高数基本初等函数图像及性质 (1)

合集下载

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性 在),(∞+∞-是增函数在),(∞+∞-是减函数1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

(完整版)基本初等函数的图形及性质

(完整版)基本初等函数的图形及性质

初等函数1、基本初等函数及图形基本初等函数为以下五类函数:(1)幂函数y x,是常数;1. 当 u 为正整数时,函数的定义域为区间x ( , ),他们的图形都经过原点,并当u>1 时在原点处与 X 轴相切。

且 u 为奇数时,图形对于原点对称;u 为偶数时图形对于 Y 轴对称;2. 当 u 为负整数时。

函数的定义域为除掉x=0 的全部实数。

3. 当 u 为正有理数 m/n 时, n 为偶数时函数的定义域为(0, + ), n 为奇数时函数的定义域为(- + )。

函数的图形均经过原点和( 1 ,1).假如 m>n 图形于 x 轴相切 ,假如 m<n,图形于 y 轴相切 ,且 m 为偶数时 ,还跟 y 轴对称 ;m,n 均为奇数时 ,跟原点对称.4.当 u 为负有理数时 ,n 为偶数时除 x=0 之外的一确实数.,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去(2)指数函数y ax(a是常数且a 0,a 1),x ( , );1.当 a>1 时函数为单一增 ,当 a<1 时函数为单一减 .2.无论 x 为什么值 ,y 老是正的 ,图形在 x 轴上方 .3.当 x=0 时,y=1, 因此他的图形经过 (0,1)点 .(3)对数函数y logax(a是常数且a 0,a 1),x (0, );1.他的图形为于 y 轴的右方 .并经过点 (1,0)2.当 a>1 时在区间 (0,1),y 的值为负 .图形位于 x 的下方 ,在区间(1, + ),y 值为正 ,图形位于 x 轴上方 .在定义域是单一增函数 .a<1 在适用中极少用到 /(4)三角函数正弦函数y sin x , x ( , ) , y[ 1,1] ,余弦函数y cos x ,x( , ) , y[ 1,1] ,x kZ ,y (, ) ,正切函数y tan x , 2 ,k余切函数y cot x,x k,k Z,y ( , );(5)反三角函数y arcsin x ,x [ 1,1] y [ , ]反正弦函数, 2 2 ,反余弦函数y arccosx ,x[ 1,1] , y [0,] ,y arctan x ,x ( , ) y ( , )反正切函数, 2 2 ,反余切函数y arc cot x ,x(, ) , y (0,) .函数名称函数的记号函数的图形指数函数对数函数幂函数a 为随意实数这里只画出部分函数图形的一部分。

高数总结:基本初等函数图像及其性质

高数总结:基本初等函数图像及其性质

⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。

三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。

五大基本初等函数性质及其图像

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。

如,,,都是幂函数。

没有统一的定义域,定义域由值确定。

如,。

但在内总是有定义的,且都经过(1,1)点。

当时,函数在上是单调增加的,当时,函数在内是单调减少的。

下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。

图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。

高等数学中常用的指数函数是时,即。

以与为例绘出图形,如图1-1-4。

图1-1-43.对数函数函数称为对数函数,其定义域,值域。

当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。

与互为反函数。

当时的对数函数称为自然对数,当时,称为常用对数。

以为例绘出图形,如图1-1-5。

图1-1-54.三角函数有,它们都是周期函数。

对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。

它们都是有界函数,周期都是,为奇函数,为偶函数。

图形为图1-1-6、图1-1-7。

图1-1-6 正弦函数图形图1-1-7 余弦函数图形(2)正切函数,定义域,值域为。

周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。

在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。

图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。

高数第一章初等函数

高数第一章初等函数

2)反余弦函数 余弦函数
反余弦函数
y cos x
y
1
0

2
x [0, ]
y arccos x x [1,1]
y

y [1,1]
y [0, ]

x
1
1
0
x 1
余弦函数 y cos x 在 [0, ] 上的反函数,称为
反余弦函数,记为 y arccos x x [1,1] y [0, ]
10
例2 判断函数 f ( x) ln ( x 2 1 x) 的奇偶性. 解
f x f x
ln [ x 2 1 x] [ x 2 1 x]

ln1 0
则此函数为奇函数
11
(4)三角函数 1)正弦函数的性质
y sin x
x ,
解:
x e ln x , x 0

ln x 1 0 e 1 f ln x ln x ln x e e 1
ye
y
x
1 f x x e
0 e 1
x
e 1
x
0,1
x
1 x 0 f x x e 0 x
22
反余弦函数的性质
y arccos x
x [1,1]
y

y [0, ]
(1)在[ -1, 1 ]是有界函数;
0 arccos x
(2)是非奇非偶函数;
1
0
x 1
(3)在 [1, 1] 上是单调减函数。
23
3)反正切函数 正切函数 y tan x 在 (

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

基本初等函数图像及性质小结

基本初等函数图像及性质小结

为高等数学小结的——基本初等函数1.函数的五个要素:自变量,因变量,定义域,值域,对应法则2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这四个方面去研究函数。

3.每个函数的图像很重要. 幂函数(a为实数)定义域:随a的不同而不同,但无论a取什么值,x^a在内总有定义。

值域:随a的不同而不同有界性:单调性:若a>0,函数在内单调增加;若a<0,函数在内单调减少。

奇偶性:要知道这些函数那些事奇函数,那些是偶函数周期性:每种函数的图像.. 指数函数定义域:值域:有界性:单调性:若a>1 函数单调增加;若0<a<1 函数单调减少奇偶性:周期性:注意:图形过(0,1)点暨 a^0=1 直线y=0为函数图形的水平渐近线今后用的较多这个函数的图形,性质要记清楚1、. 对数函数1、定义域:值域:有界性:单调性:a>1时,函数单调增加;0<a<1时,函数单调减少奇偶性:周期性:主要性质:与指数函数互为反函数,图形过(1,0)点,直线x=0为函数图形的铅直渐近线e=2.7182……,无理数经常用到以e为底的对数. 三角函数强调:图像定义域:值域:[-1,1]有界性:[-1,1] 有界函数单调性:(-T/2,T/2)单调递增奇偶性:奇函数周期性:以为周期的周期函数;定义域:值域:[-1,1] 有界性:[-1,1] 有界函数单调性:奇偶性:偶函数周期性:定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,. 反三角函数定义域: [-1,1] 值域:有界性:单调性:单调增加奇偶性:奇函数周期性:---定义域值域:定义域: [-1,1] 值域:有界性:单调性:单调减少奇偶性:周期性:---定义域定义域:值域:有界性:单调性:单调增加奇偶性:奇函数周期性:---定义域定义域:值域:有界性:单调性:单调减少;奇偶性:周期性:以上是五种基本初等函数,关于它们的常用运算公式都应掌握。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。

且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。

函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。

三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。

(完整版)六大基本初等函数图像与性质

(完整版)六大基本初等函数图像与性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

五大基本初等函数性质及其图像

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。

如,,,都是幂函数。

没有统一的定义域,定义域由值确定。

如,。

但在内总是有定义的,且都经过(1,1)点。

当时,函数在上是单调增加的,当时,函数在内是单调减少的。

下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。

图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。

高等数学中常用的指数函数是时,即。

以与为例绘出图形,如图1-1-4。

图1-1-43.对数函数函数称为对数函数,其定义域,值域。

当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。

与互为反函数。

当时的对数函数称为自然对数,当时,称为常用对数。

以为例绘出图形,如图1-1-5。

图1-1-54.三角函数有,它们都是周期函数。

对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。

它们都是有界函数,周期都是,为奇函数,为偶函数。

图形为图1-1-6、图1-1-7。

图1-1-6 正弦函数图形图1-1-7 余弦函数图形(2)正切函数,定义域,值域为。

周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。

在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。

图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。

初等函数图像知识点总结

初等函数图像知识点总结

初等函数图像知识点总结在学习初等函数的过程中,图像是一个非常重要的概念。

初等函数的图像可以帮助我们更直观地理解函数的性质和特点。

在本文中,我们将总结初等函数图像的相关知识点,包括函数图像的基本形状、对称性质、特殊点以及常见的初等函数图像等内容。

一、函数图像的基本形状1. 直线函数的图像直线函数的图像是一条直线,其一般方程为y = kx + b,其中k和b分别代表斜率和截距。

斜率k决定了直线的倾斜方向和程度,当k>0时,直线向右上方倾斜;当k<0时,直线向右下方倾斜。

截距b决定了直线与y轴的交点,当b>0时,直线与y轴的交点在y轴上方;当b<0时,直线与y轴的交点在y轴下方。

2. 平方函数的图像平方函数的图像是一个开口向上或向下的抛物线,其一般方程为y = ax^2 + bx + c,其中a决定了抛物线的开口方向和程度。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的顶点坐标为(-b/2a, c),可以通过顶点坐标确定抛物线的位置。

3. 绝对值函数的图像绝对值函数的图像是一条V形的折线,其一般方程为y = |x|,表示x的绝对值。

函数图像在原点处有一个拐点,称为折点,折点是函数图像的特殊点之一。

4. 根号函数的图像根号函数的图像是一条从原点开始的曲线,其一般方程为y = √x,函数图像在x轴的正半轴上。

根号函数的图像是一个开口向右的半圆形曲线。

5. 指数函数的图像指数函数的图像是一条增长或衰减的曲线,其一般方程为y = a^x,其中a>0且a≠1。

指数函数的图像在坐标轴之间没有交点,增长函数的图像是向上的曲线,衰减函数的图像是向下的曲线。

6. 对数函数的图像对数函数的图像是一条先增后减的曲线,其一般方程为y = log_ax,其中a>0且a≠1。

对数函数的图像在x轴的正半轴上,对数函数的图像与指数函数的图像是关于y=x对称的。

二、函数图像的对称性质1. 奇偶性奇函数的图像关于原点对称,即f(-x)=-f(x),即图像关于原点对称。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。

且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。

函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。

三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。

六大基本初等函数图像与其性质

六大基本初等函数图像与其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x, x 是自变量,是常数;1. 幂函数的图像:y y x3y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry x1y x 2x1y x 2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减第 1 页1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。

且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。

函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数ya x(x 是自变量,a 是常数且a0 , a1 ),定义域是R ;[ 无界函数 ]1. 指数函数的图象 :yaxyyy ax(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x 0 时, y1单调性 在(, )是增函数 (, )在是减函数1 ) 当 a1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x 0 时 , y1,所以它的图形通过(0,1)点 。

(完整)六大基本初等函数图像及其性质

(完整)六大基本初等函数图像及其性质

标准实用文案大全六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)≠C 0=C 平行于x 轴的直线y 轴本身定义域R 定义域R二、幂函数αx y=,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数xy =2xy =3xy =21x y =1-=xy 定义域R R R [0,+[0,+∞∞) {x|x {x|x≠≠0} 值域R [0,+[0,+∞∞) R [0,+[0,+∞∞) {y|y {y|y≠≠0} 奇偶性奇偶奇非奇非偶奇单调性增[0,+[0,+∞∞) ) 增增增增(0,+(0,+∞∞) ) 减减(-(-∞∞,0] ,0] 减减(-(-∞∞,0) ,0) 减减公共点(1,11,1))xyOxy =2x y =3x y =1-=x y 21x y =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α,他们的图形都经过原点,并当α>1>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm 时,时,n n 为偶数时函数的定义域为(为偶数时函数的定义域为(0, +0, +0, +∞),∞),∞),n n 为奇数时函数的定义域为(为奇数时函数的定义域为(--∞,+,+∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(1 ,11 ,11 ,1););4)如果m>n 图形于x 轴相切,如果m<n,m<n,图形于图形于y 轴相切,且m 为偶数时,还跟y 轴对称;轴对称;m m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,)当α为负有理数时,n n 为偶数时,函数的定义域为大于零的一切实数;为偶数时,函数的定义域为大于零的一切实数;n n 为奇数时,定义域为去除x=0以外的一切实数。

4、基本初等函数图像及其性质

4、基本初等函数图像及其性质

基本初等函数图像以及性质一、指数函数的图象及性质函数y =a x (a >0,且a ≠1)图象0<a <1a >1图象特征在x 轴上方,过定点(0,1)当x 逐渐增大时,图象逐渐下降当x 逐渐增大时,图象逐渐上升性质定义域 R 值域(0,+∞)单调性 减增 函数值 变化 规律当x =0时,y =1当x <0时,y >1; 当x >0时,0<y <1当x <0时,0<y <1; 当x >0时,y >1在同一平面直角坐标系中,分别作出指数函数y =a x ,y =b x ,y =c x ,y =d x (a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线x =1,分别与四个图象自上而下交于点A (1,a ),B (1,b ),C (1,c ),D (1,d ),得到底数的大小关系是:a >b >1>c >d >0.根据y 轴右侧的图象,也可以利用口诀:“底大图高”来记忆.考点一 指数函数的图像例1、如果函数在R 上是减函数,那么实数a 的取值范围是( ) A .|a |> B .<|a |< C .|a |> D .|a |<3x a x f )2()(2-=22331、已知指数函数(0,1)x y a a a =>≠在[]1,2上的最大值比最小值大2a,则a =例2、函数y =a x -a -1(a >0且a ≠1)的图象可能是( )A BC D1、函数f (x )=21-x 的大致图象为( )2、函数y=xa x|x|(a>1)的图象大致是()例3、若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.1、若方程|3x-1|=k有一解,则k的取值范围为________.2、若函数y=21-x+m的图象不经过第一象限,则m的取值范围为________.考点二指数函数单调性的应用例4、设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<c D.b<c<a1、已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=________.2、如果函数y=a2x+2a x-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则a 的值为()A.13B.1C.3 D.13或33、(2017·合肥模拟)若2x+5y≤2-y+5-x,则有() A.x+y≥0 B.x+y≤0C.x-y≤0 D.x-y≥0 对数函数的图象与性质定义域:(0,+∞)在同一平面直角坐标系中,分别作出对数函数y=log a x,y=log b x,y=log c x,y=log d x(a>1,b>1,0<c<1,0<d<1)的图象,如图所示.作出直线y=1,分别与四个图象自左向右交于点A(c,1),B(d,1),C(a,1),D(b,1),得到底数的大小关系是:b>a>1>d>c>0.根据直线x=1右侧的图象,单调性相同时也可以利用口诀:“底大图低”来记忆.考点三对数的图像例5、函数y=2log4(1-x)的图象大致是()1、【2019年高考浙江】在同一直角坐标系中,函数1xya=,1(2log)ay x=+(a>0,且a≠1)的图象可能是2、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<13、(2018·张家界三模)在同一直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()A BC D例6、函数y =log a (x +4)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +yn =-1上,且m >0,n >0,则3m +n 的最小值为( )A .13B .16C .11+6 2D .281、(2017·河北五校质监)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +n y +2=0上,其中m >0,n>0,则2m +1n 的最小值为 ( )A .2 2B .4 C.52 D.92 考点六 解不等式以及定义域 例7、求不等式的解集 (1)()113log 3<+x (2) 0log )12(21≥-x1、已知集合=⋂>-=<=N M x x N x M x x 则},0)1(log |{},33|{21322A .)23,0(B .)2,23(C .)23,1(D .(0,1)2、设函数f (x )=⎩⎨⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)例8、求下列函数的定义域 (1))1(log 121-=x y (2)y =1、【2018年江苏卷】函数f (x )=log 13(4x -5)的定义域为( )A.⎝ ⎛⎭⎪⎫54,+∞ B.⎝ ⎛⎭⎪⎫-∞,54 C.⎝ ⎛⎦⎥⎤54,32 D.⎝ ⎛⎭⎪⎫54,32 2、(2016年全国II 卷高考)下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D)y =考点七 复合函数的定义域 例9、求下列函数的单调区间(1) xx y 2221-⎪⎭⎫⎝⎛= (2)20.2()log (45)f x x x =-++1、【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是 A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞2、【2014江苏高考】若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)3、(2016·青海平安一中月考)已知函数f (x )=log 12(x 2-ax +a )在区间(2,+∞)上是减函数,则实数a 的取值范围是________.考点八 比较大小例10、(2017·天津一模)已知a =log 25,b =log 5(log 25),c =⎝ ⎛⎭⎪⎫12-0.52,则a ,b ,c的大小关系为( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c1、【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<2、【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<3、已知奇函数f (x )在R 上是增函数.若a =-f (log 215),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b考点九 数形结合例11、已知函数f (x )=log a (2x -a )(a >0且a ≠1)在区间[12,23]上恒有f (x )>0,则实数a 的取值范围是( )A .(13,1) B .[13,1) C .(23,1) D .[23,1)1、(2017·合肥月考)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1C .(1,2)D .(2,2)2、(2016·南京师大附中等四校联考)若函数 f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -3,x ≤2,log a x ,x >2(a >0且a ≠1)的值域是[2, +∞),则实数a 的取值范围是________.。

大学数学(高数微积分)专题一第2函数基本初等函数的图像性质(课堂讲义)

大学数学(高数微积分)专题一第2函数基本初等函数的图像性质(课堂讲义)

本 讲 栏 目 开 关
主干知识梳理
5.与周期函数有关的结论 (1)若f(x+a)=f(x+b)(a≠b),则f(x)是周期函数,其中一 个周期是T=|a-b|.
本 讲 栏 目 开 关
(2)若f(x+a)=-f(x),则f(x)是周期函数,其中一个周期 是T=2a. 1 1 (3)若f(x+a)= 或f(x+a)=- ,则f(x)是周期函数, fx fx 其中一个周期是T=2a. 提醒:若f(x+a)=f(-x+b)(a≠b),则函数f(x)关于直线x a+b = 对称. 2
热点分类突破
解析
(1)f(log23)=f(log23+3)
log2 24 2 =f(log224)= =24.
(2)依题意得,y=(2+log3x)2+2+log3x2
本 2 讲 =log2 3x+6log3x+6=(log3x+3) -3, 栏 目 2 因为 1 ≤ x ≤ 9 ,且 1 ≤ x ≤9,所以1≤x≤3, 开 关
3 1 1 - =f =- . 4 2 2
热点分类突破
函数的性质主要是函数的奇偶性、单调性和周期性
本 讲 栏 目 开 关
以及函数图象的对称性,在解题中根据问题的条件通过变换 函数的解析式或者已知的函数关系,推证函数的性质,根据 函数的性质解决问题.
热点分类突破
(1)(2013· 天津)已知函数f(x)是定义在R上的偶函 数,且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+
热点分类突破
(1)函数 y=xln(-x)与 y=xln x 的图象关于 ( A.直线 y=x 对称 B.x 轴对称 ( C.y 轴对称 D.原点对称 log2|x| (2)函数 y= x 的大致图象是

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性 在),(∞+∞-是增函数在),(∞+∞-是减函数1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

基本初等函数图像及性质大全之欧阳生创编

基本初等函数图像及性质大全之欧阳生创编

欧阳生创编 一、一次函数与二次函数(一)一次函数(二)二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②极点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的办法欧阳生创编 ①已知三个点坐标时,宜用一般式.②已知抛物线的极点坐标或与对称轴有关或与最年夜(小)值有关时,常使用极点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更便利. (3)二次函数图象的性质①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-极点坐标是24(,)24b ac b a a --欧阳生创编 ②那时0a >,抛物线开口向上,函数在(,]2ba-∞-上递加,在[,)2b a-+∞上递增,那时2bx a =-,2min 4()4ac b f x a -=;那时0a <,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递加,那时2bx a=-,2max 4()4ac b f x a -=.二、幂函数(1)幂函数的界说一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定点:所有的幂函数在(0,)+∞都有界说,并且图象都通过点(1,1). 三、指数函数(1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且欧阳生创编1)n >.0的正分数指数幂即是0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.(3)运算性质①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数欧阳生创编四、对数函数 (1)对数的界说①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②正数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. (2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)经常使用对数与自然对数经常使用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么欧阳生创编 ①加法:log log log ()a a a M N MN +=②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈④log aN a N =⑤log log (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且(5)对数函数欧阳生创编五、反函数(1)反函数的概念 设函数()y f x =的界说域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对y 在C 中的任何一个值,通过式子()x y ϕ=,x在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=暗示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(2)反函数的求法①确定反函数的界说域,即原函数的值域; ②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的界说域.(3)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.欧阳生创编 ②函数()y f x =的界说域、值域辨别是其反函数1()y f x -=的值域、界说域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.六、三角函数的图像和性质(一)正弦与余函数的图像与性质函数x y sin =x y cos =图像定域义 RR值域[]1,1-[]1,1-最值2,1 22,1 2x k y k Zx k y k Zππππ=+=∈=-+=-∈最大最小时,时,2, 1 2,1x k y k Zx k y k Z πππ==∈=+=-∈最大最小时,时, 单调性[2,2]223[2,2]22Zk k k k k ππππππππ-++++∈在每个上递增在每个上递减[2,2][2,2] Zk k k k k ππππππ-++∈在每个上递增在每个上递减 奇偶性 奇函数偶函数周期性是周期函数,2π为最小正周期是周期函数,2π为最小正周期欧阳生创编 对称性对称中心(,0)k π,:,()2x k k Z ππ=+∈对称轴 对称中心(,0)2k ππ+,:,()x k k Z π=∈对称轴2. 正切与余切函数的图像与性质函数 x y tan = x y cot =图像定域义{|,}2x x R x k k Z ππ∈≠+∈且 {|,}x x R x k k Z ππ∈≠+∈且值域 RR单调性(,)22Zk k k ππππ-++∈在每个上递增(,) Zk k k πππ+∈在每个上递减奇偶性 奇函数奇函数周期性 是周期函数,π为最小正周期 是周期函数,π为最小正周期 对称性对称中心(,0)2k π 对称中心(,0)2k π 七、反三角函数的图像与性质 1. 归正弦与反余函数的图像与性质函数归正弦函数arcsin y x =反余弦函数arccos y x =是[]cos 0,y x x π=∈,的反函数欧阳生创编是sin ,22y x x ππ⎡⎤=∈-⎢⎥⎣⎦,的反函数图像定域义[]1,1-[]1,1-值域,22ππ⎡⎤-⎢⎥⎣⎦[]0,π单调性 [1,1]-+在上递增[1,1]-+在上递减奇偶性 奇函数 非奇非偶 周期性 无 无 对称性对称中心(0,0)对称中心(0,)2π2. 归正切与反余切函数的图像与性质函数归正切函数arctan y x = 是tan (,)22y x x ππ=∈-,的反函数反余切函数arccot y x = 是()cot 0,y x x π=∈,的反函数图像定域义(,,)-∞+∞ (,,)-∞+∞欧阳生创编2021.02.08欧阳生创编2021.02.08。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 幂函数(a为实数)
要记住最常见的几个幂函数的定义域及图形
.
. 指数函数
定义域:,
值域:,
图形过(0,1)点,a>1时,单调增加;a时,单调减少。

今后用的较多。

. 对数函数
定义域:,
值域:,
与指数函数互为反函数,图形过(1,0)点,a>1时,单调增加;a<1时,单调减少。

. 三角函数
,奇函数、有界函数、周期函数;
,偶函数、有界函数、周期函数;
,的一切实数,奇函数、周期函数
,的一切实数,奇函数、
周期函数;

. 反三角函数
;;
;。

以上是五种基本初等函数,关于它们的常用运算公式都应掌握。

注:(1)指数式与对数式的性质
由此可知,今后常用关系式,如:
(2)常用三角公式
积化和差
sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2
和差化积
sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)。

相关文档
最新文档