中考数学一元二次方程知识点总结

合集下载

一元二次方程篇(原卷版)--中考数学必考考点总结+题型专训

一元二次方程篇(原卷版)--中考数学必考考点总结+题型专训

知识回顾微专题专题11一元二次方程考点一:一元二次方程之相关概念1.一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程。

2.一元二次方程的一般形式:一元二次方程的一般形式为:()002≠=++a c bx ax 。

其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 为常数项。

3.一元二次方程的解:使一元二次方程左右两边成立的未知数的值叫做一元二次方程的解,又叫做一元二次方程的根。

1.(2022•广东)若x =1是方程x 2﹣2x +a =0的根,则a =.2.(2022•连云港)若关于x 的一元二次方程mx 2+nx ﹣1=0(m ≠0)的一个根是x =1,则m +n 的值是.3.(2022•资阳)若a 是一元二次方程x 2+2x ﹣3=0的一个根,则2a 2+4a 的值是.4.(2022•遂宁)已知m 为方程x 2+3x ﹣2022=0的根,那么m 3+2m 2﹣2025m +2022的值为()A .﹣2022B .0C .2022D .40445.(2022•衢州)将一个容积为360cm 3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x (cm )满足的一元二次方程:(不必化简).知识回顾考点二:一元二次方程之解一元二次方程1.直接开方法解一元二次方程:适用形式:p x =2或()p a x =+2或()p b ax =+2(p 均大于等于0)①p x =2时,方程的解为:p x p x -==21,。

②()p a x =+2时,方程的解为:a p x a p x --=-=21,。

③()p b ax =+2时,方程的解为:ab p x a b p x --=-=21,。

2.配方法解一元二次方程:运用公式:()2222b a b ab a ±=+±。

具体步骤:①化简——将方程化为一般形式并把二次项系数化为1。

实际问题与一元二次方程知识点总结及重难点精析

实际问题与一元二次方程知识点总结及重难点精析

实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。

2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。

其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。

4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。

二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。

1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。

这需要学生具备一定的阅读理解能力和数学建模能力。

2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。

公式法是通过公式直接求解,但需要学生记忆公式。

因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。

这种方法更直观易懂,但需要学生掌握因式分解的技巧。

3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。

这些性质在解决实际问题时具有重要应用。

例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。

三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。

一元二次方程总复习

一元二次方程总复习

和处理信息的能力、获取新知识的能力、分析问题和解决问题的能力以及创新实践能力.根据已知方程编写实际问题的应用题也是中考热点.三、中考命题趋势及复习对策本章中方程是刻画现实世界的一个有效的数学模型,题型有填空、选择、解答.中考对数学思想方法的考查一方程的应用将进一步提高,对方程的应用将会加大力度,一大批具有较强的时代气息、格调清新、设计自然,紧密联系日常实际生活的应用题将会不断涌现.针对中考命题趋势,在复习时应掌握解方程的方法,还应在方程的实际应用上多下功夫,加大力度,多观察日常生活中的实际问题★★★(I)考点突破★★★考点1:一元二次方程的解法一、考点讲解:1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。

注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。

2.一元二次方程的解法:⑴直接开平方法:对形如(x+m)2=n(n≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

⑵配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+m)2=n的形式;⑤如果n≥0就可以用两边开平方来求出方程的解;如果n≤0,则原方程无解.⑶公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)。

步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。

⑷因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)(原卷版)-初中数学9年级上册

用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)(原卷版)-初中数学9年级上册

专题06用公式法一元二次方程的解法(3个知识点9种题型2个易错点3种中考考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1:求根公式知识点2:用公式法解一元二次方程(重点)知识点3:一元二次方程的判别式(重难点)【方法二】实例探索法题型1:不解方程判断方程根的情况题型2:用公式法解一元二次方程题型3:解系数中有字母的一元二次方程题型4:根据一元二次方程根的情况确定字母参数的值或取值范围题型5:利用一元二次方程根的情况讨论分式有无意义的问题题型6:新定义与一元二次方程综合题型7:一元二次方程与一次函数的综合题型8:用公式法解关于一元二次方程的实际应用题型9:利用根的判别式判断三角形的形状【方法三】差异对比法易错点1:根据一元二次方程根的情况,求方程中所含字母的值或取值范围时,忽略二次项系数不为0这一隐含条件易错点2:考虑问题不全面,误认为方程问题就是一元二次方程问题【方法四】仿真实战法考法1:用公式法解一元二次方程考法2:根据根的判别式判断方程根的情况考法3:由一元二次方程根的情况,求参数的值或取值范围【方法五】成果评定法【倍速学习五种方法】【方法一】脉络梳理法知识点1:求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac -≥时,有两个实数根:142b x a-+=,2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式.知识点2:用公式法解一元二次方程(重点)用公式法解一元二次方程一般步骤1把一元二次方程化成一般形式20ax bx c ++=(0a ≠);2确定a 、b 、c 的值;3求出24b ac -的值(或代数式);4若240b ac -≥,则把a 、b 、c 及24b ac -的值代入求根公式,求出1x 、2x ;若240b ac -<,则方程无解.知识点3:一元二次方程的判别式(重难点)1.根的判别式1.一元二次方程根的判别式:我们把24b ac -叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆-.2.一元二次方程20(0)ax bx c a ++=≠,当2=40b ac ∆->时,方程有两个不相等的实数根;当2=40b ac ∆-=时,方程有两个相等的实数根;当2=40b ac ∆-<时,方程没有实数根.2.根的判别式的应用(1)不解方程判定方程根的情况;(2)根据参数系数的性质确定根的范围;(3)解与根有关的证明题.【方法二】实例探索法题型1:不解方程判断方程根的情况1.不解方程,判别下列方程的根的情况:(1)24530x x --=;(2)22430x x ++=;(3)223x +=;(4)22340x x +-=.2.当m 取何值时,关于x 的方程221(2)104x m x m +-+-=,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?题型2:用公式法解一元二次方程3.用公式法解下列方程:(1)2270x x -+=;(2)211042x x -=.4.用公式法解下列方程:(1)2320x x +-=;(2)25610x x -++=.5.用公式法解下列方程:(1)(24)58x x x -=-;(2)2(53)(1)(1)5x x x -+=++.6.用公式法解下列方程:(1)20.2 2.5 1.30.1x x x +-=;(2)22(3)(31)(23)1552x x x x +--+-=.7.用公式法解下列方程:(1)291x +=;(220+-=.题型3:解系数中有字母的一元二次方程8.用配方法解下列关于x 的方程:220ax x ++=(0a ≠).9.用公式法解下列关于x 的方程:(1)20x bx c --=;(2)2100.1a x a --=.题型4:根据一元二次方程根的情况确定字母参数的值或取值范围10.(2023•罗山县三模)若关于x 的方程x 2+2x =c 无实数根,则c 的值可以是()A .﹣2B .﹣1C .0D .113.已知关于x 的方程()21230m x mx m +++-=总有实数根,求m 的取值范围.15.(2023•遂宁)我们规定:对于任意实数a 、b 、c 、d 有[a ,b ]*[c ,d ]=ac ﹣bd ,其中等式右边是通常的乘法和减法运算,如:[3,2]*[5,1]=3×5﹣2×1=13.(1)求[﹣4,3]*[2,﹣6]的值;(2)已知关于x 的方程[x ,2x ﹣1]*[mx +1,m ]=0有两个实数根,求m 的取值范围.题型7:一元二次方程与一次函数的综合18.(2023春·安徽合肥·八年级统考期末)若关于x 的一元二次方程2210x x kb +++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是()....2023春·山东济南·八年级统考期末)关于的一元二次方程axax b+的图象经过第一、二、四象限,设2a b=+,则t的取值范围是(.1142t<<B.1122t-≤<20.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为了减少库存量,且在月内赚取8000元的利润,售价应定为每件多少元?题型9:利用根的判别式判断三角形的形状21.(2022•天津模拟)已知关于x的一元二次方程(a+c)x2﹣2bx﹣a+c=0,其中a,b,c为△ABC的三边.(1)若x=1是方程的根,判断△ABC的形状,并说明理由;(2)若方程有两个相等的实数根,判断△ABC的形状,并说明理由.求此时m 的值.【方法三】差异对比法易错点1:根据一元二次方程根的情况,求方程中所含字母的值或取值范围时,忽略二次项系数不为0这一隐含条件23.(2023春·北京西城·九年级北师大实验中学校考阶段练习)已知关于x 的一元二次方程2(4)(21)0m x m x m ---+=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足要求的最小正整数时,求方程的解.易错点2:考虑问题不全面,误认为方程问题就是一元二次方程问题24.(2023春·上海杨浦·八年级校考期中)解关于x 的方程:()()2245260k x k x ---+=.25.(2022秋·上海奉贤·八年级校考期中)已知关于x 的方程()()212110k x k x k +--+-=(1)当k 取什么值时,方程只有一个根?(2)若方程有两个不相等的实数根,求k 的取值范围.【方法四】仿真实战法考法:用公式法解一元二次方程26.(2021•无锡)(解方程:2x(x﹣2)=1;27.(2020•无锡)解方程:x2+x﹣1=0;考法2:根据根的判别式判断方程根的情况28.(2023•河南)关于x的一元二次方程x2+mx﹣8=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根29.(2023•滨州)一元二次方程x2+3x﹣2=0根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定30.(2023•广元)关于x的一元二次方程2x2﹣3x+=0根的情况,下列说法中正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定31.(2023•内江)对于实数a,b定义运算“⊗”为a⊗b=b2﹣ab,例如:3⊗2=22﹣3×2=﹣2,则关于x 的方程(k﹣3)⊗x=k﹣1的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定32.(2023•广安)已知a、b、c为常数,点P(a,c)在第四象限,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断33.(2023•泸州)关于x的一元二次方程x2+2ax+a2﹣1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关考法3:由一元二次方程根的情况,求参数的值或取值范围34.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为()A.﹣9B.C.D.935.(2023•兰州)关于x的一元二次方程x2+bx+c=0有两个相等的实数根,则b2﹣2(1+2c)=()A.﹣2B.2C.﹣4D.436.(2023•聊城)若一元二次方程mx2+2x+1=0有实数解,则m的取值范围是()A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0 37.(2023•眉山)关于x的一元二次方程x2﹣2x+m﹣2=0有两个不相等的实数根,则m的取值范围是()A.B.m>3C.m≤3D.m<338.(2023•辽宁)若关于x的一元二次方程x2﹣6x+k=0有两个不相等的实数根,则k的取值范围是.39.(2023•宁夏)方程x2﹣4x﹣m=0有两个相等的实数根,则m的值为.40.(2023•泰安)已知关于x的一元二次方程x2﹣4x﹣a=0有两个不相等的实数根,则a的取值范围是.【方法五】成功评定法一、单选题二、填空题三、解答题18.(2023秋·河北秦皇岛·九年级统考期末)已知关于x的一元二次方程:2++=.240x x k k=时,解方程;(1)当1x-,求k.(2)若2++=的一个解是=1x x k24019.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)解方程:23270x x--=(1)当点E与点C重合时,求ME的长;(2)求y关于x的函数解析式,并写出函数的定义域;(3)当MN经过△ABC一边中点时,请直接写出ME的长.(1)点B的坐标为,直线AB的表达式为.(2)点C在y轴上移动过程中,当等边三角形ACP的顶点(3)当点C在y轴上移动时,点P也随之运动,探究点关系式表达出来;为等腰三角形时,直接写出点(4)点C在y轴上移动过程中,当OBP(1)求点C 的坐标;(2)连接AD ,在直线CD 上是否存在点E ,使得2EAC DAC S S = .若存在,求出点E 的坐标;若不存在,请说明理由;(3)如图2,已知()7.5,0G -,()1,0H ,过B 作BF x ∥轴且 3.5BF =;若点G 沿GH 方向以每秒2个单位长度运动,同时,F 点沿FB 方向以每秒1个单位长度运动经过t 秒的运动,G 到达G '处,F 到达F '处,连接F H '、F G ''.问:F G ''能否平分FF H '∠?若能,请直接写出t 的值;若不能,请说明理由.。

中考数学总复习考点知识讲解课件30---一元二次方程及其应用

中考数学总复习考点知识讲解课件30---一元二次方程及其应用

C.x2-x+1=0
D.x2=1
百变四:已知方程系数关系,判断方程根的情况 4.(2016·河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2 +bx+c=0的根的情况( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.有一根为0
【解析】 ∵(a-c)2=a2+c2-2ac>a2+c2,∴ac<0.∴在方程ax2+bx+ c=0中,b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有两个不相等的实数 根.故选B.
【自主解答】 解:(1)四 x= (2)x2-2x-24=0, 移项,得x2-2x=24, 配方,得x2-2x+1=24+1, 即(x-1)2=25, 两边开平方,得x-1=±5, ∴x1=6,x2=-4.
解一元二次方程的注意点
(1)在运用公式法解一元二次方程时,要先把方程化为一般形式,再确定 a,b,c的值,否则易出现符号错误; (2)用因式分解法确定一元二次方程的解时,一定要保证等号的右边化为 0,否则易出现错误; (3)如果一元二次方程的常数项为0,不能在方程两边同时除以含有未知数 的相同因式; (4)对于含有不确定量的方程,需要把求出的解代入原方程检验,避免增 根.
知识点二 一元二次方程的解法
x=b b2 4ac 2a
知识点三 一元二次方程根的判别式
b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式.判别式 的符号决定了方程根的情况,即
(1)b2-4ac>0⇔方程有两个 _不__相__等__的实数根;
(2)b2-4ac_=__0⇔方程有两个相等的实数根; (3)b2-4ac<0⇔方程__没__有___实数根.
【分析】由每个月的平均增长率相同,可分别表示二月份和三月份的工业 产值,再结合第一季度总产值为175亿元列方程即可. 【自主解答】由平均每月增长的百分率为x,则二月的工业产值为50(1+x) 亿元,三月的工业产值为50(1+x)2 亿元,则根据题意可得方程:50+ 50(1+x)+50(1+x)2=175,故选D.

初三数学知识点全总结

初三数学知识点全总结

初三数学知识点全总结初三数学是整个初中数学学习的重要阶段,知识点繁多且综合性强。

以下是对初三数学主要知识点的全面总结。

一、一元二次方程1、定义:只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。

一般形式为:ax²+ bx + c = 0(a ≠ 0)。

2、解法:(1)直接开平方法:适用于形如(x + m)²= n(n ≥ 0)的方程。

(2)配方法:将方程通过配方转化为完全平方式来求解。

(3)公式法:对于一元二次方程 ax²+ bx + c = 0,其解为 x = b ± √(b² 4ac) /(2a)。

(4)因式分解法:将方程左边因式分解,化为两个一次因式乘积等于 0 的形式来求解。

3、根的判别式:△= b² 4ac当△> 0 时,方程有两个不相等的实数根;当△= 0 时,方程有两个相等的实数根;当△< 0 时,方程没有实数根。

4、根与系数的关系(韦达定理):若方程 ax²+ bx + c = 0 的两根为 x₁、x₂,则 x₁+ x₂= b/a,x₁x₂= c/a。

二、二次函数1、定义:形如 y = ax²+ bx + c(a ≠ 0)的函数叫做二次函数。

2、图像性质:(1)抛物线的开口方向由a 的正负决定,当a >0 时,开口向上;当 a < 0 时,开口向下。

(2)对称轴为直线 x = b/(2a)。

(3)顶点坐标为(b/(2a),(4ac b²)/(4a))。

3、二次函数的表达式:(1)一般式:y = ax²+ bx + c(2)顶点式:y = a(x h)²+ k(其中(h,k)为顶点坐标)(3)交点式:y = a(x x₁)(x x₂)(其中 x₁、x₂为抛物线与 x 轴交点的横坐标)4、二次函数的应用:(1)求最值问题:当 x = b/(2a)时,y 有最值(4ac b²)/(4a)。

第二十一章21.1一元二次方程

第二十一章21.1一元二次方程

答案 2 易错警示 根据一元二次方程的定义求未知字母的值是常考题型.当二 次项系数中含有未知字母时,如果忽视隐含条件a≠0,也许就会导致解 题错误.如本题中,如果忽视这个条件,就会得出m有两个值,扩大m的取 值范围.
21.1 一元二次方程
栏目索引
知识点一 一元二次方程的定义及一般形式
1.(2019江西九江柴桑月考)下列方程属于一元二次方程的是 ( )
解析
① 3
x2-x= 5
1
符合一元二次方程的定义;②x= x 不是整式方程,故
不是一元二次方程;③由x(x-3)Байду номын сангаас(x-2)(x+2)化简得到-3x=-4,是一元一次方
程;④由(2x-1)(x+3)=2x-1化简得到2x2+3x-2=0,符合一元二次方程的定
义;⑤ax2+bx+c(a、b、c为常数,且a≠0)不是方程.综上所述,是关于x的一
定义
等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一 元二次方程
一般形式 一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b 是一次项系数;c是常数项
知识拓展 (1)构成一元二次方程的三个条件:①是整式方程;②只含有一个未知数;③未知数的最高次数是 2.不满足其中任何一个条件的方程都不是一元二次方程.(2)这里所说的整式是关于未知数的整 式,在有些含有字母系数的方程中,尽管分母中含有字母,但只要分母中不含未知数,这样的方程 仍是整式方程
正确理解题 目的含义
找出其中的数量 关系和等量关系
列出一元 二次方程
栏目索引

一元二次方程-中考数学一轮复习考点专题复习大全(全国通用)

一元二次方程-中考数学一轮复习考点专题复习大全(全国通用)

考向12 一元二次方程【考点梳理】1、一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.2、 一元二次方程的一般形式:ax 2+bx+c=0(a 、b 、c 是常数,且a ≠0)3、运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想.4、配方法解一元二次方程就是将方程变形为q p x =+2)(的形式,如果q ≥0,方程的根是q p x ±-=;如果q <0,方程无实根.5、一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac ≥0时,求根公式.利用求根公式解一元二次方程的方法叫公式法.6、一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-,则有下列性质:①0∆>⇔方程有两个不相等的实数根:1,2x =.②0∆=⇔方程有两个相等的实数根:122bx x a==-. ③0∆<⇔方程没有实数根.7、一元二次方程根与系数的关系(又叫韦达定理):如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有a b x x -=+21,ac x x =•21(注意:运用根与系数的关系的前提是b 2-4ac ≥0) 【题型探究】题型一:一元二次方程的基础概念1.(2022秋·江苏盐城·九年级校联考期中)下列方程中,不是一元二次方程的是( )A .x 2﹣1=0B .x 2 +1x+3=0C .x 2 + 2x +1=0D .3x 2 x +1=02.(2022·河南洛阳·统考二模)若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为( ) A .3B .4C .5D .63.(2022·四川宜宾·统考中考真题)已知m 、n 是一元二次方程2250x x +-=的两个根,则22m mn m ++的值为( ) A .0B .-10C .3D .10题型二:一元二次方程的解(开平方和配方法)4.(2022秋·广东佛山·九年级校考期中)方程(9x ﹣1)2=1的解是( )A .1213x x ==B .1229x x ==C .1220,9x x ==D .1220,9x x ==-5.(2022·山东聊城·统考中考真题)用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( ) A .103 B .73C .2D .436.(2022·四川雅安·统考中考真题)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( ) A .﹣3B .0C .3D .9题型三:一元二次方程的解(公式法)7.(2022秋·全国·九年级专题练习)已知关于x 的一元二次方程2(2)20x m x m +++=有两个不相等的实数根1x ,2x ,且有212x x <<,那么实数m 的取值范围是( ) A .2m <B .m>2C .2m <-D .2m >-8.(2021·上海·九年级专题练习)如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.若关于x 的方程210,(ax bx a b ++=是常数,0)a >是“邻根方程”,令28t a b =-,则t 的最大值为( )A .2B .C .4D .2-9.(2022秋·北京·九年级北京师大附中校考期末)定义新运算:对于两个不相等的实数a ,b ,我们规定符号{}max ,a b 表示a ,b 中的较大值,如:{}max 2,44=.因此,{}max 2,42--=-;按照这个规定,若{}232max ,2x x x x ---=,则x 的值是( )A .-1B .-1CD .1 题型四:一元二次方程的解(因式分解)10.(2022·内蒙古包头·中考真题)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( ) A .3或9- B .3-或9 C .3或6- D .3-或611.(2023·全国·九年级专题练习)已知方程3a 1a a 44a--=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤B .34b <≤C .23b ≤<D .34b ≤<12.(2022秋·九年级课时练习)已知实数a ,b 同时满足2222190,2470a b a b +-=--=,则b 的值是( )A .2或6-B .2C .2-或6D .6-题型五:一元二次方程的判别式问题13.(2022·山东威海·模拟预测)若关于x 的方程230x x k -+=有两个不相等的实数根,则k 的值不能是( )A .2B .0C .94D 14.(2022·四川泸州·四川省泸县第四中学校考一模)关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( ) A .18a >-B .18a ≥-C .1,18a a >-≠D .118,a a ≥-≠15.(2022·湖南长沙·长沙市南雅中学校联考一模)若关于x 的一元二次方程()21210a x x --+=有实数根,则a 的取值范围为( ) A .2a ≤B .2a ≥C .2a ≤且1a ≠D .2a <且1a ≠题型六:一元二次方程根与系数的问题16.(2022·山东济宁·三模)若m n ,是方程22470x x --=的两个根,则223m m n -+的值为( ) A .9B .8C .7D .517.(2022·贵州黔东南·统考中考真题)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( )A .7B .7-C .6D .6-18.(2022秋·广东广州·九年级铁一中学校考阶段练习)若α和β是关于x 的方程210x bx +-=的两根,且2211αβαβ--=-,则b 的值是( )A .-3B .3C .-5D .5题型七:一元二次方程的实际问题19.(2022·辽宁盘锦·校考一模)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y (件)与每件的售价x (元)满足一次函数关系,部分数据如表:(1)求出y 与x 之间的函数表达式;(不需要求自变量x 的取值范围)(2)该批发市场每月想从这种衬衫销售中获利6000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w (元),求w 与x 之间的函数关系式,x 为多少时,w 有最大值,最大利润是多少?20.(2022·重庆大渡口·重庆市第三十七中学校校考二模)草莓是大家非常喜欢的水果,3月份是草莓上市的旺季.某水果超市销售草莓,第一周每千克草莓的销售单价比第二周销售单价高10元,该水果超市这两周共销售草莓180千克,且第一周草莓的销量与第二周的销量之比为4:5,该水果超市这两周草莓销售总额为11600元. (1)第二周草莓销售单价是每千克多少元?(2)随着草莓的大量上市,3月份第三周,草莓定价与第二周保持一致,且该水果超市推出会员优惠活动,所有的会员均可享受每千克直降a 元的优惠,而非会员需要按照原价购买,第三周草莓的销量比第二周增加了20%,其中通过会员优惠活动购买的销量占第三周草莓总销量的6a,而第三周草莓的销售总额为(6200100)a +元,求a 的值.21.(2022秋·九年级单元测试)某新建公园需要绿化的面积为224000m ,施工队在绿化了212000m 后将每天的工作量增加为原来的1.2倍,结果提前5天完成了该项目的绿化工程(1)求该公园绿化工程原计划每天完成多少平方米?(2)如图所示,该公园内有一块长30米,宽20米的矩形空地,准备将其修建成一个矩形花坛,要求在花坛中修建三条等宽的矩形小道(图中阴影部分),剩余地方种植花草,要使得种植花草的面积为2468m ,那么小道的宽应为多少米?题型八:一元二次方程的综合问题22.(2022·湖北十堰·统考中考真题)已知关于x 的一元二次方程22230x x m --=. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根分别为α,β,且25αβ+=,求m 的值.23.(2022·四川南充·中考真题)已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 24.(2022·四川凉山·统考中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=ba -,x 1x 2=c a材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值. 解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n , ∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2= ;x 1x 2= . (2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求n mm n+的值. (3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求11s t-的值.【必刷基础】一、单选题25.(2022·甘肃武威·统考中考真题)用配方法解方程x 2-2x =2时,配方后正确的是( ) A .()213x +=B .()216x +=C .()213x -=D .()216x -=26.(2022·湖北武汉·统考中考真题)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .627.(2022·内蒙古呼和浩特·统考中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是( )A .4045B .4044C .2022D .128.(2021·山东泰安·统考中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠29.(2022·山东泰安·统考中考真题)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .()316210x x -= B .()316210x -= C .()316210x x -=D .36210x =30.(2023·安徽合肥·合肥一六八中学校考一模)已知关于x 的一元二次方程()2430x k x k -+++=.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于0,求k 的取值范围.31.(2022·江苏泰州·模拟预测)用总长为60m 的篱笆围成矩形场地. (1)根据题意,填写下表:(2)设矩形一边长为m x ,矩形面积为2m S ,当x 是多少时,矩形场地的面积S 最大?并求出矩形场地的最大面积; (3)当矩形的长为______m ,宽为______m 时,矩形场地的面积为2216m .【必刷培优】一、单选题32.(2022秋·湖北武汉·九年级华中科技大学附属中学校联考阶段练习)若a≠b ,且22410,410a a b b -+=-+=则221111a b +++的值为( )A .14B .1C ..4D .333.(2021·广西河池·统考中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .实数根的个数由m 的值确定34.(2018·河北秦皇岛·统考中考模拟)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( ) A .50(1+x )²=182 B .50+50(1+x )+50(1+x )²=182 C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=18235.(2022·四川达州·模拟预测)如图的六边形是有甲、乙两个等腰直角三角形和丙、丁两个矩形组成,其中甲、乙的面积和等于丙、丁的面积和,若甲的直角边长为4,且甲的面积大于乙的面积,则乙的直角边长为( )A .1B .65C .423-D .843-36.(2022·云南楚雄·云南省楚雄第一中学校考模拟预测)如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,下列说法: ①方程2280x x --=是倍根方程;②若()()20x mx n -+=是倍根方程,则m n =-或14m n =-;③若方程20ax bx c ++=是倍根方程,且相异两点()2,M t s +,()4,N t s -都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为2.其中,正确说法的个数是( ) A .0B .1C .2D .337.(2022·重庆大渡口·重庆市第三十七中学校校考二模)如图,正方形ABCD 的对角线AC 与BD 相交于点O ,ACB ∠的角平分线分别交AB 、BD 于M 、N 两点.若22BM =,则线段AC 的长为( )A .424+B .422+C .426+D .4238.(2022·四川绵阳·校考二模)已知实数,m n 满足22220,220m am n an -+=-+=.若m n ≠,且4m n +≥,则()()2211m n -+-的最小值是( )A .6B .3-C .3D .0二、填空题39.(2022·山东菏泽·菏泽一中校考模拟预测)若关于x 的二次方程()21320m x x +-+=有两个相等的实数根,则m =___________.40.(2023秋·天津南开·九年级南开中学校考期末)已知一元二次方程220x mx m -+-=的两个实数根为1x 、2x ,且1212()3x x x x +=,则m 的值是______.41.(2022·四川泸州·四川省泸县第四中学校考一模)关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根1x ,2x ,若121212(2)(2)23x x x x x x -+--+=-,则k =_____.42.(2022·四川眉山·模拟预测)若实数m ,n 满足2231,31,m nm m n n n m=+=++的值为______.43.(2022·吉林长春·校考模拟预测)某水果批发商经销一种高档水果,如果每千克盈利10元,平均每天可售出500千克,经市场调查发现,若每千克每涨价一元,平均日销量将减少20千克,要使商场每天获利最多,那么每千克应涨价______ 元.44.(2022·新疆乌鲁木齐·乌鲁木齐市第六十八中学校考模拟预测)如图,将边长为12的正方形纸片,沿两边各剪去一个一边长为x 的长方形,剩余的部分面积为64,则根据题意可列出形式为一般式的方程为______,x 的值是______.45.(2022·四川成都·统考二模)关于x 的一元二次方程240x kx -+=的两个实数根分别是1x 、2x ,且满足2212122270x x x x +---=,则k 的值为______.46.(2022·山东济南·济南育英中学校考模拟预测)从3,1,0,1,2--这五个数中任意取出一个数记作b ,则既能使函数()24y b x =-的图象经过第二、第四象限,又能使关于x 的一元二次方程210x bx b -++=的根的判别式小于零的概率为 _____.三、解答题47.(2023·安徽合肥·合肥一六八中学校考一模)随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植,现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.某地某种粮大户,去年种植优质水稻200亩,平均每亩收益480元.计划今年多承包一些土地,已知每增加一亩,每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年应承租多少亩土地,才能使今年总收益达到96600元?(2)该大户今年应承租多少亩土地,可以使今年总收益最大,最大收益是多少?48.(2022·四川南充·南充市实验中学校考模拟预测)关于x 的一元二次方程()2220x k x k -++=.(1)求证:方程总有两个实数根;(2)若方程两根12x x 、与且221220x x +=,求k 的值.49.(2022·江苏盐城·校考三模)2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,用480元购买冰墩墩和用320元购买雪容融的数量相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周,供应商将雪容融按每个100元的价格售出140个,将冰墩墩按每个150元的价格售出120个.第二周供应商决定调整价格,每个雪容融的售价在第一周的基础上下降了m 元,每个冰墩墩的价格不变,由于冬奥赛事的火热进行,第二周雪容融的销量比第一周增加了m 个,而冰墩墩的销量比第一周增加了0.2m 个,最终商家获利5160元,求m .50.(2022·山东济南·模拟预测)已知M 、N 为双曲线()40y x x=>上两点,且其横坐标分别为a ,2a +,分别过M 、N 作y 轴、x 轴的垂线,垂足分别为C 、A ,交点为B .(1)若矩形OABC 的面积为12,求a 的值;(2)随着a 的取值的不同,M N 、两点不断运动,判断M 能否为BC 边的中点,同时N 为AB 中点?请说明理由; (3)矩形OABC 能否成为正方形?若能,求出此时a 的值及正方形的边长,若不能,说明理由.51.(2022·宁夏银川·校考三模)已知:如图,在Rt ABC ∆中,90C ∠=︒,3AC cm =,4BC cm =,点P 从点B 出发,沿BC 向点C 匀速运动,速度为1cm/s ,过点P 作PD AB ∥,交AC 于点D .同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为2cm/s .当一个点停止运动时,另一个点也停止运动,连接PQ .设运动时间为t (s )(0 2.5t <<),解答下列问题:(1)当t 为何值时,四边形ADPQ 为平行四边形?(2)设四边形ADPQ 的面积为y (2cm ),试确定y 与t 的函数关系式.(3)在运动过程中,是否存在某一时刻t ,使:13:2PQB ADPQ S S =四边形△?若不存在,请说明理由;若存在,求出t 值,并求出此时PQ 的距离.参考答案:1.B【分析】根据一元二次方程的定义对各选项进行逐一分析即可.【详解】解:A 、C 、D 选项含有一个未知数,未知数的次数是2,是一元二次方程,故选项A 、C 、D 不符合题意; B 选项分母中含有未知数,是分式方程,故本选项符合题意,故选:B .【点睛】本题考查了一元二次方程的定义,解题关键是掌握:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,运用定义判断.2.A【分析】根据一元二次方程解的定义和根与系数的关系得到2410m m -+=,m +n =4,然后利用整体代入的方法计算.【详解】解:∵m ,n 分别是一元二次方程2410x x -+=的两个根,∴2410m m -+=,m +n =4,∴241m m -=-,∴2234143m m n m m m n -+=-++=-+=,故选:A .【点睛】本题考查了一元二次方程的解,根与系数的关系,若1x ,2x 是一元二次方程20ax bx c ++=(a ≠0)的两根时,12b x x a+=-,12c x x a ⋅=,熟练掌握一元二次方程根与系数的关系是解题的关键. 3.A【分析】根据一元二次方程根与系数关系得出mn =-5,把x =m 代入方程得m 2+2m -5=0,即m 2+2m =5,代入即可求解.【详解】解:∵m 、n 是一元二次方程2250x x +-=的两个根,∴mn =-5,m 2+2m -5=0,∴m 2+2m =5,∴22m mn m ++=5-5=0,故选:A .【点睛】本题考查代数式求值,一元二次方程根与系数关系,方程解的意义,根据一元二次方程根与系数关系和方程解的意义得出mn =-5,m 2+2m =5是解题的关键.4.C【分析】利用直接开平方法求解即可.【详解】解:2(91)1x -=,911x ∴-=或911x -=-,解得10x =,229x =,故选:C .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.B【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,继而得出答案.【详解】解:∵23610x x +-=,∴2361x x +=,2123x x +=, 则212113x x ++=+,即()2413x +=, ∴1a =,43b =, ∴73a b +=. 故选:B .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键.6.C【分析】先移项把方程化为26,x x c 再配方可得239,x c 结合已知条件构建关于c 的一元一次方程,从而可得答案.【详解】解:x 2+6x +c =0,移项得:26,x x c 配方得:239,x c 而(x +3)2=2c ,92,c c 解得:3,c =故选C【点睛】本题考查的是配方法,掌握“配方法解一元二次方程的步骤”是解本题的关键.7.C 【分析】根据求根公式求得(2)(2)2m x m -+±-=,结合条件212x x <<,可知22x =-,1x m ,进而可得m 的范围,即可求解.【详解】解:2(2)20x m x m +++=,(2)(2)2m m x -+±-∴, 212x x <<,22x ∴=-,1x m ,2m ∴->, 2m ∴<-,故选:C .【点睛】本题考查了解一元二次方程,掌握公式法解一元二次方程是解题的关键.8.C【分析】根据“邻根方程”的定义求出224b a a -=,代入28t a b =-进行配方求出最大值即可.【详解】解:设1x 、2x 是方程210,(ax bx a b ++=是常数,0)a >的两根,解得,1x =2x = ∵原方程是“邻根方程”1=1= 224b a a ∴-=224b a a ∴=+()22228844(2)4t a b a a a a a a ∴=-=-+=-+=--+ ∴当a=2时,t 有最大值,最大值为4.故选C.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法以及正确理解“邻根方程”的定义,本题属于中等题型.9.B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【详解】解:当x>0时,有2322x x x --=,解得1x =2x =(舍去), x<0时,有2322x x x --=-,解得,x 1=−1,x 2=2(舍去). 故选B.【点睛】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.10.A【分析】结合根与系数的关系以及解出方程2230x x --=进行分类讨论即可得出答案.【详解】解:∵2230x x --=, ∴12331x x -⋅==-, ()()130x x +-=,则两根为:3或-1,当23x =时,212212239x x x x x x ==--⋅=,当21x =-时,2121222··33x x x x x x ⋅==-=, 故选:A .【点睛】此题考查了根与系数的关系以及解二元一次方程,正确解出方程进行分类讨论是解题的关键.11.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.12.B【分析】由实数a ,b 同时满足2222190,2470a b a b +-=--=,先消去a ,求解b ,再检验即可. 【详解】解: 实数a ,b 同时满足2222190,2470a b a b +-=--=,24120,b b620,b b解得:122,6,b b当6b =-时,22219193617a b 不合题意,故舍去,所以 2.b =故选:B 【点睛】本题考查的是一元二次方程的解法,非负数的性质,掌握加减消元法是解决本题的关键.13.C【分析】根据一元二次方程有两个不相等的实数根得到2340k ,求出解集判断即可. 【详解】解:∵方程230x x k -+=有两个不相等的实数根,∴2340k , 解得94k <, 故选:C .【点睛】此题考查了利用一元二次方程的根的情况求参数,正确掌握一元二次方程的根的三种情况是解题的关键.14.D【分析】根据一元二次方程的定义和判别式的意义得到1a ≠且()()2Δ=3-41?20a --≥,然后求出两个不等式的公共部分即可.【详解】根据题意得1a ≠且()2=3-41(2)0a ∆--≥, 解得18a ≥-且1a ≠. 故选:D .【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24=b ac ∆-有如下关系:当0∆>时,方程有两个不相等的实数根;当=0∆时,方程有两个相等的实数根;当Δ0<时,方程无实数根.15.C【分析】根据一元二次方程的定义和结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】解:∵关于x 的一元二次方程()21210a x x --+=有实数根,则△≥0.∴()210=(2)410a a -≠---≥⎧⎨⎩, 解得:a ≤2且a ≠1.故选:C .【点睛】本题考查一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.16.A【分析】根据一元二次方程根的定义以及根与系数的关系,求解即可.【详解】解:m n ,是方程22470x x --=的两个根,则22704m m --=,2m n +=,∴2247m m =+,22373794m m n m m n m n +=+-=++-+=,故选:A【点睛】此题考查了一元二次方程根的定义以及根与系数的关系,解题的关键是熟练掌握相关基础知识.17.B【分析】根据根与系数关系求出2x =3,a =3,再求代数式的值即.【详解】解:∵一元二次方程220x x a --=的两根分别记为1x ,2x ,∴1x +2x =2,∵11x =-,∴2x =3,∴1x ·2x =-a =-3, ∴a =3,∴22123917a x x --=--=-. 故选B .【点睛】本题考查一元二次方程的根与系数关系,代数式的值,掌握一元二次方程的根与系数关系,代数式的值是解题关键.18.C【分析】根据一元二次方程根与系数的关系得出+=,1b αβαβ-=-,代入2211αβαβ--=-得到关于b 的方程,求出b 的值即可.【详解】解:∵α和β是关于x 的方程210x bx +-=的两根,∴+=,1b αβαβ-=-,∴222()1211b αβαβαβαβ--=-+=-+=-∴=5b -故选:C【点睛】本题考查了根与系数的关系,熟练掌握两根之和为-b a ,两根之积为c a是解题的关键. 19.(1)201800y x =-+(2)这种衬衫定价为60元.(3)售价定为70元时,可获得最大利润,最大利润是8000元.【分析】(1)设y 与x 之间的函数关系式为y kx b =+,待定系数法求解析式即可;(2)由题意知,()()502018006000x x --+=,计算求出满足要求的解即可;(3)由题意可得,2(50)(20180020(70)8000)x x x w =--+=--+,由()50505050x x ≥⎧⎨-÷≤⎩%,求出x 的取值范围,然后根据二次函数的图象与性质求w 的最值即可.【详解】(1)解:设y 与x 之间的函数关系式为y kx b =+,则5570060600k b k b +=⎧⎨+=⎩, 解得201800k b =-⎧⎨=⎩, ∴y 与x 之间的函数表达式是201800y x =-+.(2)解:由题意知,()()502018006000x x --+=,解得126800x x ==,,∵尽量给客户优惠,∴这种衬衫定价为60元.(3)解:由题意可得,(50)(201800)w x x =--+220(70)8000x =--+,∵该衬衫的每件利润不允许高于进货价的50%,每件售价不低于进货价,∴()50505050x x ≥⎧⎨-÷≤⎩%, 解得5075x ≤≤,∵200a =-<,抛物线开口向下,∴当70x =时,w 取得最大值,此时8000w =元,∴售价定为70元时,可获得最大利润,最大利润是8000元.【点睛】本题考查了一次函数的应用,一元二次方程的应用,二次函数的应用,二次函数的图象与性质,二次函数的最值,解不等式组等知识.解题的关键在于根据题意正确的列等式与不等式.20.(1)60;(2)5.【分析】(1)设第一周草莓销售单价是每千克x 元,第二周草莓销售单价是每千克y 元,然后根据题意,列出关于,x y 的二元一次方程组,求解即可;(2)根据第三周草莓的销售总额为(6200100)a +元,列出关于a 的一元二次方程,然后求解即可.【详解】(1)解:设第一周草莓销售单价是每千克x 元,第二周草莓销售单价是每千克y 元, 根据题意,得10451801801160099x y x y -=⎧⎪⎨⨯⨯+⨯⨯=⎪⎩, 解得7060x y =⎧⎨=⎩, 答:第二周草莓销售单价是每千克60元;(2)解:根据题意,3月份第三周的销售单价是60元/千克,3月份第三周的销售量为5180(120%)1209⨯⨯+=千克, 其中会员购买的销量为:120206a a ⨯=千克,非会员购买的销量为:(12020)a -千克; 第三周草莓的销售总额为(6200100)a +元,∴20(60)(12020)606200100a a a a ⨯-+-⨯=+,整理,得25500a a +-=,5a ∴=或10a =-(不符合题意,舍去), ∴a 的值为5.【点睛】此题考查了二元一次方程组的应用、一元二次方程的应用,解答此题的关键是根据题意准确列出二元一次方程组和一元二次方程.21.(1)2400m(2)2米【分析】(1)设原计划每天完成2m x ,根据题意列出分式方程,解方程即可求解;(2)设小路宽为m a ,根据题意列出一元二次方程,解方程即可求解.【详解】(1)设原计划每天完成2m x , 由题意得:240001200024000120005 1.2x x x--=+, 解得:400x =,经检验:400x =是原方程的根,且符合题意,答:原计划每天完成2400m ;(2)设小路宽为m a ,有题意得:()()30220468a a --=,解得:133a =(超出矩形的长,不合题意,舍去),22a =,即2m a =,答:小路宽2米.【点睛】本题考查了分式方程和一元二次方程的应用,明确题意,列出相应的方程是解答本题的关键.22.(1)见解析(2)1m =±【分析】(1)根据根的判别式24b ac ∆=-,即可判断;(2)利用根与系数关系求出2αβ+=,由25αβ+=即可解出α,β,再根据23m αβ⋅=-,即可得到m 的值.【详解】(1)()22224241(3)412b ac m m ∆=-=--⨯⋅-=+,∵2120m ≥,∴241240m +≥>,∴该方程总有两个不相等的实数根; (2)方程的两个实数根α,β,由根与系数关系可知,2αβ+=,23m αβ⋅=-,∵25αβ+=,∴52αβ=-,∴522ββ-+=,解得:3β=,1α=-,∴23133m -=-⨯=-,即1m =±.【点睛】本题考查了根的判别式以及根与系数的关系,解题的关键是掌握根的判别式以及根与系数的关系. 23.(1)k 174≤; (2)k =3【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值.【详解】(1)解:∵一元二次方程2320x x k ++-=有实数根.∴∆≥0,即32-4(k -2)≥0,解得k 174≤ (2)∵方程的两个实数根分别为12,x x ,∴12123,2x x x x k -+==-,∵()()12111x x ++=-,∴121211x x x x +++=-,∴2311k --+=-,解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.24.(1)32;12- (2)132-【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出32m n +=,12mn =-,然后将n m m n +进行变形求解即可; (3)根据根与系数的关系先求出32s t +=,12st =-,然后求出s -t 的值,然后将11s t -进行变形求解即可. 【详解】(1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2, ∴123322b x x a -+=-=-=,1212c x x a ⋅==-. 故答案为:32;12-. (2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n , ∴3322b m n a -+=-=-=,12c mn a ==-, ∴22n m m n m n mn++= ()22m n mn mn +-= 23122212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=- 132=- (3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根, ∴3322b s t a -+=-=-=,12c st a ==-, ∵()()224t s t s st -=+-231422⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭ 924=+ 174=∴t s -=t s -=,当t s -=11212t s s t st --===-当t s -=11212t s s t st --===-综上分析可知,11s t-或【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t s -或t s -= 25.C【分析】方程左右两边都加上1,左边化为完全平方式,右边合并即可得到结果. 【详解】解:x 2-2x =2, x 2-2x +1=2+1,即(x -1)2=3. 故选:C .【点睛】本题考查了解一元二次方程-配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键. 26.A【分析】根据一元二次方程有实数根先确定m 的取值范围,再根据一元二次方程根与系数的关系得出212122,41x x m x x m m +==--,把()()121222217x x x x ++-=变形为12122()130x x x x +--=,再代入得方程28120m m -+=,求出m 的值即可.【详解】解:∵关于x 的一元二次方程222410x mx m m -+--=有两个实数根, ∴22=(2)4(41)0m m m ∆----≥, ∴14m ,≥-∵12x x ,是方程222410x mx m m -+--=的两个实数根, ∵212122,41x x m x x m m +==--, 又()()121222217x x x x ++-= ∴12122()130x x x x +--=把212122,41x x m x x m m +==--代入整理得,28120m m -+=解得,122,6m m == 故选A【点睛】本题考查了根的判别式、根与系数的关系以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)由根与系数的关系结合12122()130x x x x +--=,找出关于m 的一元二次方程. 27.A【分析】根据一元二次方程的解,以及一元二次方程根与系数的关系即可求解.。

专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

中考数学专题 08 一元二次方程及其应用(知识点总结+例题讲解)一、一元二次方程有关概念:1.一元二次方程定义:只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程;2.一般形式:ax2+bx+c=0;(其中 a、b、c 为常数,a≠0)(1)其中 ax2、bx、c 分别叫做二次项、一次项和常数项;(2)a、b 分别称为二次项系数和一次项系数;(3)二次项系数:a≠0;(当 a=0 时,不含有二次项,即不是一元二次方程)3.一元二次方程必须具备三个条件:(1)必须是整式方程(等号两边都是整式);(2)必须只含有 1 个未知数;(3)所含未知数的最高次数是 2;4.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根。

【例题1】(2020 秋•奉贤区期末)下列各方程中,一定是一元二次方程的是()A.1 + 1 −2 = 0 B.ax2+bx+c=0x2 xC.(x﹣2)2=2(x﹣2)D.x2+2y=3【答案】C【解析】利用一元二次方程定义进行解答即可.解:A、含有分式,不是一元二次方程,故此选项不符合题意;B、当 a=0 时,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;= D 、含有两个未知数,不是一元二次方程,故此选项不符合题意;故选:C .【变式练习 1】(2020 秋•丹阳市期末)关于 x 的方程(m+1)x 2+2mx ﹣3=0 是一元二次方程,则( )A .m≠±1B .m =1C .m≠1D .m≠﹣1【答案】D【解析】根据一元二次方程定义可得 m+1≠0,再解可得答案. 解:由题意得:m+1≠0,解得:m≠﹣1;故选:D .【例题 2】(2020 秋•郫都区期末)若 x =m 是方程 x 2+x ﹣1=0 的根,则 m 2+m+2020 的值为()A .2022B .2021C .2019D .2018【答案】B【解析】把 x =m 代入已知方程,可以求得 m 2+m =1,然后整体代入所求的代数式求值即可.解:∵x=m 是方程 x 2+x ﹣1=0 的根,∴m 2+m ﹣1=0,∴m 2+m =1,∴m 2+m+2020=1+2020=2021.故选:B .【变式练习 2】设 m 是方程 x 2﹣3x+1=0 的一个实数根,则m 4+m 2+18 . m 2【答案】8【解析】利用一元二次方程的解的意义得到 m 2﹣3m+1=0,两边除以 m 得到 m + 1=3,m再把原式变形得到原式=m 2+1+ 1m 2=(m + 1 )2﹣2+1,然后利用整体代入的方法计算. m解:∵m 是方程 x 2﹣3x+1=0 的一个实数根,∴m 2﹣3m+1=0,∴m + 1 =3,∴原式=m 2+1+ 1 =(m + 1)2﹣2+1=9﹣2+1=8.mm 2mq b 4ac ≥0 二、一元二次方程的解法:1.解一元二次方程的基本思想:转化思想,即把一元二次方程转化为一元一次方程来求解;2.常用方法:(1)直接开平方法:适用形式:x 2=p(p≥0),(x+n)2=p 或(mx+n)2=p(p≥0)的方程;(2)配方法:套用公式 a 2+2ab+b 2=(a+b)2;a 2-2ab+b 2=(a-b)2将一元二次方程ax 2+bx+c=0(a≠0)配方为(x+m)2=n 的形式,再用直接开平方法求解; 配方法解一元二次方程的一般步骤是: ①将已知方程化为一般形式;②化二次项系数为 1;③常数项移到右边;④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; 变形为(x+p)2=q 的形式:如果 q≥0,方程的根是 x=-p± ;如果 q <0,方程无实根;(3)公式法:利用求根公式 x = -b ±∆ = 2 -)解一元二次方程 ax 2+bx+c=0(a≠0); 2a(4)因式分解法:将一元二次方程通过分解因式变为(x-a)(x-b)=0 的形式;进而得到 x-a=0 或 x-b=0 来求解; 3.方法选择技巧:(1)若一元二次方程缺少常数项,且方程的右边为 0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为 1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解;(4)若用以上三种方法都不容易求解时,可考虑用公式法求解。

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识

中考数学方程和方程式基础知识基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。

2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。

3、解方程:求方程的解或方判断方程无解的过程叫做解方程。

4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。

二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。

(4)一元一次方程有唯一的一个解。

2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。

(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a bx x -=+21,a cx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。

(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。

特殊方法:换元法。

(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。

初中数学知识点总结:一元二次方程的概念及其解法

初中数学知识点总结:一元二次方程的概念及其解法

初中数学知识点总结:一元二次方程的概念及其
解法
知识点总结
一.一元二次方程的概念:
只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程。

二.一元二次方程的解法:
4.分解因式法:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,令每个因式分别等于0,得到两个一元一次方程,分别解这两个一元一次方程,得到的解就是原方程的解,这种解一元二次方程的方法称为因式分解法。

分解因式法的理论依据是几个数的积为0,那几个数中至少有一个0。

常见考法
一元二次方程概念和解法是中考命题的重点,一般用填空、选择题来考查概念和有关的基础知识,用解答题来考解法。

且一元二次方程的解法灵活多变,涉及的知识面广,在根的判别式、根与系数的关系淡化后,这是考查本知识的较佳出题点之一。

误区提醒
(1)对一元二次方程的概念不清,导致错误;
(2)利用配方法解方程时,弄错常数项;
(3)利用公式法解方程时,在确定各项系数时漏掉“-”号。

(中考考点梳理)一元二次方程-中考数学一遍过

(中考考点梳理)一元二次方程-中考数学一遍过

考点05 一元二次方程一、一元二次方程的概念1.一元二次方程只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一般形式20ax bx c ++=(其中,,a b c 为常数,0a ≠),其中2,,ax bx c 分别叫做二次项、一次项和常数项,,a b 分别称为二次项系数和一次项系数.注意:(1)在一元二次方程的一般形式中要注意0a ≠,因为当0a =时,不含有二次项,即不是一元二次方程;(2)一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.二、一元二次方程的解法1.直接开平方法适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程.2.配方法(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程.3.公式法(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入x =即可. 4.因式分解法基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=.三、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=. 四、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.1.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.2.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%. 3.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.图1图2 图3考向一 一元二次方程的概念一元二次方程必须具备三个条件:①必须是整式方程;②必须只含有一个未知数;③所含未知数的最高次数是2.典例1 下列方程中是关于x 的一元二次方程的是A .2210x x += B .ax 2+bx +c =0 C .x 2+x +1=0D .x (x +1)=x 2+7 【答案】C【名师点睛】本题主要考查一元二次方程的定义.根据一元二次方程的定义对每个选项进行判断即可.注意D 选项需要化简后进行观察.1.若方程()2110m x mx +--=是关于x 的一元二次方程,则m 的取值范围是 A .m ≠−1 B .m =−1C .m ≥−1D .m ≠0考向二 解一元二次方程一元二次方程的常见解法及适用情形:典例2 若2x =-是关于x a 的值为_______________. 【答案】1或4-【解析】因为2x =-是关于x2340a a +-=,整理得1)40()(a a +-=, 解得14a =-,21a =.故a 的值是1或4-.典例3 用配方法解方程2210x x +-=时,配方结果正确的是A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B【解析】因为2210x x +-=,所以2212x x ++=,即2(1)2x +=.故选B .2.一元二次方程23830x x +-=的解是_______________.3.方程()32)11(x x x -=-的根是_______________.考向三 一元二次方程根的判别式对于方程2(0)0ax bx c a ++=≠,24b ac ∆=-,①若∆>0,方程有两个不相等的实数根;②若∆=0,方程有两个相等的实数根;③若∆<0,方程没有实数根.典例4 已知关于x 的一元二次方程2210ax x +-=无实数根,则a 的取值范围是_______________.【答案】1a <-【解析】因为关于x 的一元二次方程2210ax x +-=无实数根,所以0a ≠,且44(1)0a ∆-⨯⨯-<=,解得1a <-.故a 的取值范围是1a <-.学-科网典例5 有两个一元二次方程:①20ax bx c ++=,②20cx bx a ++=,其中0a c +=,以下四个结论中,错误的是A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根B .如果方程①和方程②有一个相同的实数根,那么这个根必定是1x =C .如果4是方程①的一个根,那么14是方程②的一个根 D .方程①的两个根的符号相异,方程②的两个根的符号也相异【答案】B【解析】选项A ,214b ac ∆=-,224b ac ∆=-,12∆∆=,所以A 正确;选项B ,因为将1±分别代入方程,值相等,结合0a c +=,可知B 不正确;选项C ,因为1640a b c ++=,110164c b a ++=,即1640a b c ++=,故C 正确; 选项D ,由根与系数关系可知D 正确.故选B .4.一元二次方程22520x x --=的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根5.关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .1B .1-C .2D .2-考向四 根与系数关系设一元二次方程20(0)ax bx c a ++=≠的两根分别为1x ,2x ,则12bx x a +=-,12cx x a =.典例6 若1-是方程220x x c -+=的一个根,则c 的值为A .2-B .2-C .3D .1【答案】A【解析】由根与系数的关系可得另一个根为2(11-=+,所以(12c ==-. 故选A .典例7 如果1x ,2x 是一元二次方程2650x x --=的两个实根,那么2212x x +=_______________.【答案】46【解析】由根与系数关系,可得126x x +=,125x x =-,则222121212()2365246x x x x x x +=+-=+⨯=.6.若方程2410x x -+=的两根是1x ,2x ,则122(1)x x x ++的值为_______________.7.关于x 的方程022=++n mx x 的两个根是2-和1,则m n 的值为A .8- B .8C .16D .16-考向五 一元二次方程在实际问题中的应用列一元二次方程解实际问题的关键是找出题中的等量关系,利用等量关系列出方程.其中分析实际问题是解决问题的前提和基础,解一元二次方程是重要方法和手段,并注意解出的方程的解是否符合实际问题.典例8 某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是_______________.【答案】25%【解析】设药品平均每次降价的百分率是a ,则由题意可得243(616)a -=,25%. 典例9 经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是_______________.【答案】203(512)x -=【解析】由题意可得203(512)x -=.8.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是A .20%B .25%C .50%D .62.5%9.如图,在一块长为22米、宽为17米的长方形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与长方形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列出方程为A .()()2217300x x +-=B .()()22172300x x --=C .()()2217300x x ++=D .()()2217300x x --=1.下列方程为一元二次方程的是A .2220x xy y -+=B .223x x -=C .()231x x x +=-D .10x x+= 2.设1x ,2x 是方程2530x x +-=的两个根,则12x x +=A .5B .5-C .3D .3-3.如果2是方程230x x k -+=的一个根,则常数k 的值为A .1 B .2C .1-D .2-4.用公式法解﹣x 2+3x =1时,先求出a 、b 、c 的值,则a 、b 、c 依次为A .﹣1,3,﹣1B .1,﹣3,﹣1C .﹣1,﹣3,﹣1D .﹣1,3,15.方程230x x -=的解是A .3x =B .10x =,23x =C .10x =,23x =-D .11x =,23x = 6.方程()11x x x +=+的解是A .1x =B .1x =-C .10x =,21x =-D .11x =,21x =-7.若关于x 的一元二次方程22(2)520m x x m m -++-=的常数项为0,则m 的值为A .1B .2C .0或2D .0 8.一元二次方程2210x x --=的根的情况为A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根 9.已知关于x 的一元二次方程22(2)0x x m +--=有实数根,则m 的取值范围是A .1m >B .1m <C .1m ≥D .1m ≤10.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是A .16q <B .16q >C .4q ≤D .4q ≥11.已知c b a ,,为常数,点),(c a P 在第二象限,则关于x 的方程02=++c bx ax 根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法判断12.关于x 的一元二次方程22(2)10x a a x a +-+-=的两个实数根互为相反数,则a 的值为A .2B .0C .1D .2或013.如果2是方程230x x k -+=的一个根,则此方程的另一根为A .2B .1C .1-D .2- 14.设α,β是方程2210x x --=的两根,则代数式αβαβ++的值是A .1B .1-C .3D .3- 15.若关于x 的一元二次方程20x bx c -+=的两个实数根分别为2和4-,则b c +=A .10-B .10C .6-D .1- 16.已知一元二次方程2210x x --=的两根分别为1x ,2x ,则1211x x +的值为 A .2B .1-C .12- D .2- 17.2018年某市人民政府投入1000万元用于改造乡村小学班班通工程建设,计划到2020年再追加投资210万元,如果每年的平均增长率相同,那么该市这两年该项投入的平均增长率为A .10%B .8%C .1.21%D .12.1%18.已知一次函数y =kx +b 的大致图象如图所示,则关于x 的一元二次方程x 2﹣2x +kb +1=0的根的情况是A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个根是019.用配方法解方程x 2+6x ﹣5=0时,应该变形为_______________.20.若方程220x x k ++=有两个不相等的实数根,则k 的取值范围是_______________. 21.已知关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值是_______________. 22.在一次聚会中,参加聚会的人每两位都相互握一次手,一共握手28次,设参加聚会有x 人,则可列方程_______________.23.若12,x x 是一元二次方程2350x x +-=的两个根,则221212x x x x +的值是_______________. 24.已知直角三角形两边的长是方程218650x x -+=的两个根,则第三边的长为_______________. 25.设α,β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+=_______________. 26.解下列方程:(1)2235()x -=;(2)22330x x --=; (3)2()330x x --+=.27.关于x 的一元二次方程2(3)220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.28.已知关于x 的方程28120x x a ++-=有两个不相等的实数根.(1)求a 的取值范围;(2)当a 取满足条件的最小整数时,求出方程的解. 29.根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程2210x x -+=的解为________________________; ②方程2320x x -+=的解为________________________; ③方程2430x x -+=的解为________________________;……(2)根据以上方程特征及其解的特征,请猜想:①方程2980x x -+=的解为________________________;②关于x 的方程________________________的解为11x =,2x n =. (3)请用配方法解方程2980x x -+=,以验证猜想结论的正确性.30.如图,要在长、宽分别为50米、40米的矩形草坪内建一个正方形的观赏亭.为方便行人,分别从东、南、西、北四个方向修四条宽度相同的矩形小路与亭子相连,若小路的宽是正方形观赏亭边长的15,小路与观赏亭的面积之和占草坪面积的325,求小路的宽.31.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6 cm2?(2)在(1)中,△PQB的面积能否等于8 cm2?说明理由.32.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg,销售单价每涨(或跌)1元,月销售量就减少(或增加)10kg,解答以下问题:(1)当销售单价定为每千克35元时,计算月销售量和月销售利润;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?(3)商店要使得月销售利润达到最大,销售单价应为多少?此时利润为多少?1.(2018贵州省铜仁)关于x的一元二次方程x2﹣4x+3=0的解为A.x1=﹣1,x2=3 B.x1=1,x2=﹣3C.x1=1,x2=3 D.x1=﹣1,x2=﹣32.(2018湖南省湘西州)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为A.1 B.﹣3C.3 D.43.(2018甘肃省陇南)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是A.k≤﹣4 B.k<﹣4C.k≤4D.k<44.(2018辽宁省锦州)一元二次方程2x2−x+1=0的根的情况是A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断5.(2018四川省泸州)若关于x 的一元二次方程()222110x k x k +-+-=有实数根,则k 的取值范围是A .k ≥1B .k >1C .k <1D .k ≤16.(2018福建)已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和﹣1都是关于x 的方程x 2+bx +a =0的根D .1和﹣1不都是关于x 的方程x 2+bx +a =0的根7.(2018河南)下列一元二次方程中,有两个不相等实数根的是 A .x 2+6x +9=0 B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=08.(2018湖北省咸宁)已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是 A .x 1+x 2=1 B .x 1•x 2=﹣1 C .|x 1|<|x 2|D .x 12+x 1=129.(2018广西壮族自治区贵港)已知α,β是一元二次方程x 2+x ﹣2=0的两个实数根,则α+β﹣αβ的值是 A .3 B .1 C .﹣1D .﹣310.(2018山东省潍坊)已知关于x 的一元二次方程mx 2﹣(m +2)x +4m=0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是 A .2B .﹣1C .2或﹣1D .不存在11.(2018黑龙江省龙东地区)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛? A .4B .5C .6D .712.(2018浙江省舟山)欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC △,使90ACB ∠= ,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是A .AC 的长B .AD 的长C .BC 的长D .CD 的长13.(2018四川省资阳)已知关于x 的一元二次方程mx 2+5x +m 2﹣2m =0有一个根为0,则m =_____. 14.(2018云南省曲靖)关于x 的方程ax 2+4x ﹣2=0(a≠0)有实数根,那么负整数a =_____(一个即可). 15.(2018贵州省毕节)已知关于x 的一元二次方程x 2﹣x ﹣m =0有两个不相等的实数根,则实数m 的取值范围是_____.16.(2018湖南省益阳)规定:()a b a b b ⊗=+,如:()2323315⊗=+⨯=,若23x ⊗=,则x =_____.17.(2018湖北省荆州)关于x 的一元二次方程x 2﹣2kx +k 2﹣k =0的两个实数根分别是x 1、x 2,且x 12+x 22=4,则x 12﹣x 1x 2+x 22的值是_____.18.(2018四川省达州)已知:m 2﹣2m ﹣1=0,n 2+2n ﹣1=0且mn ≠1,则1mn n n++的值为_____. 19.(2018甘肃省兰州)解方程:23220x x --=.20.(2018湖北省十堰)已知关于x 的一元二次方程x 2﹣(2k ﹣1)x+k 2+k ﹣1=0有实数根. (1)求k 的取值范围;(2)若此方程的两实数根x 1,x 2满足x 12+x 22=11,求k 的值.21.(2018湖北省孝感)已知关于x 的一元二次方程()()()321x x p p --=+. (1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值. 22.(2018黑龙江省绥化)已知关于x 的一元二次方程2520x x m -+=有实数根. (1)求m 的取值范围; (2)当52m =时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.23.(2018重庆)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a %,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a %,5a %,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a %,8a %,求a 的值.1.【答案】A【解析】根据一元二次方程的定义可得:m +1≠0,解得:m ≠−1. 故选A .【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程必须满足三个条件: (1)必须是整式方程;(2)未知数的最高次数是2;(3)二次项系数不为0.根据一元二次方程的定义求解即可. 2.【答案】113x =,23x =-3.【答案】11x =,223x =【解析】()32)11(x x x -=-,即312()(0)1x x x ---=,即()(20)31x x --=,即320x -=或10x -=,解得11x =,223x =. 4.【答案】B【解析】由22520x x --=可得2(5)42(2)410∆=--⨯⨯-=>,所以方程22520x x --=有两个不相等的实数根. 故选B . 5.【答案】A【解析】由题可得=4401k k ∆-=⇒=. 故选A . 6.【答案】5【解析】根据题意得124x x +=,121x x =,所以12212124(1)15x x x x x x x ++=+=+=+. 7.【答案】C【解析】因为关于x 的方程022=++n mx x 的两个根是2-和1,所以12m -=-,22n=-,所以2m =,4n =-,所以2(4)16m n =-=.故选C .9.【答案】D【解析】设道路的宽应为x 米, 由题意得(22−x )(17−x )=300, 故选D .【名师点睛】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.1.【答案】B【解析】A 、是二元二次方程,故不是一元二次方程,故此选项错误; B 、是一元二次方程,故此选项正确;C 、原方程化简整理后是一元一次方程,故此选项错误;D 、是分式方程,不是一元二次方程,故此选项错误; 故选B .【名师点睛】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.利用一元二次方程的定义:含有一个未知数,未知数的最高次数为2次,这样的整式方程称为一元二次方程,判断即可. 2.【答案】B故选B . 3.【答案】B【解析】因为2是方程230x x k -+=的一个根,所以22320k -⨯+=,解得2k =. 故选B . 4.【答案】A【解析】方程﹣x 2+3x =1整理得:﹣x 2+3x ﹣1=0, 则a ,b ,c 依次为﹣1,3,﹣1. 故选A .【名师点睛】将一元二次方程整理成一般形式后即可判断出a ,b ,c 的值. 5.【答案】B【解析】由230x x -=,可得3()0x x -=,则10x =,23x =. 故选B . 6.【答案】D【解析】()11x x x +=+,即(1)(1)0x x x +-+=,即(1)(1)0x x +-=,即10x +=或10x -=, 所以11x =-,21x =, 故选D.【名师点睛】本题是个易错题,因为不知道1x +是否为0,所以不能直接利用等式的性质2两边除以(1)x +.7.【答案】D【解析】由题意可得22020m m m ⎧-=⎨-≠⎩,解得0m =.故选D .【名师点睛】本题主要考查一元二次方程的概念,一元二次方程的解和解方程的应用,关键是得出220m m -=且20m -≠.8.【答案】B【解析】因为2241(1(0))8∆=--⨯⨯-=>,所以方程有2个不相等的实数根. 故选B . 9.【答案】C【解析】由题意得240b ac ∆=-≥,即2[20)12]4(m -⨯⨯--≥,解得1m ≥. 故选C . 10.【答案】A【解析】由题可得6440q ∆=->,解得16q <. 故选A . 11.【答案】B【解析】因为点),(c a P 在第二象限,所以0a <,0c >,所以0ac <,所以240b ac ∆=->,所以方程02=++c bx ax 有两个不相等的实数根. 故选B .13.【答案】B,有一个根是2,则另一个根是321-=.故选B . 12cx x a=.故选B . 14.【答案】A【解析】由根与系数关系,可得2αβ+=,1αβ=-,则211αβαβ++=-=. 故选A . 15.【答案】A【解析】由根与系数关系可得2(4)b +-=,2(4)c ⨯-=,解得2b =-,8c =-.所以10b c +=- .故选A .16.【答案】D【解析】由根与系数的关系可得122x x +=,121x x =-,所以22121111221x x x x x x ++===--. 故选D . 17.【答案】A【解析】设该市这两年该项投入的平均增长率为x ,依题意可得21000(1)2101000x ⨯+=+,解得10.110%x ==,2 2.1x =-(舍去). 即该市这两年该项投入的平均增长率为10%. 故选A . 18.【答案】A【解析】∵一次函数y =kx +b 的图象经过第一、三、四象限,∴k >0,b <0, ∴△=(−2)2−4(kb +1)=−4kb >0,∴方程x 2﹣2x +kb +1=0有两个不等的实数根. 故选A .【名师点睛】判断根的情况,只要看根的判别式△=b 2−4ac 的值的符号就可以了. 19.【答案】(x +3)2=14【解析】方程移项得:x 2+6x =5,配方得:x 2+6x +9=14,即(x +3)2=14.【名师点睛】此题考查了解一元二次方程的方法:配方法,熟练掌握完全平方公式是解本题的关键.方程中常数项移到右边,两边加上9,利用完全平方公式化简得到结果,即可作出判断. 20.【答案】1k <【解析】因为方程220x x k ++=有两个不相等的实数根,所以∆>0,即22410k -⨯⨯>,解得1k <,故填1k <.学=科网21.【答案】1-【解析】因为关于x 的一元二次方程220x x m +-=有两个相等的实数根,所以2240m ∆=+=,解得1m =-. 22.【解析】参加聚会的有x 人,每个人都要握手(1)x -次,可列方程: 23.【答案】15【解析】因为12,x x 是一元二次方程2350x x +-=的两个根,所以123x x +=-,125x x =-,所以2212121212()15x x x x x x x x +=+=.25.【答案】47【解析】方程(1)(4)5x x +-=-可化为2310x x -+=,因为α,β是方程(1)(4)5x x +-=-的两实数根,所以3αβ+=,1αβ=,所以222(+)27αβαβαβ=-=+,4422222=()2αβαβαβ++-47=,所以334447βααβαβαβ+=+=.26.【答案】(1)3x =±;(2)x =;(3)13x =,24x =.【解析】(1)2235()x -=,开平方可得3x -=,即3x =±,所以方程2235()x -=的解为3x =±. (2)由22330x x --=,可得2,3,3a b c ==-=-,24330b ac ∆=-=>,所以x ==,所以方程22330x x --=的解为x =(3)2()330x x --+=,即2()(30)3x x ---=,即()[()1]330x x --=-, 即4)30()(x x --=,解得13x =,24x =, 所以方程2()330x x --+=的解为13x =,24x =.【名师点睛】一元二次方程的解法:(1)直接开平方法,没有一次项的方程适用;(2)配方法,所有方程适用;(3)公式法,所有方程适用;(4)因式分解法,可因式分解的方程适用. 27.【答案】(1)证明见解析;(2)0k <.【解析】(1)因为222[(3)]4(22)21(1)0k k k k k ∆=-+-+=-+=-≥, 所以方程总有两个实数根.(2)因为2(3)22(2)(01)x k x k x x k -+++=--=-,所以12x =,21x k =+,因为方程总有一根小于1,所以11k +<,即0k <.故k 的取值范围为0k <.【思路分析】(1)由方程根的判别式0∆≥即可求证;(2)由因式分解法可将方程化为1()2)(x x k ---的形式,解出两根即可.28.【答案】(1)4a >-;(2)13x =-,25x =-.【解析】(1)根据题意可得284(12)0a ∆=-->,解得4a >-.(2)因为4a >-,所以最小的整数为3-,所以2812(3)0x x ++--=,即28150x x ++=,解得13x =-,25x =-.【思路分析】(1)方程有两个不相等的实数根,判别式大于0,由此可求参数的取值范围;(2)利用(1)的结论求出a 的值,代入原方程解方程即可.29.【答案】(1)①11x =,21x =,②11x =,22x =,③11x =,23x =;(2)①11x =,28x =,②2)0(1x n x n ++=-;(3)11x =,28x =,猜想结论正确.【解析】(1)①11x =,21x =;②11x =,22x =;③11x =,23x =.(2)①11x =,28x =;②2)0(1x n x n ++=-.(3)2980x x -+=,即298x x -=-,即281819844x x -+=-+,即249(924x =-, 所以7292x -=±, 所以11x =,28x =.故猜想结论正确.30.【答案】小路的宽为2米.【解析】设小路的宽为x 米,由题意得,(5x )2+(40+50)x ﹣2×x ×5x =325×40×50, 解得x =2或x =﹣8(不合题意,舍去)答:小路的宽为2米.【名师点睛】考查一元二次方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.根据“小路与观赏亭的面积之和占草坪面积的325”,建立方程求解即可得出结论. 31.【答案】(1)2或3秒;(2)不能.【解析】(1)设经过x 秒以后△PBQ 的面积为6 cm 2, 则12×(5﹣x )×2x =6, 整理得:x 2﹣5x +6=0,解得:x =2或x =3.答:2或3秒后△PBQ 的面积等于6 cm 2 .(2)设经过x 秒以后△PBQ 面积为8 cm 2,则12×(5﹣x )×2x =8, 整理得:x 2﹣5x +8=0,因为△=25﹣32=﹣7<0,所以此方程无解,故△PQB 的面积不能等于8 cm 2.【名师点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ 的面积等于6 cm 2”,得出等量关系是解决问题的关键.(1)设经过x 秒钟,△PBQ 的面积等于6 cm 2,根据点P 从A 点开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2 cm/s 的速度移动,表示出BP 和BQ 的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8 cm 2.32.【答案】(1)月销售量为450千克,月销售利润为6750元;(2)销售单价应为60元;(3)销售单价应为50元,此时利润为9000元.【解析】(1)月销售量为500−10×(35−30)=450(千克),月销售利润为(35−20)×450= 6750(元).(3)设应涨价x 元,∵月销售利润()()2302050010104005000y x x x x =+--=-++ 210(20)9000x =--+,∴当20x =时,9000y =最大值,答:商店要使得月销售利润达到最大,销售单价应为50元,此时利润为9000元.【名师点睛】本题考查的是一元二次方程的应用和二次函数的应用,解答本题的关键是读懂题意,找到合适的等量关系,然后设出未知数正确列出方程.注意熟记等量关系:销售利润=每件利润×数量.(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量即可求出题目的结果;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x 元,根据这个等式即可列出方程求解,再结合销售成本不超过6000元进行取舍即可;(3)根据(2)中的相等关系列出函数解析式,化为顶点式即可求出答案.1.【答案】C 【解析】x 2−4x +3=0,分解因式得:(x −1)(x −3)=0,解得:x 1=1,x 2=3.故选C .【名师点睛】本题考查了解一元二次方程——因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).2.【答案】C【解析】设方程的另一个解为x 1,根据题意得:﹣1+x 1=2,解得:x 1=3.故选C .【名师点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.设方程的另一个解为x 1,根据两根之和等于﹣b a,即可得出关于x 1的一元一次方程,解之即可得出结论.3.【答案】C【解析】根据题意得∆=42﹣4k ≥0,解得k ≤4.故选C .【名师点睛】本题考查了根的判别式,根据判别式的意义得∆=42﹣4k ≥0,然后解不等式即可.一元二次方程ax 2+bx +c =0(a≠0)的根与∆=b 2﹣4ac 有如下关系:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程无实数根.4.【答案】C【解析】∵∆=b 2 −4ac =1−8=−7<0,∴一元二次方程2x 2 −x +1=0没有实数根.故选C .【名师点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的判别式∆=b 2−4ac ,先计算∆=b 2−4ac 的值,再根据计算结果判断方程根的情况即可.当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.5.【答案】D【解析】∵关于x 的一元二次方程x 2+2(k ﹣1)x +k 2﹣1=0有实数根,∴∆=b 2﹣4ac =4(k ﹣1)2﹣4(k 2﹣1)=﹣8k +8≥0,解得:k ≤1.故选D .【名师点睛】直接利用根的判别式进而分析得出k 的取值范围.∆>0时,一元二次方程有两个不等实根;∆=0时,一元二次方程有两个相等实根;∆<0时,一元二次方程无实根.6.【答案】D【解析】∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴()()22102410a b a +≠⎧⎪⎨∆-+⎪⎩==,∴b =a +1或b =−(a +1). 当b =a +1时,有a −b +1=0,此时−1是方程x 2+bx +a =0的根;当b =−(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠−(a +1),∴1和−1不都是关于x 的方程x 2+bx +a =0的根.故选D .【名师点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当∆=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根可得出b =a +1或b =−(a +1),当b =a +1时,−1是方程x 2+bx +a =0的根;当b =−(a +1)时,1是方程x 2+bx +a =0的根.再结合a +1≠−(a +1),可得出1和−1不都是关于x 的方程x 2+bx +a =0的根.7.【答案】B【解析】A 、x 2+6x +9=0.∆=62−4×9=36−36=0,方程有两个相等实数根;B 、x 2=x ,即x 2−x =0.∆=(−1)2−4×1×0=1>0,方程有两个不相等实数根;C 、x 2+3=2x ,即x 2−2x +3=0.∆=(−2)2−4×1×3=−8<0,方程无实根;D 、(x −1)2+1=0,即(x −1)2=−1,则方程无实根.故选B .【名师点睛】本题考查的是一元二次方程根的判别式,根据一元二次方程根的判别式判断即可. 一元二次方程ax 2+bx +c =0(a ≠0)的根与∆=b 2−4ac 有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.8.【答案】D【解析】根据题意得x 1+x 2=﹣22=﹣1,x 1x 2=﹣12,故A 、B 选项错误; ∵x 1+x 2<0,x 1x 2<0,∴x 1、x 2异号,且负数的绝对值大,故C 选项错误; ∵x 1为一元二次方程2x 2+2x ﹣1=0的根,∴2x 12+2x 1﹣1=0,∴x 12+x 1=12,故D 选项正确, 故选D .【名师点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.直接利用根与系数的关系对A 、B 进行判断;由于x 1+x 2<0,x 1x 2<0,则利用有理数的性质得到x 1、x 2异号,且负数的绝对值大,则可对C 进行判断;利用一元二次方程解的定义对D 进行判断.9.【答案】B【解析】∵α,β是方程x 2+x ﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1−(−2)=−1+2=1,故选B .【名师点睛】本题考查了一元二次方程根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键.根据根与系数的关系得α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.10.【答案】A【解析】∵关于x 的一元二次方程mx 2﹣(m +2)x +4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩,解得:m >﹣1且m ≠0,。

九年级数学讲义一元二次方程定义和基本解法

九年级数学讲义一元二次方程定义和基本解法

九年级数学讲义一元二次方程定义和基本解法一、基础知识:1、一元一次方程知识回顾:(1)什么是一元一次方程?(2)如何解一元一次方程?2、一元二次方程的一般形式:(其中x 是未知数,a 、b 、c 是已知数,a≠0)02=++c bx ax 3、思考:如何解一元二次方程?二、例题解析与跟进训练:例1 判断下列关于x 的方程是不是一元二次方程?(1); ( ) 0232=-+x x(2); ( )1)1(2-=-x(3); ( ) 022=-+ax x**(4);( )是常数)a x ax (0232=-+ **(5); () 0122=+-+x x x 归纳总结:①“变元”的个数是一个;参数不影响;②方程是整式方程; ③含有未知数的最高次项的次数是二次;④与有没有实根无关;【链接中考】会判断是否为一元二次方程;含有参数问题1.下列方程中是关于x 的一元二次方程的是( )A. B.ax 2+bx+c=0 C.(x﹣1)(x+2)=1 D.3x 2﹣2xy﹣5y 2=00122=+x x 2.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则( )A.m=±2B.m=2C.m=﹣2D.m≠±23.方程5x 2﹣4x﹣1=0的二次项系数和一次项系数分别为( )A.5和4B.5和﹣4C.5和﹣1D.5和14.将方程3x (x﹣1)=5(x+2)化为一元二次方程的一般式,正确的是( )A.4x 2﹣4x+5=0B.3x 2﹣8x﹣10=0C.4x 2+4x﹣5=0D.3x 2+8x+10=05.若n (n≠0)是关于x 的方程x 2+mx+3n=0的一个根,则m+n 的值是( )A.﹣3B.﹣1C.1D.3例2 解一元二次方程的方法方法一:直接开方法 适用类型: (a 为常数)a x =2练习解下列方程,并归纳出解此类型方程的一般方法:(1); (2); (3);12=x 1)1(2=-x 1)1)(1(=+-x x (4);(5); **(6);02=x 12-=x 04322=+-x x解法归纳:类型:a x =2(1)当,两个不等实数根;a x a x a =-=>21,0时,(2)当时,,两个相等实数根;0=a 021==x x(3)当时,方程没有实数根;0<a (4)不是上面类型的,可以考虑用配方的方式,化为,再解答;a x =2【链接中考】直接开平方法1.一元二次方程x 2﹣2x+1=0的根为 .2.关于x 的一元二次方程x 2﹣2x﹣1=0的两根是 .3.解一元二次方程:(x﹣1)2=4.4.解方程:(x﹣3)2﹣9=0. 5.在实数范围内定义运算“⊕”,其法则为:a ⊕b=a 2﹣b 2,求方程(4⊕3)⊕x=24的解.6.(2x+3)2=x 2﹣6x+9.方法二: 配方法 适用类型: )0(02≠=++a c bx ax 练习解下列方程,并归纳出解此类型方程的一般方法:(1);(讲解) (2);(讲解)0122=-+x x 03622=+-x x (3); (4);2)3)(1(=+-x x 053212=+-x x解法归纳:对于,可以通过配方的方式,化为类型,)0(02≠=++a c bx ax a x =2 c a b a b x a -=+42(22⇒22244)2(a ac b a b x -=+ 然后针对方程右边的正负情况,进行具体解答。

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(基础)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2. 会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为242b b acx a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法. 3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律. (2)体积变化问题关键是寻找其中的不变量作为等量关系. (3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键. (4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程. (5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇. (6)和、差、倍、分问题 增长量=原有量×增长率; 现有量=原有量+增长量; 现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意. 【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x += 【思路点拨】把二次项系数化为1,常数项右移,方程两边都加上一次项系数一半的平方,再用直接开平方法解出未知数的值. 【答案与解析】移项,得2231x x -=-二次项系数化为1,得23122x x -=- 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 由此可得3144x -=± 11x =,212x =【总结升华】用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程 无实数解.举一反三:【变式】用配方法解方程x 2-7x-1=0. 【答案】将方程变形为x 2-7x=1,两边加一次项系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为 x=7+532或x=7-532.2.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【思路点拨】判别式大于0,二次项系数不等于0.【答案与解析】(1)证明:△=(m+2)2﹣8m =m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0, ∴△≥0,∴方程总有实数根; (2)解:解方程得,x=,x 1=2m,x 2=1, ∵方程有两个不相等的正整数根, ∴m=1或2,∵m=2不合题意, ∴m=1.【总结升华】(1)注意隐含条件m ≠0;(2)注意整数根的限制条件的应用,求出m 的值,要验证m 的值是否符合题意.举一反三:【变式】已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解. 【答案】(1)证明:因为△=)12(4)2(2--+m m =4)2(2+-m所以无论m 取何值时, △>0,所以方程有两个不相等的实数根. (2)解:因为方程的两根互为相反数,所以021=+x x ,根据方程的根与系数的关系得02=+m ,解得2-=m ,所以原方程可化为052=-x ,解得51=x ,52-=x .类型二、分式方程3.解分式方程:=﹣.【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【答案与解析】解:方程两边同乘以(2x+1)(2x ﹣1),得 x+1=3(2x-1)-2(2x+1) x+1=2x-5, 解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6.【总结升华】首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根. 举一反三:【变式1】解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得22(3)1x x -+-=. 2261x x -+-=. 5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.【变式2】方程22123=-+--xx x 的解是x= . 【答案】0x =.4.若解分式方程2111(1)x m x x x x x++-=++产生增根,则m 的值是( ) A.B.C.D.【思路点拨】先把原方程化为整式方程,再把可能的增根分别代入整式方程即可求出m 的值. 【答案】D ;【解析】由题意得增根是:化简原方程为:把代入解得2m =-或1,故选择D.【总结升华】分式方程产生的增根,是使分母为零的未知数的值. 举一反三:【变式】若关于x 的方程2332+-=--x mx x 无解,则m 的值是 . 【答案】1.类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.【思路点拨】在航行问题中的等量关系是“顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度”,两次航行提供了两个等量关系. 【答案与解析】设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时由题意,得解得:经检验:是原方程的根x y x y ==⎧⎨⎩==⎧⎨⎩173173 答:水流速度为3千米/小时,船在静水中的速度为17千米/小时. 【总结升华】流水问题公式:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度; 静水速度=(顺流速度+逆流速度)÷2;水流速度=(顺流速度-逆流速度)÷2.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树? 【答案】设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树, 由题意得:答:甲班每小时种树20棵,乙班每小时种树22棵.6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【思路点拨】设该产品的成本价平均每月降低率为x ,那么两个月后的销售价格为625(1-20%)(1+6%),两个月后的成本价为500(1-x )2,然后根据已知条件即可列出方程,解方程即可求出结果. 【答案与解析】设该产品的成本价平均每月应降低的百分数为x . 625(1-20%)(1+6%)-500(1-x )2=625-500 整理,得500(1-x )2=405,(1-x )2=0.81. 1-x=±0.9,x=1±0.9, x 1=1.9(舍去),x 2=0.1=10%.答:该产品的成本价平均每月应降低10%. 【总结升华】题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价.中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k >﹣1 B .k≥﹣1 C .k≠0 D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. B. C. D.二、填空题 7.方程﹣=0的解是 .8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根, (1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么? 【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D . 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一元二次方程知识点总结知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四个特点: (1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

(4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0)3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。

一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

4.一元二次方程的解法 (1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±−=,当b<0时,方程没有实数根。

(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. (3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥−−±−=ac b aac b b x(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

5.一元二次方程根的判别式根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42−叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42−=∆ 6.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x −=+21,acx x =21。

也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

7.分式方程分母里含有未知数的方程叫做分式方程。

8.分式方程的一般解法解分式方程的思想是将“分式方程”转化为“整式方程”。

它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

(参考教材:初中数学九年级人教版)知识点1.只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。

例题:1、判别下列方程是不是一元二次方程,是的打“√”,不是的打“×”,并说明理由.(1)2x 2-x-3=0. (2)4y-y 2=0. (3) t 2=0.(4) x 3-x 2=1. (5) x 2-2y-1=0. (6) 21x -3=0.(7)x x 32− =2. (8)(x+2)(x-2)=(x+1)2.(9)3x 2-x 4+6=0. (10)3x 2=4x-3.1、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是 ( )(A )2 (B )-2 (C )0 (D )不等于22、已知关于x 的方程()()03122=+−++p x n x m ,当 时,方程为一次方程;当 时,两根中有一个为零a 。

3、已知关于x 的方程()2220m m xx m −−+−=:(1) m 为何值时方程为一元一次方程; (2) m 为何值时方程为一元二次方程。

知识点二.一元二次方程的一般形式一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。

特别警示:(1)“0a ≠”是一元二次方程的一般形式的一个重要组成部分;(2)二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。

例题:1、指出下列一元二次方程的二次项系数、一次项系数和常数项.2(2)510 2.20x x +−= 2(3)2150x −= 2(4)30x x += (5)3)2(2=+x2、关于x 的方程06232=−+x x 中a 是 ;b 是 ;c 是 。

知识点三.一元二次方程的解使一元二次方程左右两边相等的未知数的值,叫方程的解。

例题:1、已知方程2390x x m −+=的一个根是1,则m 的值是 。

2、设a 是一元二次方程052=+x x 的较大根,b 是0232=+−x x 较小根, 那么b a +的值是 ( ) (A )-4 (B )-3 (C )1 (D )2 3、已知关于x 的一元二次方程220x kx +−= 的一个解与方程131x x +=−的解相同。

(1) 求k 的值;(2) 求方程220x kx +−=的另一个解。

知识点四.一元二次方程的解法 一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =±(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是242b b ac x a−±−=()240b ac −≥; (4) 因式分解法:如果()()0x a x b −−=则12,x a x b ==。

温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。

例题:解方程:1、方程220x x −=的解是: ( )A.121x x ==B.121,3x x =−=C.122,0x x ==D.122,0x x =−= 2、方程()()25115x x −=−的较简便的解法应选用 。

解为3、解下列方程:(1)()2331x x +=+ (2)2230x x +−= (3)2230x x +−=(4)()()y y 32322−=+ (5)()()1211312−=−x x(6)()2252)3(−=+x x (7)()()()2222263−++=−y y y知识点五.一元二次方程根的判别式对于一元二次方程()200ax bx c a ++=≠的根的判别式是24b ac −:(1) 当240b ac −>时,方程有两个不相等的实数根;(2) 当240b ac −=时,方程有两个相等的实数根;(3) 当240b ac −<时,方程无实数根。

温馨提示:若方程有实数根,则有240b ac −≥。

例题:1、已知方程230x x k −+=有两个不相等的实数根,则k= 。

2、当m 满足何条件时,方程()019122=−+−−m x m mx 有两个不相等实根?有两个相等实根?有实根?3、关于x 的方程()05222=+++−m x m mx 无实根,试解关于x 的方程()()02252=++−−m x m x m 。

4、已知关于x 的一元二次方程()241210x m x m +++−=,求证:不论m 为任何实数,方程总有两个不相等的实数根。

知识点六.一元二次方程根与系数的关系若一元二次方程()200ax bx c a ++=≠的两个实数根为12,x x ,则1212,b c x x x x a a+=−=。

温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。

例题:1、关于x 的一元二次方程22430x kx k ++−=的两个实数根分别是12,x x ,且满足1212x x x x +=,则k 的值为: ( ) (A )314−或(B )1− (C )34(D )不存在 2、已知,αβ是关于x 的一元二次方程()22230x m x m +++=的两个不相等的实数根,且满足111αβ+=−,则m 的值是 ( )(A )3或-1 (B )3 (C )1 (D )-3或1 3、方程2360x x −−=与方程2630x x −+=的所有根的乘积是4、两个不相等的实数m,n 满足2264,64m m n n −=−=,则mn 的值为 。

5、设12,x x 是关于x 的一元二次方程20x px q ++=的两个根,121,1x x ++是关于x 的一元二次方程20x qx p ++=的两个根,则,p q 的值分别等于多少?知识点七.一元二次方程的实际应用 列一元二方程解应用题的一般步骤:(1)审题(2)设未知数(3)列方程(4)解方程(5)检验(6)写出答案。

在检验时,应从方程本身和实际问题两个方面进行检验。

1、有一个两位数,十位数字比个位数字大3,而此两位数比这两个数字之积的二倍多5,求这个两位数。

2、市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?3、将一条长20m 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形。

(1)要使这两个正方形的面积之和等于17平方米,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12平方米吗?若能,求出两段铁丝的长度;若不能,请说明理由。

专项练习1、下列方程中,关于x 的一元二次方程是 ( ) A.()()23121x x +=+ B.21120x x+−= C.20ax bx c ++= D.2221x x x +=+ 2、方程(m 2-1)x 2+mx -5=0 是关于x 的一元二次方程,则m 满足的条件是…( )(A )m ≠1 (B )m ≠0 (C )|m |≠1 (D )m =±13、若1x =是一元二次方程220ax bx +−=的一个根,则a b += 。

相关文档
最新文档