Matlab矩阵的基本操作
MATLAB中对矩阵的基本操作
MATLAB中对矩阵的基本操作在MATLAB中,可以对矩阵进行多种基本操作,包括创建矩阵、访问元素、改变矩阵的大小、插入和删除元素、矩阵的运算等。
以下是对这些操作的详细说明:1.创建矩阵:在MATLAB中,可以使用多种方式创建矩阵。
其中最常用的方式是使用方括号将元素排列成行或列,例如:```A=[1,2,3;4,5,6;7,8,9];```这将创建一个3x3的矩阵A,其元素为1到92.访问元素:可以使用括号和下标来访问矩阵中的元素。
下标从1开始计数。
例如,要访问矩阵A的第二行第三列的元素,可以使用以下代码:```A(2,3);```这将返回矩阵A的第二行第三列的元素。
3.改变矩阵的大小:可以使用函数如reshape和resize来改变矩阵的大小。
reshape函数可以将矩阵重新组织为不同的行和列数。
例如,以下代码使用reshape 将3x3的矩阵A重新组织为1x9的矩阵B:```B = reshape(A, 1, 9);```resize函数可以改变矩阵的大小,可以用来增加或减少矩阵的行和列数。
例如,以下代码将矩阵A的大小改变为2x6:```A = resize(A, 2, 6);```4.插入和删除元素:可以使用括号和下标来插入和删除矩阵中的元素。
例如,以下代码会在矩阵A的第二行的末尾插入一个元素10:```A(2, end+1) = 10;```同时,可以使用括号和下标来删除矩阵中的元素。
以下代码将删除矩阵A的第一行的第二个元素:```A(1,2)=[];```这将删除矩阵A的第一行的第二个元素。
5.矩阵的运算:-矩阵乘法:使用*符号进行矩阵乘法运算。
例如,以下代码将矩阵A 与矩阵B相乘:```C=A*B;```-矩阵加法和减法:使用+和-符号进行矩阵加法和减法运算。
例如,以下代码将矩阵A和矩阵B相加得到矩阵C:```C=A+B;```-矩阵转置:使用'符号进行矩阵的转置操作。
例如,以下代码将矩阵A转置:```B=A';```-矩阵相乘:使用.*符号进行矩阵的元素级相乘运算。
MATLAB矩阵操作大全
MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。
2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。
例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。
3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。
4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。
例如,`B = A'`表示将矩阵A转置为矩阵B。
5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。
6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。
注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。
7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。
例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。
8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。
9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。
例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。
10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。
例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。
11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。
例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。
12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。
例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。
Matlab中的矩阵操作技巧指南
Matlab中的矩阵操作技巧指南在科学计算和数据处理中,矩阵操作是一个非常重要的环节。
Matlab作为一种功能强大的计算工具,提供了丰富的矩阵操作函数和技巧,帮助用户更高效地处理数据。
本文将为大家介绍一些在Matlab中常用的矩阵操作技巧,希望对广大Matlab用户有所帮助。
一、矩阵的创建和赋值在Matlab中,创建矩阵有多种方式。
可以使用数组、函数、特殊值或其他操作创建矩阵。
下面是一些常见的创建矩阵的方法。
1.1 使用数组创建矩阵使用数组创建矩阵是一种简单直观的方式。
可以通过一维或多维数组来创建矩阵。
```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 创建一个3x3的矩阵B = [1, 2, 3; 4, 5, 6] % 创建一个2x3的矩阵```1.2 使用函数创建矩阵除了使用数组,还可以使用Matlab提供的函数来创建矩阵。
常用的函数有zeros, ones, eye等。
```matlabC = zeros(3, 3) % 创建一个3x3的全零矩阵D = ones(2, 4) % 创建一个2x4的全一矩阵E = eye(5) % 创建一个5x5的单位矩阵```1.3 特殊值的矩阵Matlab中还提供了一些特殊值的矩阵,如全1矩阵、全0矩阵等。
```matlabF = ones(3, 3) % 创建一个3x3的全1矩阵G = zeros(2, 4) % 创建一个2x4的全0矩阵```二、矩阵的索引和切片在Matlab中,可以使用索引和切片操作来获取矩阵的元素或对矩阵进行切片操作。
2.1 矩阵的索引可以使用单个索引、行索引或列索引来获取矩阵的元素。
```matlabA = magic(3) % 创建一个3x3的魔方矩阵element = A(2, 3) % 获取第2行第3列的元素row = A(1, :) % 获取第1行的所有元素column = A(:, 2) % 获取第2列的所有元素```2.2 矩阵的切片可以使用切片操作来获取矩阵的子矩阵。
matlab矩阵及矩阵的操作
矩阵的操作
1、矩阵下标
MATLAB通过确认矩阵下标,可以对矩阵进行插入子块,提取子块和重排子块的操作。
A(m,n):提取第m行,第n列元素
A(:,n):提取第n列元素
A(m,:):提取第m行元素
A(m1:m2,n1:n2):提取第m1行到第m2行和第n1列到第n2列的所有元素(提取子块)。
A(:):得到一个长列矢量,该矢量的元素按矩阵的列进行排列。
矩阵扩展:如果在原矩阵中一个不存在的地址位置上设定一个数(赋值),则该矩阵会自动扩展行列数,并在该位置上添加这个数,而且在其他没有指定的位置补零。
消除子块:如果将矩阵的子块赋值为空矩阵[ ],则相当于消除了相应的矩阵子块。
2、矩阵的大小
[m,n]=size(A,x):返回矩阵的行列数m与n,当x=1,则只返回行数m,当x=2,则只返回列数n。
length(A)=max(size(A)):返回行数或列数的最大值。
rank(A):求矩阵的秩
矩阵分解
(1)奇异值分解
[U,S,V]=svd(A)
求矩阵A的奇异值及分解矩阵,满足U*S*V’=A,其中U、V矩阵为正交矩阵
(U*U’=I),S矩阵为对角矩阵,它的对角元素即A矩阵的奇异值。
特征值分解
[V,D]=eig(A)
正交分解
[Q,R]=qr(A)
三角分解
[L,U]=lu(A)
将A做对角线分解,使得A=L*U,其中L为下三角矩阵,U为上三角矩阵。
数学建模实验报告(一)MATLAB中矩阵的基本操作
1.5270
j =
2 3 2 5 1 4
>> min(a,[],1)
ans =
Columns 1 through 5
-2.3299 -0.1303 -1.3617 -1.1176 -0.3031
Column 6
0.0230
>> min(a,[],2)
ans =
-0.4762
-0.0679
-2.3299 -0.1303 0.4550 -1.1176 -0.2176
-1.4491 0.1837 -0.8487 1.2607 -0.3031
Column 6
0.0230
0.0513
0.8261
1.5270
0.4669
>> size(a)
ans =
5 6
>> [i,j]=find(a==max(max(a)))
-1.0000 2.5000 1.0000
3.5000 5.5000 2.5000
>> X=D
X =
4.0000 1.5000 -1.0000
-1.0000 2.5000 1.0000
3.5000 5.5000 2.5000
5、利用randn(5,6)命令生成一个随机矩阵T,求T的矩阵大小,每一行、每一列的最大值和最小值,整个矩阵的最大值与最小值;然后将整个矩阵的最大值所在位置的元素换为100,将最小值所在位置的元素取为-100。
(2):>> a=[2 5 8;7 1 9]
a =
2 5 8
7 1 9
>> b=[4 2 1 3;0 7 6 2;-3 5 9 -1]
matlab矩阵的表示和简单操作
matlab矩阵的表示和简单操作一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是: e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n 维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如 Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
在MATLAB中,矩阵元素按列存储。
序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。
matlab矩阵的表示和简单操作
matlab矩阵的表示和简单操作一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n 的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
在MATLAB中,矩阵元素按列存储。
序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。
如何使用Matlab进行矩阵运算
如何使用Matlab进行矩阵运算随着科学技术的不断发展,矩阵运算在各个领域的应用日益广泛。
Matlab作为一款功能强大的数学软件,其矩阵运算能力非常强大。
本文将介绍如何使用Matlab进行矩阵运算,希望能对读者在科学研究和工程实践中的矩阵计算有所帮助。
一、Matlab的基本矩阵运算1. 创建矩阵在Matlab中,可以使用一对方括号`[]`来创建矩阵。
例如,要创建一个3行3列的矩阵A,可以使用如下命令:A = [1 2 3; 4 5 6; 7 8 9]。
这样就创建了一个元素分别为1到9的3行3列矩阵。
2. 矩阵加法和减法Matlab中可以使用加号和减号来进行矩阵的加法和减法运算。
例如,要计算矩阵A和B的和,可以使用命令C = A + B;要计算矩阵A和B的差,可以使用命令D = A - B。
3. 矩阵乘法Matlab中使用乘号`*`来进行矩阵的乘法运算。
例如,要计算矩阵A和B的乘积,可以使用命令C = A * B。
需要注意的是,矩阵乘法是满足结合律的,即A *(B * C) = (A * B) * C。
4. 矩阵转置在Matlab中,可以使用单引号`'`来对矩阵进行转置操作。
例如,对矩阵A进行转置,可以使用命令B = A'。
需要注意的是,转置操作只能应用于二维矩阵。
5. 求逆矩阵在Matlab中,可以使用inv函数来求解矩阵的逆矩阵。
例如,要求矩阵A的逆矩阵,可以使用命令B = inv(A)。
需要注意的是,只有方阵才有逆矩阵。
6. 矩阵的特征值和特征向量Matlab中可以使用eig函数来求解矩阵的特征值和特征向量。
例如,要求矩阵A的特征值和特征向量,可以使用命令[V,D] = eig(A),其中V为特征向量矩阵,D 为特征值对角矩阵。
二、Matlab的高级矩阵运算1. 矩阵的点乘和叉乘Matlab中使用.*和.^来进行矩阵的点乘和叉乘运算。
例如,要计算矩阵A和B 的点乘,可以使用命令C = A .* B;要计算矩阵A和B的叉乘,可以使用命令D =A .^ B。
MATLAB中的矩阵操作技巧
MATLAB中的矩阵操作技巧MATLAB(Matrix Laboratory)是一种强大的数值计算和科学分析软件,特别擅长处理矩阵操作。
本文将介绍一些在MATLAB中进行矩阵操作的技巧和方法,帮助读者更好地利用MATLAB进行数据处理和分析。
一、矩阵基本操作1. 创建矩阵:在MATLAB中,可以使用矩阵的行向量或列向量来创建一个矩阵。
例如,要创建一个3x3的矩阵A,可以使用以下命令:```MATLABA = [1 2 3; 4 5 6; 7 8 9];```这样就创建了一个包含1到9的3x3的矩阵A。
2. 矩阵转置:矩阵的转置可以使用单引号来实现,例如,要将矩阵A进行转置操作,可以使用以下命令:```MATLABA_transpose = A';```这样就得到了矩阵A的转置矩阵A_transpose。
3. 矩阵相加:两个相同大小的矩阵可以进行相加操作,即对应位置的元素相加。
例如,要计算两个3x3矩阵A和B的和,可以使用以下命令:```MATLABC = A + B;```这样就得到了矩阵C,它的每个元素都是对应位置的元素相加的结果。
4. 矩阵相乘:两个矩阵的相乘操作通常是指矩阵的乘法运算。
在MATLAB中,矩阵相乘可以使用*运算符来实现。
例如,要计算两个3x3矩阵A和B的乘积,可以使用以下命令:```MATLABD = A * B;```这样就得到了矩阵D,它的每个元素都是对应位置的元素相乘的结果。
二、矩阵求解和方程组1. 矩阵求逆:在MATLAB中,可以使用inv函数来求解矩阵的逆。
例如,要求解一个3x3的矩阵A的逆矩阵,可以使用以下命令:```MATLABA_inverse = inv(A);```如果矩阵A的逆存在,则得到了逆矩阵A_inverse。
2. 矩阵求解线性方程组:MATLAB提供了一个名为“左除”的操作符\,可以用来求解线性方程组。
例如,要求解线性方程组Ax = b,其中A是一个3x3的矩阵,b是一个3x1的列向量,可以使用以下命令:```MATLABx = A \ b;```这样就求解出了方程组的解x。
MATLAB实验2 MATLAB的矩阵操作(1)
6、求特征值的方法求解方程
4x4+6x+3=0
(对比eig和roots、分析它们的不同和各自的应用范围)
7、P55思考练习3 , 5
实验过程中,请结合MATLAB的帮助系统。
四、实验操作过程与结果(写明使用到的函数及结算结果即可)
五、学生收获
MATLAB实验2MATLAB的矩阵操作(1)
班级专业:姓名:学号:日期:
一、实验目的
ห้องสมุดไป่ตู้1.熟悉MATLAB基本命令与操作;
2.熟悉MATLAB的矩阵运算;
3.了解MATLAB的多项式运算;
二、实验准备
通读书本第二章---MATLAB矩阵及其运算
三、实验内容
1.在命令窗口中键入表达式 ,并求 时 的值。
2. P54二.1
3.已知 , ,在MATLAB命令窗口中建立A、B矩阵并对其进行以下操作:
(1)计算矩阵A的行列式的值
(2)分别计算下列各式:
、 和 、 、 、 、
4、产生3阶随机方阵,其元素为[10,60]区间的随机整数,然后判断A的元素是否能被5整除。(分析fix、rand、rem函数的使用方法)
matlab中matrix的用法
matlab中matrix的用法在MATLAB中,矩阵是最基本的数据类型之一,它被广泛用于执行各种数学和科学计算。
矩阵可以表示为由行和列组成的二维数组,其中每个元素都有自己的索引。
创建矩阵:在MATLAB中,可以通过以下几种方式来创建矩阵:1.使用方括号和分号来创建行矢量(1维矩阵),例如:A=[1234]。
2.使用方括号和分号来创建多行的矩阵(2维矩阵),例如:A=[123;456;789]。
3. 使用linspace函数创建一个等差数列的行矢量,例如:A = linspace(1, 10, 10)。
这将创建一个包含10个元素,从1到10的行矢量。
4. 使用zeros函数创建一个全零矩阵,例如:A = zeros(3, 4)。
这将创建一个3行4列的矩阵,所有元素都为零。
5. 使用ones函数创建一个全一矩阵,例如:A = ones(2, 3)。
这将创建一个2行3列的矩阵,所有元素都为一6. 使用eye函数创建一个单位矩阵,例如:A = eye(4)。
这将创建一个4行4列的单位矩阵。
访问矩阵元素:可以使用括号运算符(()来访问矩阵中的元素。
MATLAB中的索引从1开始,而不是从0开始。
例如,对于矩阵A=[123;456;789],可以使用以下方式访问元素:1.使用单个索引访问单个元素,例如:A(1,2)将返回2,A(3,1)将返回72.使用冒号运算符(:)来访问整行或整列。
例如,A(2,:)将返回第二行[456],A(:,3)将返回第三列[3;6;9]。
3.可以使用冒号运算符来访问矩阵的子集。
例如,A(1:2,1:2)将返回一个2行2列的子矩阵,其中包含矩阵的前两行和前两列。
矩阵运算:在MATLAB中,可以对矩阵执行各种算术和逻辑运算。
算术运算:可以对两个矩阵执行逐元素的算术运算,例如加法、减法、乘法和除法。
在进行逐元素算术运算时,两个矩阵的大小必须相同。
例如,对于两个3行3列的矩阵A和B,可以执行以下运算:-逐元素加法:C=A+B。
Matlab操作矩阵的相关方法
Matlab操作矩阵的相关⽅法Matlab操作矩阵的相关⽅法下⾯这篇⽂章主要是对吴恩达⽼师机器学习中matlab操作的⼀个整理和归纳⼀、基本操作1.⽣成矩阵(ones、zeros)A = [1 2;3 4;5 6] #⽣成3⾏4列的矩阵B = [1 2 3] #B就是⼀个⾏向量C = [1;2;3] #定义c为⼀个列向量D = 1:0.1:2 #定义开始值为1,步长为0.1,结束值为2的⼀个⾏向量E = 1:6 #定义开始值为1,步长默认为1,结束值为6的⾏向量ones(2,3) #矩阵中所有元素都为1 定义⼀个2⾏3列的矩阵zeros(2,3) #矩阵中所有的元素都为0 定义⼀个2⾏3列的矩阵2.⽣成随机矩阵(rand、randn)rand(1,3) #⽣成1⾏3列的随机矩阵randn(2,3) #⽣成⾼斯随机矩阵,⾼斯随机矩阵即为标准差或⽅差为13.⽣成单位矩阵(eye(n))eye(n) #⽣成n⾏n列的单位矩阵4.帮助命令(help)help 变量名 #可查看函数的API详解⼆、移动数据1.操作.txt⽂件(load)1.1 加载.txt⽂件并且拆分⽂件的⾏和列的值data = load('⽂件路径') #加载⽂件获取多列的数据(获取多⾏的数据和多列类似,只需要修改第⼀个参数即可)data(:,1) #拿到所有⾏第⼀列的数据data(:,1:2) #拿到所有⾏第⼀列和第⼆列的数据data(:,1:3) #拿到所有⾏第⼀列、第⼆列和第三列的数据data(:,[1,3]) #拿到所有⾏第⼀列和第三列的数据将矩阵所有的数据扁平化为⼀列data(:)将矩阵所有的数据扁平化为⼀⾏data(:)'1.2 将数据保存为.txt⽂件v = data(:,1) #拿到第⼀列的数据save test.txt v -ascii #将数据保存到test.txt⽂件中2.矩阵的操作2.1 获得矩阵的⾏数和列数(size())size(A) #返回⼀个1⾏2列的矩阵分别是矩阵的⾏数和列数size(A,1) #返回矩阵的⾏数size(A,2) #返回矩阵的列数2.2 拿到矩阵的最⼤维度(length())length(A) #获得矩阵的⾏数和列数中维度较⼤的⼀个2.3 通过矩阵索引获取某⼀个值A(m,n) #索引到矩阵m⾏n列的位置2.4 修改矩阵的某⼀⾏或者某⼀列A(:,2) = [10;11;12] #修改矩阵第⼆列的数据2.5 在矩阵中添加⼀⾏新的数据A = [A,[10;11;12]] #向矩阵中添加⼀⾏新的数据C=[A B]2.6 矩阵的结合横向结合:A = [1 2;3 4;5 6]B = [11 12;13 14;15 16]C = [A B]纵向结合:C= [A;B]三、计算数据1.A.*B(矩阵之间的乘积)A .*B # A中对应位置元素和B中对应位置元素的乘积2.A.^2 (矩阵⾃⾝的平⽅)A.^2 #矩阵A的平⽅(A矩阵中的每个元素都平⽅)3.1./A(矩阵中每个元素的倒数)1./A 矩阵A中每个元素分别求倒数4.log(A) (对矩阵中每个元素求对数) ,exp(A)(对A中的每个元素以e的底数)5.abs(A)(对矩阵中的每个元素求绝对值)6.-A(对矩阵中的每个元素求相反数)7.A+1(对矩阵中每个对应的元素+1)8.A’(A的转置)9.⼀些有⽤的函数求矩阵中最⼤的⼀个值:max(max(A))或者max(A(:)) ⾸先扁平化A成为⼀个列向量,然后求最⼤值max是默认求每列的最⼤值:max(A) #求矩阵A的最⼤值(如果A是矩阵,会拿到每⼀列的最⼤值)max(A,[],1) #拿到矩阵A中每⼀列的最⼤值max(A,[],2) #拿到矩阵A中每⼀⾏的最⼤值[val, ind] = max(a) #返回矩阵A中的最⼤值和索引A<3 (对应元素的⽐较如果⼩于3返回1,如果⼤于3返回0)find(A<3) #找到A中所有⼩于3的元素,并且返回他们的索引A=magic(3) #任意⾏、列、对⾓的元素相加的和等于相同的值[r,c] = find(A>=7) #拿到所有⼤于等于7的元素的所在⾏和列sum(A) #获得矩阵中所有元素的和sum(A,1) #获得矩阵中每⼀列相加的和sum(A,2) #获得矩阵中每⼀⾏相加的和sum(sum(A)) #获得所有元素的值prod(A) #获得矩阵中所有元素的乘积floor(A) #对矩阵中所有元素向下取整ceil(A) #对矩阵中所有元素向上取整10.逆矩阵pinv(A) #求A得逆矩阵pinv(A)*A #就会拿到单位矩阵四、数据绘制1.绘制正弦函数t = [0:0.01:0.98];y1 = sin(2*pi*4*t);plot(t,y1);2.绘制余弦函数t = [0:0.01:0.98];y2 = cos(2*pi*4*t);plot(t,y2);3.同时绘制正弦函数和余弦函数t = [0:0.01:0.98];y1 = sin(2*pi*4*t);y2 = cos(2*pi*4*t);plot(t,y1);hold on; #hold on 的作⽤是在旧的图像上绘制新的图像plot(t,y2,'r')xlabel('times'); #添加横轴的labelylabel('values'); #添加纵轴的labellegend('sin','cos') #将图例添加到右上⾓title('my plot') #给图像⼀个titleclose; #关闭图像figure(1);plot(t,y1);figure(2);plot(t,y2); #给不同的图像命名4.将图像分为⼀个1*2的格⼦subplot(1,2,1) #前两个参数的意思是分为1*2的格⼦,后⾯⼀个参数的意思是当前使⽤第⼀个格⼦5.改变轴的刻度axis([0.5 1 -1 1]) #(xmin xmax ymin ymax)6.清除⼀副图像(clf)7.可视化⼀个矩阵A = magic(5)imagesc(A);imagesc(A), colorbar, colormap gray; #⼀个灰度分布图。
Matlab使用方法
solve('x^2+3x-6') solve('-x^2*y+3*x-6','x+y^2-1')
求方程的符号解
solve (eq1,eq2,…eqn) 求方程组的符号解
2.方程(组)的数值解 fzero (fun,x0) 用数值方法求方程根
七、积分变换 1. Fourier积分变换
返回a、b的并集,即c = a∪b 返回向量a、b的公共部分,即c= a∩b
差:setdiff
返回属于a但不属于b的不同元素的集合,C = a-b
交集的非: setxor
检测集合中的元素: ismember
4. 除法运算
A/B
5. 矩阵乘方
exp(A) :EA 6. 矩阵函数 expm logm sqrtm
五. 拟合和插值 1. 多项式拟合: 2. 插值: polyfit ( x, y , n)
a. interp1( X,Y,xi,method) method 可取下列值:
linear spline cubic 线性插值
一维数据插值
b. interp2( X,Y,Z,xi, yi,method) 二维数据插值
注: M文件的调用以文件名为准。
%为Matlab的注释符,其后的语句 不执行(只对当前行有效)。
二、Matlab语言
1.逻辑判断符 >= <= > isequal函数 2.逻辑运算符 & | ~
<
==
~=
3.条件语句 ① if-else语句
② switch-case语句
4.循环语句
矩阵在matlab中的基本命令
一、矩阵的表示在MATLA B中创建矩阵有以下规则:a、矩阵元素必须在”[]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用li nspac e函数产生行向量,其调用格式为:linspa ce(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATL AB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n 维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令res hape对调入的矩阵进行重排。
reshap e(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如 Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
matlab中的矩阵的基本运算命令
[R,jb] = rref(A,tol) %tol为指定的精度
rrefmovie(A) %给出每一步化简的过程
[Q,R] = qr(A,0) %产生矩阵A的“经济大小”分解
[Q,R,E] = qr(A,0) %E的作用是使得R的对角线元素降序,且Q*R=A(:, E)。
R = qr(A) %稀疏矩阵A的分解,只产生一个上三角阵R,满足R'*R = A'*A,这种方法计算A'*A时减少了内在数字信息的损耗。
说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。
1.3.7 奇异值分解
函数 svd
格式 s = svd (X) %返回矩阵X的奇异值向量
[U,S,V] = svd (X) %返回一个与X同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列。
[C,R] = qr(A,b) %用于稀疏最小二乘问题:minimize||Ax-b||的两步解:[C,R] = qr(A,b),x = R\c。
R = qr(A,0) %针对稀疏矩阵A的经济型分解
[C,R] = qr(A,b,0) %针对稀疏最小二乘问题的经济型分解
函数 qrdelete
在Matlab中,函数null用来求解零空间,即满足A?X=0的解空间,实际上是求出解空间的一组基(基础解系)。
格式 z = null % z的列向量为方程组的正交规范基,满足 。
如何在Matlab中进行矩阵操作和计算
如何在Matlab中进行矩阵操作和计算在Matlab中进行矩阵操作和计算Matlab是一种用于数值计算和可视化的高级程序语言,广泛应用于科学计算、工程设计、统计分析等领域。
其中,矩阵操作和计算是Matlab的核心功能之一。
在本文中,我们将探讨如何利用Matlab进行矩阵操作和计算的一些基本技巧和高级功能。
一、创建矩阵在Matlab中创建矩阵非常简单。
我们可以使用特定的语法来定义一个矩阵,并赋予其初值。
例如,我们可以使用方括号将矩阵的元素排列成行或列的形式,用逗号或空格分隔开每个元素。
```MatlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % 创建一个3x3的矩阵B = [10 11 12; 13 14 15; 16 17 18]; % 创建一个3x3的矩阵```除此之外,我们还可以使用内置函数来创建特殊类型的矩阵,如单位矩阵、零矩阵、对角矩阵等。
```MatlabC = eye(3); % 创建一个3x3的单位矩阵D = zeros(2, 4); % 创建一个2x4的零矩阵E = diag([1 2 3]); % 创建一个对角矩阵,对角线元素分别为1、2、3```二、矩阵运算Matlab提供了丰富的矩阵运算函数,方便我们进行各种矩阵操作。
例如,我们可以使用加法、减法、乘法、除法等运算符对矩阵进行基本的运算。
```MatlabF = A + B; % 矩阵相加G = A - B; % 矩阵相减H = A * B; % 矩阵相乘I = A / B; % 矩阵相除```此外,Matlab还提供了求转置、求逆、求行列式等常用的矩阵运算函数,可以通过调用这些函数来完成相应的操作。
```MatlabJ = transpose(A); % 求矩阵A的转置K = inv(A); % 求矩阵A的逆矩阵L = det(A); % 求矩阵A的行列式```三、矩阵索引与切片在Matlab中,我们可以使用索引和切片操作来访问矩阵的特定元素或子矩阵。
Matlab矩阵的操作
>>F = 5*ones(3,3) F=
555 555 555
>>N = fix(10*rand(1,10)) N=
4 9 4 4 8 52 6 8 0
此外,常用的函数还有reshape(A,m,n),它在 矩阵总元素保持不变的前提下,将矩阵A重新 排成m×n的二维矩阵,其元素是以列的方式从 A中获得, A必须包含m×n个元素。
.
>>A = 16 3 5 10 96 4 15
2 13 11 8 7 12 14 1
>>reshape(A,2,8)
ans =
16 9 3 6 2 7 13 12
5 4 10 15 11 14 8 1
5. 建立大矩阵
大矩阵可由方括号中的小矩阵建立起来。 例如:
>>A=[1 2 3 ; 4 5 6 ; 7 8 9]; >>C=[A, eye(size(A)); ones(size(A)), A] C= 1 2 3 1 0 0
diag(X)
若 X 是矩阵,则 diag(X) 为 X 的主对角线向量 若 X 是向量,diag(X) 产生以 X 为主对角线的对角矩阵
tril(A)
提取一个矩阵的下三角部分
triu(A)
提取一个矩阵的上三角部分
rand(m,n) 产生 0~1 间均匀分布的随机矩阵 m=n 时简写为 rand(n)
(2) 装入 该文本文件: load mymatrix.dat 或者: load mymatrix.txt
(3) 创建一个变量名为mymatrix的矩阵
将以文本或二进制格式存储的数据读入 MATLAB 的另一种 方式是用 Import Wizard. File→Import Data
matlab矩阵的表示和简单操作
matlab矩阵的表示和简单操作一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
在MATLAB中,矩阵元素按列存储。
序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。
MATLAB 矩阵操作大全
MATLAB 矩阵操作大全转载自:/dengjianqiang2011/article/details/8753807MATLAB矩阵操作大全一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。
二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。
建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。
还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。
2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。
3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。
同时可以利用命令reshape对调入的矩阵进行重排。
reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。
二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。
也可以采用矩阵元素的序号来引用矩阵元素。
矩阵元素的序号就是相应元素在内存中的排列顺序。
MATLAB矩阵操作
MATLAB矩阵操作MATLAB是一种功能强大的数学软件,用于进行各种数值计算和数据处理任务。
其中,最常见的操作之一就是对矩阵进行操作。
本文将介绍一系列的MATLAB矩阵操作,包括创建矩阵、访问矩阵元素、矩阵运算、矩阵转置与共轭以及矩阵分解等。
1.创建矩阵要创建一个矩阵,可以使用MATLAB中的矩阵专用命令。
例如,可以使用zeros函数创建一个全零矩阵,如下所示:```matlabA = zeros(3, 3);```这将创建一个3x3的全零矩阵。
同样地,可以使用ones函数创建一个全一矩阵,使用eye函数创建一个单位矩阵。
还可以使用rand函数创建一个随机矩阵。
2.访问矩阵元素要访问矩阵中的元素,可以使用矩阵的行列下标来进行索引。
MATLAB 中的矩阵索引是从1开始的,而不是从0开始的。
例如,要访问矩阵A的第2行第3列的元素,可以使用以下语法:```matlabA(2,3)```3.矩阵运算MATLAB提供了许多矩阵运算的函数。
例如,可以使用矩阵相加、相减和相乘的操作符+、-和*进行矩阵运算。
还可以使用dot函数进行矩阵的点乘运算。
此外,MATLAB还提供了矩阵的逆运算、矩阵的行列式计算和矩阵的特征值计算等。
4.矩阵转置与共轭要进行矩阵的转置操作,可以使用矩阵的转置操作符'。
例如,要对矩阵A进行转置,可以使用以下语法:```matlabB=A';```而对于复数矩阵,可以使用conj函数对矩阵进行共轭操作。
例如,要对矩阵A进行共轭操作,可以使用以下语法:```matlabB = conj(A);```5.矩阵分解例如,可以使用lu函数对一个矩阵进行LU分解。
以下是一个示例:```matlab[L, U, P] = lu(A);```这将返回矩阵LU分解的结果,其中L是下三角矩阵,U是上三角矩阵,P是行置换矩阵。
总结:本文介绍了MATLAB中的矩阵操作,包括创建矩阵、访问矩阵元素、矩阵运算、矩阵转置与共轭以及矩阵分解等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例】简单矩阵⎥⎥⎥⎦
⎤⎢⎢
⎢⎣⎡=987654321
A 的输入步骤。
(1)在键盘上输入下列内容:( 以 ; 区隔各列的元素)
A = [1,2,3; 4,5,6; 7,8,9]
(2)按【Enter 】键,指令被执行。
(3)在指令执行后,MATLAB 指令窗中将显示以下结果:
A =
1 2 3
4 5 6
7 8 9
【例】矩阵的分行输入
A=[1,2,3
4,5,6
7,8,9]
(以下是显示结果)
A =
1 2 3
4 5 6
7 8 9
>>a=[1,4,6,8,10] %一维矩阵
>>a(3) % a 的第三个元素
ans =
6
»x =[1 2 3 4 5 6 7 8
4 5 6 7 8 9 10 11]; %二维2x8 矩阵
» x(3) % x 的第三个元素
ans =
2
» x([1 2 5]) % x 的第一、二、五个元素
ans =
1 4 3
>> x(2,3) % x的第二行第三列的元素
ans =
6
x(1:5) % x的第前五个元素
ans =
1 4
2 5 3
» x(10:end) % x的第十个元素后的元素
ans =
8 6 9 7 10 8 11
» x(10:-1:2) % x的第十个元素和第二个元素的倒排
ans =
8 5 7 4 6 3 5 2 4
» x(find(x>5)) % x中大于5的元素
ans =
6 7 8 6 9 7 10 8 11» x(4)=100 %给x的第四个元素重新给值
x =
1 2 3 4 5 6 7 8
4 100 6 7 8 9 10 11
» x(3)=[] %删除第三个元素(不是二维数组)
x =
Columns 1 through 12
1 4 100 3 6 4 7 5 8 6 9 7
Columns 13 through 15
10 8 11
» x(16)=1 %加入第十六个元素
x =
Columns 1 through 12
1 4 100 3 6 4 7 5 8 6 9 7
Columns 13 through 16
10 8 11 1
当元素很多的时候,则须采用以下的方式:
» x=(1:2.5:120); % 以:起始值=1,增量值=2,终止值=120的矩阵
» x=linspace(0,1,100);% 利用linspace,以区隔起始值=0,终止值=1之间,元素数目=100
»a=[]%空矩阵
a =
[]
» zeros(2,2) %全为0的矩阵
ans =
0 0
00
» ones(3,3) %全为1的矩阵
ans =
1 1 1
1 1 1
1 1 1
» rand(2,4);%随机矩阵
»a=1:7, b=1:0.2:5; %更直接的方式
»c=[b a];%可利用先前建立的阵列 a 及阵列 b ,组成新阵列
以下将阵列的运算符号及其意义列出,除了加减符号外其余的阵列运算符号均须多加. 符号。
阵列运算功能(注意:一定要多加. 符号)
+加-减.*乘./左除.\右除.^次方.'转置
>> a=1:5; a-2 % 从阵列a减2
ans =
-1 0 1 2 3
>> 2*a-1 % 以2乘阵列a再减1
ans =
1 3 5 7 9
>> b=1:2:9; a+b % 阵列a加阵列b
ans =
2 5 8 11 14
>> a.*b % 阵列a及b中的元素与元素相乘
ans =
1 6 15 28 45
>> a./b % 阵列a及b中的元素与元素相除
ans =
1.0000 0.66667 0.6000 0.5714 0.5556
>> a.^2 % 阵列中的各个元素作二次方
ans =
1 4 9 16 25
>> 2.^a % 以2为底,以阵列中的各个元素为次方
ans =
2 4 8 16 32
>> b.^a % 以阵列b中的各个元素为底,以阵列a中的各个元素为次方ans =
1 9 125 2401 59049
>> b=a' % 阵列b是阵列a的转置结果
b =
1
2
3
4
5
矩阵的几种基本变换操作
1. 通过在矩阵变量后加’的方法来表示转置运算
>>a=[10,2,12;34,2,4;98,34,6];
ans =
10 34 98
2 2 34
12 4 6
2. 矩阵求逆
>>inv(a)
ans =
-0.0116 0.0372 -0.0015 0.0176 -0.1047 0.0345 0.0901 -0.0135 -0.0045 3. 矩阵求伪逆
>>pinv(a)
ans =
-0.0116 0.0372 -0.0015 0.0176 -0.1047 0.0345 0.0901 -0.0135 -0.0045 4. 左右反转
>>fliplr(a)
ans =
12 2 10
4 2 34
6 34 98
5. 矩阵的特征值
>>[u,v]=eig(a)
-0.2960 0.3635 -0.3600
-0.2925 -0.4128 0.7886
-0.9093 -0.8352 0.4985
v =
48.8395 0 0
0 -19.8451 0
0 0 -10.9943
6. 上下反转
>>flipud(a)
ans =
98 34 6
34 2 4
10 2 12
7. 旋转90度
>>rot90(a)
ans =
12 4 6
2 2 34
10 34 98
8. 取出上三角和下三角
>>triu(a)
ans =
10 2 12
0 2 4
0 0 6
>>tril(a)
ans =
10 0 0
34 2 0
98 34 6
>>[l,u]=lu(a)
l = 0.1020 0.1500 1.0000
0.3469 1.0000 0
1.0000 0 0
u = 98.0000 34.0000 6.0000
0 -9.7959 1.9184
0 0 11.1000
9. 正交分解
>>[q,r]=qr(a)
q =
-0.0960 -0.1232 -0.9877
-0.3263 -0.9336 0.1482
-0.9404 0.3365 0.0494
r =
-104.2113 -32.8179 -8.0989
0 9.3265 -3.1941
0 0 -10.9638 10.奇异值分解
>>[u,s,v]=svd(a)
u =
0.1003 -0.8857 0.4532 0.3031 -0.4066 -0.8618 0.9477 0.2239 0.2277 s =
109.5895 0 0 0 12.0373 0 0 0 8.0778 v =
0.9506 -0.0619 -0.3041 0.3014 0.4176 0.8572 0.0739 -0.9065 0.4156
11.求矩阵的范数
>>norm(a)
ans =
109.5895
>>norm(a,1)
ans =
142
>>norm(a,inf)
ans =
138。