)解方程:
(1) 3x - 1二1.
19.( 本题 5 分)
如图,在同一平面内有四个点 A , B , C , D. (1) 利用尺规,按下面的要求作图.要求:不写画法,保
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山西省太原市七年级(上)期末数学试卷一、选择题(本大题含10个小题,每小题3分,共30分)1.(3分)下列各数中,比﹣1小的是()A.0 B.0.1 C.1 D.﹣522.(3分)如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A.B.C.D.3.(3分)下列计算结果正确的是()A.(﹣3)2=6 B.(﹣1)2017=﹣1 C.﹣2+3=﹣5 D.﹣|﹣3|=34.(3分)为了解太原市迎泽区老年人的健康状况,小颖准备采用抽样调查的方式,调查迎泽区部分老年人一年中生病的次数.下列抽取样本的方式中,最合理的是()A.在迎泽公园随机抽取100名老年人调查B.在迎泽区某医院随机抽取50名老年人调查C.在小颖家所在小区内,抽取10名老年邻居调查D.利用迎泽区公安局的户籍网,随机抽取本区10%的老年人调查5.(3分)下列各式运算结果正确的是()A.3x+3y=6xy B.﹣x+x=﹣2x C.9y2﹣6y2=3 D.﹣9a2b﹣9a2b=06.(3分)如图,数轴上的点A,点B分别表示有理数a、b.下列代数式的值为正数的是()A.a+b B.b﹣a C.a+b﹣1 D.ab7.(3分)下列方程的变形中,正确的是()A.将方程3x﹣5=x+1移项,得3x﹣x=1﹣5B.将方程﹣15x=5两边同除以﹣15,得x=﹣3C.将方程2(x﹣1 )+4=x去括号,得2x﹣2+4=xD.将方程=1去分母,得4x+3x=18.(3分)太原市文明办、太原市民政局等单位联合设置了“太原志愿者服务平台”,截止2016年12月1日,已有58800名志愿者进行了网上注册,58800用科学记数法表示为()A.5.88×105B.5.88×104C.58.8×103D.0.588×1059.(3分)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.10.(3分)某商场购进一批服装,每件进价为1000元,由于换季滞销,商场决定将这种服装重新标价后按标价的7折销售.若想打折后每件服装仍能获利5%,该服装的标价应是()A.1500元B.1400元C.1300元D.1200元二、填空题(本大题含6个小题,每小题3分,共18分)11.(3分)为了解一批灯管的使用寿命,适合采用的调查方式是(填“普查”或“抽样调查”)12.(3分)如图,线段AB=16cm,点C是线段AB上一点.若点M是线段AC的中点,点N是线段BC的中点,则线段MN的长度为cm.13.(3分)已知x+y=6,则代数式2x+2y﹣6的值等于.14.(3分)如图,一副三角尺放在桌面上且它们的直角顶点重合在点O处,若∠AOD=150°,则∠BOD的度数为°.15.(3分)已知关于x的方程3x﹣4a=5﹣6x的解是x=1,则a的值为.16.(3分)已知:分别连接正方形对边的中点,能将正方形划分成四个面积相等的小正方形.用上述方法对一个边长为1的正方形进行划分:第1次划分得到图1,图1中共有5个正方形;第2次,划分图1左上角的正方形得到图2,图2中共有9个正方形;…;若每次都把左上角的正方形按上述方法依次划分下去.请从下列的A、B两题中任选一题作答.我选择题.A.第n次划分得到的图中共有个正方形.(用含n的式子表示)B.借助划分得到的图形,计算(+++…+)的结果为.(用含n 的式子表示)三、解答题(本大题含8小题,共52分)写出必要的文字说明、演算步骤和推理过程)17.(15分)计算或化简求值:(1)2×(﹣3)+12×(﹣+)(2)1+9÷(﹣2﹣1)×(﹣)2(3)先化简,再求值:2(mn﹣3m2)﹣(mn+6m2)+2mn,其中m=1,n=﹣2.18.(8分)解方程:(1)3x﹣1=2(x﹣5)(2)=1﹣.19.(5分)如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.20.(5分)学校为了了解全校3000名学生每周进行课外阅读的时间,随机抽取若干名学生进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:请你根据“调查问卷”和统计图提供的信息,解答下列问题:(1)本次一共调查了名学生(2)补全条形统计图.扇形统计图中表示“B”的扇形的圆心角度数为°(3)请你根据此次调查结果,估计全校3000名学生中平均每周阅读时间在3小时以内的学生有多少人.21.(6分)学校为表彰在“2017年新年艺术节”书法比赛中成绩突出的学生,购买了30支钢笔和45支毛笔,共用1755元,每支毛笔比钢笔贵4元.钢笔和毛笔的单价各是多少元?22.(7分)某学校在一次环保知识宣传活动中,需印刷若干份调查问卷.印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:不收制版费,每印一份收印刷费0.12元.设共印刷调查问卷x份.(1)按甲种方式应收费元,按乙种方式应收费元;(用含x的代数式表示)(2)若共需印制500份调查问卷,通过计算说明选用哪种方式合算;(3)印刷多少份调查问卷时,甲、乙两种方式收费一样多?23.(7分)已知∠AOB=100°,射线OC在∠AOB的内部,射线OE,OF分别是∠AOC和∠COB的角平分线.(1)如图1,若∠AOC=30°,求∠EOF的度数;(2)请从下面A,B两题中任选一题作答,我选择题.A.如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为.B.若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC、∠BOC均是指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,直接写出∠EOF的度数.24.(9分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为个单位长度,线段AC的长度为个单位长度;(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP 的长为个单位长度,点P在数轴上表示的数为;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.请从下面A,B两题中任选一题作答,我选择题.A.设点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x 的值,并直接写出此时点M在数轴上表示的数.B.设点M,N同向运动,当点M,N两点间的距离为14个单位长度时,求x 的值,并直接写出此时点M在数轴上表示的数.2016-2017学年山西省太原市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)1.(3分)下列各数中,比﹣1小的是()A.0 B.0.1 C.1 D.﹣52【解答】解:∵0>﹣1,0.1>﹣1,1>﹣1,﹣52<﹣1,∴在这些数中,比﹣1小的是﹣52;故选:D.2.(3分)如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A.B.C.D.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:A.3.(3分)下列计算结果正确的是()A.(﹣3)2=6 B.(﹣1)2017=﹣1 C.﹣2+3=﹣5 D.﹣|﹣3|=3【解答】解:A、原式=9,不符合题意;B、原式=﹣1,符合题意;C、原式=1,不符合题意;D、原式=﹣3,不符合题意,故选:B.4.(3分)为了解太原市迎泽区老年人的健康状况,小颖准备采用抽样调查的方式,调查迎泽区部分老年人一年中生病的次数.下列抽取样本的方式中,最合理的是()A.在迎泽公园随机抽取100名老年人调查B.在迎泽区某医院随机抽取50名老年人调查C.在小颖家所在小区内,抽取10名老年邻居调查D.利用迎泽区公安局的户籍网,随机抽取本区10%的老年人调查【解答】解:利用迎泽区公安局的户籍网,随机抽取本区10%的老年人调查,调查具有随机性,广泛性,故选:D.5.(3分)下列各式运算结果正确的是()A.3x+3y=6xy B.﹣x+x=﹣2x C.9y2﹣6y2=3 D.﹣9a2b﹣9a2b=0【解答】解:(A)3x与3y不是同类项,不能合并,故A错误;(B)﹣x+x=0,故B错误;(C)9y2﹣6y2=3y2,故C错误故选:D.6.(3分)如图,数轴上的点A,点B分别表示有理数a、b.下列代数式的值为正数的是()A.a+b B.b﹣a C.a+b﹣1 D.ab【解答】解:由数轴上a和b的位置可知,﹣2<﹣1<a<0<b<1,所以a+b<0;b﹣a>0;a+b﹣1<0;ab<0.故选:B.7.(3分)下列方程的变形中,正确的是()A.将方程3x﹣5=x+1移项,得3x﹣x=1﹣5B.将方程﹣15x=5两边同除以﹣15,得x=﹣3C.将方程2(x﹣1 )+4=x去括号,得2x﹣2+4=xD.将方程=1去分母,得4x+3x=1【解答】解:∵将方程3x﹣5=x+1移项,得3x﹣x=1+5,∴选项A不符合题意;∵将方程﹣15x=5两边同除以﹣15,得x=﹣,∴选项B不符合题意;∵将方程2(x﹣1 )+4=x去括号,得2x﹣2+4=x,∴选项C符合题意;∵将方程=1去分母,得4x+3y=12,∴选项D不符合题意.故选:C.8.(3分)太原市文明办、太原市民政局等单位联合设置了“太原志愿者服务平台”,截止2016年12月1日,已有58800名志愿者进行了网上注册,58800用科学记数法表示为()A.5.88×105B.5.88×104C.58.8×103D.0.588×105【解答】解:58800用科学记数法表示为5.88×104,故选:B.9.(3分)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.【解答】解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,无法组成长方体,故此选项不合题意;故选:C.10.(3分)某商场购进一批服装,每件进价为1000元,由于换季滞销,商场决定将这种服装重新标价后按标价的7折销售.若想打折后每件服装仍能获利5%,该服装的标价应是()A.1500元B.1400元C.1300元D.1200元【解答】解:设该服装标价为x元,由题意,得0.7x﹣1000=1000×5%,解得:x=1500.故选:A.二、填空题(本大题含6个小题,每小题3分,共18分)11.(3分)为了解一批灯管的使用寿命,适合采用的调查方式是抽样调查(填“普查”或“抽样调查”)【解答】解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.12.(3分)如图,线段AB=16cm,点C是线段AB上一点.若点M是线段AC的中点,点N是线段BC的中点,则线段MN的长度为8cm.【解答】解:∵点M是线段AC的中点,点N是线段BC的中点,∴MN=MC﹣NC=AC﹣BC=(AC﹣BC)=AB,∵AB=16cm,∴MN=8cm.故答案为:8.13.(3分)已知x+y=6,则代数式2x+2y﹣6的值等于6.【解答】解:∵x+y=6,∴2x+2y﹣6=2(x+y)﹣6=2×6﹣6=6,故答案为:6.14.(3分)如图,一副三角尺放在桌面上且它们的直角顶点重合在点O处,若∠AOD=150°,则∠BOD的度数为120°.【解答】解:由图可得,∠AOB、∠COD都是直角,则∠BOD=360°﹣90°﹣150°=120°.故答案为:120.15.(3分)已知关于x的方程3x﹣4a=5﹣6x的解是x=1,则a的值为1.【解答】解:把x=1代入方程3x﹣4a=5﹣6x得:3﹣4a=5﹣6,解得:a=1,故答案为:1.16.(3分)已知:分别连接正方形对边的中点,能将正方形划分成四个面积相等的小正方形.用上述方法对一个边长为1的正方形进行划分:第1次划分得到图1,图1中共有5个正方形;第2次,划分图1左上角的正方形得到图2,图2中共有9个正方形;…;若每次都把左上角的正方形按上述方法依次划分下去.请从下列的A、B两题中任选一题作答.我选择A题.A.第n次划分得到的图中共有4n+1个正方形.(用含n的式子表示)B.借助划分得到的图形,计算(+++…+)的结果为1﹣.(用含n的式子表示)【解答】解:我选择第A题,故答案为:A,(1)∵第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,∴第n次可得(4n+1)个正方形,故答案为:4n+1;(2)根据题意得:原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣,故答案为:1﹣.三、解答题(本大题含8小题,共52分)写出必要的文字说明、演算步骤和推理过程)17.(15分)计算或化简求值:(1)2×(﹣3)+12×(﹣+)(2)1+9÷(﹣2﹣1)×(﹣)2(3)先化简,再求值:2(mn﹣3m2)﹣(mn+6m2)+2mn,其中m=1,n=﹣2.【解答】解:(1)原式=﹣6﹣9+10=﹣5;(2)原式=1+9÷(﹣3)×=1﹣=;(3)原式=2mn﹣6m2﹣mn﹣6m2+2mn=3mn﹣12m2,当m=1,n=﹣2时,原式=﹣6﹣12=﹣18.18.(8分)解方程:(1)3x﹣1=2(x﹣5)(2)=1﹣.【解答】解:(1)去括号,得3x﹣1=2x﹣10移项,得3x﹣2x=﹣10+1合并同类项,得x=﹣9(2)去分母,得2(x﹣3)=6﹣3(x﹣1)去括号,得2x﹣6=6﹣3x+3移项,得2x+3x=6+3+6合并同类项,得5x=15系数化为1,得x=319.(5分)如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是两点之间,线段最短.【解答】解:(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.20.(5分)学校为了了解全校3000名学生每周进行课外阅读的时间,随机抽取若干名学生进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:请你根据“调查问卷”和统计图提供的信息,解答下列问题:(1)本次一共调查了200名学生(2)补全条形统计图.扇形统计图中表示“B”的扇形的圆心角度数为126°(3)请你根据此次调查结果,估计全校3000名学生中平均每周阅读时间在3小时以内的学生有多少人.【解答】解:(1)调查的总人数是60÷30%=200(人),故答案是:200;表示“B”的扇形的圆心角度数是360°×(1﹣30%﹣20%﹣15%)=126°.故答案是:126;(3)3000×(1﹣15%﹣20%)=1950(人).答:计全校3000名学生中平均每周阅读时间在2小时以内的学生有1950人.21.(6分)学校为表彰在“2017年新年艺术节”书法比赛中成绩突出的学生,购买了30支钢笔和45支毛笔,共用1755元,每支毛笔比钢笔贵4元.钢笔和毛笔的单价各是多少元?【解答】解:设钢笔的单价为x元,则毛笔的单价为(x+4)元,根据题意得:30x+45(x+4)=1755,解得:x=21,∴x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.22.(7分)某学校在一次环保知识宣传活动中,需印刷若干份调查问卷.印刷厂有甲、乙两种收费方式,甲种方式:收制版费6元,每印一份收印刷费0.1元;乙种方式:不收制版费,每印一份收印刷费0.12元.设共印刷调查问卷x份.(1)按甲种方式应收费(0.1x+6)元,按乙种方式应收费0.12x元;(用含x的代数式表示)(2)若共需印制500份调查问卷,通过计算说明选用哪种方式合算;(3)印刷多少份调查问卷时,甲、乙两种方式收费一样多?【解答】解:(1)甲种收费方式应收费(0.1x+6)元,乙种收费方式应收费0.12x故答案为:(0.1x+6),0.12x;(2)把x=500代入甲种收费方式应收费0.1x+6=56元,把x=500代入乙种收费方式应收费0.12x=60元,因为56<60,所以选甲种印刷方式合算;(3)根据题意可得:0.1x+6=0.12x,解得:x=300.答:印刷300份时,两种收费方式一样多.23.(7分)已知∠AOB=100°,射线OC在∠AOB的内部,射线OE,OF分别是∠AOC和∠COB的角平分线.(1)如图1,若∠AOC=30°,求∠EOF的度数;(2)请从下面A,B两题中任选一题作答,我选择A题.A.如图2,若射线OC在∠AOB的内部绕点O旋转,则∠EOF的度数为50°.B.若射线OC在∠AOB的外部绕点O旋转(旋转中∠AOC、∠BOC均是指小于180°的角),其余条件不变,请借助图3探究∠EOF的大小,直接写出∠EOF的度数.【解答】解:(1)∵∠AOB=100°,∠AOC=30°,∴∠BOC=∠AOB﹣∠AOC=70°,∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=∠AOC=15°,∠FOC=∠BOC=35°,∴∠EOF=∠EOC+∠FOC=15°+35°=50°;(2)A.∵OE,OF分别是∠AOC和∠COB的角平分线,∴∠EOC=∠AOC,∠FOC=∠BOC,∴∠EOF=∠EOC+∠FOC=∠AOB=×100°=50°;B.①射线OE,OF只有1个在∠AOB外面,如图3①,∠EOF=∠FOC﹣∠COE=∠BOC﹣∠AOC=(∠BOC﹣∠AOC)=∠AOB=×100°=50°.②射线OE,OF2个都在∠AOB外面,如图3②,∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°﹣∠AOB)=×260°=130°.故∠EOF的度数是50°或130°.故答案为:A,50°.24.(9分)如图,在数轴上点A,点B,点C表示的数分别为﹣2,1,6.(1)线段AB的长度为3个单位长度,线段AC的长度为8个单位长度;(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP 的长为点P在点B的左边为3﹣t,点P在点B的右边为t﹣3个单位长度,点P在数轴上表示的数为﹣2+t;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.请从下面A,B两题中任选一题作答,我选择A题.A.设点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x 的值,并直接写出此时点M在数轴上表示的数.B.设点M,N同向运动,当点M,N两点间的距离为14个单位长度时,求x 的值,并直接写出此时点M在数轴上表示的数.【解答】解:(1)线段AB的长度为1﹣(﹣2)=3个单位长度,线段AC的长度为6﹣(﹣2)=8个单位长度;(2)线段BP的长为:点P在点B的左边为3﹣t,点P在点B的右边为t﹣3,点P在数轴上表示的数为﹣2+t;(3)A.依题意有4x+3x=8+13,解得x=3.此时点M在数轴上表示的数是﹣2+4×3=10.B.①点M、N同时向左出发,依题意有4x﹣3x=14﹣8,解得x=6.此时点M在数轴上表示的数是﹣2﹣4×6=﹣26;②点M、N同时向右出发,依题意有4x﹣3x=14+8,解得x=22.此时点M在数轴上表示的数是﹣2+4×22=86.故答案为:3,8;点P在点B的左边为3﹣t,点P在点B的右边为t﹣3;﹣2+t.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。

相关文档
最新文档