重庆市2011年初中毕业暨高中招生考试数学

合集下载

2011重庆中考数学试题-解析版

2011重庆中考数学试题-解析版

重庆市年中考数学试卷—解析版一.选择题:(本大题个小题,每小题分,共分)在每个小题的下面,都给出了代号为、、、的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.、(•重庆)在﹣,,,这四个数中,最小的数是()、﹣、、、考点:有理数大小比较。

专题:计算题。

分析:根据正数大于,大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵>>>﹣,∴最小的数是﹣.故选.点评:本题考查了有理数大小的比较,熟记:正数大于,大于负数,正数大于负数,两负数绝对值大的反而小.、(•重庆)计算()的结果是()、、、、考点:幂的乘方与积的乘方。

专题:计算题。

分析:根据幂的乘方法则:底数不变,指数相乘.()(,是正整数)计算即可.解答:解:()×.故选.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.、(•重庆)下列图形中,是中心对称图形的是()、、、、考点:中心对称图形。

专题:数形结合。

分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:、将此图形绕任一点旋转度都不能与原来的图形重合,所以这个图形不是中心对称图形;、将此图形绕某一点旋转度正好与原来的图形重合,所以这个图形是中心对称图形;、将此图形绕任一点旋转度都不能与原来的图形重合,所以这个图形不是中心对称图形;、将此图形绕任一点旋转度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.、(•重庆)如图,∥,∠°,∠°,则∠的度数等于()、°、°、°、°考点:平行线的性质。

重庆市2011年初中毕业暨高中招生考试

重庆市2011年初中毕业暨高中招生考试

重庆市2011年初中毕业暨高中招生考试数学科研试卷(二)答题卷时间:120分钟 总分:150分一、选择题(每小题 4分,共40分)二、填空题(每小题 4分,共24分)11、 12、 13、14、 15、 16、三、简答题(每小题6分,共24分)17、计算:30164|34|201131---+-)( 18、解分式议程 212423=---x x x19、如图,在正方形ABCD 中,E 是CD 上一点,点F求证:AF=AE20、近年来,国家实施“村村通”工程和农村医疗卫生,某县计划在张村,李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图)。

医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等,请你通过作图确定P 点的位置。

B FCD E四、简答题 (每小题10分,共40分)21、化简求值:11)1152-+÷----a a a a a (,其中13-=a22、如图,直线AD 交坐标轴于B 和C ,交双曲线于A 和D ,OB =OC =2,AB =BC =CD1) 求直线和双曲线的解析式,2) 请你连接AO 和DO ,并求出△AOD 的面积。

23、科技创新必须从娃娃抓起,我校为了培养小能人,小发明家,开展了全校的小制作比赛,作品上交时间为2010年3月1日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每组的件数进行统计,绘制成如图所示的统计图。

已知从左到右各矩形的高度比为2:3:4:6:1,其中第四小组有2人交了1件作品,5人交了2件作品,2人交了3件作品。

请你回答:1)本次活动共有 件作品参赛;其中第四小组平均每人交了 件作品; 2)经评比,第一组和第五组分别有3件和9件作品获奖,那么第一组和第五组的获奖率分别为 和 ;3)小制作评比结束后,组委会评出了4件最优秀的作品A 、B 、C 、D ,决定从中选出两件进行全校展示,请用树状图列表法求出刚好展示作品A 和作品C 的概率。

重庆市2011年初中毕业暨高中招生考试(A卷)解析word

重庆市2011年初中毕业暨高中招生考试(A卷)解析word

2011年重庆市中考数学试题及答案详细解析一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、81.考点:有理数大小比较。

专题:计算题。

分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>﹣6,∴最小的数是﹣6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、(2011•重庆)计算(a3)2的结果是()A、aB、a5C、a6D、a92.考点:幂的乘方与积的乘方。

专题:计算题。

分析:根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、(2011•重庆)下列图形中,是中心对称图形的是()A、B、C、D、3.考点:中心对称图形。

专题:数形结合。

分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、(2011•重庆)如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A 、60°B 、50°C 、45°D 、40°4.考点:平行线的性质。

2011中考重庆市数学卷

2011中考重庆市数学卷

重庆市2011年初中毕业暨高中招生考试数学试题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a --,对称轴公式为2b x a=-。

一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.在-6,0,3,8这四个数中,最小的数是( )A . -6 B .0 C .3 D . 8 2.计算()23a的结果是( ) A . a B . a 5 C .a 6D . 9a3.下列图形中,是中心对称图形的是( )4. 如图,AB ∥CD ,︒=∠90C ,︒=∠60CAD ,则∠BAD 的度数等于( ) 5.下列调查中,适宜采用抽样方式的是( ) A . 调查我市中学生每天体育锻炼的时间 B . 调查某班学生对“五个重庆”的知晓率 C . 调查一架“歼20”隐形战机各零部件的质量 D . 调查广州亚运会100米参赛运动员兴奋剂的使用情况6.如图,⊙O 是△ABC 的外接圆,∠OCB =400,则∠A 的度数等于( )A .60°B . 50°C .45°D .40°A.BCD7. 已知抛物线2(0)y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )A .0>aB . 0<bC .0<cD . 0>++c b a8.为了建设社会主义新农村,我市积极推进“行政村通畅工程”。

张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按完成了两村之间的道路改造。

下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的函数关系的大致图象是( )9.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为( )A .55B . 42C . 41D . 29 10. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。

2011年重庆市中考数学试卷及答案

2011年重庆市中考数学试卷及答案

2011年重庆市中考数学试卷及答案2011年重庆市中考数学试卷一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、在-6,0,3,8这四个数中,最小的数是()A、-6B、0C、3D、8考点:有理数大小比较.专题:计算题.分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>-6,∴最小的数是-6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.答题:wangjc3老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮2、计算(a3)2的结果是()A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.答题:HJJ老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮3、下列图形中,是中心对称图形的是()A、B、C、D、考点:中心对称图形.专题:数形结合.分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.答题:123161521zh老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD 的度数等于()A、60°B、50°C、45°D、40°考点:平行线的性质.分析:根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD的度数.解答:解:∵∠C=80°,∠CAD=60°,∴∠D=180°-80°-60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.点评:本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.答题:冯延鹏老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮5、下列调查中,适宜采用抽样方式的是()A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况考点:全面调查与抽样调查.专题:应用题.分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、调查我市中学生每天体育锻炼的时间,适合抽样调查,B、调查某班学生对“五个重庆”的知晓率,采用全面调查,C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.答题:冯延鹏老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮6、如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A、60°B、50°C、40°D、30°考点:圆周角定理.分析:在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.解答:解:在△OCB 中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,∴∠COB=100°;又∵∠A= ∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°,故选B.点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.答题:dbz1018老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮7、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线的开口方向判断a的正负;根据对称轴在y轴的右侧,得到a,b异号,可判断b的正负;根据抛物线与y轴的交点为(0,c),判断c的正负;由自变量x=1得到对应的函数值为正,判断a+b+c的正负.解答:解:∵抛物线的开口向下,∴a<0;又∵抛物线的对称轴在y轴的右侧,∴a,b异号,∴b>0;又∵抛物线与y轴的交点在x轴上方,∴c>0,又x=1,对应的函数值在x轴上方,即x=1,y=ax2+bx+c=a+b+c>0;所以A,B,C选项都错,D选项正确.故选D.点评:本题考查了抛物线y=ax2+bx+c(a≠0)中各系数的作用:a>0,开口向上,a<0,开口向下;对称轴为x=- ,a,b同号,对称轴在y轴的左侧;a,b异号,对称轴在y轴的右侧;抛物线与y 轴的交点为(0,c),c>0,与y轴正半轴相交;c<0,与y轴负半轴相交;c=0,过原点.答题:gsls老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮8、为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是()A、B、C、D、考点:函数的图象.专题:数形结合.分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D.点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.答题:zhangjx111老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮9、下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、29考点:规律型:图形的变化类.专题:规律型.分析:由于图②5个=1+2+2,图③11个=1+2+3+2+3,图④19=1+2+3+4+2+3+4,由此即可得到第⑥个图形中平行四边形的个数.解答:解:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.点评:本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.答题:Liuzhx老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮10、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A、1B、2C、3D、4考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.专题:几何综合题.分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE= CD=2,设BG=FG=x,则CG=6-x.在直角△ECG 中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴= ,EF=DE=2,GF=3,∴EG=5,∴= = ,∴S△FGC=S△GCE-S△FEC= ×3×4- ×4×(×3)= ≠3.故选C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.答题:黄玲老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮二.填空题:(本大题6个小题,每小题4分,共24分)11、据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为2.88×103万.考点:科学记数法—表示较大的数.专题:数字问题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2880万用科学记数法表示为2.88×103.故答案是:2.88×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.答题:dbz1018老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮12、如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E 两点,若AD:AB=1:3,则△ADE与△ABC的面积比为1:9.考点:相似三角形的判定与性质.分析:根据相似三角形的面积比等于相似比的平方直接得出答案.解答:解:∵△ABC中,DE∥BC,∴△ADE∽△ABC,相似比为AD:AB=1:3,∴△ADE与△ABC的面积比为:1:9.故答案为:1:9.点评:此题主要考查了相似三角形的性质,根据相似比性质得出面积比是解决问题的关键.答题:gbl210老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮13、在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是9.考点:众数.专题:计算题.分析:众数是一组数据中出现次数最多的数据,有时众数可以不止一个.解答:解:在这一组数据中9是出现次数最多的,故众数是9;故答案为9.点评:本题为统计题,考查众数定义.如果众数的概念掌握得不好,就会出错.答题:bjy老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮14、在半径为的圆中,45°的圆心角所对的弧长等于1.考点:弧长的计算.专题:计算题.分析:根据弧长公式l= 把半径和圆心角代入进行计算即可.解答:解:45°的圆心角所对的弧长= =1.故答案为1.点评:本题考查了弧长公式:l= (n为圆心角的度数,R为半径).答题:gsls老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮15、有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为.考点:概率公式;解分式方程.专题:计算题.分析:易得分式方程的解,看所给4个数中,能使分式方程有整数解的情况数占总情况数的多少即可.解答:解:解分式方程得:x= ,能使该分式方程有正整数解的只有0(a=1时得到的方程的根为增根),∴使关于x的分式方程有正整数解的概率为.故答案为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使分式方程有整数解的情况数是解决本题的关键.答题:lanchong老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮16、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380朵.考点:三元一次方程组的应用.专题:应用题.分析:题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y 盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.解答:解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x 盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.点评:本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是将方程组中的其中一个未知数看作常数,用含有一个未知数的代数式表示另外两个未知数,然后代入所求黄花的代数式.答题:黄玲老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮二.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17、|-3|+(-1)2011×(π-3)0- + .考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:先算出-3的绝对值是3,-1的奇数次方仍然是-1,任何数(0除外)的0次方都等于1,然后按照常规运算计算本题.解答:解:原式=3+(-1)×1-3+4=3点评:本题考查了绝对值、零指数幂、负整数指数幂、立方根的运算.答题:123161521zh老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮18、解不等式2x-3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:3(2x-3)<x+16x-9<x+15x<10x<2∴原不等式的解集为x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.答题:zhqd老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮19、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.解答:证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.点评:本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.答题:冯延鹏老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮20、为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)考点:作图—应用与设计作图.专题:作图题.分析:易得M在AB的垂直平分线上,且到C的距离等于AB的一半.解答:解:作AB 的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.点评:考查设计作图;得到点M是AB的垂直平分线与以点C为圆心,以AB的一半为半径的弧的交点是解决本题的关键.答题:lanchong老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、先化简,再求值:,其中x满足x2-x-1=0.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再把除法转化成乘法进行约分计算.最后根据化简的结果,可由x2-x-1=0,求出x+1=x2,再把x2=x+1的值代入计算即可.解答:解:原式= ×= ×= ,∵x2-x-1=0,∴x2=x+1,∴= =1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法.答题:wangcen老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮22、如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D点,由sin∠AOE= ,OA=5,根据正弦的定义可求出AD,再根据勾股定理得到DO,即得到A点坐标(-3,4),把A(-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B (6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b (k≠0),求出k和b.(2)先令y=0,求出C点坐标,得到OC的长,然后根据三角形的面积公式计算△AOC的面积即可.解答:解:(1)过点A作AD⊥x轴于D点,如图,∵sin∠AOE= ,OA=5,∴sin∠AOE= = = ,∴AD=4,∴DO= =3,而点A在第二象限,∴点A的坐标为(-3,4),将A(-3,4)代入y= ,得m=-12,∴反比例函数的解析式为y=- ;将B(6,n)代入y=- ,得n=-2;将A(-3,4)和B(6,-2)分别代入y=kx+b(k≠0),得,解得,∴所求的一次函数的解析式为y=- x+2;(2)在y=- x+2中,令y=0,即- x+2=0,解得x=3,∴C点坐标为(0,3),即OC=3,∴S△AOC= ?AD?OC= ?4?3=6.点评:本题考查了点的坐标的求法和点在图象上,点的横纵坐标满足图象的解析式;也考查了正弦的定义、勾股定理以及三角形面积公式.答题:gsls老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮23、为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题;图表型.分析:(1)根据留守儿童有4名的占20%,可求得留守儿童的总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率.解答:解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20-(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:= .点评:本题是一道统计题,考查了条形统计图和扇形统计图,及树状图的画法,是重点内容,要熟练掌握.答题:leikun老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮24、如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.考点:梯形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.专题:证明题;几何综合题.分析:(1)根据BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根据勾股定理求出BC=2 ,根据CE⊥BE,点G为BC的中点即可求出EG;(2)在线段CF上截取CH=BA,连接DH,根据BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,证出△ABD≌△HCD,得到AD=BD,∠ADB=∠HDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,证出△ADF≌△HDF,即可得到答案.解答:(1)解:∵BD⊥CD,∠DCB=45°,∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= =2 ,∵CE⊥BE,点G为BC的中点,∴EG= BC= .答:EG的长是.(2)证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.点评:本题主要考查对梯形,全等三角形的性质和判定,平行线的性质,直角三角形斜边上的中线,勾股定理等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.答题:zhangjx111老师隐藏解析体验训练收藏试题试题纠错下载试题试题篮五.解答题:(本大题2个小题,第25题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25、某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x 1 2 3 4 5 6 7 8 9价格y1(元/件)560 580 600 620 640 660 680 700 720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)考点:二次函数的应用;一元二次方程的应用;一次函数的应用.专题:应用题;分类讨论.分析:(1)把表格(1)中任意2点的坐标代入直线解析式可得y1的解析式.把(10,730)(12,750)代入直线解析式可得y2的解析式,;(2)分情况探讨得:1≤x≤9时,利润=P1×(售价-各种成本);10≤x≤12时,利润=P2×(售价-各种成本);并求得相应的最大利润即可;(3)根据1至5月的总利润1700万元得到关系式求值即可.解答:解:(1)设y1=kx+b,则,解得,∴y1=20x+540(1≤x≤9,且x取整数);设y2=ax+b,则,解得,∴y2=10x+630(10≤x≤12,且x取整数);(2)设去年第x月的利润为W元.1≤x≤9,且x取整数时,W=P1×(1000-50-30-y1)=-2x2+16x+418=-2(x-4)2+450,∴x=4时,W最大=450元;10≤x≤12,且x取整数时,W=P2×(1000-50-30-y2)=(x-29)2,∴x=10时,W最大=361元;∵450元>361元,∴这个最大利润是450元;(3)去年12月的销售量为-0.1×12+2.9=1.7(万件),今年原材料价格为:750+60=810(元)今年人力成本为:50×(1+20%)=60元.∴5×[1000×(1+a%)-810-60-30]×1.7(1-0.1×a%)=1700,设t=a%,整理得10t2-99t+10=0,解得t= ,∵9401更接近于9409,∴≈97,∴t1≈0.1,t2≈9.8,∴a1≈10或a2≈980,∵1.7(1-0.1×a%)≥1,∴a≈10.答:a的整数解为10.点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的求值范围得到一定范围内的最大值是解决本题的易错点;利用估算求得相应的整数解是解决本题的难点.答题:lanchong老师显示解析体验训练收藏试题试题纠错下载试题试题篮26、如图,矩形ABCD中,AB=6,BC=2 ,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO 返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F 的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).。

2011重庆中考数学2篇

2011重庆中考数学2篇

2011重庆中考数学2011重庆中考数学试卷,共分为两篇。

每篇字数要求为3000字,接下来将分别介绍这两篇试题内容。

第一篇:数与代数1. 下列四个数的分数值从小到大依次是多少?A. 0.3B. 1/3C. \sqrt{3}D. 0.3333...答案:B < A < D < C2. 已知a,b,c是正数,且满足a+b+c=6. 若a^2+b^2+c^2=14,则a+b的最大值为多少?答案:当a=b=1, c=4时,a+b的值最大,即a+b=2+2=4。

3. 如果一个数的20%等于另一个数的30%,这两个数的比值是多少?答案:设这两个数分别为x和y,则可以列出等式0.2x=0.3y。

根据等式,可以得出比值x:y=3:2。

4. 已知函数f(x)的定义域为R,且对于任意实数x,有f(x+3)=2f(x)-1。

若f(0)=2,则f(-21)的值为多少?答案:将x=0代入已知等式,则f(3)=2f(0)-1=2×2-1=3。

类似地,可以得出f(6)=2f(3)-1=2×3-1=5,f(9)=2f(6)-1=2×5-1=9,依次类推,可以得出f(0)=2,f(3)=3,f(6)=5,f(9)=9。

由此可得出规律,当x为3的倍数时,f(x)的值也为3的倍数。

因为-21是3的倍数,所以f(-21),其值为3的倍数,即答案为9。

5. 在空间直角坐标系中,下列说法中正确的是:A. 全部的点都在一条直线上B. 存在一个点在x轴上,其他点在y轴上C. 至少有三个点在同一个平面上D. 每一个点的坐标都是整数答案:C第二篇:几何与概率1. 如图,ABCD为一个平行四边形,其中AE=BC,R为AB的中点,连接RC,交AD于点F。

则比值BF:AF为多少?答案:根据平行四边形的性质可知,AE平行于BC,AF平行于BC,所以△ABF和△EDC是相似的。

根据相似三角形的性质,可得出BF:AF=CD:ED=DC:DC=1:1。

2011年重庆市潼南县初中毕业暨高中招生考试

2011年重庆市潼南县初中毕业暨高中招生考试

2011年重庆市潼南县初中毕业暨高中招生考试数学试卷一、选择题:(本大题10个小题,每小题4分,共40分)1.5的倒数是A.15B.-5 C.-15D.52.计算3a 2a的结果是A.6a B.6a2C.5a D.5a2 3.如图,AB为⊙O的直径,点C在⊙O上,∠A=30°,则∠B的度数为A.15°B.30°C.45°D.60°4.下列说法中正确的是A.“打开电视,正在播放《新闻联播》”是必然事件B.想了解某种饮料中含色素的情况,宜采用抽样调查C.数据1,1,2,2,3的众数是3D.一组数据的波动越大,方差越小5.若△ABC~△DEF,它们的面积比为4:1,则△ABC与△DEF的相似比为A.2:1 B.1 :2 C.4:1 D.1:46.如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是7.已知⊙O1与⊙O2外切,⊙O1的半径R=5cm, ⊙O2的半径r =1cm,则⊙O1与⊙O2的圆心距是A.1cm B.4cm C.5cm D.6cm8.目前,全球淡水资源日益减少,提倡全社会节约用水.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1009.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A.①②B.②③C.②④D.③④10.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t秒(0≤t≤4),则能大致反映S与t的函数关系的图象是11.如图,数轴上A ,B 两点分别对应实数a 、b ,则a 、b 的大小关系为 .12.据统计,2010年11月1日调查的中国总人口为1 339 000 000人,用科学记数表示1 339 000 000为 .13.如图,在△ABC 中,∠A=80°,点D 是BC 延长线上一点,∠ACD=150°,则∠B= . 14.如图,在△ABC 中,∠C=90, 点D 在AC 上,,将△BCD 沿着直线BD 翻折,使点C落在斜边AB 上的点E 处,DC=5cm ,则点D 到斜边AB 的距离是 cm . 15.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的每度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a = 度. 16.如图,某小岛受到了污染,污染范围可以大致看成是以点O 为圆心,AD 长为直径的圆形区域,为了测量受污染的圆形区域的直径,在对应⊙O 的切线BD (点D 为切点)上选择相距300米的B 、C 两点,分别测得∠ABD= 30°,∠ACD= 60°,则直径AD= 米.(结果精确到1米) (参考数据:414.12≈ 732.13≈)三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.(6+|-2|+113-⎛⎫⎪⎝⎭+(-1)2011.18.(6分)解分式方程:1111x x x -=+- 19.(6分)画△ABC ,使其两边为已知线段a 、b ,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不 写作法). 已知: 求作:姓名:得分:二、填空题:11、12、13、14、15、16、三、计算题:17、18、19、已知:作图:求作:20.(6分)为迎接2011年高中招生考试,某中学对全校九年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如下两幅不完整的统计图,请根据图中所给信息,解答下列问题:(1)请将表示成绩类别为“中”的条形统计图补充完整;(2)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角是度;(3)学校九年级共有1000人参加了这次数学考试,估算该校九年级共有多少名学生的数学成绩可以达到优秀?四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:2121(1)1a a a a++-⋅+,其中.22.(10分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:•分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会. (1)用树状图或列表的方法(只选其中一种)•表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?23.(10分)如图, 在平面直角坐标系中,一次函数y kx b =+(k ≠0)的图象与反比例函数xm y =(m ≠0)的图象相交于A 、B 两点.求:(1)根据图象写出A 、B 两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x 为何值时,一次函数值大于反比例函数值.24.(10分)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)25.(10分)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500(1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.26.(12分)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2=++经过A,B两点,抛物线的顶点为D.y x bx c(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.。

2011重庆江津中考数学

2011重庆江津中考数学

重庆市江津区2011年初中毕业生学业暨高中招生考试数 学 试 卷(本卷共四个大题 满分:150分 考试时间:120分钟)温馨提示:试卷各题答案用钢笔或圆珠笔书写在答题卷上,不得在试卷上直接作答. 一、选择题 (本大题共10个小题,每小题4分,共40分)每个小题的下面给出了代号为A 、B 、C 、D 四个答案,其中只有一个答案是正确的,请将正确答案的代号填到答题卷上. 1.( 2011重庆江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5 D.-1· 【答案】D ·2. ( 2011重庆江津, 2,4分)下列式子是分式的是( ) A.2x B.1+x x C. y x +2 D. 3x 【答案】B. 3. ( 2011重庆江津, 3,4分)已知3是关于x 的方程2x -a=1的解,则a 的值是( ) A.-5 B.5 C.7 D.2 【答案】B · 4·( 2011重庆江津, 4,4分)直线y=x -1的图像经过象限是( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限【答案】D5. ( 2011重庆江津, 5,4分)下列说法不正确...是( ) A.两直线平行,同位角相等; B 两点之间直线最短C.对顶角相等;D.半圆所对的圆周角是直角· 【答案】B ·6. ( 2011重庆江津, 6,4分)已知如图,A 是反比例函数xky =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·第6题图… A 1AA 2 A 3 BB 1 B 2 B 3C 2 C 1 C 3D 2 D 1 D 3 第10题图【答案】C ·7. ( 2011重庆江津, 7,4分)某课外学习小组有5人,在一次数学测验中的成绩分别是120、100、135、100、125,则他们的成绩的平均数和众数分别是( )A.116和100B.116和125C.106和120D.106和135· 【答案】A ·8. ( 2011重庆江津, 8,4分)已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个的两个三角形而言,下列说法正确的是( )A.都相似B.都不相似C.只有(1)相似D.只有(2)相似【答案】A ·9. ( 2011重庆江津, 9,4分)已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A.a<2 B,a>2 C.a<2且a ≠1 D.a<-2·【答案】C ·10. ( 2011重庆江津, 10,4分)如图,四边形ABCD 中,AC=a,BD=b,且AC ⊥BD,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……,如此进行下去,得到四边形A n B n C n D n .下列结论正确的有( ) ①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形; ③四边形A 5B 5C 5D 5的周长4b a +; ④四边形A n B n C n D n 的面积是12+n abA.①②B.②③C.②③④D.①②③④ 【答案】C ·二、填空题(本大题共10个小题,每小题4分,共40分)请将正确答案直接填在答题卷上.11. ( 2011重庆江津, 11,4分)今年长江中下游旱情严重,某地村民吃水都成问题,(1) A B C DO4 36 8(2)第8题图一消防大队决定支援灾区,为灾区人民送去饮用水13万吨,用科学记数法表示为____________吨.【答案】1.3×10512. ( 2011重庆江津, 12,4分)因式:2x 3-x 2=______________. 【答案】x 2(2x-1)·13. ( 2011重庆江津, 13,4分)在梯形ABCD 中,AD ∥BC,中位线长为5,高为6,则它的面积是___________.【答案】30·14. ( 2011重庆江津, 14,4分)函数21-=x y 中x 的取值范围是___________.【答案】x >2· 15. ( 2011重庆江津, 15,4分)在Rt △ABC 中,∠C=90º,BC=5,AB=12,sinA=_________. 【答案】125· 16·( 2011重庆江津, 16,4分)已知如图,在圆内接四边形ABCD 中,∠B=30º,则∠D=____________.【答案】150°·17. ( 2011重庆江津, 17,4分)在一个袋子里装有10个球,6个红球,3个黄球,1个绿球,这些球除颜色外、形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球....的概率是__________. 【答案】52· 18. ( 2011重庆江津, 18,4分)将抛物线y=x 2-2x 向上平移3个单位,再向右平移4个单位等到的抛物线是_______.【答案】y=(x-5)2+2 或 y=x 2-10x+27· 19·( 2011重庆江津, 19,4分)如图,点A 、B 、C 在直径为32的⊙O 上,∠BAC=45º,则图中阴影的面积等于______________,(结果中保留π).第16题图第19题图【答案】2343-π 20. ( 2011重庆江津, 20,4分)如图,在平面直角坐标系中有一矩形ABCD,其中(0,0),B(8,0),C(0,4,) 若将△ABC 沿AC 所在直线翻折,点B 落在点E 处,则E 点的坐标是__________.【答案】(245,325) 三、解答题(本大题共3个小题,21小题18分,22、23小题各10分,共38分)21.(18分)计算(每小题6分)(1) ( 2011重庆江津, 21(1),6分)( 31)-1-∣-2∣+2sin30º +(23-)º 【答案】(1) 原式=3-2+2×21+1=3·(2) ( 2011重庆江津, 21(2),6分)解不等式组⎩⎨⎧<->+13223x xx 并把解集在数轴上表示出来· 【答案】(2)由①得,x >-2; 由②得x <4. ∴原不等式组的解集是-2<x <4· 在数轴上表示为 :(3) ( 2011重庆江津, 21(3),6分)先化简,再求值:)121(212-+÷+-x x x ,其中31=x · 【答案】(3)原式=2212)1)(1(+--÷+-+x x x x x =)1(22)1)(1(+-+⨯+-+x x x x x =1-x ·把31=x 代入得 原式=1-31=32· 22. ( 2011重庆江津, 22,10分)在△ABC 中,AB=CB,∠ABC=90º,F 为AB 延长线上一点,点E 在BC 上,且AE=CF.(1)求证:Rt △ABE ≌Rt △CBF;-2 4(2)若∠CAE=30º,求∠ACF 度数.【答案】(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°.在Rt △ABE 和Rt △CBF 中,∵AE=CF, AB=BC, ∴Rt △ABE ≌Rt △CBF(HL)(2)∵AB=BC, ∠ABC=90°, ∴ ∠CAB=∠ACB=45°. ∵∠BAE=∠CAB-∠CAE=45°-30°=15°.由(1)知 Rt △ABE ≌Rt △CBF , ∴∠BCF=∠BAE=15°, ∴∠ACF=∠BCF+∠ACB=45°+15°=60°.23. ( 2011重庆江津, 23,10分)A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向行驶,在行驶过程中是否存在一点C,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之各最小,通过作图在图中找出建游乐场的位置,并求出它的坐标.【答案】(1)存在满足条件的点C: 作出图形,如图所示,作图略;(2)作出点A 关于x 轴的对称点A /(2,-2), 连接A /B ,与x 轴的交点即为所求的点P. 设A /B 所在的直线的解析式为: y=kx+b, 把A /(2,-2), B(7,3)分别代入得:⎩⎨⎧-=+=+2237b k b k 解得:⎩⎨⎧-==41b k ·所以: y=x-4·当y=0时,x=4,所以交点P 为(4,0)·四、解答题 (本在题共3个掌上小题,第24、25小题各10分,共32分)24. ( 2011重庆江津, 24,10分)在“传箴言”活动中,某党支部对全体党员在一个B CEF第22题图.A(2, 2).B(7, 3) y O x第23题图月内所发箴言条数情况进行了统计,并制成了如下两幅不完整的统计图.(1)求该支部党员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整; (2)如果发了三条箴言的党员中有两位男党员,发了四条箴言的党员有两位女党员,在发了三条箴言和四条箴言的党员中分别选出一位参加区委组织的“传箴言”活动总结会,请你用列表或树状图的方法,求出所选两位党员恰好是一男一女的概率.【答案】(1)由图形可知,总人数为:3÷20﹪=15(人) 发两条的人数:15-2-5-3-2=3(人)· 图形如图平均条数=(1×2+2×3+3×5+4×3+5×2)÷15=3(条)· (2)树状图∴P (一男一女)=157·25. ( 2011重庆江津, 25,10分)已知双曲线xk y与抛物线y=zx 2+bx+c 交于A(2,3)、条数第24题图条数四条 三条男 男 男 男 男 男 男 女 女 女 女 女 女 女 女 女 女 女 女 女B(m,2)、c(-3,n)三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积,【答案】(1)把点A(2,3)代入xky =得 :k=6· ∴反比例函数的解析式为:xy 6=· 把点B(m,2)、C(-3,n)分别代入xy 6=得: m=3,n=-2·把A(2,3)、B(3,2)、C(-3,-2)分别代入y=ax 2+bx+c 得:⎪⎩⎪⎨⎧-=+-=++=++239239324c b a c b a c b a 解之得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=33231c b a ∴抛物线的解析式为:y=-332312++x x · (2)描点画图 S △ABC =21(1+6)×5-21×1×1-21×6×4=1221235--=5· 26. ( 2011重庆江津, 26,12分) 在“五个重庆”建设中,为了提高市民的宜居环境,某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD 是矩形,分别以AB 、BC 、CD 、DA 边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y 米,BC=x 米.(注:取π=3.14)(1)试用含x 的代数式表示y;(2)现计划在矩形ABCD 区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元; ①设该工程的总造价为W 元,求W 关于x 的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若第25题图 第25题图不能,请说明理由?③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64·82万元,但要求矩形的边BC 的长不超过AB 长的三分之二,且建设广场恰好用完所有资金,问:能还完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由·【答案】(1) 由题意得πy+πx=6·28∵π=3.14 ∴3.14y+3.14x=628.∴x+y=200.则 y=200-x; (2) ①w=428xy+400π(2y )2+400π(2x )2=428x(200-x)+400×3.14×4)200(2x -+400×3.14×42x=200x 2-40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务,其理由如下:由①知 w=200(x-100)2+1.056×107>107, 所以不能; ③由题意得 x ≤32y, 即x ≤32(200-x) 解之得 x ≤80 ∴0≤x ≤80.又根据题意得 w=200(x-100)2+1.056×107=107+6.482×105整理得 (x-100)2=441 解之得 x 1=79, x 2=121 (不合题意舍去) ∴只能取 x=79, 则y=200-79=121所以设计的方案是: AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆·ABC D 第26题。

2011年重庆市中考数学试卷及答案

2011年重庆市中考数学试卷及答案
②正确.因为:EF=DE= CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC;
③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,
B、调查某班学生对“五个重庆”的知晓率,采用全面调查,
C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,
D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,
故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.
∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
④错误.
过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴ = ,
EF=DE=2,GF=3,
∴Hale Waihona Puke G=5, ∴ = = ,
∴S△FGC=S△GCE-S△FEC= ×3×4- ×4×( ×3)= ≠3.
故选C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.
答题:冯延鹏老师 隐藏解析体验训练收藏试题试题纠错下载试题试题篮6、如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于( )

2011年重庆市中考数学试题(WORD解析版)

2011年重庆市中考数学试题(WORD解析版)

2011年重庆市中考数学试题一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、8考点:有理数大小比较。

专题:计算题。

分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>﹣6,∴最小的数是﹣6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、(2011•重庆)计算(a3)2的结果是()A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方。

专题:计算题。

分析:根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、(2011•重庆)下列图形中,是中心对称图形的是()A、B、C、D、考点:中心对称图形。

专题:数形结合。

分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、(2011•重庆)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A、60°B、50°C、45°D、40°考点:平行线的性质。

重庆中考数学试题解析版.doc

重庆中考数学试题解析版.doc

重庆市2011年中考数学试卷—解析版一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、8考点:有理数大小比较。

专题:计算题。

分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>﹣6,∴最小的数是﹣6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、(2011•重庆)计算(a3)2的结果是()A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方。

专题:计算题。

分析:根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、(2011•重庆)下列图形中,是中心对称图形的是()A、B、C、D、考点:中心对称图形。

专题:数形结合。

分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、(2011•重庆)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A、60°B、50°C、45°D、40°考点:平行线的性质。

2011重庆中考数学考试内容与要求

2011重庆中考数学考试内容与要求

2011年重庆中考数学考试内容与要求(一)数与式(约75分)(1)有理数:理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。

理解乘方的意义,掌握有理数的加减乘除乘方及简单的混合运算(以三步为主)。

理解有理数的运算律,并能运用运算律简化运算。

能运用有理数的运算解决简单的问题。

(2)实数:了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

了解开方与乘方互为逆运算,会平方运算秋某些非负数的平方根,会用立方运算求某些数的立方根。

了解无理数和实数的概念,知道实数与数轴上的点一一对应。

能用有理数估计一个无理数的大致范围。

了解近似数与有效数字的概念并会进行近似数的运算。

了解二次根式的概念及其加减乘除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。

(3)代数式:能分析简单问题的数量关系,并用代数式表示。

会求代数式的值;能根据简单的实际问题,探索所需要的公式,并会代入具体的值进行计算。

(4)整式与分式:了解整数指数幂的意义和基本性质,会用科学技术法表示数。

了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次二项式相乘)。

会推导乘法公式;(a+b)(a-b)=a2-b2 (a+b)2= a2+2ab+b2,并能进行简单计算。

会用提公因式法、公式法进行因式分解(指数是正整数,直接用公式不超过两次)。

了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。

1、方程与不等式(1)方程与方程组能够用不等式表示具体问题中的数量关系。

经历观察、画图等手段估计方程组的解的过程。

会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。

理解配方法,会用因数分解法、公式法、配方法解数字系数的一元二次方程。

2011年重庆市中考数学试题及答案详细解析(word版)

2011年重庆市中考数学试题及答案详细解析(word版)

一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、82、(2011•重庆)计算(a3)2的结果是()A、aB、a5C、a6D、a93、(2011•重庆)下列图形中,是中心对称图形的是()A、B、C、D、4、(2011•重庆)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A、60°B、50°C、45°D、40°5、(2011•重庆)下列调查中,适宜采用抽样方式的是()A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况6、(2011•重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A、60°B、50°C、40°D、30°7、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>08、(2011•重庆)为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是()A、B、C、D、9、(2011•重庆)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、2910、(2011•重庆)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A、1B、2C、3D、4二.填空题:(本大题6个小题,每小题4分,共24分)11、(2011•重庆)据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为 2.88×103万.12、(2011•重庆)如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为1:9.13、(2011•重庆)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是9.14、(2011•重庆)在半径为的圆中,45°的圆心角所对的弧长等于1.15、(2011•重庆)有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为.16、(2011•重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380朵.二.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17、(2011•重庆)|﹣3|+(﹣1)2011×(π﹣3)0﹣+.18、(2011•重庆)解不等式2x﹣3<,并把解集在数轴上表示出来.19、(2011•重庆)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20、(2011•重庆)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、(2011•重庆)先化简,再求值:,其中x满足x2﹣x﹣1=0.22、(2011•重庆)如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.23、(2011•重庆)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.24、(2011•重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C 作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.五.解答题:(本大题2个小题,第25题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25、(2011•重庆)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)26、(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F 的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、8考点:有理数大小比较。

2011年重庆市中考数学试题及答案详细解析(word版)

2011年重庆市中考数学试题及答案详细解析(word版)

一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、82、(2011•重庆)计算(a3)2的结果是()A、aB、a5C、a6D、a93、(2011•重庆)下列图形中,是中心对称图形的是()A、B、C、D、4、(2011•重庆)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A、60°B、50°C、45°D、40°5、(2011•重庆)下列调查中,适宜采用抽样方式的是()A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况6、(2011•重庆)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于()A、60°B、50°C、40°D、30°7、(2011•重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>08、(2011•重庆)为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y(公里)与时间x(天)的函数关系的大致图象是()A、B、C、D、9、(2011•重庆)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、2910、(2011•重庆)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A、1B、2C、3D、4二.填空题:(本大题6个小题,每小题4分,共24分)11、(2011•重庆)据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为 2.88×103万.12、(2011•重庆)如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC的面积比为1:9.13、(2011•重庆)在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是9.14、(2011•重庆)在半径为的圆中,45°的圆心角所对的弧长等于1.15、(2011•重庆)有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为.16、(2011•重庆)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380朵.二.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17、(2011•重庆)|﹣3|+(﹣1)2011×(π﹣3)0﹣+.18、(2011•重庆)解不等式2x﹣3<,并把解集在数轴上表示出来.19、(2011•重庆)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.20、(2011•重庆)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、(2011•重庆)先化简,再求值:,其中x满足x2﹣x﹣1=0.22、(2011•重庆)如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.23、(2011•重庆)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.24、(2011•重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C 作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.五.解答题:(本大题2个小题,第25题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25、(2011•重庆)某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)26、(2011•重庆)如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F 的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、(2011•重庆)在﹣6,0,3,8这四个数中,最小的数是()A、﹣6B、0C、3D、8考点:有理数大小比较。

【初中数学】重庆市育才中学2011级毕业考试暨高中招生考试模拟数学试卷 人教版

【初中数学】重庆市育才中学2011级毕业考试暨高中招生考试模拟数学试卷 人教版

重庆市育才中学2011级毕业考试学业暨高中招生考试模拟题数 学试 卷(本卷共五个大题,26个小题,满分150分,时间120分钟)一.选择题(本大题共10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号填在答题卷上相应的空格中.1. )7(4-- 等于( )A . 3B . 11C . -3D .-11 2. 计算)2(23x x ÷的结果是( )A.2x B. 2x C.2x D. 12x3. 函数21+=x y 的自变量取值范围是( )A .2->xB .2-<xC .2-≥xD .2-≠x4. 如图,已知直线AB CD ∥,115C ∠=°,25A ∠=°,则E ∠=( )A.70°B.80°C.90°D.100° 5.下列调查中,适宜采用抽样调查方式的是( )A .对我国首架大型民用直升机各零部件的检查B .对某校初三(5)班第一小组的数学成绩的调查C .对我市市民实施低碳生活情况的调查D .对2010年重庆市中考前200名学生的中考数学成绩的调查6.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ) A .32 B .22 C .5 D .537. 如下右图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形不可能是( )8.2011年3月10日12时58分在云南盈江发生5.8级地震,人民生命财产遭受重大损失. 3月12日,重庆铁路局一列满载着救灾物资的专列向云南灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过40小时到达昆明.下面能反映描述上述过程第4题图主视图左视图ABCD第6题图中列车的速度v与时间t的函数关系的大致图象是()9.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,……,依此规律,拼搭第n个图案需小木棒()根.A.26-n B.22+n C.61222-+-nn D.nn32+10.如图,在正方形ABCD的对角线上取点E,使得∠BAE=︒15,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F到BC的距离为22;③BE+EC=EF;④8241+=∆AEDS;⑤123=∆EBFS.其中正确的个数是()A.2个 B.3个 C.4个 D.5个二.填空题(本大题6个小题,每小题4分,共24分)在每小题中,请把正确答案直接填在答题卷上相应的横线上.11.2011年4月6日,两江国际计算中心暨中国国际电子商务中心重庆数据产业园在水土高新技术产业园开建,总建筑面积2070000平方米,该数用科学记数法表示为平方米.12.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是.tB.C.D.第1个第2个第3个第4个AB CDEF第10题图13. 已知△ABC 与△DEF 相似且面积比为9:25,则△ABC 与△DEF 的相似比为___ _____. 14.在平面内,⊙O 的半径为3cm ,点P 到圆心O 的距离为7cm ,则点P 与⊙O 的位置关系是 .15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加2作为b 的值,则),(b a 使得关于x 的不等式组⎩⎨⎧>+-≥-02b x a x 恰好有两个整数解的概率是_____________.16.某学校九年级的一个研究性学习小组对学生中午在学校食堂的就餐时间进行了调查.发现在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部就餐的人数各是一个固定数.并且发现若开1个窗口,45分钟可使等待人都能买到午餐;若同时开2个窗口,则需30分钟.还发现,若在25分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调查小组建议学校食堂20分钟内卖完午餐,则至少要同时开 个窗口.三.解答题(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:()201102)1(5231221-+-⨯---⎪⎭⎫ ⎝⎛-π18.解分式方程:1232=+--x x x 19.重庆两江新区于2011年3月22日启动修建最大森林公园——龙湾中央城市森林公园.在 公园内有两条交叉的公路AB ,AC ,准备在∠BAC 内部开一家超市P ,超市P 到两条公路 AB ,AC 的距离相等,且到点A 的距离等于线段m 的长.又准备在公路AB 上开一个游乐 场Q ,使得游乐场Q 到A 、P 距离相等.请在下图中作出超市P 及游乐场Q 的位置.(要A BD E CF mB AC求尺规作图,保留作图痕迹,不写已知、求作和作法)20.已知:如图,同一直线上有四点B 、E 、C 、F ,且 AB ∥DE ,AC ∥DF ,BE=CF .求证:AB=DE四.解答题(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21.先化简,再求值:aa a a a a 2239622÷⎪⎪⎭⎫ ⎝⎛+--+-,其中a 是方程0132=--x x 的一个根.22.如图,一次函数b ax y +=的图象与反比例函数xky =的图象相交于A B ,两点,与y 轴交于点C ,与x 轴交于点D ,点D 的坐标为()0,2-,点A 的横坐标是2,tan ∠CDO =21.(1)求点A 的坐标;(2(3)求△AOB 的面积;23.2011年4月2日,重庆市长黄奇帆主持召开市政府第97次常务会议,研究落实今年新建住房价格控制目标的有关问题.黄奇帆指出,重庆对商品房房价的调控要把握两个指标:一是主城区双职工家庭平均6—7年收入能买套普通商品房,二是新建住房价格增速低于主城区城市居民人均可支配收入增速.早在2009年,身为重庆市常务副市长的黄奇帆就曾表态,重庆调控房价的目标是:一个正常就业的普通家庭,6.5年的家庭收入可买得起一套中低档商品房.我校的一个数学兴趣小组针对黄市长的讲话,在本校学生中开展主题为“买房知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A 、B 、C 、D ;并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)求本次被调查的学生共有多少人?并将条形统计图和扇形统计图补充完整; (2)在“比较了解”的调查结果里,初三年级学生共有5人,其中2男3女,在这5人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学至少有一位是男同学的概率?10%DAC30%B人数24.在梯形ABCD 中,AD ∥BC ,AB=CD ,且DE ⊥AD 于D ,∠EBC=∠CDE ,∠ECB=45°.⑴求证:AB=BE ;⑵延长BE ,交CD 于F .若CE=CDE =31,求BF 的长.五.解答题(本大题共2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤② 现在互联网越来越普及,网上购物的人也越来越多,订购的商品往往通过快递送达.当当网上某“四皇冠”级店铺率先与“青蛙王子”童装厂取得联系,经营该厂家某种型号的童装.根据第一周的销售记录,该型号服装每天的售价x (元/件)与当日的销售量y(件)的相关数据如下表:已知该型号童装每件的进价是70元,同时为吸引顾客,该店铺承诺,每件服装的快递费10元由卖家承担.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,求第一周销售中,y 与x 的函数关系式;(2)设第一周每天的赢利为w 元,求w 关于x 的函数关系式,并求出每天的售价为多少元时,每天的赢利最大?最大赢利是多少?(3)从第二周起,该店铺一直按第(2)中的最大日盈利的售价进行销售.但进入第三周后,网上其他购物店也陆续推出该型号童装,因此第三、四周该店铺每天的售价都比第二周下降了m %,销售量也比第二周下降了m 5.0%()20<m ;第五周开始,厂家给予该店铺优惠,每件的进价降低了16元;该店铺在维持第三、四周的销售价和销售量的基础上,同时决定每件童装的快递费由买家自付,这样,第五周的赢利相比第二周的赢利增加了2%,请估算整数m 的值.(参考数据:37.2601.5≈,49.701.56≈)备用图图1C()()()()分分解:3.....................................46322. (2223212)3222-=+-+-+=--+=+--x x x x x x x x x x x x26.如图1,在梯形ABCD 中,AD ∥BC ,AD =3,DC =5,AB =24,∠B =︒45,动点M 从点B 出发,沿线段BC 以每秒1个单位长度的速度向终点C 运动;动点N 同时从C 点出发,沿C →D →A ,以同样速度向终点A 运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设运动的时间为t 秒. (1)求线段BC 的长度;(2)求在运动过程中形成的△MCN 的面积S 与运动的时间t 之间的函数关系式,并写出自变量t 的取值范围;并求出当t 为何值时,△MCN 的面积S 最大,并求出最大面积; (3)试探索:当M ,N 在运动过程中,△MCN 是否可能为等腰三角形?若可能,则求出相应的t 值,若不可能,说明理由.初2011级第二次诊断性考试数学试题参 考 答 案一.选择题二.填空题11.61007.2⨯ 12. 186 13. 5:3 14.P 在⊙O 外 15.2516. 5 三.解答题17.解:原式=)1(1)32(324-+⨯--- ……………………………..5分(各1分) =31-……………………………………………………………….6分分分中和在分分即证明:6........................................................................................5..............................................................................2............................................................,//,//1.................................................,DE AB DEF ABC FACB EF BC DEFB DEF ABC F ACB DEF B DF AC DE AB EF BC EC CF EC BE CF BE =∴∆≅∆∴⎪⎩⎪⎨⎧∠=∠=∠=∠∆∆∴∠=∠∠=∠∴=+=+∴= ()()分分分分解:原式6 (2)335 (2)334..................................................................2232.. (22332222)+--=⋅-+-⋅⎪⎪⎭⎫ ⎝⎛+--=⋅⎥⎦⎤⎢⎣⎡+---=a a aa a a a a a a a a a aa a a a ()()()()()(),过一次函数分过点反比例函数分分中,分轴于作过点解:0,22,24 (4)42,223...............................................................................................2,22.. (2421)tan 2,2,21tan tan tan ,901........................................................2),0,2(),2,2(1-+==∴=∴=∴=⨯=⋅∠=∴===∠=∠=∠∴︒=∠∆==∴-⊥D A b ax y xy k A xk y A DE ADE AE OE OD ADE CDO DEAEADE AED ADE Rt OE OD E D E x AE A 分原式分分的一个根是方程10...............................................................2-231-8...............................................................................137.. (0130132)22=+=∴=-=--∴=--a a a a x x a 18.19.略 20.21.22.23.解:(1)本次被调查的学生共有:50%3015=÷(人)……………… 2分 补全统计图如下:………………………………………………………………………………………..4分 (2)列表如下:………………………………………………………………………………………………8分 由表可知,共有20种等可能的结果,其中至少有一名男同学的结果有14种, 所以1072014(==至少有一名男同学)P .………………………………………………………10分 ,女24.⑴证明:延长DE ,交BC 于G .∵DE ⊥AD 于D ,∴∠ADE =90°又AD ∥BC , ∴∠DGC =∠BGE =∠ADE =90°,…1分 而∠ECB =45°, ∴△EGC 是等腰直角三角形,∴EG=CG ………………………………………………………2分在△BEG 和△DCG 中,EBG CDG EGB CGD EG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEG ≌△DCG (AAS ) …………………………………4分 ∴BE=CD=AB ……………………………………………..5分 ⑵连结BD .∵∠EBC=∠CDE ,∴∠EBC +∠BCD =∠CDE +∠BCD =90°,即∠BFC =90° ∵EG=CG=1………………………………6分 又tan∠CDE =31,∴13CG DG =,∴DG =3……………7分 ∵△BEG ≌△DCG ,∴BG=DG=3∴BE =∴..8分 法一:∵1122BCD S BC DG CD BF ==,114322BF ⨯⨯=∴BF =…………………………………………10分 法二:经探索得,△BEG ∽△BFC ,∴BE BC BG BF =,∴43BF=∴5BF =………………………………………….10分 25.解:(1)设b kx y +=由题得:⎩⎨⎧=+=+9019080200b k b k ,解得⎩⎨⎧=-=2801b k ,所以280+-=x y ……… 2分验证:当180=x 时,100=y ;当170=x 时,110=y ;………………3分 其他各组值也满足函数关系式;故y 与x 的函数关系式为280+-=x y ;(2)22400360)280)(80(10702-+-=+--=--=x x x x y y xy w …………5分 =10000)180(2+--x因为01<-,所以抛物线开口向下, 所以当180=x 时,w 最大为10000,即每件的售价为180元时,每天的赢利最大为10000元.………………………………………………………………………………………6分 (3)根据题意得:02.1100007700%)5.01(54%)5.01(700%)1(180⨯⨯=⨯---⋅-m m m ………………………………………………………………………………………8分设%m t =,则原方程可化为:102)5.01(54)5.01)(1(180=----t t t化简得:0881302=+-t t ,56018304)81(2=⨯⨯--=∆ 60.26001.561081605601811≈+=+=t ,102.06001.561081605601811≈-=-=t所以260≈m 或2.10≈m …………………………………………………………9分因为20<m ,所以10≈m .答:m 的整数值为10.……………………………………………………………10分 26. 解:(1)如图1,分别过A ,D 作AE ⊥BC ,DF ⊥BC ,分别交BC 于E ,F ;∴EF=AD =3;∵∠B =45°,AB =24;∴BE=AE=DF =4;………………………….1分 在Rt △DFC 中,CF =3452222=-=-DF DC ;……………….2分∴BC =BE+EF +CF =4+3+3=10;…………………………..3分 (2)①如图2,当50≤≤t 时,CN=BM =t ,M C=10—t ;过N 作NG ⊥于BC 于点G ;∴△NGC ∽△DFC ∴DFNGCD CN =,即45NG t =;C图1GC图2图4CC图5JC图6∴NG =54t ; ∴S =⋅-⋅=⋅)10(2121t NG MC t t t 452542+-=; ∵052<-,函数开口向下;∴当5544=--=t 时,;10max =S …………..5分 ②如图3,当85≤≤t 时,S =2024)10(2121+-=⋅-⋅=⋅t t DF MC ; ∵02<-,即S 随t 的减小而增大;∴当5=t 时,;10max =S ………………………………………………6分综上:⎪⎩⎪⎨⎧≤≤+-≤≤+-=)85(,202)50(4522t t t t t S ,当5=t 时,△MCN 的面积S 最大,最大值为10; (3)当50≤≤t 时:CN=BM =t ,MC =10—t ;①当MC=NC 时,t =10—t ,解得:5=t ;……..7分 ②当MN=NC 时,如图4,过N 作NH ⊥BC 于点H ,则有HC=MH ,可得:)10(2153t t -=,解得:1150=t ;…………………………………8分③当MN =MC 时,如图5,过M 作MI ⊥CD 于I ,CI =t 21,又53cos =C , 即:53=CM CI ,可得531021=-t t,解得:51160>=t (舍去);…………9分 当85≤<t 时,如图6,过C 作CJ ⊥AD 的延长线于点J ,过N 作NK ⊥B C 于点K ;则:10020)10(222+-=-=t t t MC ;1604844)212(2222+-=+-=t t t MN ; 2044)2(2222+-=+-=t tt NC ;图3C④当MC=NC 时,2041002022+-=+-t t t t ,解得:5=t (舍去);……..10分⑤当MN =MC 时,1002016048422+-=+-t t t t ,解得:5310,621<==t t (舍去);…………………………………………..11分 ⑥当MN=NC 时,16048420422+-=+-t t t t ,解得:5314,81021<=>=t t (舍去);…………………………………….12分 综上:当6,1150,5=t 时,△MCN 为为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档