基本初等函数性质及其图像
六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
基本初等函数的图像与性质

在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。
一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。
它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。
二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。
幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。
3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。
② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。
③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。
2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。
六大基本初等函数图像及其性质

六大基本初等函数图像及其性质、常值函数(也称常数函数) y =C (其中 C 为常数);、幂函数 y x, x 是自变量, 是常数;1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于 y 轴对称;2)当α为负整数时。
函数的定义域为除去 x=0 的所有实数;函数的图形均经过原点和(1 ,1 ); 4)如果 m>n 图形于 x 轴相切,如果 m<n,图形于 y 轴相切,且 m 为偶数时,还跟 y 轴对称;m ,n 均为 奇数时,跟原点对称;5)当α为负有理数时, n 为偶数时, 函数的定义域为大于零的一切实数; n 为奇数时, 定义域为去除 x=03)当α为正有理数 时, n 为偶数时函数的定义域为n 0, +∞),n 为奇数时函数的定义域为 ∞,+∞性质函数定义域(0,1)R(0,1)值域(0, + ∞)奇偶性 非奇非偶公共点过点(0,1),即 x 0 时, y 1单调性在( , )是增函数在( , )是减函数1) 2) 3) 当x0时, y 1, 所以 它的图 形通过(0,1)3. (选,补充)指数函数值的大小比较a. 底数互为倒数的两个指数函数x x1 f (x) a x, f(x) a的函数图像关于 y 轴对称。
a N*(1) ma n a mn a (2) m a n a mn a以外的一切实数三、指数函数 y a x( x 是自变量 , a 是常数且 a 0,a 1 ) ,定义域是 R ; [ 无界函数 ]1. 指数函数的图象 :y2. 指数函数的性质 ;x当a不论 1时 函 数 为 单 调 增 , 当 0 a 1时 函 数 为单 调 减 ; x 为何值 , y 总是正 的, 图形在 x 轴x1. 对数的概念: 如果 a(a >0,a ≠1)的 b 次幂等于 N ,就是 a bN ,那么数 b 叫做以 a 为底 N 的对作log a N b , 其中 a 叫做对数的底数, N 叫做真数,式子 log a N 叫做对数式对数函数 y log a x 与指数函数 y a x互为反函数,所以 y log a x 的图象与 y a x的图象关于直线 y x 对称。
六大基本初等函数图像及性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
九种基本初等函数图像及性质

九种基本初等函数图像及性质基本初等函数包括一次函数、平方函数、立方函数、根号函数、指数函数、对数函数、正弦函数、余弦函数和正切函数等9种函数。
下面简单介绍它们的图像及性质。
一次函数的图像是一条直线,表达函数的形式为:y=ax+b(a≠0),其中a表示斜率,b表示函数的截距,函数的性质是其增减性由斜率a决定。
平方函数的图像为一条凹凸不平的抛物线,表达函数的形式为:y=ax2+bx+c,其中a、b、c为实数,a≠0,此函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
立方函数的图像是一条弯曲的曲线,表达函数的形式为:y=ax3+bx2+cx+d,其中a、b、c、d为实数,a≠0,函数的性质是其单调性由a的正负决定,是增函数当a>0时,是减函数当a<0时。
根号函数的图像是一条弯曲的曲线,表达函数的形式为:y=a√x+b,其中a、b为实数,a>0,此函数的性质是常数变动,函数的解析式在a变动时它的单调性也由正负变化。
指数函数的图像是一条右倾的曲线,表达函数的形式为:y=axb,其中a、b为实数,a>0、b≠0,函数的性质是其单调性由a、b的正负决定,是增函数当a>0且b>0时,是减函数当a>0且b<0时。
对数函数的图像是一个右倾的曲线,表达函数的形式为:y=alogx + b,其中a、b为实数,a>0,此函数的性质是变数变动,函数的解析式在x变动时它的单调性也由正负变化。
正弦函数的图像是一个周期性的曲线,表达函数的形式为:y=Asin(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质是其单调性由A的正负决定,是增函数当A>0时,是减函数当A<0时。
余弦函数的图像同正弦函数,表达函数的形式为:y=Acos(ωx+φ),其中A、ω、φ为实数,A>0,此函数的性质同正弦函数一样。
正切函数的图像为一个弯曲的曲线,表达函数的形式为:y=tanx,其中x代表,函数的性质是函数的单调性变化于π/2,函数的解析式在x变动到π。
六大基本初等函数图像及其性质(总12页)

六大基本初等函数图像及其性质(总12页)抛物线函数 y = x^2- 图像为开口朝上的抛物线,顶点在原点(0,0)- 奇函数,即f(-x) = -f(x)- 定义域为全体实数,值域为[0, +∞)- 极值点为顶点(0,0),不存在最大值和最小值- 函数单调递增且无拐点反比例函数 y = 1/x-tu.grid正比例函数 y = x- 图像为平面直线,通过原点(0,0)- 定义域为全体实数,值域为全体实数- 函数单调递增,无拐点- 斜率代表变化率,斜率越大表示变化速度越快,斜率为正则表示函数单调增加,斜率为负则表示函数单调减少指数函数 y = a^x (a>0且a≠1)- 图像为上凸曲线,通过点(0,1)- 定义域为全体实数,值域为(0,+∞)- 当a>1时,函数单调递增;当0<a<1时,函数单调递减- 随着自变量x的增大,函数值加速增大或减小对数函数y = logₐ(x) (a>0且a≠1)- 反指数函数,图像和指数函数的图像呈镜像关系- 定义域为(0,+∞),值域为全体实数- 当a>1时,函数单调递增;当0<a<1时,函数单调递减- 随着自变量x的增大,函数值增长速度逐渐变慢三角函数 y = sin(x), y = cos(x), y = tan(x)- 正弦函数图像为周期性上下波动的连续曲线,取值范围[-1, 1] - 余弦函数图像为周期性波动的连续曲线,取值范围[-1, 1]- 正弦函数、余弦函数的定义域为全体实数,值域为[-1, 1]- 正弦函数、余弦函数是周期性函数,周期为2π- 正切函数图像为周期性波动的连续曲线,定义域为实数集合-{(2n + 1)π/2 | n∈Z},值域为全体实数这些基本初等函数的图像和性质对数学的学习和应用有着重要的作用,掌握这些函数的图像及其性质,有助于理解数学问题的规律,并能够在实际问题中进行分析和求解。
六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:2.幂函数的性质;21xy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1(1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;.当10<<a 时,a 值越大,xa y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1)n m n m a a a +=⋅(2)n m n m a a a -=÷(3)()()mn nmnmaaa ==xf x xxx g ⎪⎫⎛=1)((4)()n n n b a ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数及其性质和图形
1.幂函数
函数称为幂函数。
如,,
,都是幂函数。
没有统一的定义域,定义域由值确定。
如
,。
但在内
总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:
的图形,如图1-1-2、图1-1-3。
图1-1-2
图1-1-3
2.指数函数
函数称为指数函数,定义域
,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与
为例绘出图形,如图1-1-4。
图1-1-4
3.对数函数
函数称为对数函数,其定义域
,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-5
4.三角函数有
,它们都是周期函数。
对三角函数作简要的叙述:
(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形
图1-1-7余弦函数图形
(2)正切函数,定义域,值
域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8
图1-1-8
(。