隧道开挖炮眼布置图

合集下载

小隧道掘进爆破设计-

小隧道掘进爆破设计-

铁泰铁精矿管道线路隧道工程设计施工方案设计人:吴子山审核人:武俊平批准人:刘让承德铭德爆破工程有限公司二零一七年十月二十六日一、工程概述及周边环境铁泰铁精矿管道线路起点位于滦平铁泰选厂,终端位于承钢料场,线路总长29km。

管道线路经过滦平县和双滦区,其中滦平县敷设里程14.6km,双滦区敷设里程14.4km,管道沿线经过二道沟门、闫庄等16个自然村。

线路主要埋设于伊逊河河道、滦河河道及514县道边。

主要线路工程包含:新修2条长度分别为410米和330米的隧道;管线穿越伊逊河4次,穿越滦河1次;管线穿越514县道5次,利用公路桥孔穿越公路33次;利用铁路桥孔穿越承钢运输铁路线1次。

设计新修2号隧道和3号隧道,其中,2号隧道入口位于付营村,出口位于孙家营村,隧道长度410米,隧道为三心拱形,隧道净宽2.7米,净高2.7米,隧道设计坡度3.186%;现施工3号隧道入口位于承德市双滦区,西地乡孙家营村,出口位于孙营村,隧道为三心拱形,隧道宽2.7米,墙高1.8米,拱高0.9米,隧道长度300米,隧道设计坡度0%,爆破区中心半径700米居民区,入口50米上方有普通高压线通过。

水文地质条件:爆破区位处燕山山脉,属于低山丘陵裂隙水区,地势北高南低,沟谷切割较深,受水面积不大,地貌形态属低山区,第四系沉积物,花岗岩、片麻岩系列、围岩致密坚硬,岩石坚固系数,f=8-10;裂隙节理少,开挖深度位于当地侵蚀基准面以上。

不会出现大的涌水现象。

二、掘进方案选择依据岩石地质条件和所给断面积,使用年限,根据以往工程经验,选择断面为2.7×2.7、(6.59m2 ),一次全断面爆破施工。

掏槽方式选直孔桶型掏槽。

凿岩机选择4台气腿式风动凿岩机(一台备用),型号YT28。

炸药选用2#岩石乳化炸药(药卷规格:φ=32mm H=200mm G=200g)。

雷管选用毫秒延期导爆管雷管。

爆破开挖循环进尺2m/设计要求(1)巷道断面符合设计要求,不欠挖、少超挖,巷道的方向和坡度符合设计要求;(2)炮眼利用率高,炸药和雷管等爆破材料消耗低;(3)爆下的岩石块度适中,爆堆集中,便于装岩;(4)对围岩的破坏小,以利于巷道的支护和稳定。

隧道爆破方案

隧道爆破方案

目录一、工程概况 (1)1.工程简介 (1)2.重要工程数量 (2)3.重要技术标准 (2)二、钻爆设计控制要点 (3)三、减震措施 (3)四、重要部位爆破设计 (4)1.Ⅲ级围岩采用上下台阶法钻爆施工 (4)2.Ⅳ级围岩采用台阶法弧形导坑留核心土钻爆施工 (6)3.V级围岩CRD法钻爆施工 (12)4.V级围岩紧急停车带采用双侧壁导坑法开挖 (15)五、爆破施工程序及作业标准 (20)六、爆破震动监测 (23)七、施工中异常现象应对措施 (24)隧道爆破施工方案一、工程概况1.工程简介⑴宝鸡至坪坎高速公路项目位于陕西西部的宝鸡市南部秦岭山区, 路线起于银洞峡隧道进口, 在神沙河设连续钢构桥后折向南设15.5公里专长隧道翻越秦岭, 沿车道河河谷向南, 经岩湾、田坝, 止于凤县坪坎, 向南与拟建定汉线坪坎至汉中(石门)公路衔接。

路线全长42.558公里。

其中秦岭专长隧道建筑规模(双向六车道)目前居世界第一, 是全线控制性工程, 我标段承建此隧道出口段施工, 设计为分离式隧道。

左线长3735m, 设计纵坡1.65%, 起讫里程为ZK164+265~ZK168+000;右线长3790m, 设计纵坡 1.65%, 起讫里程为K164+350~K168+140,设计净空为1400cm*500cm, 洞门形式均采用端墙式。

⑵地形、地貌及工程地质本标段跨越秦岭中山地貌区(K164+265~K168+150)和车道河河谷(K168+150-k168+217)。

中山地貌区属于花岗岩侵蚀地貌, 山高坡陡, 高耸的山峰与深切峡谷相间出现, 地形起伏大, “V”型谷发育, 相对高差一般在400m以上, 河流纵比降大, 河流冲积物重要为漂卵石, 两岸谷坡上基岩裸露;车道河属汉江一级支流褒河的支流。

发源于秦岭南坡, 由北向南流经岩湾、核桃坝、坪坎, 在留坝县江西营北侧汇入褒河。

车道河两岸谷坡较缓, 呈阶梯状, 谷坡上发育高阶地, 谷底宽阔平坦, 发育一级阶地, 冲积物为漂卵石和砂砾土, 厚度不超过15m。

隧道爆破

隧道爆破

隧道爆破
隧道区内地表水系不发育,隧道工程区域未见地表径流,地表溪流受 降水影响较大,即雨季水量较大,旱季则流量变小,这些水流对隧道 洞身施工有较大的影响。地下水为表层残坡积中的孔隙水及基岩风化 带内的裂隙水,水量大小受孔隙率、裂隙发育程度及季节变化影响。 隧道穿越部位潜水的埋深较深,排泄条件和水位变化受大气降水影响 较大。基岩裂隙水主要为风化裂隙水,主要分布于基岩表部的节理、 裂隙中,含水层厚度较小,水位变化大,多为潜水,局部具承压性。 地下水影响隧道施工,施工时要注意排水、预防涌水。
5
底板眼
合计
15
72
100
MS9
2
0.4
6
29.15
6、围岩炮眼分布及药量布置
Ⅴ级围岩炮眼分布及药量布置表
装药 孔深 雷管段 序号 炮眼名称 炮眼个数 (cm) 别 每孔药卷 单孔装药 总装药量 量(kg) (kg) 数 2 MS3 0.4 1 爆破孔1 16 110 6.4 2 110 MS5 0.4 2 爆破孔2 15 6 2 110 0.4 3 爆破孔3 19 MS7 7.6 0.75 100 0.15 4 周边眼 21 MS8 3.15 2 100 MS9 0.4 5 底板眼 15 6 合计 72 29.15
5、炮眼布置图
环形开挖预留核心土炮眼布置图
6、围岩炮眼分布及药量布置
Ⅴ级围岩炮眼分布及药量布置表
装药 孔深 雷管段 序号 炮眼名称 炮眼个数 (cm) 别 每孔药卷 单孔装药 总装药量 量(kg) (kg) 数 2 MS3 0.4 1 爆破孔1 16 110 6.4 2 3 4 爆破孔2 爆破孔3 周边眼 15 19 21 110 110 100 MS5 MS7 MS8 2 2 0.75 0.4 0.4 0.15 6 7.6 3.15

隧道爆破设计(图文各级围岩及开挖方式钻爆眼布置)

隧道爆破设计(图文各级围岩及开挖方式钻爆眼布置)
其作用是炸出较平整的隧道断面轮廓。 按其所在位置的不同,又可分为帮眼、顶眼、 底眼。
第三节 掏槽眼布置 一、斜眼掏槽
斜眼掏槽(incline cut)的特点是掏槽眼与 开挖断面斜交,它的种类很多,如锥形掏槽、爬 眼掏槽、各种楔形掏槽、单向掏槽等。隧道爆破 中常用的是垂直楔形掏槽和锥形掏槽。
(一)斜眼掏槽布置形式
三、岩石隧道爆破特点
➢ 临空面少 ➢ 要求高 ➢ 地质条件复杂
第二节 炮眼的种类及作用
➢ 掏槽眼 ➢ 辅助眼 ➢ 周边眼
图5-1 炮眼布置图
一、掏槽眼
针对隧道开挖爆破只有一个临空面的特点,为 提高爆破效果,宜先在开挖断面的适当位置(一 般在中央偏下部)布置几个装药量较多的炮眼,如 图5-1中的红色炮眼。
散。
b
L=0.5~0.7B
α
B
❖ 复式楔形掏槽 为了提高循环进尺,可以采用复式楔形掏槽
➢锥形掏槽
这种炮眼呈角锥形布置,各掏槽眼以相等或近 似相等的角度向工作面中心轴线倾斜,眼底趋于 集中,但互相并不贯通,爆破后形成锥形槽。
根据掏槽炮眼数目的不同分为三角锥、四角锥、 五角锥等。
(a)三角锥 (b)四角锥 (c)五角锥
Aad
A
2
a
a
2
(
d
2
)
d
φ 中空眼
d 炮眼
一般情况下不大于空眼直径的2倍 常用的空眼直径为102mm,眼距采用18~20cm
➢ 空眼数目
空眼数目越多掏槽爆破效果越好;炮眼越深空 眼数目越多。 ➢ 装药
装药长度占全眼长的70~90%
➢ 辅助抛掷
将空眼加深100~200mm,并在空眼底部放1~2 卷炸药。 ➢ 钻眼质量

爆破工程--隧道爆破

爆破工程--隧道爆破

炸药:是指在一定条件下,能够发生快速化学反应,放出巨大能量,生成大量气体产物,显示爆炸效应的化合物或混合物。

炸药爆炸的三要素:1、反应过程中释放大量的热能;2、反应过程必须高速进行;3、反应必须产生大量的气体.炸药的氧平衡及对爆生有毒气体的影响:炸药的氧平衡可分为如下三种情况:1、零氧平衡:炸药中的氧含量恰好能够使碳、氢元素完全氧化;2、正氧平衡:炸药中的含氧量使全部碳、氢元素完全氧化后还有剩余;3、负氧平衡:炸药中的含氧量不足以将碳、氢元素完全氧化.零氧平衡炸药中的碳氢含量与氧的含量恰好匹配,即碳、氢元素被完全氧化成二氧化碳和水,没有多余的氧,也没有多余的碳、氢;负氧平衡炸药的含氧量不足,将发生不完全氧化,爆炸中出现CO ,甚至产生固态碳;而正氧平衡炸药的含氧量过多,易出现NO 和NO2。

炸药的起爆:炸药在外能作用下发生爆炸上网过程称为起爆.感度:是指炸药在外能作用下发生爆炸的难易程度。

爆速:是爆轰波传播的速度爆热:炸药反应放出的热量V Q ,根据能量守恒定律有()()V Q V V P P e e +-+=-20020221爆温:爆轰产物温度t k k t 122+=,其中t 为爆温。

爆力:是表示炸药爆炸对周围介质整体的压缩、破坏和抛移等作用的能力。

猛度:是表示炸药爆炸对其邻近介质产生局部的压缩、粉碎或击穿作用的能力.殉爆:一个药包爆炸后,引起与它不相接触的邻近药包爆炸的现象。

殉爆距:主动药包引爆从动药包的最大距离.冲击波:是一种在介质中以超声速传播的并具有压力突然跃升,然后缓慢下降特征的一种高强度的压力波.爆轰波:是指在炸药中传播的、伴有化学反应区的特殊形式的冲击波。

两者的区别:1.、传播介质:爆轰波在一定量的炸药中传播,而冲击波一般不定;2、爆轰波有化学反应,而冲击波没有;3、爆轰波有能量补充,而冲击波没有;4、爆轰波状态参数恒定,而冲击波状态参数退。

分析影响炸药爆速的因素:1、药包直径。

山东城际铁路隧道爆破开挖技术交底(光面爆破,三台阶七步开挖,附示意图)

山东城际铁路隧道爆破开挖技术交底(光面爆破,三台阶七步开挖,附示意图)
⑶定位开眼
按炮眼布置正确钻孔,掏槽眼和周边眼的钻孔精度要高,开眼误差控制在3cm和5cm以内。
⑷钻眼
司钻工要熟悉炮眼布置,要能熟练地操纵凿岩机械,特别是钻周边眼,一定要由有较丰富经验的老钻工司钻,以确保周边眼准确的外插角,尽可能使两茬炮交界处台阶小于15cm。同时,要根据眼口的位置、岩石的凹凸程度调整炮眼深度,以保证炮眼底在同一平面上。周边眼与辅助眼的眼底在同一垂直面上,掏槽眼要加深10cm。炮眼的深度和角度要符合设计要求。掏槽眼眼口间距误差和眼底间距误差不得大于5cm;辅助眼眼口排拒、行距误差均不得大于10cm;周边眼眼口位置误差不得大于5cm,眼底不得超出开挖断面轮廓线15cm。
施工技术交底
施工单位名称:中国建筑股份有限公司武黄城际铁路二标项目经理部一分部
交底日期:编号:HBCJ WHSG2JD-ZY-
工程名称
魏家庄隧道
里程/桩号
DK14+460~DK15+200
设计文件图号
施工部位
开挖爆破
技术交底内容:
爆破工艺流程、爆破方法、爆破注意事项。
技术措施:
1.光面爆破工艺流程
工艺流程见光面爆破工艺流程图。
6
雷管用量

217
7
炸药用量
Kg
311.73
8
比钻眼数
个/m2
1.42
9
比钻眼量
m/m3
1.50
10
比装药量
Kg/m3
0.79
11
单位体积岩体耗雷管量
发/m3
0.24
12
预计炮眼利用率
%
93
6.7正台阶光面爆破施工
采用正台阶法掘进。爆破器材选用2#岩石硝铵炸药、普通毫秒延期电雷管起爆系统,毫秒微差有序起爆。

隧道光面爆破布眼装药

隧道光面爆破布眼装药

罗望六标隧道光面爆破报告
罗望六标纳上1号、2号、3号隧道围岩为4级、5级。

现阶段纳上1号、2号隧道围岩为4级,岩体为中风化泥质粉砂岩夹泥岩,节理裂隙发育,岩体破碎,呈裂隙块状结构,围岩自稳能力差,且存在夹泥岩,故给开挖带来诸多不便,特别是对超欠挖的影响较大。

经我部长期研究,结合隧道特殊地质情况,我部与施工班组长期共同探索,周边眼残眼保存率有所提升,下面对炮眼布置间距及用药量进行简单介绍。

炮眼布置情况:周边眼布设46个,拱顶26个,拱腰两侧各5个,拱脚两侧各5个,拱顶炮眼间距35cm,拱腰间距40cm,拱脚45cm;抵抗线的距离为40cm,二圈眼间距控制在75cm;三圈辅助眼炮眼间距为1m,扩槽眼炮眼间距为60cm,掏槽眼60cm呈矩形分布。

具体炮眼间距布置图如下:
炸药用量情况:炸药使用32#乳化炸药,周边眼拱顶单孔用药3/2节,分段装药用红线连接,拱腰为单孔3/2节,分段装药用红线连接,拱脚单孔2节,分
段装药红线连接;二圈辅助眼拱顶5节,拱腰5节,拱脚5节;三圈眼单孔拱顶6节,拱腰6节,拱底7节;扩槽眼10节,掏槽眼11节。

上述用药量为进尺4m 用药量,分段装药,分段爆破,毫秒管分段一般为5、7、9、11、13、15几个段位,常用5段起炮,毫秒管单次用量一般为170发,炸药用量为168kg。

4级围光面爆破4m进尺炮眼药量分配表。

隧道矿井水工隧洞钻孔台车打炮眼布置选择说明课件PPT

隧道矿井水工隧洞钻孔台车打炮眼布置选择说明课件PPT

隧道掘进中钻孔台车的炮眼爆破
❖ 铁路、公路隧道与地下矿山常见的小断面水平巷道相比,通 常具有以下特点。
❖ (1)隧道断面一般都较大,高度和跨度常达8m左右,特别 是复线隧道,跨度可超出10m以外;
❖ (2)隧道位置多处于复杂多变的地质条件下,尤其遇到浅 埋地段(埋深小于跨度2倍的隧道称为浅埋隧道)时,岩体 风化破碎,而且渗水、滴水严重,给钻眼爆破作业增加了困 难;
❖ 1.单向掏槽 掏槽眼排列成一行,并朝一个方 向倾斜。按炮眼部位和倾斜方向,可分为顶 部掏槽、底部掏槽、侧向掏槽和扇形掏槽。
❖ 2.锥形掏槽 各掏槽眼以相等或近似相 等的角度向工作面中心轴线倾斜,眼底 趋于集中,但互相并不贯通,爆破后形 成锥形槽。眼数为3~6个,通常呈三角 锥形、正锥形和圆锥形(图7—3)。
❖ 混合掏槽是指两种以上的掏槽方式混合使 用。在遇到岩石特别坚硬或巷道断面较大 时,可以采用如图7—11所示的复式楔形 掏槽或桶形与锥形混合掏槽。
二、周边孔与辅助孔布置
❖ 周边孔通常布置在距开挖断面边缘约0.2m处, 周边孔的底部要朝巷道轮廓线方向倾斜。当巷 道穿过坚硬岩体时,孔底可达到或稍超出轮廓 线位置;岩体中等坚固时,孔底距轮廓线约 0.1m;在松软岩体中,炮孔不必倾斜,孔底 距轮廓线的距离与孔口处相同。周边孔之间的 距离约为0.6~1.0m,拱形巷道的转角处,炮 孔要密一些,孔距取小值。
❖ 正锥形掏槽在平巷掘进中使用较多,圆 锥形掏槽多用于竖井掘进。锥形掏槽眼 有关参数视岩石性质而定,施工中可参 考表7—1所列数据选取。
❖ 3.楔形掏槽 通常由两排相对称的倾斜炮眼组 成,爆破后形成楔形槽。楔形掏槽可分为垂直 楔形掏槽和水平楔形掏槽两种(图7—4)。
❖ 楔形掏槽常用于中硬以上的均质岩石,且隧道 矿井断面大于4m2的工作面中。当隧洞岩层有 水平层理时,宜采用水平楔形掏槽,以利于钻 眼和爆破。

隧洞光面爆破施工指导

隧洞光面爆破施工指导

水工隧洞光面爆破施工指导一.概况福安市湾坞供水工程主洞形式采用城门型,断面尺度为2.2 m×2。

5m、2。

0m×2。

2m。

从设计资料分析,洞身段均以Ⅰ~Ⅱ、Ⅲ类围岩为主,隧洞进出口为Ⅳ类围岩。

二、施工放样在隧洞开挖前应对原有导线点进行复测,确保导线点的正确性。

隧洞开挖后应及时进行导线加密测量,并对加密导线点进行平差计算。

隧洞施工时应及时快速进行隧洞中心线的放样工作,并做好隧洞高程腰线以便施工时进行高程控制。

三.施工方案隧洞开挖采用钻爆法(其工艺流程见图2—1),以新奥法理论指导施工.采用全断面开挖,光面爆破。

采用直线型掏槽,按设计开挖轮廓线布置周边炮眼、辅助眼。

工作面同时开动2台YT-27型气腿式凿岩机钻眼作业.2#岩石硝铵炸药(有水地段采用乳化炸药),周边眼采用中φ25光爆小药卷,8#纸雷管簇联非电毫秒导爆雷管起爆。

图2-1 钻爆法开挖施工工艺流程框图3。

1具体施工技术方案㈠施工围堰隧洞口临近河道地段河道涨水时易倒灌洞内,隧洞施工时必须在其洞口附近设置施工围堰.围堰施工方法根据实际情况(了解当地最大洪水)采用两种方案。

第一:在河道两岸原河堤的位置加高培厚。

采用人工配合机械,人工编织袋装土筑围堰,填筑粘土心墙闭气,编织袋粘土用农用车或人力车运至工作面,用人工堆叠。

围堰的高度根据现场情况确定,堰顶高出水面至少1。

5m,围堰的顶宽1.2m,底宽3。

5~4m,坡度为1:0.8;第二:堤脚及基础若为砂砾透水层,在堤坝迎水坡铺设防渗膜布,防止水流渗入。

隧洞口附近没有河道地段在下暴雨时雨水易倒灌洞内,隧洞施工时必须在其洞口附近设置施工围堰。

围堰采用麻袋装土方式施工。

㈡施工排水①在洞脸顶部设排水沟下设集水井,挖一排水沟把水统一引至集水井处用潜水泵抽排,采用4—6 寸潜水泵抽水,用橡胶软管接至围堰3m 以外.②隧洞内渗水的抽排方案:工作面在出口处的向上坡方向开挖隧洞时,在洞室一侧开设排水沟,利用排水沟自流排水,排水沟随工作面的掘进开凿,并经常清理,必要时,设置水沟盖板。

隧道全断面开挖光面爆破工法(附示意图)

隧道全断面开挖光面爆破工法(附示意图)

隧道全断面开挖光面爆破工法(附示意图)隧道全断面开挖光面爆破工法光面爆破是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、轮廓线符合设计要求的一种控制爆破技术。

隧道全断开挖光面爆破工法,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。

它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。

一、光面爆破作用原理光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。

尽管在理论上还不甚成熟,但在定性分析方面已有共识。

一般认为,炸药起爆时,对岩体产生两种效应:一是药包爆炸瞬时高温高压气体形成的冲击波效应;二是爆炸气体膨胀做功所起的作用。

光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面二、光面爆破的技术要点要使光面爆破取得良好效果,一般需掌握以下技术要点:1.根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。

2.严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。

3.周边眼宜使用小直径药卷和低猛度、低爆速的炸药。

为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。

4.采用毫秒微差有序起爆。

要安排好开挖程序,使光面爆破具有良好的临空面。

(一)周边眼常用参数的选择1.周边眼间距E它是直接控制开挖轮廓面平整度的主要因素。

一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。

对于节理较发育、层理明显以及开挖轮廓要求较高的地下工程,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。

2.最小抵抗线W(光面层厚度)W直接影响光面爆破效果和爆碴块度。

隧道工程钻爆法开挖技术

隧道工程钻爆法开挖技术

二、辅助眼
位于掏槽眼与周边眼之间的炮眼称为辅助眼。 如图5-1中的黑色炮眼。
其作用是扩大掏槽眼炸出的槽腔,为周边眼爆 破创造临空面。
三、周边眼
周边眼(perimeter hole)。沿隧道周边布置 的炮眼称为周边眼。如图5-1中的蓝色炮眼。
其作用是炸出较平整的隧道断面轮廓。 按其所在位置的不同,又可分为帮眼、顶眼、 底眼。
一般取值范围为1.0---2.0,在孔距较小情 况下一般取大值。在岩石抗压强度较大时,一 般取小值。
❖ 装药量
周边眼的装药量通常以线装药密度表示。 施工中应根据孔距、光面层厚度、石质及炸 药种类等综合考虑确定装药量。
在光面层单独爆落时,周边眼的线装药密度 一般为0.15kg/m~0.25kg/m,全断面一次起爆 时,一般可达0.30kg/m~0.35kg/m。
楔形掏槽炮眼的对数视围岩类别而定:一般 Ⅳ级围岩,掏槽眼2对;Ⅲ围岩,掏槽眼2-3对;Ⅱ级围岩,掏槽眼3对;Ⅰ级围岩,掏 槽眼3--4对
➢楔形掏槽
❖ 楔形掏槽的分类及适用条件
分为:水平楔形掏槽和垂直楔形掏槽 水平楔形掏槽适用于岩层为水平层理时。 垂直楔形掏槽适用于中硬以上的均质岩石
(a)垂直楔形掏槽 (b)水平楔形掏槽
周边眼的间距E与光面层厚度W有着密切关系, 通常以周边眼的密集系数K(K=E/W)表示,其 大小对光面爆破效果有较大影响。
一般取K=0.8-1,过大会留下岩埂,过小, 形成凹坑
❖ 装药不耦合系数
在控制爆破中是一个很重要的参数。主要用 于预裂爆破与光面爆破。定义:炮孔直径与药 包直径之比.
用途:保护爆破的完整度,以防龟裂与减少 裂隙,保持岩体稳定性。用在预裂孔或周边眼 内。
第二节 掏槽眼布置

隧道爆破设计

隧道爆破设计

隧道爆破设计(1)爆破设计的原则尽量提高炸药能量利用率,以减少炸药用量。

采用光面爆破,要求炮眼痕迹残留率硬岩±90%;中硬岩±80%;软岩三60%。

减少对围岩的破坏,控制好开挖轮廓。

合理设计起爆顺序,提高光爆效果。

在保证安全的前提下,尽可能提高掘进速度、缩短工期。

掏槽及底板眼按抛掷爆破设计,采用楔形掏槽法,及充分利用楔形掏槽的易抛掷来减轻震动,保持围岩稳定。

其它炮眼采用浅孔微振动控制爆破,在保证爆破效果的前提下,尽量减少炮眼的炸药用量。

采用微差爆破,减少对围岩的扰动及降低振动强度,采取光面爆破。

(2)爆破参数的选定在进行钻爆参数设计前,先用工程模拟法初选爆破参数,再在洞外做单段爆破漏斗试验及三眼爆破成缝试验,通过现场的试验确定有关爆破参数。

结合隧道工程地质情况及类似工程施工经验进行爆破设计。

光面爆破参数见表3-1。

3)爆破器材的选定炸药选用2号岩石硝铵炸药,其规格为©25X200、©32X200两种。

有水地段选用乳化油炸药。

采用©32直径药卷,周边眼采用高效能控制爆破劈裂管耦合连续装药,其余眼采用集中装药,炮眼堵塞采用水压爆破技术堵塞,非电毫秒雷管起爆,火雷管引爆。

施工中根据地质变化不断调整爆破参数,以取得良好的光爆效果。

(4)钻爆作业施工工艺钻爆作业工艺框图见图3-1o图3-1光面钻爆作业施工工艺框图(5)钻爆施工①开挖准备风、水、电就绪,施工人员、机具准备就位。

②测量放线洞内导线控制网测量采用全站仪进行。

施工测量采用光电测距仪配水准仪进行。

测量作业由专业人员实施,每排炮后进行设计规格线测放,并根据爆破设计参数点布孔位。

周边轮廓线的放样允许误差应控制在土2cm以内。

断面测量滞后开挖面10〜15m,按5m间距进行,每个月进行一次洞轴线及坡度的全面检查、复核,确保测量控制工序质量。

③钻孔作业全断面法施工时,使用凿岩台车钻孔。

上下台阶法施工时,上台阶采用风钻人工钻孔,下台阶采用凿岩台车钻孔。

2019年整理4.4平硐全断面掘进爆破复习资料 资料

2019年整理4.4平硐全断面掘进爆破复习资料 资料

4.4 平硐全断面掘进爆破施工4.4.1 炮眼布置的方法和原则*典型的全断面炮眼布置图4-21 全断面楔形掏槽—环状布置图图4-22 全断面直孔掏槽—环状布置图全断面炮眼布孔原则可概括为:“抓两头、带中间”,即一头抓周边眼,一头抓掏槽眼;抓好这两“头”炮眼的布置,中间的崩落眼就容易布置了。

这种布孔方法称为“分类布孔法”。

(1)先布置周边眼原则上周边眼应布置在设计轮廓线上,按光面爆破要求布置。

为了钻孔方便,并保证开挖断面轮廓尺寸,通常向外(或向上)偏斜3~5°,眼底落在设计轮廓线外不超过10cm,其最小抵抗线应从眼底算起。

周边眼深度不应大于崩落眼。

(2)选择适当的掏槽方式和掏槽位置通常将掏槽布置在断面中央偏下。

(3)崩落眼布置一般根据计算出的炮孔数量,按掘进工作面的大小形状、掏槽布置方式与孔距、辅助孔距与抵抗线要求、周边孔距与抵抗线要求等进行合理布置崩落眼。

(4)底眼的最小抵抗线和炮眼间距通常与崩落眼相同在水平和倾斜的隧道中,底眼布置应充分考虑抛碴负载,为避免巷道底板留下根底或使坡度增大,并为铺轨创造有利条件,底眼应多向下插一些,同时增大装药系数,眼口可高于底板标高5~10cm,眼底可插到底板标高以下20~30cm。

当巷道有水沟时,可利用底眼爆破一次将水沟拉出。

4.4.2 装药和起爆4.4.2.1.炮眼装药量分配先以炮眼数量计算值布孔,按实际条件、试炮结果修正孔数,然后确定每开挖循环所需的总药量。

由总药量和实际布置的总眼数,求出每孔的平均药量,按掏槽孔、周边孔、辅助孔和底板孔的不同要求分配药量到各孔。

掏槽眼爆破条件最困难:只有一个自由面,爆破时不仅要把部分岩石破碎而且要抛掷出来,需要较多炸药,掏槽眼应比其它炮眼深10%~25%,装药系数也应比其它炮眼大。

底板眼为保证翻碴,通常也要加大药量,按平均药量的110%~120%布药。

在周边眼中,底眼分配药量最多,帮眼次之,顶眼最少。

实际布孔后的总药量和炸药单耗都会有变化,必须再对布孔后的装药量进行统计,得出实际每循环4.4.2.2 炮眼装药结构和起爆方式(1)为了提高爆破效率,掏槽眼、辅助眼和底眼以连续装药为主。

隧道控制爆破及超欠挖控制课件PPT

隧道控制爆破及超欠挖控制课件PPT
钻爆法施工要消除超欠挖难度非常大,但通过努力, 可将超欠挖控制到最低限度。
隧道施工中,我们对开挖方法描述最常见的就“光 面爆破” 。什么是光面爆破?怎么控制超欠挖和“向 开挖要效益”?带着这些问题,我们共同学习隧道开挖 爆破技术和超欠挖控制。
主要内容
隧道爆破施工
一、岩石隧道爆破特点 二、炮眼的种类及作用 三、掏槽眼类型及布置 四、周边眼控制爆破 五、隧道爆破参数及爆破设计 六、隧道钻爆施工 七、隧道爆破设计实例
图-1 炮眼布置图
(二)辅助眼
位于掏槽眼与周边眼之间的炮 眼称为辅助眼。如图-1中的黑色 炮眼。
其作用是扩大掏槽眼炸出的槽 腔,破碎隧道岩体,为周边眼爆 破创造临空面。
图-1 炮眼布置图
(三)周边眼
周边眼(perimeter hole)。
5m时,采用2沿临空隧孔; 道周边布置的炮眼称为 周边眼。如图-1中的蓝色炮 q—爆破每立方米岩石所需炸药的消耗
前言:钻爆法(drilling blast method)由于对地质条
件适应性强、开挖成本低,特别适合于坚硬岩石隧道、破 碎岩石隧道及大量短隧道的施工。虽然我国也在引进全断 面隧道掘进机(tunnel boring machine),但是根据我国 的国情,钻爆法与掘进机在相当长的时间内将同时并存和 使用,钻爆法仍是隧道掘进的主要手段。
L
α
B——开挖断面宽度。
B
❖ 复式楔形掏槽
为了提高循环进尺,可以采用复式楔形掏槽。
隧道内采用的炮眼堵塞材料:一般为砂子和粘土混合物,其比例大致为砂子50%~40%,粘土50%~60%。 它是充分利用大直径空眼作为临空孔和岩石破碎后的膨胀空间,使爆破后能形成柱状槽口的掏槽爆破。 此外,还可将开挖面上部布置成弧形,下部布置成直线形,以构成混合型布置。 普通爆破开挖轮廓凸凹不平,应力集中,易掉块,安全隐患大,初支难以喷平,浪费大。 按每掘进循环的进尺数来确定 顺着拱部轮廓线,逐圈布置炮眼。 致密块状的花岗岩,Ⅲ级围岩。 揭开煤层前,掘进工作面到煤层之间,必须保持一定的岩柱,倾斜岩层为2m,缓倾斜岩层及倾斜煤层为1. 宜万铁路堡镇隧道位于长阳县的贺家坪镇和榔坪镇之间,隧道采用左、右两单线方案。 ——岩石抗压强度; 其厚度就是周边眼的最小抵抗线W。 首先计算周边眼数量N1和装药量Q1 不耦合装药:不耦合装药是指药包表面与炮眼孔壁之间保留一定间隙的装药方式。 采用过量装药,装药长度占全眼长的70~90%。 不连续装药:也叫间隔装药,药卷之间有空隙,一般用空气或填塞料分隔。

山岭隧道施工—钻孔爆破施工技术(铁路隧道施工)

山岭隧道施工—钻孔爆破施工技术(铁路隧道施工)
的情况下,一种炸药的爆速应当是一个常量,实际 情况则不然,炸药的爆速总是低于理想的爆速,其 主要影响因素有:
● 药柱直径与约束条件。实践表明在药柱直径较小 的情况下,增强药柱的约束条件可以显著提高炸药 的爆速,减小其临界直径值。工程爆破采用柱状装 药时,常用药卷的“临界直径”来表示炸药的爆炸 稳定性。
③爆破漏斗的分类 根据爆破作用指数 值的不同,将爆破漏斗分为以下四种。 A.标准抛掷爆破漏斗;D.松动爆破漏斗。
爆破漏斗分类
(3)柱状药包的爆破特点 当炮孔装药长度远大于横断面的直径时,形成圆柱状延长 药包,简称为柱状药包。它是工程爆破中应用最为广泛的 药包。
图4.4.3 爆破漏斗的几何要素
①爆破漏斗的几何要素 a.自由面 自由面是指被爆破的介质与空气接触的面,又
称为临空面。 b.最小抵抗线 最小抵抗线是指药包中心距自由面的最短距离。
习惯上用W表示最小抵抗线。
c.爆破漏斗半径 爆破漏斗半径是指形成倒锥形爆破漏斗的底圆半
径。常用r表示爆破漏斗半径。
d.爆破漏斗破裂半径 爆破漏斗破裂半径简称破裂半径,是指从药包中心 到爆破漏斗底圆圆周上任一点的距离。 e.爆破漏斗深度是指爆破漏斗顶点至自由面的最短 距离。图中的H表示爆破漏斗深度。
图4.4.1 爆破的内部作用 R0—药包半径; R1—粉碎区半径; R2—裂隙区半径
2)爆破漏斗 当单个药包在岩体中的埋置深度不大时,可以观察 到自由面上出现了岩体开裂、鼓起或抛掷现象。这 种情况下的爆破作用叫做爆破的外部作用,其特点 是在自由面上形成了一个倒圆锥形爆坑,称为爆破 漏斗。如图4.4.3所示。
① 耦合装药。药卷与炮孔在径向无间隙 (图4.4-15(a)),如散装药。
② 不耦合装药。药卷与炮孔在径向有间隙,间隙内 可以是空气或其他缓冲材料(图4.4.15(b)),如水、 砂等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档