2009年中考数学试题汇编之14-二次函数与一元二次方程试题及答案 (1)

合集下载

中考数学专题专练--二次函数与一次函数的综合 (1)

中考数学专题专练--二次函数与一次函数的综合 (1)

中考数学专题专练--二次函数与一次函数的综合1.如图,二次函数y=- 34x2+94x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3.如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△P AB=6,并求出此时P点的坐标.4.如图,抛物线y1=a(x-1)2+4与x轴交于A(-1,0)。

(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x 轴于点B,求△ABC的面积。

5.如图,已知直线y=-3x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A和点C,对称轴为直线I:x=-1,该抛物线与x轴的另一个交点为B。

(1)求此抛物线的解析式;(2)点P在抛物线上且位于第二象限,求△PBC的面积最大值及点P的坐标。

(3)点M在此抛物线上,点N在对称轴上,以B、C、M、N为顶点的四边形能否为平行四边形?若能,写出所有满足要求的点M 的坐标;若不能,请说明理由。

6.如图,直线y=-x+2与抛物线y=ax 2交于A ,B 两点,点A 坐标为(1,1)。

(1)水抛物线的函数表达式:(2)连结OA ,OB ,求△AOB 的面积。

7.已知抛物线y=ax 2+bx+c 的顶点P(1,-1),且过Q(5,3)。

2009中考数学试题及答案

2009中考数学试题及答案

236= a a 36 =-)aAOB第14题图第17题图A DB C第13题图8分)是O的直径,O过BCE.是O的切线;CE=,求O的半径.,5求OPAQ的面积S)的条件下,当OPAQ的面积为,使OPAQ)P(甲市场得(乙市场得∠=中,AEF··················166.84>,∴居民住房的采光有影响.(2)如图,在tan ADB ∠点DE AC ⊥DE OD ∴⊥ ············DE ∴是O 的切线证法二:连接OD ,AB 为直径,∴∠30C ∠=°,∴∠DE AC ⊥ADE ∴∠=点D 为BC OA OD =ODE ∴∠=,DE ∴是O 的切线.(2)解法一:连接,AB 为直径,DE AC ⊥,90∴∠=° 在Rt CED △cos CECD=点O ∴的半径为解法二:连接AB为直径,D是BC∴=BD CD△在Rt CED即O的半径为(此题解法较多,只要正确,可参考以上评分标准给分).(本小题满分2<,600060006125-=60 2.5∴销售价应定为25.(本小题满分AB AC =AOC ∴∠EOF ∠=EOA ∴△≌△(还可证△(2)解:①连接AB AC =EOF ∠=FOC ∴∠BE x =,取值范围是:②OEF △12t t <,∴抛物线y )点又26APO S S OA y OA y y ===△ 6S y =- ·········································抛物线与。

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析)

中考数学复习---二次函数之二次函数综合知识点总结与练习题(含答案解析) 知识点总结1. 二次函数与一元二次方程:①若二次函数()02≠++=a c bx ax y 与x 轴有两个交点⇔一元二次方程02=++c bx ax 有两个不相等的实数根⇔042>ac b −=∆。

②若二次函数()02≠++=a c bx ax y 与x 轴只有一个交点⇔一元二次方程02=++c bx ax 有两个相等的实数根⇔042=−=∆ac b 。

③若二次函数()02≠++=a c bx ax y 与x 轴没有交点⇔一元二次方程02=++c bx ax 没有实数根⇔042<ac b −=∆。

④若二次函数()02≠++=a c bx ax y 与直线m y =相交,则一元二次方程为m c bx ax =++2。

交点情况与方程的解的情况同与x 轴相交时一样。

2. 二次函数与不等式(组)若二次函数()02≠++=a c bx ax y 与一次函数()0≠+=k b kx y 存在交点,则不等式:b kx c bx ax +++>2的解集取二次函数图像在上方的部分所对应的自变量取值范围;b kx c bx ax +++<2的解集取二次函数图像在下方的部分所对应的自变量取值范围。

3. 二次函数的一些特殊的自变量的函数值:①当1=x 时所对应的函数值为c b a y ++=。

②当1−=x 时所对应的函数值为c b a y +−=。

③当2=x 时所对应的函数值为c b a y ++=24。

④当2−=x 时所对应的函数值为c b a y +−=24。

4. 对称轴的特殊值:①若对称轴为直线1=x 时,则02=+b a 。

②若对称轴为直线1−=x 时,则02=−b a 。

③判断b a +2与0的大小关系时,看对称轴与1=x 的位置关系。

④判断b a −2与0的大小关系时,看对称轴与1−=x 的位置关系。

练习题1、(2022•巴中)函数y =|ax 2+bx +c |(a >0,b 2﹣4ac >0)的图像是由函数y =ax 2+bx +c (a >0,b 2﹣4ac >0)的图像x 轴上方部分不变,下方部分沿x 轴向上翻折而成,如图所示,则下列结论正确的是( )①2a +b =0;②c =3;③abc >0;④将图像向上平移1个单位后与直线y =5有3个交点.A .①②B .①③C .②③④D .①③④【分析】根据函数图像与x 轴交点的横坐标求出对称轴为,进而可得2a +b =0,由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,由抛物线y =ax 2+bx +c 的开口方向,对称轴位置和抛物线与y 轴交点位置可得abc 的符号,求出二次函数y =ax 2+bx +c 的顶点式,可得图像向上平移1个单位后与直线y =5有3个交点【解答】解:∵图像经过(﹣1,0),(3,0),∴抛物线y =ax 2+bx +c 的对称轴为直线x =1,∴﹣=1,∴b =﹣2a ,即2a +b =0,①正确.由图像可得抛物线y =ax 2+bx +c 与y 轴交点在x 轴下方,∴c<0,②错误.由抛物线y=ax2+bx+c的开口向上可得a>0,∴b=﹣2a<0,∴abc>0,③正确.设抛物线y=ax2+bx+c的解析式为y=a(x+1)(x﹣3),代入(0,3)得:3=﹣3a,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4),∵点(1,4)向上平移1个单位后的坐标为(1,5),∴将图像向上平移1个单位后与直线y=5有3个交点,故④正确;故选:D.2、(2022•资阳)如图是二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1).有以下四个结论:①abc>0,②a﹣b+c>1,③3a+c<0,④若顶点坐标为(﹣1,2),当m≤x≤1时,y有最大值为2、最小值为﹣2,此时m的取值范围是﹣3≤m≤﹣1.其中正确结论的个数是()A.4个B.3个C.2个D.1个【分析】①:根据二次函数的对称轴,c=1,即可判断出abc>0;②:结合图像发现,当x=﹣1时,函数值大于1,代入即可判断;③:结合图像发现,当x=1时,函数值小于0,代入即可判断;④:运用待定系数法求出二次函数解析式,再利用二次函数的对称性即可判断.【解答】解:∵二次函数y=ax2+bx+c的图像,其对称轴为直线x=﹣1,且过点(0,1),∴,c=1,∴ab>0,∴abc>0,故①正确;从图中可以看出,当x=﹣1时,函数值大于1,因此将x=﹣1代入得,(﹣1)2⋅a+(﹣1)⋅b+c>1,即a﹣b+c>1,故②正确;∵,∴b=2a,从图中可以看出,当x=1时,函数值小于0,∴a+b+c<0,∴3a+c<0,故③正确;∵二次函数y=ax2+bx+c的顶点坐标为(﹣1,2),∴设二次函数的解析式为y=a(x+1)2+2,将(0,1)代入得,1=a+2,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+2,∴当x=1时,y=﹣2;∴根据二次函数的对称性,得到﹣3≤m≤﹣1,故④正确;综上所述,①②③④均正确,故有4个正确结论,故选A.3、(2022•黄石)已知二次函数y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,有以下结论:①abc<0;②若t为任意实数,则有a﹣bt≤at2+b;③当图像经过点(1,3)时,方程ax2+bx+c ﹣3=0的两根为x1,x2(x1<x2),则x1+3x2=0,其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=2a>0,利用抛物线与y轴的交点位置得到c<0,则可对①进行判断;利用二次函数当x=﹣1时有最小值可对②进行判断;由于二次函数y=ax2+bx+c与直线y=3的一个交点为(1,3),利用对称性得到二次函数y=ax2+bx+c与直线y=3的另一个交点为(﹣3,3),从而得到x1=﹣3,x2=1,则可对③进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣1,即﹣=﹣1,∴b =2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤at 2+bt +c (t 为任意实数),即a ﹣bt ≤at 2+b ,所以②正确;∵图像经过点(1,3)时,得ax 2+bx +c ﹣3=0的两根为x 1,x 2(x 1<x 2),∴二次函数y =ax 2+bx +c 与直线y =3的一个交点为(1,3),∵抛物线的对称轴为直线x =﹣1,∴二次函数y =ax 2+bx +c 与直线y =3的另一个交点为(﹣3,3),即x 1=﹣3,x 2=1,∴x 1+3x 2=﹣3+3=0,所以③正确.故选:D .4、(2022•日照)已知二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,对称轴为x =23,且经过点(﹣1,0).下列结论:①3a +b =0;②若点(21,y 1),(3,y 2)是抛物线上的两点,则y 1<y 2;③10b ﹣3c =0;④若y ≤c ,则0≤x ≤3.其中正确的有( )A.1个B.2个C.3个D.4个【分析】由对称轴为x=即可判断①;根据点(,y1),(3,y2)到对称轴的距离即可判断②;由抛物线经过点(﹣1,0),得出a﹣b+c=0,对称轴x=﹣=,得出a=﹣b,代入即可判断③;根据二次函数的性质以及抛物线的对称性即可判断④.【解答】解:∵对称轴x=﹣=,∴b=﹣3a,∴3a+b=0,①正确;∵抛物线开口向上,点(,y1)到对称轴的距离小于点(3,y2)的距离,∴y1<y2,故②正确;∵经过点(﹣1,0),∴a﹣b+c=0,∵对称轴x=﹣=,∴a=﹣b,∴﹣b﹣b+c=0,∴3c=4b,∴4b﹣3c=0,故③错误;∵对称轴x=,∴点(0,c)的对称点为(3,c),∵开口向上,∴y≤c时,0≤x≤3.故④正确;故选:C.5、(2022•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)和点(x0,y0),且c>0.有下列结论:①a<0;②对任意实数m都有:am2+bm≥4a﹣2b;③16a+c>4b;④若x0>﹣4,则y0>c.其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2)且c>0,即可判断开口向下,即可判断①;根据二次函数的性质即可判断②;根据抛物线的对称性即可判断③;根据抛物线的对称性以及二次函数的性质即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c为常数)的对称轴为x=﹣2,过点(1,﹣2),且c>0,∴抛物线开口向下,则a<0,故①正确;∵抛物线开口向下,对称轴为x=﹣2,∴函数的最大值为4a﹣2b+c,∴对任意实数m都有:am2+bm+c≤4a﹣2b+c,即am2+bm≤4a﹣2b,故②错误;∵对称轴为x=﹣2,c>0.∴当x=﹣4时的函数值大于0,即16a﹣4b+c>0,∴16a+c>4b,故③正确;∵对称轴为x=﹣2,点(0,c)的对称点为(﹣4,c),∵抛物线开口向下,∴若﹣4<x0<0,则y0>c,故④错误;故选:B.6、(2022•绵阳)如图,二次函数y=ax2+bx+c的图像关于直线x=1对称,与x轴交于A (x1,0),B(x2,0)两点.若﹣2<x1<﹣1,则下列四个结论:①3<x2<4;②3a+2b >0;③b2>a+c+4ac;④a>c>b,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点以及x=﹣1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a﹣b+c<0,即可判断④.【解答】解:∵对称轴为直线x=1,﹣2<x1<﹣1,∴3<x2<4,①正确,∵﹣=1,∴b=﹣2a,∴3a+2b=3a﹣4a=﹣a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,由题意可知x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∵a>0,∴b=﹣2a<0,∴a+c<0,∴b2﹣4ac>a+c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a﹣b+c<0,b=﹣2a,∴3a+c<0,∴c<﹣3a,∴b=﹣2a,∴b>c,所以④错误;故选:B.7、(2022•牡丹江)如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣2,并与x 轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②(a+c)2﹣b2=0;③9a+4c <0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1 B.2 C.3 D.4【分析】根据函数图像的开口方向、对称轴、图像与y轴的交点即可判断①;根据对称轴x =﹣2,OA=5OB,可得OA=5,OB=1,点A(﹣5,0),点B(1,0),当x=1时,y =0即可判断②;根据对称轴x=﹣2,以及,a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=﹣2时,y=4a﹣2b+c,即可判断④;【解答】解:①观察图像可知:a>0,b>0,c<0,∴abc<0,故①错误;②∵对称轴为直线x=﹣2,OA=5OB,可得OA=5,OB=1,∴点A(﹣5,0),点B(1,0),∴当x=1时,y=0,即a+b+c=0,∴(a+c)2﹣b2=(a+b+c)(a+c﹣b)=0,故②正确;③抛物线的对称轴为直线x=﹣2,即﹣=﹣2,∴b=4a,∵a+b+c=0,∴5a+c=0,∴c=﹣5a,∴9a+4c=﹣11a,∵a >0,∴9a +4c <0,故③正确;④当x =﹣2时,函数有最小值y =4a ﹣2b +c ,由am 2+bm +c ≥4a ﹣2b +c ,可得am 2+bm +2b ≥4a ,∴若m 为任意实数,则am 2+bm +2b ≥4a ,故④正确;故选:C .8、(2022•烟台)二次函数y =ax 2+bx +c (a ≠0)的部分图像如图所示,其对称轴为直线x =﹣21,且与x 轴的一个交点坐标为(﹣2,0).下列结论:①abc >0;②a =b ;③2a +c =0;④关于x 的一元二次方程ax 2+bx +c ﹣1=0有两个相等的实数根.其中正确结论的序号是( )A .①③B .②④C .③④D .②③【分析】根据对称轴、开口方向、与y 轴的交点位置即可判断a 、b 、c 与0的大小关系,然后将由对称轴可知a =b .图像过(﹣2,0)代入二次函数中可得4a ﹣2b +c =0.再由二次函数最小值小于0,从而可判断ax 2+bx +c =1有两个不相同的解.【解答】解:①由图可知:a >0,c <0,<0,∴b >0,∴abc <0,故①不符合题意.②由题意可知:=﹣,∴b =a ,故②符合题意.③将(﹣2,0)代入y =ax 2+bx +c ,∴4a ﹣2b +c =0,∵a =b ,∴2a +c =0,故③符合题意.④由图像可知:二次函数y =ax 2+bx +c 的最小值小于0,令y =1代入y =ax 2+bx +c ,∴ax 2+bx +c =1有两个不相同的解,故④不符合题意.故选:D .9、(2022•广安)已知抛物线y =ax 2+bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图像如图所示,有下列结论:①abc >0; ②2c ﹣3b <0; ③5a +b +2c =0;④若B (34,y 1)、C (31,y 2)、D (﹣31,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4【分析】①正确,根据抛物线的位置,判断出a ,b ,c 的符号,可得结论;②③错误,利用对称轴公式,抛物线经过A (3,0),求出b ,c 与a 的关系,判断即可; ④正确.利用图像法判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴是直线x=1,∴1=﹣,∴b=﹣2a,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵抛物线y=ax2﹣2ax+c经过(3,0),∴9a﹣6a+c=0,∴c=﹣3a,∴2c﹣3b=﹣6a+6a=0,故②错误,5a+b+2c=5a﹣2a﹣6a=﹣3a<0,故③错误,观察图像可知,y1<y2<y3,故④正确,故选:B.10、(2022•辽宁)抛物线y=ax2+bx+c的部分图像如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x 有最大值.其中正确的个数是( )A .2B .3C .4D .5【分析】利用图像的信息与已知条件求得a ,b 的关系式,利用待定系数法和二次函数的性质对每个结论进行逐一判断即可得出结论.【解答】解:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1,∴﹣=﹣1,∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.11、(2022•内蒙古)如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x 的取值范围是﹣1≤x<3;④点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:根据函数的对称性,抛物线与x轴的另外一个交点的坐标为(3,0);①函数对称轴在y轴右侧,则ab<0,而c=3>0,故abc<0,故①正确,符合题意;②∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0.∴②正确,符合题意;③由图像知,当y>0时,x的取值范围是﹣1<x<3,∴③错误,不符合题意;④从图像看,当x=﹣2时,y1<0,当x=2时,y2>0,∴有y1<0<y2,故④正确,符合题意;故选:C.12、(2022•枣庄)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax2+bx+c(a≠0)图像的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图像他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图像上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b =2a ,∴3a +c =0,⑤错误.故答案为:①②③.13、(2022•内江)如图,抛物线y =ax 2+bx +c 与x 轴交于两点(x 1,0)、(2,0),其中0<x 1<1.下列四个结论:①abc <0;②a +b +c >0;③2a ﹣c >0;④不等式ax 2+bx +c >﹣1x c x +c 的解集为0<x <x 1.其中正确结论的个数是( )A .4B .3C .2D .1【分析】利用二次函数的图像和性质依次判断即可.【解答】解:∵抛物线开口向上,对称轴在y 轴右边,与y 轴交于正半轴, ∴a >0,b <0,c >0,∴abc <0,∴①正确.∵当x =1时,y <0,∴a +b +c <0,∴②错误.∵抛物线过点(2,0),∴4a+2b+c=0,∴b=﹣2a﹣,∵a+b+c<0,∴a﹣2a﹣+c<0,∴2a﹣c>0,∴③正确.如图:设y1=ax2+bx+c,y2=﹣x+c,由图值,y1>y2时,x<0或x>x1,故④错误.故选:C.14、(2022•鄂州)如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图像顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a、b、c的正负即可解答;③将点A的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【解答】解:①由抛物线的开口方向向下,则a<0,故①正确;②∵抛物线的顶点为P(1,m),∴﹣=1,b=﹣2a,∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∴abc<0,故②错误;③∵抛物线经过点A(2,1),∴1=a•22+2b+c,即4a+2b+c=1,故③正确;④∵抛物线的顶点为P(1,m),且开口方向向下,∴x>1时,y随x的增大而减小,即④正确;⑤∵a<0,∴at2+bt﹣(a+b)=at 2﹣2at ﹣a +2a=at 2﹣2at +a=a (t 2﹣2t +1)=a (t ﹣1)2≤0,∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故选:C .15、(2022•达州)二次函数y =ax 2+bx +c 的部分图像如图所示,与y 轴交于(0,﹣1),对称轴为直线x =1.下列结论:①abc >0;②a >31;③对于任意实数m ,都有m (am +b )>a +b 成立;④若(﹣2,y 1),(21,y 2),(2,y 3)在该函数图像上,则y 3<y 2<y 1;⑤方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4.其中正确结论有( )个.A .2B .3C .4D .5【分析】①正确,判断出a ,b ,c 的正负,可得结论;②正确.利用对称轴公式可得,b =﹣2a ,当x =﹣1时,y >0,解不等式可得结论; ③错误.当m =1时,m (am +b )=a +b ;④错误.应该是y 2<y 3<y 1,;⑤错误.当有四个交点或3个时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为4,当有两个交点时,方程|ax 2+bx +c |=k (k ≥0,k 为常数)的所有根的和为2.【解答】解:∵抛物线开口向上,∴a>0,∴抛物线与y轴交于点(0,﹣1),∴c=﹣1,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①正确,∵y=ax2﹣2ax﹣1,当x=﹣1时,y>0,∴a+2a﹣1>0,∴a>,故②正确,当m=1时,m(am+b)=a+b,故③错误,∵点(﹣2,y1)到对称轴的距离大于点(2,y3)到对称轴的距离,∴y1>y3,∵点(,y2)到对称轴的距离小于点(2,y3)到对称轴的距离,∴y3>y2,∴y2<y3<y1,故④错误,∵方程|ax2+bx+c|=k(k≥0,k为常数)的解,是抛物线与直线y=±k的交点,当有3个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为3,当有4个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为4,当有2个交点时,方程|ax2+bx+c|=k(k≥0,k为常数)的所有根的和为2,故⑤错误,故选:A.。

全国中考数学一元二次方程的综合中考真题汇总附详细答案

全国中考数学一元二次方程的综合中考真题汇总附详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;4.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.7.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.8.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解9.解方程:x 2-2x =2x +1.【答案】x 1=2-5 ,x 2=2+5.【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式24b b ac x -±-=求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =420±=2±5 , ∴x 1=2-5 ,x 2=2+5.10. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】。

中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)一、单选题(共12题;共24分)1.下列一元二次方程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.方程=0有两个相等的实数根,且满足=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.5.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.方程(x-1)•(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的方程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列方程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是()A. a≥B. 0<a≤C. - ≤a<0D. a≤-二、填空题(共6题;共12分)13.等腰三角形的腰和底边的长是方程x2-20x+91=0的两个根,则此三角形的周长为________.14.已知x=-1是方程x2+ax+4=0的一个根,则方程的另一个根为________ 。

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。

中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题

《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的X围,再估算的X围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值X围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值X围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m 的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式; =|a|; =•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为 1 ;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x >0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k 得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a ≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的X围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值X围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值X围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。

2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解

2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解

2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解(试题部分)一、单选题1.(2024·内蒙古包头·中考真题)将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( ) A .()213y x =+− B .()=+−2y x 12C .()213y x =−−D .()212y x =−−2.(2024·广东广州·中考真题)函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <−B .10x −<<C .02x <<D .1x >3.(2024·四川凉山·中考真题)抛物线()2213y x c =−+经过()()1235202y y y ⎛⎫− ⎪⎝⎭,,,,,三点,则123y y y ,,的大小关系正确的是( ) A .123y y y >>B .231y y y >>C .312y y y >>D .132y y y >>4.(2024·四川达州·中考真题)抛物线2y x bx c =−++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( ) A .1b c +>B .2b =C .240b c +<D .0c <5.(2024·四川泸州·中考真题)已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( ) A .918a ≤< B .302a << C .908a <<D .312a ≤<6.(2024·陕西·中考真题)已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数的结论正确的是( ) A .图象的开口向上B .当0x >时,y 的值随x 的值增大而增大C .图象经过第二、三、四象限D .图象的对称轴是直线1x =7.(2024·湖北·中考真题)抛物线2y ax bx c =++的顶点为()1,2−−,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( ) A .0a <B .0c <C .2a b c −+=−D .240b ac −=8.(2024·广东·中考真题)若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( ) A .321y y y >>B .213y y y >>C .132y y y >>D .312y y y >>9.(2024·四川自贡·中考真题)一次函数24y x n =−+,二次函数2(1)3y x n x =+−−,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >−B .2n >C .11n −<<D .12n <<10.(2024·四川遂宁·中考真题)如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >; ②930a b c −+≥;③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A .1B .2C .3D .411.(2024·江苏连云港·中考真题)已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A .①②B .②③C .③④D .②④12.(2024·四川广安·中考真题)如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A .1个B .2个C .3个D .4个13.(2024·四川眉山·中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x =,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c −<<−,则8433a b c −<++<−,其中正确结论的个数为( )A .1个B .2个C .3个D .414.(2024·福建·中考真题)已知二次函数()220y x ax a a =−+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <15.(2024·贵州·中考真题)如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A .二次函数图象的对称轴是直线1x =B .二次函数图象与x 轴的另一个交点的横坐标是2C .当1x <−时,y 随x 的增大而减小D .二次函数图象与y 轴的交点的纵坐标是316.(2024·四川乐山·中考真题)已知二次函数()2211y x x x t =−−≤≤−,当=1x −时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥17.(2024·黑龙江绥化·中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A .1个B .2个C .3个D .4个18.(2024·四川广元·中考真题)如图,已知抛物线2y ax bx c =++过点()0,2C −与x 轴交点的横坐标分别为1x ,2x ,且110x −<<,223x <<,则下列结论:①<0a b c −+;②方程220ax bx c +++=有两个不相等的实数根; ③0a b +>; ④23a >; ⑤2244b ac a −>.其中正确的结论有( )A .1个B .2个C .3个D .4个19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于A 、B两点,()()3,0,1,0A B −,与y 轴交点C 的纵坐标在3−~2−之间,根据图象判断以下结论:①20abc >;②423b <<;③若221122ax bx ax bx −=−且12x x ≠,则122x x +=−;④直线56y cx c =−+与抛物线2y ax bx c =++的一个交点(,)(0)m n m ≠,则12m =.其中正确的结论是( )A .①②④B .①③④C .①②③D .①②③④20.(2024·内蒙古赤峰·中考真题)如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A .1m n +=B .1m n −=C .1mn =D .1m n= 21.(2024·四川宜宾·中考真题)如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A −、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A .1个B .2个C .3个D .4个22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0−,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b −=−;③当1x >时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a−;⑤b 的取值范围为413b <<.其中正确结论的个数是( ) A .2B .3C .4D .5二、填空题23.(2024·四川内江·中考真题)已知二次函数221y x x =−+的图象向左平移两个单位得到抛物线C ,点()12,P y ,()23,Q y 在抛物线C 上,则1y 2y (填“>”或“<”);24.(2024·吉林长春·中考真题)若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是 .25.(2024·黑龙江牡丹江·中考真题)将抛物线23y ax bx =++向下平移5个单位长度后,经过点()24,−,则637a b −−= .26.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是 .27.(2024·上海·中考真题)对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为 .28.(2024·湖北武汉·中考真题)抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤.其中正确的是 (填写序号).29.(2024·四川德阳·中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是 (请填写序号).30.(2024·山东烟台·中考真题)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x −<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y −−均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x −或3x >.其中正确结论的序号为 .三、解答题31.(2024·江苏扬州·中考真题)如图,已知二次函数2y x bx c =−++的图像与x 轴交于(2,0)A −,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标.32.(2024·安徽·中考真题)已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1. (1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值; (ⅱ)若11x t =−,求h 的最大值.33.(2024·北京·中考真题)在平面直角坐标系xOy 中,已知抛物线()2220=−≠y ax a x a .(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于13x a =,234x ≤≤,都有12y y <,求a 的取值范围. 34.(2024·浙江·中考真题)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A −,对称轴为直线12x =−.(1)求二次函数的表达式;(2)若点(1,7)B 向上平移2个单位长度,向左平移m (0m >)个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值;(3)当2x n −≤≤时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++−的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =−,求二次函数223y x ax a =++−的最小值. ①请你写出对应的函数解析式;②求当x 取何值时,函数y y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.” 甲同学:“我发现,老师给了a 值后,我们只要取x a =−,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++−,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.36.(2024·云南·中考真题)已知抛物线21y x bx =+−的对称轴是直线32x =.设m 是抛物线21y x bx =+−与x 轴交点的横坐标,记533109m M −=.(1)求b 的值;(2)比较M 37.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.38.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P −在二次函数()230y ax bx a =+−>的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值;(2)若点(),4Q m −在23y ax bx =+−的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+−的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <−<,求a 的取值范围. 39.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =−+(a 为常数且0a >)与y 轴交于点A .(1)若1a=,求抛物线的顶点坐标;(2)若线段OA(含端点)上的“完美点”个数大于3个且小于6个,求a的取值范围;=交于M、N两点,线段MN与抛物线围成的区域(含边界)内恰有4个“完美点”,(3)若抛物线与直线y x求a的取值范围.2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解(答案详解)一、单选题1.(2024·内蒙古包头·中考真题)将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( ) A .()213y x =+− B .()=+−2y x 12C .()213y x =−−D .()212y x =−− 【答案】A【分析】本题主要考查了二次函数的平移以及顶点式,根据平移的规律“上加下减.左加右减”可得出平移后的抛物线为222y x x =+−,再把222y x x =+−化为顶点式即可.【详解】解:抛物线22y x x =+向下平移2个单位后,则抛物线变为222y x x =+−,∴222y x x =+−化成顶点式则为 ()213y x =+−,故选:A .2.(2024·广东广州·中考真题)函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <−B .10x −<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .3.(2024·四川凉山·中考真题)抛物线()2213y x c =−+经过()()1235202y y y ⎛⎫− ⎪⎝⎭,,,,,三点,则123y y y ,,的大小关系正确的是( )A .123y y y >>B .231y y y >>C .312y y y >>D .132y y y >>4.(2024·四川达州·中考真题)抛物线2y x bx c =−++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A .1b c +>B .2b =C .240b c +<D .0c <【答案】A【分析】本题考查了二次函数的性质,设抛物线2y x bx c =−++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =−++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =−<,抛物线开口向下,∴当1x =时,0y >,即10b c −++>5.(2024·四川泸州·中考真题)已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( )A .918a ≤<B .302a <<C .908a <<D .312a ≤< 【详解】解:二次函数6.(2024·陕西·中考真题)已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数的结论正确的是( )A .图象的开口向上B .当0x >时,y 的值随x 的值增大而增大C .图象经过第二、三、四象限D .图象的对称轴是直线1x =7.(2024·湖北·中考真题)抛物线2y ax bx c =++的顶点为1,2−−,抛物线与轴的交点位于x 轴上方.以下结论正确的是( )A .0a <B .0c <C .2a b c −+=−D .240b ac −= 【答案】C【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数2y ax bx c =++的图像,如图所示:∵开口向上,与y 轴的交点位于x 轴上方,∴0a >,0c >,∵抛物线与x 轴有两个交点,∴240b ac ∆=−>,∵抛物线2y ax bx c =++的顶点为()1,2−−,∴2a b c −+=−,观察四个选项,选项C 符合题意,故选:C .8.(2024·广东·中考真题)若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A .321y y y >>B .213y y y >>C .132y y y >>D .312y y y >> 【答案】A【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上, ∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<, ∴321y y y >>,故选∶A .9.(2024·四川自贡·中考真题)一次函数24y x n =−+,二次函数2(1)3y x n x =+−−,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >−B .2n >C .11n −<<D .12n <<【答案】C10.(2024·四川遂宁·中考真题)如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c −+≥;③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A .1B .2C .3D .4 【答案】B【分析】本题主要考查二次函数和一次函数的性质,根据题干可得0a >,20b a =>,32c −<<−,即可判断①错误;根据对称轴和一个交点求得另一个交点为()3,0−,即可判断②错误;将c 和b 用a 表示,即可得到332a −<−<−,即可判断③正确;结合抛物线2y ax bx c =++和直线1y x =+与x 轴得交点,即可判断④正确.【详解】解:由图可知0a >,11.(2024·江苏连云港·中考真题)已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A .①②B .②③C .③④D .②④【答案】B0a <,02b ∴−<即a bc ++2c a ∴=−c ∴的值可正也可负,a<2,b a =−∴抛物线为09a =−12a ∴=−,故③正确;抛物线12.(2024·四川广安·中考真题)如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A .1个B .2个C .3个D .4个 <02b a−,<0b ∴.>0abc ∴.故①错误;对称轴是直线而(1−−−−故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.13.(2024·四川眉山·中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x =,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c −<<−,则8433a b c −<++<−,其中正确结论的个数为( )A .1个B .2个C .3个D .4【详解】解:①函数图象开口方向向上,对称轴在②二次函数2b a =−,1x ∴=−时,a b c ∴−+3a c ∴+=③对称轴为直线④2c −<<∴根据抛物线与相应方程的根与系数的关系可得3c a =−,23a ∴−<−<−1233a <<,2b a =−,a bc ∴++83a ∴−<+故④正确;综上所述,正确的有②③④,14.(2024·福建·中考真题)已知二次函数()220y x ax a a =−+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <【详解】解:二次函数解析式为当15.(2024·贵州·中考真题)如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A .二次函数图象的对称轴是直线1x =B .二次函数图象与x 轴的另一个交点的横坐标是2C .当1x <−时,y 随x 的增大而减小D .二次函数图象与y 轴的交点的纵坐标是3 【答案】D【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶ ∵二次函数2y ax bx c =++的顶点坐标为()1,4−, ∴二次函数图象的对称轴是直线=1x −,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3−,对称轴是直线=1x −, ∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误; ∵抛物线开口向下, 对称轴是直线=1x −,∴当1x <−时,y 随x 的增大而增大,故选项C 错误; 设二次函数解析式为()214y a x =++, 把()3,0−代入,得()20314a =−++,解得1a =−, ∴()214y x =−++,当0x =时,()20143y =−++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确, 故选D .16.(2024·四川乐山·中考真题)已知二次函数()2211y x x x t =−−≤≤−,当=1x −时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由()22211y x x x =−=−−,可知图象开口向上,对称轴为直线1x =,顶点坐标为()11−,,当=1x −时,3y =,即()13−,关于对称轴对称的点坐标为()33,,由当=1x −时,函数取得最大值;当1x =时,函数取得最小值,可得113t ≤−≤,计算求解,然后作答即可. 【详解】解:∵()22211y x x x =−=−−,∴图象开口向上,对称轴为直线1x =,顶点坐标为()11−,, 当=1x −时,3y =,∴()13−,关于对称轴对称的点坐标为()33,, ∵当=1x −时,函数取得最大值;当1x =时,函数取得最小值, ∴113t ≤−≤, 解得,24t ≤≤,故选:C .17.(2024·黑龙江绥化·中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A .1个B .2个C .3个D .4个18.(2024·四川广元·中考真题)如图,已知抛物线2y ax bx c =++过点()0,2C −与x 轴交点的横坐标分别为1x ,2x ,且110x −<<,223x <<,则下列结论:①<0a b c −+;②方程220ax bx c +++=有两个不相等的实数根; ③0a b +>; ④23a >; ⑤2244b ac a −>.其中正确的结论有( )A .1个B .2个C .3个D .4个【详解】解:①抛物线开口向上,∴2244b ac a −>,故⑤符合题意; 故选:C .19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于A 、B两点,()()3,0,1,0A B −,与y 轴交点C 的纵坐标在3−~2−之间,根据图象判断以下结论:①20abc >;②423b <<;③若221122ax bx ax bx −=−且12x x ≠,则122x x +=−;④直线56y cx c =−+与抛物线2y ax bx c =++的一个交点(,)(0)m n m ≠,则12m =.其中正确的结论是( )A .①②④B .①③④C .①②③D .①②③④20.(2024·内蒙古赤峰·中考真题)如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A .1m n +=B .1m n −=C .1mn =D .1mn= 先证明(AAS)ANB DMA ≌2)4n +.(2m n E +,4b +−,AM m =,四边形AC ∴、BD 互相平分,AB =90BAN DAM ∴∠+∠=︒,DAM ∠BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒,BA (AAS)ANB DMA ∴≌.AM NB ∴=,DMAN =.点A 、C 的横坐标分别为24(,)A m m ∴+−,(C (m n E +∴,2m n −−点21.(2024·四川宜宾·中考真题)如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A −、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A.1个B.2个C.3个D.4个3⎝⎭∴42323 OHOP==,∵23 OPOA=,∴OH OP OP OA=,又∵HOP POA∠=∠,Rt OCH 中,由勾股定理得∴正确的有3个,故选:C .【点睛】本题主要考查了二次函数图象的性质,熟练掌握二次函数的相关知识是解题的关键.22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0−,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b −=−;③当1x >时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a−;⑤b 的取值范围为413b <<.其中正确结论的个数是( ) A .2 B .3 C .4 D .5该函数图象与该图象中,当2b a =+∴关于x 的一元二次方程b x −±=0a <,(1a x −∴=∴④正确;123x <<解得1−<a b −=−1b ∴−<−413b ∴<<∴⑤正确.综上,②③④⑤正确,共二、填空题23.(2024·四川内江·中考真题)已知二次函数221y x x =−+的图象向左平移两个单位得到抛物线C ,点()12,P y ,()23,Q y 在抛物线C 上,则1y 2y (填“>”或“<”); 【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为()21y x =+,再利用二次函数图象的性质可得出答案. 【详解】解:()22211y x x x =−+=−,∵二次函数221y x x =−+的图象向左平移两个单位得到抛物线C , ∴抛物线C 的解析式为()21y x =+, ∴抛物线开口向上,对称轴为=1x −, ∴当1x >−时,y 随x 的增大而增大, ∵23<, ∴12y y <, 故答案为:<.24.(2024·吉林长春·中考真题)若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是 .25.(2024·黑龙江牡丹江·中考真题)将抛物线23y ax bx =++向下平移5个单位长度后,经过点()24,−,则637a b −−= . 【答案】2【分析】此题考查了二次函数的平移,根据平移规律得到函数解析式,把点的坐标代入得到23a b −=,再整体代入变形后代数式即可.【详解】解:抛物线23y ax bx =++向下平移5个单位长度后得到22352y ax bx ax bx =++−=+−, 把点()24,−代入得到,()24222a b =⨯−−−,得到23a b −=,∴()6373273372a b a b −−=−−=⨯−=, 故答案为:226.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是 .27.(2024·上海·中考真题)对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为 .y 28.(2024·湖北武汉·中考真题)抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤.其中正确的是 (填写序号).29.(2024·四川德阳·中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是 (请填写序号).30.(2024·山东烟台·中考真题)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x −<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y −−均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x −或3x >.其中正确结论的序号为 .【答案】①②④由2228y x y x x =−+⎧⎨=−−+⎩,解得1120x y =⎧⎨=⎩,2235x y =−⎧⎨=⎩, ∴()2,0A ,()3,5B −,由图形可得,当3x <−或2x >时,2282x x x −−+<−+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④, 故答案为:①②④.三、解答题31.(2024·江苏扬州·中考真题)如图,已知二次函数2y x bx c =−++的图像与x 轴交于(2,0)A −,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标. 【答案】(1)12b c =−=,(2)122434()()P P −−−,,,【分析】本题主要考查二次函数与几何图形的综合,掌握待定系数法求解析式,解一元二次方程的方法是1PABS=4n =,4n =±,32.(2024·安徽·中考真题)已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1. (1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值; (ⅱ)若11x t =−,求h 的最大值. 【答案】(1)4b =33.(2024·北京·中考真题)在平面直角坐标系xOy 中,已知抛物线()2220=−≠y ax a x a .(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于13x a =,234x ≤≤,都有12y y <,求a 的取值范围.综上,当01a <<或4a <−,都有12y y <.34.(2024·浙江·中考真题)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A −,对称轴为直线12x =−.(1)求二次函数的表达式;(2)若点(1,7)B 向上平移2个单位长度,向左平移m (0m >)个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值;(3)当2x n −≤≤时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++−的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =−,求二次函数223y x ax a =++−的最小值. ①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.” 甲同学:“我发现,老师给了a 值后,我们只要取x a =−,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++−,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.36.(2024·云南·中考真题)已知抛物线21y x bx =+−的对称轴是直线32x =.设m 是抛物线21y x bx =+−与x 轴交点的横坐标,记533109m M −=.(1)求b 的值;(2)比较M。

中考数学专题复习:二次函数与一元二次方程

中考数学专题复习:二次函数与一元二次方程

中考数学专题复习:二次函数与一元二次方程一、选择题1.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( ) A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<22.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.33.二次函数y=(x﹣a)(x﹣b)﹣2(a<b)与x轴的两个交点的横坐标分别为m和n,且m<n,下列结论正确的是()A.m<a<n<b B.a<m<b<nC.m<a<b<n D.a<m<n<b4.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=15.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)6.已知二次函数y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0的解是( )A .x 1=-3,x 2=1B .x 1=3,x 2=1C .x =-3D .x =-2 7.如图,在平面直角坐标系中,抛物线y =﹣x 2+2x 的顶点为A 点,且与x 轴的正半轴交于点B ,P 点为该抛物线对称轴上一点,则OP+AP 的最小值为( )A .B .C .3D .28.根据下表中二次函数y =ax 2+bx+c (a≠0)的对应值:x 3.23 3.24 3.25 3.26 y﹣0.06﹣0.020.030.09判断方程ax 2+bx+c =0(a≠0)的一个解x 的范围是( ) A .3.23<x <3.24 B .3.24<x <3.25 C .3.25<x <3.26 D .不能确定9. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题10.将函数y =x 2+2x ﹣3的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的是新函数y =|x 2+2x ﹣3|的图象,若该新函数图象与直线y =﹣x+b 有两个交点,则b 的取值范围为________.11.若抛物线y =﹣x 2﹣6x+m 与x 轴没有交点,则m 的取值范围是________.12. 如图,已知抛物线y=x2+2x-3与x轴的两个交点分别是A,B(点A在点B的左侧).(1)点A的坐标为__________,点B的坐标为________;(2)利用函数图象,求得当y<5时x的取值范围为________.13.已知二次函数y=ax2+bx+c(a≠0,a,b,c,为常数),对称轴为直线x=1,它的部分自变量x与函数值y的对应值如下表.请写出ax2+bc+c=0的一个正数解的近似值________(精确到0.1)x ﹣0.4 ﹣0.3 ﹣0.2 ﹣0.1 y=ax2+bx+c 0.92 0.38 ﹣0.12 ﹣0.5814.已知函数y=a(x+2)(x﹣),有下列说法:①若平移函数图象,使得平移后的图象经过原点,则只有唯一平移方法:向右平移2个单位;②当0<a<1时,抛物线的顶点在第四象限;③方程a(x+2)(x﹣)=﹣4必有实数根;④若a<0,则当x<﹣2时,y随x的增大而增大.其中说法正确的是_________.(填写序号)15. 如图,抛物线y=ax2与直线y=bx+c的两个交点分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是________.16.已知抛物线y1=(x﹣x1)(x﹣x2)与x轴交于A,B两点,直线y2=2x+b经过点(x1,0).若函数w=y1﹣y2的图象与x轴只有一个公共点,则线段AB的长为________.三、解答题17.有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.18. 已知二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1.(1)求m,n的值;(2)当x取何值时,y随x的增大而减小?19.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(3,0).请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长.20.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和B(3,0),与y 轴交于点C.(I)求二次函数的表达式.(2)求二次函数图象的顶点坐标和对称轴.21. 利用图象解一元二次方程x2-2x-1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y=x2和直线y=2x+1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x2-2x-1=0的解的方法;(2)已知函数y=x3的图象(如图),求方程x3-x-2=0的解(精确到0.1).22.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.23.如图,抛物线y=ax2﹣3ax+4(a<0)与x轴交于A、B两点,与y轴交于点C,直线y=m,交抛物线于D、E两点.(1)当a=﹣时,求A,B两点的坐标;(2)当m=2,DE=4时,求抛物线的解析式;(3)当a=﹣1时,方程ax2﹣3ax+4=m在﹣6≤x<4的范围内有实数解,请直接写出m的取值范围:________.24.已知函数y=x2+(b﹣1)x+c(b,c为常数),这个函数的图象与x轴交于两个不同的点A(x1,0)和B(x2,0).若x1,x2满足x2﹣x1>1;(1)求证:b2>2(b+2c);(2)若t<x1,试比较t2+bt+c与x1的大小,并加以证明.参考答案10.b>或﹣<b<11.m<﹣9.12. (1)(-3,0) (1,0) (2)-4<x<213.2.2.(答案不唯一,与其相近即可)14.②③.15. x1=-2,x2=116.617.解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(1﹣3)2﹣2,解得a=∴二次函数解析式为:y=(x﹣3)2﹣2.(2)如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.18. 解:(1)∵二次函数y=x2+mx+n的图象经过点P(-3,1),对称轴是直线x=-1,∴⎩⎪⎨⎪⎧1=9-3m +n ,-m 2=-1,解得⎩⎪⎨⎪⎧m =2,n =-2.(2)由(1)知二次函数的解析式为y =x 2+2x -2. ∵a =1>0,∴抛物线的开口向上, ∴当x ≤-1时,y 随x 的增大而减小.19. 解:(1)∵抛物线y =x 2+bx+c 经过点A (﹣1,0),B (3,0), ∴,解得:.∴抛物线的解析式为:y =x 2﹣2x ﹣3; (2)如图,连接BE , ∵点E (2,m )在抛物线上, ∴m =4﹣4﹣3=﹣3, ∴E (2,﹣3), ∴BE ==,∵点F 是AE 中点,抛物线的对称轴与x 轴交于点H ,即H 为AB 的中点, ∴FH 是三角形ABE 的中位线, ∴FH =BE =×=.20. 解:(1)用交点式函数表达式得:y =(x ﹣1)(x ﹣3)=x 2﹣4x+3; 故二次函数表达式为:y =x 2﹣4x+3; (2)函数的对称轴为直线x =﹣=﹣=2,当x =2时,y =x 2﹣4x+3=4﹣8+3=﹣1, 故顶点坐标为(2,﹣1).21. 解:(1)答案不唯一,如在直角坐标系中画出抛物线y =x 2-1和直线y =2x ,其交点的横坐标就是方程的解.(2)在图中画出直线y =x +2,与函数y =x 3的图象交于点B ,得点B 的横坐标x ≈1.5, ∴方程的解为x ≈1.5.22.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.23.解:(1)当a=﹣时,令y=﹣x2﹣3×(﹣)x+4=0,解得:x=5或﹣2,故点A、B的坐标分别为(5,0)、(﹣2,0);(2)函数的对称轴为x=,∵DE=4,m=2,故点D(,2),将点D的坐标代入y=ax2﹣3ax+4并解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+4;(3)当a=﹣1时,y=﹣x2+3x+4,令y=0,则x=﹣6或4,当x=﹣6时,y=﹣x2+3x+4=﹣50,函数的对称轴为x=,则顶点坐标为(,),当﹣6≤x<4时,﹣50≤y≤,故m的取值范围为:﹣50≤m≤,故答案为:﹣50≤m≤.24.证明:(1)∵令y=x2+(b﹣1)x+c中y=0,得到x2+(b﹣1)x+c=0,∴x=,又x2﹣x1>1,∴,∴b2﹣2b+1﹣4c>1,∴b2>2(b+2c);(2)由已知x2+(b﹣1)x+c=(x﹣x1)(x﹣x2),∴x2+bx+c=(x﹣x1)(x﹣x2)+x,∴t2+bt+c=(t﹣x1)(t﹣x2)+t,t2+bt+c﹣x1=(t﹣x1)(t﹣x2)+t﹣x1=(t﹣x1)(t﹣x2+1),∵t<x1,∴t﹣x1<0,∵x2﹣x1>1,∴t<x1<x2﹣1,∴t﹣x2+1<0,∴(t﹣x1)(t﹣x2+1)>0,即t2+bt+c>x1.。

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题附带答案一、单选题(共12题;共24分)1.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=12,且经过点(2,0),下列说法:①abc>0;②b2﹣4ac>0;③x=﹣1是关于x的方程ax2+bx+c=0的一个根;④a+b=0.其中正确的个数为()A.1B.2C.3D.42.若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣53.已知抛物线y=ax2+bx+c经过点(−4,m),(−3,n)若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且−4<x1<−3,x2>0则下列结论一定正确的是()A.m+n>0B.m−n<0C.m⋅n<0D.m n>04.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a +c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个5.设抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动,抛物线与x轴交于C,D两点(C在D 的左侧).若点A,B的坐标分别为(﹣2,3)和(1,3),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,a=﹣43.其中正确的是()A.①②④B.①③④C.②③D.②④6.已知二次函数y=x2−2x+m(m为常数)的图象与x轴的一个交点为(3,0),则关于x 的一元二次方程x2−2x+m=0的两个实数根是()A.x1=−1,x2=3B.x1=1C.x1=−1,x2=1D.x1=37.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()x 6.17 6.18 6.19 6.20y=ax2+bx+c0.020.010.020.04D.1或28.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(-1,0)则①二次函数的最大值为a+b+c;②a-b+c<0;③b2-4ac<0;④当y>0时,-1<x<3其中正确的个数是()A.1B.2C.3D.49.二次函数y=ax2+bx+c的部分图像如图所示,可知方程ax2+bx+c=0的所有解的积为()A.-4B.4C.5D.-510.抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,若关于x的一元二次方程﹣x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.﹣12<t≤3B.﹣12<t<4C.﹣12<t≤4D.﹣12<t<311.二次函数y=ax2−2ax+c(a≠0)的图象过点(3,0),方程ax2−2ax+c=0的解为()A.x1=−3,x2=−1B.x1=−1C.x1=1,x2=3D.x1=−312.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论中正确的有()①4ac<b2,②方程ax2+bx+c=0的两个根是x1=−1,x2=3③3a−c>0,④当y>0时,x的取值范围是−1≤x≤3.A.①②B.①②③C.①③④D.②④二、填空题(共6题;共6分)13.已知二次函数y=﹣x2+bx+c的顶点为(1,5),那么关于x的一元二次方程﹣x2+bx+c﹣m=0有两个相等的实数根,则m=.14.已知关于x的一元二次方程(x−2)(x−3)=m有实根x1,x2,且x1<x2,现有下列说法:①当)(x−m=0时,x1=2,x2=3;②当m>0时,2<x1<x2<3;③m>−14;④二次函数y=(x−x1x2)−m的图象与x轴的交点坐标为(2,0)和(3,0). 其中正确的有.15.如图所示为抛物线y=ax2−2ax+3,则一元二次方程ax2−2ax+3=0两根为.16.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t 为实数)在﹣2<x<6的范围内有解,则t的取值范围是.17.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是三、综合题(共6题;共75分)19.已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.20.已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有求出实数根;若没有请说明理由.21.在一次羽毛球比赛中,甲运动员在离地面53米的P点处发球,球的运动轨迹PAN可看作是一条抛物线的一部分,当球运动到最高点A处时,其高度为3米,离甲运动员站立地点O的水平距离为5米,球网BC离点O的水平距离为6米,以点O为原点建立平面直角坐标系,回答下列问题.(1)求抛物线的解析式(不要求些出自变量的取值范围);(2)羽毛球场地底线距离球网BC的水平距离为6米,此次发球是否会出界?(3)乙运动员在球场上M(m,0)处接球,乙原地起跳可接球的最大高度为2.5米,若乙因接球高度不够而失球,求m的取值范围.22.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=−2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.并指出该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(2)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x 的取值范围.24.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当﹣1≤x≤2时,求y的取值范围.参考答案1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】A 7.【答案】A 8.【答案】B 9.【答案】D 10.【答案】C 11.【答案】B 12.【答案】A 13.【答案】5 14.【答案】①③ 15.【答案】x 1=−1 16.【答案】﹣1≤t <2417.【答案】有两个同号不等实数根 18.【答案】①②④19.【答案】(1)解:∵抛物线与x 轴有两个交点∴b 2﹣4ac >0 即16+8c >0 解得c >﹣2(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1 ∵抛物线经过点(﹣1,0)∴抛物线与x 轴的另一个交点为(3,0) ∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=3.20.【答案】(1)解:∵抛物线经过P (-3,m )和Q (1,m )∴抛物线的对称轴为直线x=−3+12=-1∴-b 2×2=−1 ∴b=4;(2)解:方程有实数解.对于方程2x 2+4x+1=0 ∵Δ=42-4×2×1=8>0∴关于x 的一元二次方程2x 2+4x+1=0有两个不相等的实数根;∴x=−4±√82×2=−2±√22∴x 1=−1+√22,x 2=−1−√22.21.【答案】(1)解:设抛物线的解析式为y =a (x ﹣5)2+3,由题意,得 53=a (0﹣5)2+3;a =﹣ 475.∴抛物线的解析式为:y =﹣ 475 (x ﹣5)2+3(2)解:当y =0时,﹣ 475(x ﹣5)2+3=0解得:x 1=﹣ 52 (舍去),x 2= 252即ON = 252∵OC =6∴CN = 252 ﹣6= 132 >6∴此次发球会出界 (3)解:由题意,得 2.5=﹣ 475(m ﹣5)2+3;解得:m 1=5+ 5√64 ,m 2=5﹣ 5√64(舍去)∵m >6∴6<m <5+ 5√64. ∴m 的取值范围是6<m <5+ 5√6422.【答案】(1)解:根据题意得W =(x −20)(−2x +80) =−2x 2+120x −1600 =−2(x −30)2+200∴当x =30时,每天的利润最大,最大利润为200元. (2)令−2(x −30)2+200=150,解得:x =35或x =25 ∵这种产品的销售价不高于每千克28元 ∴x =25.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.【答案】(1)解:∵函数图象与x轴的两个交点坐标为(1,0)(3,0)∴方程的两个根为x1=1(2)解:∵二次函数的顶点坐标为(2,2)∴若方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为k<2(3)解:∵抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点由图象可知,抛物线在直线下方时x的取值范围为:x<1或x>2.24.【答案】(1)解:∵二次函数图象与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3)∴x=﹣1,y=0代入y=﹣x2+bx+c得:﹣1﹣b+c=0①把x=0,y=3代入y=﹣x2+bx+c得:c=3把c=3代入①,解得b=2则二次函数解析式为y=﹣x2+2x+3;(2)解:令二次函数解析式中的y=0得:﹣x2+2x+3=0可化为:(x﹣3)(x+1)=0解得:x1=3,x2=﹣1由函数图象可知:当﹣1<x<3时,y>0;(3)解:由抛物线的表达式知,抛物线的对称轴为直线x=1当﹣1≤x≤2时,y在x=﹣1和顶点处取得最小和最大值当x=﹣1时,y=0当x=1时,y=﹣x2+2x+3=4故当﹣1≤x≤2时,求y的取值范围0≤y≤4.。

2009年中考数学试题汇编之14-二次函数与一元二次方程试题及答案

2009年中考数学试题汇编之14-二次函数与一元二次方程试题及答案

全国免费客户服务电话:400-715-6688地址:西安经济技术开发区凤城一路8号御道华城A 座10层2009年中考试题专题之14-二次函数与一元二次方程试题及答案一、选择题 1、(2009年台湾)下列哪一个函数,其图形与x 轴有两个交点?(A) y =17(x +83)2+2274 (B) y =17(x -83)2+2274 (C) y = -17(x -83)2-2274 (D) y = -17(x +83)2+2274。

2、(2009年台州市)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x… 1- 0 1 3 … y…3-131…A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间二、填空题1、(2009年内蒙古包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是cm 2.2、(2009年甘肃白银)抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论:,.(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)3、(2009年甘肃庆阳)从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为米.4、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是cm 2.5、(2009年包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是个.三、解答题1、(2009年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围. 2、(2009 安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义. 【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果. (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大.3、(2009年常德市)已知二次函数过点A (0,2-),B (1-,0),C (5948,). (1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上? (3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4、(2009年湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?5、(2009年内蒙古包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x(元)图8符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、(2009年杭州市)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0). (1)若0>a ,且tan ∠POB =91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB =38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离. 7、(2009年娄底)已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y轴的交点为C ,它的顶点为M ,求直线CM 的解析式.9、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?O 1 1y x =1y x =P (2,0)xy(第24题)10、(2009年孝感)已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ON OM -=,求k 的值.11、(2009年新疆)(1)用配方法把二次函数243y x x =-+变成2()y x h k =-+的形成. (2)在直角坐标系中画出243y x x =-+的图象.(3)若1122()()A x y B x y ,,,是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y ,的大小关系.(直接写结果)(4)把方程2432x x -+=的根在函数243y x x =-+的图象上表示出来. 【12、(2009年天津市)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.12、(2009年广西梧州)如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B . (1)求此抛物线的解析式;(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.13、2009年包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.14、(2009年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式; (3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围.15、(09湖南怀化)如图11,已知二次函数22)(m k m x y -++=的图象与x 轴相交于两个不同的点1(0)A x ,、2(0)B x ,,与y 轴的交点为C .设ABC △的外接圆的圆心为点P .(1)求P ⊙与y 轴的另一个交点D 的坐标;y=kx +1图(9)-1图(9)-2(2)如果AB 恰好为P ⊙的直径,且ABC △的面积等于5,求m 和k 的值.16、(2009年达州)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N. ①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由. 17、(2009年邵阳市)如图(十二)直线l 的解析式为y =-x+4, 它与x 轴、y 轴分相交于A 、B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M 、N 两点,运动时间为t 秒(0<t ≤4). (1)求A 、B 两点的坐标;(2)用含t 的代数式表示△MON 的面积S 1;(3)以MN 为对角线作矩形OMPN,记 △MPN 和△OAB 重合部分的面积为S 2 ; ①当2<t ≤4时,试探究S 2 与之间的函数关系;②在直线m 的运动过程中,当t 为何值时,S 2 为△OAB 的面积的165?18、(2009年肇庆市)已知一元二次方程210x px q +++=的一根为 2. (1)求q 关于p 的关系式;(2)求证:抛物线2y x px q =++与x 轴有两个交点;(3)设抛物线2y x px q =++的顶点为 M ,且与 x 轴相交于A (1x ,0)、B (2x ,0)两点,求使△AMB 面积最小时的抛物线的解析式.。

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)一、单选题1.解一元二次方程2210x x +-=,配方得到()21x a +=,则a 的值为( ) A .1B .1-C .2D .2-2.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m ≥2B .m ≤2C .m >2D .m <23.用配方法解一元二次方程27120x x -+=,配方后的方程为( ) A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=4.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x 元,可列方程为( )A .(45-30-x )(300+50x )=5500B .(x -30)(300+50x )=5500C .(x -30)[300+50(x -45)]=5500D .(45-x )(300+50x )=55005.铜罗中学组织一次乒乓球赛,比赛采用单循环制,要求每两队之间赛一场.若整个比赛一共赛了45场,则有几个球队参赛?设有x 个球队参赛,则下列方程中正确的是( ) A .x (x +1)=45B .1(1)452x x +=C .x (x ﹣1)=45D .1(1)452x x -=6.一元二次方程22560x x -+=的根的情况为( ) A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定7.已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠ 8.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或159.某超市一月份的营业额为100万元,已知第一季度的总营业额共500万元,如果平均每月增长率为x ,则由题意列方程应为( )A .100+100(1+x )+100(1+x )2=500B .100(1+x )2=500C .100+100(1+x )2=500D .100(1+x )=50010.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=11.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( ) A .有两个相等的实数根 B .无实数根 C .有两个不相等的实数根D .无法判定12.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x ,下列所列的方程正确的是( ) A .6000(1+x )2=5000 B .5000(1+x )2=6000 C .6000(1﹣x )2=5000D .5000(1﹣x )2=6000二、填空题 13.方程290x 的根是_________.14.若关于x 的一元二次方程2210++-=x x m 有一个根为0,则m =________.15.关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m 的取值范围是_______.16.已知关于x 的方程21(1)230m m x x +-+-=是一元二次方程,则m 的值为_________. 17.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 18.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.19.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.20.常态化防疫形势下,某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请x 个好友转发倡议书,每个好友转发倡议书,又邀请x 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为__________________.三、解答题21.用适当的方法解下列方程: (1)23650x x +-= (2)2670x x +-= (3)2760x x += (4)()()22333x x x =--22.已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)如果该方程有两个相等的实数根,求m 的值; (2)如果该方程有一个根小于0,求m 的取值范围.23.已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根. (1)求a 的取值范围;(2)若a 为正整数,求方程的根.24.如图,在长方形ABCD 中,6cm,7cm ==AB BC ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.当点Q 运动到点C 时,两点停止运动.设运动时间为s t .多少秒后三角形BPQ 的面积等于25cm25.为应对新冠疫情,较短时间内要实现全国医用防护服产量成倍增长,有效保障抗击疫情一线需要,某医用防护服生产企业1月份生产9万套防护服,该企业不断加大生产力度,3月份生产达到12.96万套防护服.(1)求该企业1月份至3月份防护服产量的月平均增长率.(2)若平均增长率保持不变,4月份该企业防护服的产量能否达到16万套?请说明理由.26.某商店以每件16元的价格购进了一批热销商品,出售价格经过两个月的调整,从每件25元上涨到每件36元,此时每月可售出160件商品. (1)求该商品平均每月的价格增长率;(2)因某些原因商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降0.5元,每个月多卖出1件,当降价多少元时商品每月的利润可达到1800元.27.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为 个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元? (3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?28.位于宁波市江北区的保国寺以其精湛绝伦的建筑工艺闻名全国,其中大雄宝殿(又称无梁殿)更是以四绝“鸟不栖,虫不入,蜘蛛不结网,梁上无灰尘”吸引了各地游客前来参观.据统计,假期第一天保国寺的游客人数为5000人次,第三天游客人数达到7200人次. (1)求游客人数从假期第一天到第三天的平均日增长率;(2)据悉,景区附近商店推出了保国寺旅游纪念章,每个纪念章的成本为5元,当售价为10元时,平均每天可售出500个,为了让游客尽可能得到优惠,商店决定降价销售.市场调查发现,售价每降低0.5元,平均每天可多售出100个,若要使每天销售旅游纪念章获利2800元,则售价应降低多少元?29.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元. (1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a 元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a 的值。

中考数学频考点突破 二次函数与一元二次方程

中考数学频考点突破 二次函数与一元二次方程

中考数学频考点突破--二次函数与一元二次方程1.在平面直角坐标系xOy中,点A(0,2),抛物线y=mx2+4mx+5m的对称轴与x 轴交于点B.(1)求点B的坐标;(2)当m>0时,过A点作直线l平行于x轴,与抛物线交于C、D两点(C在D 左侧),C、D横坐标分别为x1、x2,且x2﹣x1=2,求抛物线的解析式;(3)若抛物线与线段AB恰只有一个公共点,则请结合函数图象,直接写出m的取值范围.2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.3.突如其来的新冠疫情影响了某厂经济效益,在复工复产对产品价格进行了调整,每件的售价比进价多8元,8件的进价相当于6件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件。

(1)该商品的售价和进价分别是多少元?(2)在进价不变的条件下,若每天所得的销售利润为2035元时,且销量尽可能大,该商品应涨价多少元?(3)在进价不变的条件下,商场的营销部在调控价格方面,提出了A,B两种营销方案:方案A:每件商品涨价不超过15元;方案B:每件商品的利润至少为26元.请比较哪种方案的利润更大,并说明理由.4.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y (件)与每件销售价x(元)的关系数据如下:x30323436y40363228与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?5.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x-m(m是常数),若函数y1的表达式还可以写成y1=2(x-m)(x-m-2)的形式,当函数y=y1-y2的图象经过点(x0,0)时,求x0-m的值.6.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)当销售价定为多少元时会获得最大利润?求出最大利润.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.8.已知二次函数y=x2−4x+3.(1)将二次函数表达式y=x2−4x+3化成y=a(x−ℎ)2+k的形式,并直接写出其项点坐标;(2)完成下列表格并在如图所示的直角坐标系内画出该函数的大致图像;x (01234)y=x2−4x+3…x时,y<0时,x的取值范围是.9.已知函数y=kx2+(k+1)x+1(k为实数).(1)当k=3时,求此函数图象与x轴的交点坐标;(2)判断此函数与x轴的交点个数,并说明理由.10.已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)求证:此方程有两个不相等的实数根;(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是.11.已知,正方形ABCD,A(0,−4),B(1,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4( m为常数),顶点为M(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx−2m−4( m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45°时,求m的值.12.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求直线OA和二次函数的解析式;(2)当点P在直线OA的上方时,①当PC的长最大时,求点P的坐标;②当S△PCO=S△CDO时,求点P的坐标.13.某商店原来平均每天可销售某种水果100千克,每千克可盈利7元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可所多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利400元,则每千克应降价多少元?(3)每千克降价多少元时,每天的盈利最多?最多盈利多少元?14.在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图象与x轴有两个公共点.(1)求m的取值范围;(2)若m取满足条件的最小的整数,①写出这个二次函数的表达式;②当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值;③将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x-h)2 +k,当x<2时,y随x的增大而减小,求k的取值范围.15.已知一元二次方程x2+x﹣2=0有两个不相等的实数根,即x1=1,x2=﹣2.(1)求二次函数y=x2+x﹣2与x轴的交点坐标;(2)若二次函数y=﹣x2+x+a与x轴有一个交点,求a的值.16.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若使商场平均每天赢利1200元,则每件衬衫应降价多少元?(2)若想获得最大利润,每件衬衫应降价多少元?最大利润为多少元?答案解析部分1.【答案】(1)解:∵抛物线y =mx 2+4mx+5m 的对称轴为直线x =﹣ 4m 2m=﹣2, ∴对称轴与x 轴交点B 的坐标为(﹣2,0);(2)解:由题意可知,C 、D 两点关于抛物线的对称轴对称,且C 在D 的左边, ∴x 1+x 22=﹣2, ∴x 1+x 2=﹣4,∵x 2﹣x 1=2,∴x 1=﹣3,x 2=﹣1,∵A (0,2),且过A 的直线l 平行于x 轴,∴C (﹣3,2),D (﹣1,2),将D 点代入抛物线,得m ﹣4m+5m =2,解,得m =1,∴抛物线的解析式为y =x 2+4x+5;(3)0<m < 25 或m = 12【知识点】待定系数法求二次函数解析式;二次函数图象与一元二次方程的综合应用【解析】【解答】解:(3)∵A (0,2),B (﹣2,0),∴线段AB 在x 轴上方,直线AB =x +2,函数y =mx 2+4mx +5m 中,△=(4m )2﹣4m •5m =﹣4m 2<0,∴抛物线与x 轴无交点,当m <0时,抛物线开口向下,顶点在x 轴下方,与线段AB 为交点,当m >0时,抛物线开口向上,顶点在x 轴上方,若抛物线与AB 有一个交点,有两种情况:①如图1,抛物线与AB 相切时,则mx 2+4mx +5m =x +2整理得,mx 2+(4m ﹣1)x +5m ﹣2=0,△=(4m ﹣1)2﹣4m (5m ﹣2)=0,解得m = 12 或m =﹣ 12(舍去), ②抛物线与y 轴的交点在O 、A 之间,即0<5m <2,解得0<m < 25, 综上所述,m 的取值范围是 0<m < 25 或m = 12.【分析】(1)利用对称轴公式求得对称轴,即可求得B 的坐标;(2)先根据对称轴求出x 1+x 2=﹣4,结合x 2﹣x 1=2,即可求出x1和x2的值,从而可求出C (﹣3,2),D (﹣1,2),然后用待定系数法求解即可;(3)当m<0时不合题意;当m >0,分两种情况讨论,结合图象即可求得.2.【答案】(1)解:∵函数图象与x 轴的两个交点坐标为(1,0)(3,0), ∴方程的两个根为x 1=1,x 2=3;(2)解:由图可知,不等式ax 2+bx+c >0的解集为1<x <3;(3)解:∵二次函数的顶点坐标为(2,2),∴若方程ax 2+bx+c =k 有两个不相等的实数根,则k 的取值范围为k <2.【知识点】二次函数与不等式(组)的综合应用;二次函数图象与一元二次方程的综合应用【解析】【分析】(1)根据函数图象,二次函数图象与x 轴的交点的横坐标即为方程的根;(2)根据函数图象写出x 轴上方部分的x 的取值范围即可;(3)能与函数图象有两个交点的所有k 值即为所求的范围.3.【答案】(1)解:该商品的售价x 元,进价为y 元,由题意得: {x =y +86x =8y解得 {x =32y =24故商品的售价32元,进价为24元。

中考数学一元二次方程(大题培优)附答案解析

中考数学一元二次方程(大题培优)附答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用2.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1x =,234x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m+->,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.3.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=2b a-±=41222-=-±⨯∴x 1=-1,x 2=-1 (2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.4.已知关于x 的方程x 2﹣2x +m ﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.5.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.6.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.7.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.8.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.9.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.【答案】(1)证明见解析;(2)x1=﹣,x2=﹣1或【解析】试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;(2)根据一元二次方程根与系数的关系x1+x2=-ba,x1•x2=ca,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣35)2+365,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2=ca=﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣x2=﹣1,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1,x210.若两个一次函数的图象与x轴交于同一点,则称这两个函数为一对“x牵手函数”,这个交点为“x牵手点”.(1)一次函数y=x﹣1与x轴的交点坐标为;一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,则a=;(2)已知一对“x牵手函数”:y=ax+1与y=bx﹣1,其中a,b为一元二次方程x2﹣kx+k﹣4=0的两根,求它们的“x牵手点”.【答案】(1)(1,0),a=﹣2;(2)“x牵手点”为(12-,0)或(12,0).【解析】【分析】(1)根据x轴上点的坐标特征可求一次函数y=x-1与x轴的交点坐标;把一次函数y=x-1与x轴的交点坐标代入一次函数y=ax+2可求a的值;(2)根据“x牵手函数”的定义得到a+b=0,根据根与系数的关系求得k=0,可得方程x2-4=0,解得x1=2,x2=-2,再分两种情况:①若a=2,b=-2,②若a=-2,b=2,进行讨论可求它们的“x牵手点”.【详解】解:(1)当y=0时,即x﹣1=0,所以x=1,即一次函数y=x﹣1与x轴的交点坐标为(1,0),由于一次函数y=ax+2与一次函数y=x﹣1为一对“x牵手函数”,所以0=a+2,解得a=﹣2;(2)∵y=ax+1与y=bx﹣1为一对“x牵手函数”∴11a b-=,∴a+b=0.∵a,b为x2﹣kx+k﹣4=0的两根∴a+b=k=0,∴x2﹣4=0,∴x1=2,x2=﹣2.①若a=2,b=﹣2则y=2x+1与y=﹣2x﹣1的“x牵手点”为1,02⎛⎫- ⎪⎝⎭;②若a=﹣2,b=2则y=﹣2x+1与y=2x﹣1的“x牵手点”为(12,0 )∴综上所述,“x牵手点”为1,02⎛⎫- ⎪⎝⎭或(12,0)【点睛】本题考查了根与系数的关系、一次函数的性质和一次函数图象上点的坐标特征的运用.。

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题-附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题-附带答案

中考数学总复习《二次函数图像与一元二次方程的综合应用》练习题-附带答案一、单选题(共12题;共24分)1.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴的上方,那么()A.b2−4ac≥0B.b2−4ac<0C.b2−4ac>0D.b2−4ac=02.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当物体经过的路程是88米时该物体所经过的时间为()A.2秒B.4秒C.6秒D.8秒3.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+ 3−t=0(t为实数)在−1<x<3的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<64.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②9a+c>0;③ax2+bx+c=0的两个根是x1=−2,x2=4;④b:c=1:4其中正确的有()A.1个B.2个C.3个D.4个5.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中正确结论的个数是()A.0B.1C.2D.3 6.已知抛物线y=ax2+bx+c经过点(−1,0),(3,0),则关于x的一元二次方程a(x+1)2−cx=a+2b的解为()A.x=−1或x=−4B.x=−1或x=−2C.x=−4或x=−2D.x=−1或x=37.已知二次函数y=a(x−x1)(x−x2)与x轴的交点是(1,0)和(3,0),关于x的方程a(x−x1)(x−x2)=m(其中m>0)的两个解分别是−1和5,关于x的方程a(x−x1)(x−x2)=n(其中0<n<m)也有两个整数解,这两个整数解分别是()A.1和4B.2和5C.0和4D.0和5 8.二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表:下列结论错误的是()x-5-4-202y60-6-46B.若点(-8,y1),点(8,y2)在二次函数图象上,则y1<y2C.当x=-2时函数值最小,最小值为-6D.方程ax2+bx+c=-5有两个不相等的实数根.9.已知二次函数y=ax2+bx+c的部分图象如图,则关于x的一元二次方程ax2+bx+c=0的解为()A.x1=﹣4,x2=2B.x1=﹣3,x2=﹣1C.x1=﹣4,x2=﹣2D.x1=﹣2,x2=210.如图是函数y=x2+bx+c与y=x的图象,有下列结论:(1)b2﹣4c>0;(2)b+c+1=0;(3)方程x2+(b﹣1)x+c=0的解为x1=1,x2=3;(4)当1<x<3时x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4 11.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=m+23D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>13时y1<y212.已知二次函数y=ax2+bx+c的图象经过(−1,0)与(3,0)两点,关于x 的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是5.则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是()A.-2或4B.-2或0C.0或4D.-2或5二、填空题(共6题;共6分)13.将二次函数y=x2−4x+a的图象向左平移1个单位,再向上平移1个单位若得到的函数图象与直线y=2有两个交点,则a的取值范围是.14.如图,已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是.15.若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k =0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=.16.已知二次函数y=−x2+2x+m的部分图象如图所示,则关于x的一元二次方程−x2+2x+m=0的解为.17.二次函数y=−x2+bx+c的部分图象如图所示,由图象可知,方程−x2+bx+c=0的解为;不等式−x2+bx+c<0的解集为.18.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线.三、综合题(共6题;共66分)19.在直角坐标系中设函数y=ax2+bx+1(a,b是常数,a≠0)。

2009年上海市中考数学真题试卷(含答案)

2009年上海市中考数学真题试卷(含答案)

2009年上海市中考数学试卷【精品】一、选择题(共6小题,每小题4分,满分24分)1.(2009•上海)抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n)B.(﹣m,n)C.(m,﹣n)D.(﹣m,﹣n)2.(2009•上海)下列正多边形中,中心角等于内角的是()A.正六边形B.正五边形C.正四边形D.正三边形3.(2009•上海)如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.4.计算(a3)2的结果是()A.a5B.a6C.a8D.a﹣15.(2009•上海)不等式组的解集是()A.x>﹣1 B.x<3 C.﹣1<x<3 D.﹣3<x<16.(2009•上海)用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y的整式方程,那么这个整式方程是()A.y2+y﹣3=0 B.y2﹣3y+1=0 C.3y2﹣y+1=0 D.3y2﹣y﹣1=0二、填空题(共12小题,每小题4分,满分48分)7.(2009•上海)某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是_________元(结果用含m的代数式表示).8.(2009•上海)如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是_________.9.(2009•上海)如图,在△ABC中,AD是边BC上的中线,设向量,如果用向量,表示向量,那么=_________.10.如图,在Rt△ABC中,∠BAC=90°,AB=3,M为BC上的点,连接AM,如果将△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,求点M到AC的距离.11.(2009•上海)在圆O中,弦AB的长为6,它所对应的弦心距为4,那么半径OA=_________.12.(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是_________.13.(2009•上海)方程的根是x=_________.14.(2009•上海)分母有理化:=_________.15.(2009•上海)如果关于x的方程x2﹣x+k=0(k为常数)有两个相等的实数根,那么k=_________.16.反比例函数图象的两分支分别在第_________象限.17.(2009•上海)已知函数f(x)=,那么f(3)=_________.18.(2009•上海)在四边形ABCD中,对角线AC与BD互相平分,交点为O.在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是_________.三、解答题(共7小题,满分78分)19.(2009•上海)已知线段AC与BD相交于点O,连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).(1)添加条件∠A=∠D,∠OEF=∠OFE,求证:AB=DC.(2)分别将“∠A=∠D”记为①,“∠OEF=∠OFE”记为②,“AB=DC”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是_________命题,命题2是_________命题(选择“真”或“假”填入空格).20.(2009•上海)在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.(1)求b的值和点D的坐标;(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.21.(2009•上海)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;(2)在图1中,连接AP.当AD=,且点Q在线段AB上时,设点B、Q之间的距离为x,,其中S△APQ 表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.22.(2009•上海)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测次数0 1 2 3 4 5 6 7 8 9 10人数 1 1 2 2 3 4 2 2 2 0 1(1)六年级的被测试人数占所有被测试人数的百分率是_________;(2)在所有被测试者中,九年级的人数是_________;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是_________;(4)在所有被测试者的“引体向上”次数中,众数是_________.23.(2009•上海)计算:24.(2009•上海)解方程组:25.(2009•上海)如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC.(1)求tan∠ACB的值;(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长.2009年上海市中考数学试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.(2009•上海)抛物线y=2(x+m)2+n(m,n是常数)的顶点坐标是()A.(m,n)B.(﹣m,n)C.(m,﹣n)D.(﹣m,﹣n)考点:二次函数的性质。

中考数学一元二次方程与分式方程专题练习含解析

中考数学一元二次方程与分式方程专题练习含解析

一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形B.平行四边形C.梯形D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的范围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值范围是m≠±2.【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值范围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值范围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值范围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16.【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD 的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD 的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是2.【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0;若关于x的方程﹣1=0无实根,则a的值为±1.【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b 的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z 与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x 之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N 作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。

中考数学复习一元二次方程专项易错题含详细答案

中考数学复习一元二次方程专项易错题含详细答案
【答案】(1)当 且 时,方程有两个不相等的实数根;(2) , .
【解析】
【分析】
(1)方程有两个不相等的实数根, ,代入求m取值范围即可,注意二次项系数≠0;
(2)将 代入原方程,求解即可.
【详解】
(1)由题意得: = ,解得 .
因为 ,即当 且 时,方程有两个不相等的实数根.
(2)把 带入得 ,解得 , .
试题解析:(1)∵Δ=4(k-1)2-4k2≥0,∴-8k+4≥0,∴k≤ ;
(2)∵x1+x2=2(k-1),x1x2=k2,∴2(k-1)=1-k2,
∴k1=1,k2=-3.
∵k≤ ,∴k=-3.
2.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n2+3n+2=-n+1,解得n=- ,但1-n= 不是整数,舍.
②若4n2+3n+2=2(n+2),解得n=0或n=- (舍),综上所述 Nhomakorabean=0.
5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)两正方形面积之和为48时, , ,∵ ,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
3.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.

中考数学压轴题之一元二次方程(中考题型整理,突破提升)及答案解析

中考数学压轴题之一元二次方程(中考题型整理,突破提升)及答案解析

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10.【解析】【分析】 分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论.【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4.∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形.∴△ABC 的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.如图,在△ABC 中,AB =6cm ,BC =7cm ,∠ABC =30°,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动.如果P 、Q 两点同时出发,经过几秒后△PBQ 的面积等于4cm 2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=12×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=12•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,12•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.3.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.4.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴732±∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+m2﹣14=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为72;(2)当△ABC为等边三角形时,m的值为1.【解析】【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(m2﹣14)=m2﹣2m+1,可求得m.【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x 2﹣2x+34=0, ∴x 1=12,x 2=32. 当12为腰时,12+12<32, ∴12、12、32不能构成三角形; 当32为腰时,等腰三角形的三边为32、32、12, 此时周长为32+32+12=72. 答:当m=2时,△ABC 的周长为72. (2)若△ABC 为等边三角形,则方程有两个相等的实数根,∴△=(﹣m )2﹣4(m 2﹣14)=m 2﹣2m+1=0, ∴m 1=m 2=1.答:当△ABC 为等边三角形时,m 的值为1.【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.5.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3, ∴3121x x =--或3321x x =-. 解得x=15或x=1.经检验:x=15或x=1都是原方程的解.∴原方程的解是x=15或x=1.【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.6.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.7.已知关于x的方程x2﹣2x+m﹣2=0有两个不相等的实数根.(1)求m的取值范围;(2)如果m为正整数,且该方程的根都是整数,求m的值.【答案】(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.8.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.9.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯. 答:该店应按原售价的九折出售.10.解方程:(x +1)(x -1)=x.【答案】x 1,x 2【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴x=2b a-± ∴x1x 2.。

中考数学专题练习 一元二次方程(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 一元二次方程(含解析)-人教版初中九年级全册数学试题

一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m时为一元一次方程;当m时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b=.4.x2+3x+=(x+)2;x2﹣+2=(x)2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p=,q=.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10=.9.当t时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则=.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D.+﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+=(x+)2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则=.【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D.+﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值X围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考试题专题之14-二次函数与一元二次方程试题及答案一、选择题 1、(2009年台湾)下列哪一个函数,其图形与x 轴有两个交点?(A) y =17(x +83)2+2274 (B) y =17(x -83)2+2274 (C) y = -17(x -83)2-2274 (D) y = -17(x +83)2+2274。

2、(2009年台州市)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:x… 1- 0 1 3 … y…3-131…则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间二、填空题1、(2009年内蒙古包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.2、(2009年甘肃白银)抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)3、(2009年甘肃庆阳)从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为 米. 4、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.5、(2009年包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.三、解答题1、(2009年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数.(1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围.2、(2009 安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义. 【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果. (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大.O 62 40 日最高销量(kg )80零售价(元)48 (6,80)(7,40)金额w (元)O批发量m (kg )300 200 10020 40 60O 60204批发单价(元)5 批发量(kg )①②3、(2009年常德市)已知二次函数过点A (0,2-),B (1-,0),C (5948,).(1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上?(3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4、(2009年湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?5、(2009年内蒙古包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)42 1 40 6080x (元)(万件) y图8符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、(2009年杭州市)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0). (1)若0>a ,且tan ∠POB =91,求线段AB 的长;(2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB =38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式;(3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离.7、(2009年娄底)已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.(1)探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.(2)设二次函数y 的图象与x 轴的交点为A (x 1,0),B (x 2,0),且21x +22x =5,与y轴的交点为C ,它的顶点为M ,求直线CM 的解析式.9、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?O 1 1y x =1y x=P (2,0)xy(第24题)10、(2009年孝感)已知抛物线2234y x kx k =+-(k 为常数,且k >0). (1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ON OM -=,求k 的值.11、(2009年新疆)(1)用配方法把二次函数243y x x =-+变成2()y x h k =-+的形成. (2)在直角坐标系中画出243y x x =-+的图象.(3)若1122()()A x y B x y ,,,是函数243y x x =-+图象上的两点,且121x x <<,请比较12y y ,的大小关系.(直接写结果)(4)把方程2432x x -+=的根在函数243y x x =-+的图象上表示出来. 【12、(2009年天津市)已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式;(Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值;(Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.12、(2009年广西梧州)如图(9)-1,抛物线23y ax ax b =-+经过A (1-,0),C (3,2-)两点,与y 轴交于点D ,与x 轴交于另一点B . (1)求此抛物线的解析式;(2)若直线)0(1≠+=k kx y 将四边形ABCD 面积二等分,求k 的值;(3)如图(9)-2,过点E (1,1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥x 轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.13、2009年包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.14、(2009年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围.15、(09湖南怀化)如图11,已知二次函数22)(m k m x y -++=的图象与x 轴相交于两个不同的点1(0)A x ,、2(0)B x ,,与y 轴的交点为C .设ABC △的外接圆的圆心为点P .(1)求P ⊙与y 轴的另一个交点D 的坐标;DOBAxyCy=kx +1图(9)-1EFMNGOBA x y图(9)-2Q(2)如果AB 恰好为P ⊙的直径,且ABC △的面积等于5,求m 和k 的值.16、(2009年达州)如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N. ①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由. 17、(2009年邵阳市)如图(十二)直线l 的解析式为y =-x+4, 它与x 轴、y 轴分相交于A 、B 两点,平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M 、N 两点,运动时间为t 秒(0<t ≤4). (1)求A 、B 两点的坐标;(2)用含t 的代数式表示△MON 的面积S 1;(3)以MN 为对角线作矩形OMPN,记 △MPN 和△OAB 重合部分的面积为S 2 ; ①当2<t ≤4时,试探究S 2 与之间的函数关系;②在直线m 的运动过程中,当t 为何值时,S 2 为△OAB 的面积的165?18、(2009年肇庆市)已知一元二次方程210x px q +++=的一根为 2. (1)求q 关于p 的关系式;(2)求证:抛物线2y x px q =++与x 轴有两个交点;(3)设抛物线2y x px q =++的顶点为 M ,且与 x 轴相交于A (1x ,0)、B (2x ,0)两点,求使△AMB 面积最小时的抛物线的解析式.xy l mO AMN BPxy l m OAM NB P EF。

相关文档
最新文档