图的广度和深度优先搜索
深度优先算法和广度优先算法的时间复杂度
深度优先算法和广度优先算法的时间复杂度深度优先算法和广度优先算法是在图论中常见的两种搜索算法,它们在解决各种问题时都有很重要的作用。
本文将以深入浅出的方式从时间复杂度的角度对这两种算法进行全面评估,并探讨它们在实际应用中的优劣势。
1. 深度优先算法的时间复杂度深度优先算法是一种用于遍历或搜索树或图的算法。
它从图中的某个顶点出发,沿着一条路径一直走到底,直到不能再前进为止,然后回溯到上一个节点,尝试走其他的路径,直到所有路径都被走过为止。
深度优先算法的时间复杂度与图的深度有关。
在最坏情况下,深度优先算法的时间复杂度为O(V+E),其中V表示顶点的数量,E表示边的数量。
2. 广度优先算法的时间复杂度广度优先算法也是一种用于遍历或搜索树或图的算法。
与深度优先算法不同的是,广度优先算法是从图的某个顶点出发,首先访问这个顶点的所有邻接节点,然后再依次访问这些节点的邻接节点,依次类推。
广度优先算法的时间复杂度与图中边的数量有关。
在最坏情况下,广度优先算法的时间复杂度为O(V+E)。
3. 深度优先算法与广度优先算法的比较从时间复杂度的角度来看,深度优先算法和广度优先算法在最坏情况下都是O(V+E),并没有明显的差异。
但从实际运行情况来看,深度优先算法和广度优先算法的性能差异是显而易见的。
在一般情况下,广度优先算法要比深度优先算法快,因为广度优先算法的搜索速度更快,且能够更快地找到最短路径。
4. 个人观点和理解在实际应用中,选择深度优先算法还是广度优先算法取决于具体的问题。
如果要找到两个节点之间的最短路径,那么广度优先算法是更好的选择;而如果要搜索整个图,那么深度优先算法可能是更好的选择。
要根据具体的问题来选择合适的算法。
5. 总结和回顾本文从时间复杂度的角度对深度优先算法和广度优先算法进行了全面评估,探讨了它们的优劣势和实际应用中的选择。
通过对两种算法的时间复杂度进行比较,可以更全面、深刻和灵活地理解深度优先算法和广度优先算法的特点和适用场景。
第7章图的深度和广度优先搜索遍历算法
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }
深度优先算法和广度优先算法的时间复杂度
深度优先算法和广度优先算法都是图搜索中常见的算法,它们具有不同的特点和适用场景。
在进行全面评估之前,让我们先来了解一下深度优先算法和广度优先算法的基本概念和原理。
### 1. 深度优先算法(Depth-First Search, DFS)深度优先算法是一种用于遍历或搜索树或图的算法。
其核心思想是从起始顶点出发,沿着一条路径直到末端,然后回溯,继续搜索下一条路径,直到所有路径都被探索。
在实际应用中,深度优先算法常常通过递归或栈来实现。
### 2. 广度优先算法(Breadth-First Search, BFS)广度优先算法也是一种用于遍历或搜索树或图的算法。
其核心思想是从起始顶点出发,依次遍历该顶点的所有相邻顶点,然后再以这些相邻顶点作为起点,继续遍历它们的相邻顶点,以此类推,直到所有顶点都被遍历。
在实际应用中,广度优先算法通常通过队列来实现。
### 3. 深度优先算法和广度优先算法的时间复杂度在实际应用中,我们经常需要对算法的时间复杂度进行分析。
针对深度优先算法和广度优先算法,它们的时间复杂度并不相同。
- 深度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。
在最坏的情况下,如果采用邻接矩阵来表示图的话,深度优先算法的时间复杂度为O(V^2);如果采用邻接表来表示图的话,时间复杂度为O(V + E)。
- 广度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。
无论采用邻接矩阵还是邻接表表示图,广度优先算法的时间复杂度都是O(V + E)。
### 4. 个人理解和观点在实际应用中,我们在选择使用深度优先算法还是广度优先算法时,需要根据具体的问题场景来进行选择。
如果要寻找图中的一条路径,或者判断两个节点之间是否存在路径,通常会选择使用深度优先算法;如果要寻找最短路径或者进行层次遍历,通常会选择使用广度优先算法。
深度优先算法和广度优先算法都是非常重要的图搜索算法,它们各自适用于不同的场景,并且具有不同的时间复杂度。
深度优先搜索和广度优先搜索
二、 重排九宫问题游戏
在一个 3 乘 3 的九宫中有 1-8 的 8 个数及一个空格随机摆放在其中的格子里。如下面 左图所示。现在要求实现这样的问题:将该九宫调整为如下图右图所示的形式。调整规则是: 每次只能将与空格(上,下或左,右)相临的一个数字平移到空格中。试编程实现。
|2|8 |3|
|1|2|3|
from = f; to = t; distance = d; skip = false; } } class Depth { final int MAX = 100; // This array holds the flight information. FlightInfo flights[] = new FlightInfo[MAX]; int numFlights = 0; // number of entries in flight array Stack btStack = new Stack(); // backtrack stack public static void main(String args[]) {
下面是用深度优先搜索求解的程序:
// Find connections using a depth-first search. import java.util.*; import java.io.*; // Flight information. class FlightInfo {
String from; String to; int distance; boolean skip; // used in backtracking FlightInfo(String f, String t, int d) {
int dist; FlightInfo f; // See if at destination. dist = match(from, to); if(dist != 0) {
图的各种算法(深度、广度等)
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top
4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
vex next 4 p
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^
^
4 ^
top 4
输出序列:6 1
1 2 3 4 5 6
in link 0 2 ^ 1 0 2 0
c a g b h f d e
a
b h c d g f
e
在算法中需要用定量的描述替代定性的概念
没有前驱的顶点 入度为零的顶点 删除顶点及以它为尾的弧 弧头顶点的入度减1
算法实现
以邻接表作存储结构 把邻接表中所有入度为0的顶点进栈 栈非空时,输出栈顶元素Vj并退栈;在邻接表中查找 Vj的直接后继Vk,把Vk的入度减1;若Vk的入度为0 则进栈 重复上述操作直至栈空为止。若栈空时输出的顶点个 数不是n,则有向图有环;否则,拓扑排序完毕
^
4
^
top
输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
3
2 ^
2
^
5
5 5 4 3 2 1 0 ^ p
^
4
^topBiblioteka 5输出序列:6 1 3 2 4
1 2 3 4 5 6
in link 0 0 ^ 0 0 0 0
vex next 4
w2 w1 V w7 w6 w3
【算法】广度优先算法和深度优先算法
【算法】⼴度优先算法和深度优先算法⼴度(BFS)和深度(DFS)优先算法这俩个算法是图论⾥⾯⾮常重要的两个遍历的⽅法。
下⾯⼀个例⼦迷宫计算,如下图解释:所谓⼴度,就是⼀层⼀层的,向下遍历,层层堵截,看下⾯这幅图,我们如果要是⼴度优先遍历的话,我们的结果是V1 V2 V3 V4 V5 V6 V7 V8。
⼴度优先搜索的思想: ①访问顶点vi ; ②访问vi 的所有未被访问的邻接点w1 ,w2 , …wk ; ③依次从这些邻接点(在步骤②中访问的顶点)出发,访问它们的所有未被访问的邻接点; 依此类推,直到图中所有访问过的顶点的邻接点都被访问; 说明: 为实现③,需要保存在步骤②中访问的顶点,⽽且访问这些顶点的邻接点的顺序为:先保存的顶点,其邻接点先被访问。
这⾥我们就想到了⽤标准模板库中的queue队列来实现这种先进现出的服务。
步骤: 1.将V1加⼊队列,取出V1,并标记为true(即已经访问),将其邻接点加进⼊队列,则 <—[V2 V3] 2.取出V2,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V3 V4 V5]3.取出V3,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V4 V5 V6 V7]4.取出V4,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V5 V6 V7 V8]5.取出V5,并标记为true(即已经访问),因为其邻接点已经加⼊队列,则 <—[V6 V7 V8]6.取出V6,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V7 V8]7.取出V7,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[V8]8.取出V8,并标记为true(即已经访问),将其未访问过的邻接点加进⼊队列,则 <—[]区别:深度优先遍历:对每⼀个可能的分⽀路径深⼊到不能再深⼊为⽌,⽽且每个结点只能访问⼀次。
深度优先搜索和广度优先搜索-Read
7.1 图的定义和术语
1.图的定义 定义:图(Graph)是由非空的顶点集合和一个描述顶
点之间关系(边或者弧)的集合组成。 其二元组定义为: G=(V,E) V={vi| vi∈DataObject} E={(vi,vj)| vi, vj ∈V∧P(vi, vj)} 其中,G表示一个图,V是图G中顶点的集合,E是图G
为强连通分量。
V0
V1
V0
V1
V2Biblioteka V3强连通图G1V2
V3
非强连通图G2
V1 V0
V2
V3
G2的两个强连 通分量
生成树、生成森林
所谓连通图G的生成树,是G的包含其全部n 个顶点的 一个极小连通子图。它必定包含且仅包含G的n-1条边。
极小连通子图意思是:该子图是G 的连通子图,在该 子图中删除任何一条边,子图不再连通。
否则称为非连通图。
无向图中,极大的连通子图为该图的连通分量。显然,
任何连通图的连通分量只有一个,即它本身,而非连通图有
多个连通分量。
V0
V1
G2的两个
连通分量
V0
V1 V4
V2
V3
V4
V3
V2 V5
连通图G1
非连通图G2
强连通图、强连通分量
对于有向图来说,若图中任意一对顶点vi 和vj(i≠j) 均有从一个顶点vi到另一个顶点vj有路径,也有从vj到vi的路 径,则称该有向图是强连通图。有向图的极大强连通子图称
G1=<V1, E1>
V1={v0, v1, v2, v3, v4 } E1={(v0, v1), (v0, v3), (v1, v2), (v1, v4), (v2, v3), (v2, v4)}
广度优先搜索和深度优先搜索
有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。
它们最终都会到达所有连通的顶点。
深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。
深度优先搜索:深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。
这种方法的搜索树是从树根开始一枝一枝逐渐形成的。
下面图中的数字显示了深度优先搜索顶点被访问的顺序。
为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则:(1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。
(2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。
(3) 如果不能执行规则1和规则2,就完成了整个搜索过程。
广度优先搜索:在深度优先搜索算法中,是深度越大的结点越先得到扩展。
如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。
在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。
相反,在广度优先搜索中,算法好像要尽可能地靠近起始点。
它首先访问起始顶点的所有邻接点,然后再访问较远的区域。
它是用队列来实现的。
下面图中的数字显示了广度优先搜索顶点被访问的顺序。
实现广度优先搜索,也要遵守三个规则:(1) 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。
(2) 如果因为已经没有未访问顶点而不能执行规则1时,那么从队列头取一个顶点,并使其成为当前顶点。
(3) 如果因为队列为空而不能执行规则2,则搜索结束。
BFS是一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
BFS并不使用经验法则算法。
浅析深度优先和广度优先遍历实现过程、区别及使用场景
浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。
这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。
我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。
我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。
在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。
于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。
当然还可以有别的排法。
像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。
这⽅式看起来很像⼆叉树的前序遍历。
没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。
2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。
这⽅式看起来很像⼆叉树的层序遍历。
没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。
深度优先算法与广度优先算法的比较
深度优先算法与广度优先算法的比较深度优先算法以深度为优先,从一个节点开始,逐个遍历其邻居节点直至最深处,然后回溯到上一个节点,再继续遍历其他分支。
它是通过栈来实现的,先进后出的特性决定了深度优先算法是一个递归算法。
深度优先算法在过程中,不需要记住所有的路径,只需要记住当前路径上的节点即可。
对于树而言,深度优先算法通常沿着左子树一直深入,直到最深的叶节点,然后再回溯到前一个节点继续右子树的遍历。
广度优先算法以广度为优先,从一个节点开始,逐层遍历其所有邻居节点,然后再遍历下一层的节点,直至遍历完所有节点。
它是通过队列来实现的,先进先出的特性决定了广度优先算法是一个非递归算法。
广度优先算法在过程中,需要记住每一层的节点,并且按照先进先出的顺序进行遍历。
对于树而言,广度优先算法会先遍历根节点,然后是根节点的子节点,再然后是子节点的子节点,按照层次逐层遍历。
以下是深度优先算法和广度优先算法的比较:1.方式:深度优先算法通过一条路径一直遍历到最深处,然后回溯到上一个节点,再继续遍历其他分支。
广度优先算法逐层遍历,先遍历当前层的节点,再遍历下一层的节点。
2.存储结构:深度优先算法使用栈进行遍历,而广度优先算法使用队列进行遍历。
3.内存占用:深度优先算法只需要记住当前路径上的节点,所以内存占用较小。
而广度优先算法需要记住每一层的节点,所以内存占用较大。
4.时间效率:深度优先算法通常适用于解决单个解或路径的问题,因为它首先深入其中一个分支,整个分支再回溯,因此它可能会浪费一些时间在不必要的路径上。
而广度优先算法通常适用于解决最短路径或最小步数的问题,因为它遍历一层后再遍历下一层,所以找到的解很可能是最优解。
5.应用场景:深度优先算法适用于解决迷宫问题、拓扑排序和连通性等问题。
广度优先算法适用于解决最短路径、社交网络中的人际关系、图的遍历和等问题。
总结起来,深度优先算法和广度优先算法都有各自的特点和适用场景。
深度优先算法适合解决单个解或路径的问题,而广度优先算法适合解决最短路径或最小步数的问题。
深度优先搜索和广度优先搜索的区别
深度优先搜索和⼴度优先搜索的区别1、深度优先算法占内存少但速度较慢,⼴度优先算法占内存多但速度较快,在距离和深度成正⽐的情况下能较快地求出最优解。
2、深度优先与⼴度优先的控制结构和产⽣系统很相似,唯⼀的区别在于对扩展节点选取上。
由于其保留了所有的前继节点,所以在产⽣后继节点时可以去掉⼀部分重复的节点,从⽽提⾼了搜索效率。
3、这两种算法每次都扩展⼀个节点的所有⼦节点,⽽不同的是,深度优先下⼀次扩展的是本次扩展出来的⼦节点中的⼀个,⽽⼴度优先扩展的则是本次扩展的节点的兄弟点。
在具体实现上为了提⾼效率,所以采⽤了不同的数据结构。
4、深度优先搜索的基本思想:任意选择图G的⼀个顶点v0作为根,通过相继地添加边来形成在顶点v0开始的路,其中每条新边都与路上的最后⼀个顶点以及不在路上的⼀个顶点相关联。
继续尽可能多地添加边到这条路。
若这条路经过图G的所有顶点,则这条路即为G的⼀棵⽣成树;若这条路没有经过G的所有顶点,不妨设形成这条路的顶点顺序v0,v1,......,vn。
则返回到路⾥的次最后顶点v(n-1).若有可能,则形成在顶点v(n-1)开始的经过的还没有放过的顶点的路;否则,返回到路⾥的顶点v(n-2)。
然后再试。
重复这个过程,在所访问过的最后⼀个顶点开始,在路上次返回的顶点,只要有可能就形成新的路,知道不能添加更多的边为⽌。
5、⼴度优先搜索的基本思想:从图的顶点中任意第选择⼀个根,然后添加与这个顶点相关联的所有边,在这个阶段添加的新顶点成为⽣成树⾥1层上的顶点,任意地排序它们。
下⼀步,按照顺序访问1层上的每⼀个顶点,只要不产⽣回路,就添加与这个顶点相关联的每个边。
这样就产⽣了树⾥2的上的顶点。
遵循同样的原则继续下去,经有限步骤就产⽣了⽣成树。
图的遍历深度优先遍历和广度优先遍历
4
5
f
^
对应的邻接表
终点2作为下次的始点, 由于1点已访问过,跳过, 找到4,记标识,送输出, 4有作为新的始点重复上 述过程
1 2 4
5
输出数组 resu
3.邻接表深度优先遍历的实现
template <class TElem, class TEdgeElem>long DFS2(TGraphNodeAL<TElem, TEdgeElem> *nodes,long n,long v0, char *visited, long *resu,long &top) {//深度优先遍历用邻接表表示的图。nodes是邻接表的头数组,n 为结点个数(编号为0~n)。 //v0为遍历的起点。返回实际遍历到的结点的数目。 //visited是访问标志数组,调用本函数前,应为其分配空间并初 始化为全0(未访问) //resu为一维数组,用于存放所遍历到的结点的编号,调用本函 数前,应为其分配空间 long nNodes, i; TGraphEdgeAL<TEdgeElem> *p; nNodes=1;
1 2
4
图 20-1有向图
5
3
1 2 3 4 5
1 0 1 0 1 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 0 1 0 0
1 2 3 4 5
1 1 0 1 1
1 2 4 5
所示图的邻接矩阵g
访问标识数组 visited
输出数组 resu
例如从1点深度优先遍历,先把1设置访问标志,并置入输出数组resu,然后从邻接 矩阵的第一行,扫描各列,找到最近的邻接点2,将其设置访问标志,并进入输出数 组,接着从邻接矩阵的2行扫描,找到第一个构成边的点是1,检查访问标识数组, 发现1已经访问过,跳过,找第二个构成边 的点4,设置访问标识,进入输出数组, 再从邻接矩阵的第4行扫描,寻找构成边的点,除1外在无其他点,返回2行,继续 寻找,也无新点,返回1,找到5,将5置访问标志,进入输出数组,1行再无其他新 点,遍历结束,返回遍历元素个数为4 。
广度优先和深度优先算法
广度优先和深度优先算法
广度优先算法和深度优先算法是常见的图遍历算法。
广度优先算法又称为宽度优先搜索,它从起点开始,逐层遍历图,直到找到目标节点为止。
在遍历过程中,每一层的节点按照从左到右的顺序依次被访问,因此也称为层次遍历。
广度优先算法通常借助队列来实现。
深度优先算法则是从起点开始,沿着一条路径一直走到底,直到不能再走为止,然后回退到上一个节点,继续探索下一条路径。
深度优先算法采用栈结构实现,因为需要回溯,所以每次访问完一个节点后,需要将该节点从栈中弹出。
广度优先算法和深度优先算法各有优缺点。
广度优先算法能够保证找到的解一定是最优解,但在搜索深度较大的图时,需要维护大量的节点,因此空间复杂度较高。
而深度优先算法则不需要维护过多的节点,但不能保证找到的解一定是最优解。
在选择算法时,需要根据实际情况进行权衡。
- 1 -。
深度优先搜索和广度优先搜索
深度优先搜索和广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图论中常用的两种搜索算法。
它们是解决许多与图相关的问题的重要工具。
本文将着重介绍深度优先搜索和广度优先搜索的原理、应用场景以及优缺点。
一、深度优先搜索(DFS)深度优先搜索是一种先序遍历二叉树的思想。
从图的一个顶点出发,递归地访问与该顶点相邻的顶点,直到无法再继续前进为止,然后回溯到前一个顶点,继续访问其未被访问的邻接顶点,直到遍历完整个图。
深度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 递归访问该顶点的邻接顶点,直到所有邻接顶点均被访问过。
深度优先搜索的应用场景较为广泛。
在寻找连通分量、解决迷宫问题、查找拓扑排序等问题中,深度优先搜索都能够发挥重要作用。
它的主要优点是容易实现,缺点是可能进入无限循环。
二、广度优先搜索(BFS)广度优先搜索是一种逐层访问的思想。
从图的一个顶点出发,先访问该顶点,然后依次访问与该顶点邻接且未被访问的顶点,直到遍历完整个图。
广度优先搜索的基本思想可用以下步骤总结:1. 选择一个初始顶点;2. 访问该顶点,并标记为已访问;3. 将该顶点的所有邻接顶点加入一个队列;4. 从队列中依次取出一个顶点,并访问该顶点的邻接顶点,标记为已访问;5. 重复步骤4,直到队列为空。
广度优先搜索的应用场景也非常广泛。
在求最短路径、社交网络分析、网络爬虫等方面都可以使用广度优先搜索算法。
它的主要优点是可以找到最短路径,缺点是需要使用队列数据结构。
三、DFS与BFS的比较深度优先搜索和广度优先搜索各自有着不同的优缺点,适用于不同的场景。
深度优先搜索的优点是在空间复杂度较低的情况下找到解,但可能陷入无限循环,搜索路径不一定是最短的。
广度优先搜索能找到最短路径,但需要保存所有搜索过的节点,空间复杂度较高。
需要根据实际问题选择合适的搜索算法,例如在求最短路径问题中,广度优先搜索更加合适;而在解决连通分量问题时,深度优先搜索更为适用。
图的连通性检测方法
图的连通性检测方法图论是数学的一个分支,研究图形结构以及图形之间的关系。
在图论中,连通性是一个重要的概念,用于描述图中的节点或顶点之间是否存在路径相连。
连通性检测方法是用来确定一个图是否是连通图的方法。
本文将介绍几种常用的图的连通性检测方法。
一、深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,也可以用来检测图的连通性。
该方法从图中的一个顶点开始,沿着一条路径尽可能深的搜索,直到到达无法继续搜索的节点,然后回溯到上一个节点,继续搜索其他路径。
具体步骤如下:1. 选择一个起始节点作为根节点。
2. 遍历该节点的邻接节点,并标记为已访问。
3. 递归的访问未访问过的邻接节点,直到所有节点都被访问过。
4. 如果所有节点都被访问过,则图是连通的;否则,图是不连通的。
DFS算法的时间复杂度为O(V+E),其中V是节点数,E是边数。
二、广度优先搜索(BFS)广度优先搜索也是一种常用的图遍历算法,同样可以用来检测图的连通性。
该方法从图中的一个顶点开始,先访问其所有邻接节点,然后再依次访问它们的邻接节点。
具体步骤如下:1. 选择一个起始节点作为根节点。
2. 将该节点加入一个队列中。
3. 从队列中取出一个节点,并标记为已访问。
4. 遍历该节点的邻接节点,将未访问过的节点加入队列中。
5. 重复步骤3和步骤4,直到队列为空。
6. 如果所有节点都被访问过,则图是连通的;否则,图是不连通的。
BFS算法的时间复杂度同样为O(V+E)。
三、并查集并查集是一种数据结构,常用于解决图的连通性问题。
它可以高效地合并集合和判断元素是否属于同一个集合。
具体步骤如下:1. 初始化并查集,每个节点都是一个独立的集合。
2. 遍历图中的每条边,将边的两个节点合并到同一个集合中。
3. 判断图是否连通的方法是查找两个节点是否属于同一个集合。
并查集的时间复杂度为O(V+E)。
四、最小生成树最小生成树是指一个连通图的生成树,其所有边的权值之和最小。
数据结构与算法(13):深度优先搜索和广度优先搜索
2.2.2 有向图的广广度优先搜索
下面面以“有向图”为例例,来对广广度优先搜索进行行行演示。还是以上面面的图G2为例例进行行行说明。
第1步:访问A。 第2步:访问B。 第3步:依次访问C,E,F。 在访问了了B之后,接下来访问B的出边的另一一个顶点,即C,E,F。前 面面已经说过,在本文文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访 问E,F。 第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一一个顶点。还是按 照C,E,F的顺序访问,C的已经全部访问过了了,那么就只剩下E,F;先访问E的邻接点D,再访 问F的邻接点G。
if(mVexs[i]==ch)
return i;
return -1;
}
/* * 读取一一个输入入字符
*/
private char readChar() {
char ch='0';
do {
try {
ch = (char)System.in.read();
} catch (IOException e) {
数据结构与算法(13):深度优先搜索和 广广度优先搜索
BFS和DFS是两种十十分重要的搜索算法,BFS适合查找最优解,DFS适合查找是否存在解(或者说 能找到任意一一个可行行行解)。用用这两种算法即可以解决大大部分树和图的问题。
一一、深度优先搜索(DFS)
1.1 介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比比较类似。 它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点V出发,首首先访问该顶点, 然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至至图中所有和V有路路径相通 的顶点都被访问到。若此时尚有其他顶点未被访问到,则另选一一个未被访问的顶点作起始点,重 复上述过程,直至至图中所有顶点都被访问到为止止。 显然,深度优先搜索是一一个递归的过程。
深度优先搜索和广度优先搜索的比较和应用场景
深度优先搜索和广度优先搜索的比较和应用场景在计算机科学中,深度优先搜索(DFS)和广度优先搜索(BFS)是两种常用的图搜索算法。
它们在解决许多问题时都能够发挥重要作用,但在不同的情况下具有不同的优势和适用性。
本文将对深度优先搜索和广度优先搜索进行比较和分析,并讨论它们在不同应用场景中的使用。
一、深度优先搜索(DFS)深度优先搜索是一种通过遍历图的深度节点来查找目标节点的算法。
它的基本思想是从起始节点开始,依次遍历该节点的相邻节点,直到到达目标节点或者无法继续搜索为止。
如果当前节点有未被访问的相邻节点,则选择其中一个作为下一个节点继续进行深度搜索;如果当前节点没有未被访问的相邻节点,则回溯到上一个节点,并选择其未被访问的相邻节点进行搜索。
深度优先搜索的主要优势是其在搜索树的深度方向上进行,能够快速达到目标节点。
它通常使用递归或栈数据结构来实现,代码实现相对简单。
深度优先搜索适用于以下情况:1. 图中的路径问题:深度优先搜索能够在图中找到一条路径是否存在。
2. 拓扑排序问题:深度优先搜索能够对有向无环图进行拓扑排序,找到图中节点的一个线性排序。
3. 连通性问题:深度优先搜索能够判断图中的连通分量数量以及它们的具体节点组合。
二、广度优先搜索(BFS)广度优先搜索是一种通过遍历图的广度节点来查找目标节点的算法。
它的基本思想是从起始节点开始,先遍历起始节点的所有相邻节点,然后再遍历相邻节点的相邻节点,以此类推,直到到达目标节点或者无法继续搜索为止。
广度优先搜索通常使用队列数据结构来实现。
广度优先搜索的主要优势是其在搜索树的广度方向上进行,能够逐层地搜索目标节点所在的路径。
它逐层扩展搜索,直到找到目标节点或者遍历完整个图。
广度优先搜索适用于以下情况:1. 最短路径问题:广度优先搜索能够在无权图中找到起始节点到目标节点的最短路径。
2. 网络分析问题:广度优先搜索能够在图中查找节点的邻居节点、度数或者群组。
三、深度优先搜索和广度优先搜索的比较深度优先搜索和广度优先搜索在以下方面有所不同:1. 搜索顺序:深度优先搜索按照深度优先的顺序进行搜索,而广度优先搜索按照广度优先的顺序进行搜索。
深搜与广搜
深度优先搜索:
广度优先搜索:
2
深度优先搜索属于图算法的一种。 其过程简要来说是对每一个可能的分支路径深入到不能再
深入为止,而且每个节点只能访问一次.
3
深度优先遍历图的方法是,从图中某顶点v出发: (1)访问顶点v; (2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直
7
8
1 7
2
6
3
4 5
1 8 7
2
3 4
6
5
Problem Description: There is a 3-by-3 chessboard with 8 numbers. Your mission is to transform the origin shape to the target shape only by moving the blank check in four directions. Now you should figure out the minimum steps.
至图中和v有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发, 重新进行深度优先遍历,直到图中所有顶点均被访问过为止。
4
迷宫问题:
将起点标记为已走过并压栈; while (栈非空) { 从栈顶弹出一个点p; if (p这个点是终点) break; 否则沿右、下、左、上四个方向探索相邻的点 if (和p相邻的点有路可走,并且还没走过) 将相邻的点标记为已走过并压栈,它的前趋就是p点; } if (p点是终点) { 打印p点的坐标; while (p点有前趋) { p点 = p点的前趋; 打印p点的坐标; } } else 没有路线可以到达点;
深度优先算法与广度优先算法
深度优先算法与广度优先算法
深度优先算法和广度优先算法是两种常用的图遍历算法。
它们都是基
于图的遍历来搜索图中的所有节点,并且都是基于图中节点之间的关
联性来进行搜索操作的。
首先来说深度优先算法。
深度优先算法即从一条边开始遍历,如果遇
到死路则返回上一个节点,继续从它的下一条边继续遍历。
整个搜索
的过程是以深度为优先,直到遍历所有的节点为止。
深度优先算法使
用的是栈数据结构,先访问的节点会被后访问的节点所覆盖,直到遍
历到最深处,然后回死路走回上一个节点,继续访问它的下一个节点。
深度优先算法一般用于寻找迷宫或图中的某条路径等应用场景。
接下来是广度优先算法。
广度优先算法即在图中按照一层一层的方式
遍历所有的节点,直到遍历完为止。
广度优先算法使用的是队列数据
结构,先访问的节点会先被访问到,后访问的节点会被后访问的节点
所覆盖,确保按层次进行遍历。
广度优先算法一般用于求出图中所有
节点的最短路径等应用场景。
总结起来,深度优先算法和广度优先算法都有各自的优点和应用场景。
深度优先算法主要是在有解的情况下寻找具体的解,而广度优先算法
则是在寻找最短路径的情况下使用。
在具体应用时,可以根据实际情
况选择使用哪一种算法,或者结合两种算法的优点进行优化,以达到更好的搜索效果。
因此,深度优先算法和广度优先算法都是图遍历中经典而又经典的算法,能够应用于很多具体的场景中,为寻找路径和搜索解决方案等问题提供了很好的方法和实现手段。
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用深度优先搜索和广度优先搜索是数据结构中重要的遍历算法,它们在解决各种问题时起着关键作用。
本文将介绍深度优先搜索和广度优先搜索的实现方法以及它们的应用。
一、深度优先搜索的实现和应用深度优先搜索(Depth First Search,DFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,一直沿着某一分支深入直到不能再深入为止,然后回溯到前一个节点,再沿另一分支深入,直到遍历完所有节点。
深度优先搜索可以通过递归或者栈来实现。
在实现深度优先搜索时,可以采用递归的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 从起始节点开始,将其标记为已访问。
3. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则递归调用深度优先搜索函数。
4. 重复步骤3,直到所有节点都被访问过。
深度优先搜索的应用非常广泛,以下是几个常见的应用场景:1. 图的连通性判断:深度优先搜索可以用于判断图中的两个节点是否连通。
2. 拓扑排序:深度优先搜索可以用于对有向无环图进行拓扑排序,即按照一种特定的线性顺序对节点进行排序。
3. 岛屿数量计算:深度优先搜索可以用于计算给定矩阵中岛屿的数量,其中岛屿由相邻的陆地单元组成。
二、广度优先搜索的实现和应用广度优先搜索(Breadth First Search,BFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,逐层遍历,先访问当前节点的所有邻接节点,然后再依次访问下一层的节点,直到遍历完所有节点。
广度优先搜索可以通过队列来实现。
在实现广度优先搜索时,可以采用队列的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 创建一个空队列,并将起始节点入队。
3. 当队列不为空时,取出队首节点,并标记为已访问。
4. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则将其入队。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//system("pause");
return 0;
}
p=G.vertices[j].firstarc;
while(p)
{
cout<<p->adjvex<<" ";
p=p->nextarc;
}
cout<<endl;
}
cout<<"请输入第一个要访问的结点序号:"<<endl;
int n;
cin>>n;
}
for(k=1;k<=G.vexnum;k++) //输入边
{
int v2;
cout<<"请输入与结点"<<k<<"相邻的边数:";
cin>>v2;
cout<<"请输入与第"<<k<<"个结点相连的结点编号: ";
if(visited[w]==0)
{
visited[w]=1;
cout<<w<<" ";
EnQueue(Q,w);
}
}
}
}
}
void BFSB (ALGraph G,int v)//广度搜索的边集
{
int u;
if(!q) exit(-1);
q->adjvex=m; //顶点给P
q->nextarc=NULL;
p->nextarc=q;
p=q;
//free(q);
}
//free(p);
cin>>v1;
ArcNode *p;
p=(ArcNode*)malloc(sizeof(ArcNode));
if(!p) exit(-1);
p->adjvex=v1;
p->nextarc=NULL;
G.vertices[k].firstarc=p;
for( i=0;i<30;i++)
visited[i]=0;
cout<<"广度搜索:"<<endl;
BFS(G,n);
for( i=0;i<30;i++)
visited[i]=0;
cout<<endl;
cout<<"边集:"<<endl;
BFSB(G,n);
ArcNode *z;
z=(ArcNode*)malloc(sizeof(ArcNode));
if(!z) exit(-1);
z=G.vertices[u].firstarc;
/*
for(int w=z->adjvex;w>=0;w=z->nextarc->adjvex)
cout<<"邻接表为:"<<endl;
for(int j=1;j<=x;j++)
{
cout<<G.vertices[j].data<<" ";
ArcNode *p;
p=(ArcNode*)malloc(sizeof(ArcNode));
if(!p) exit(-1);
if(!r) exit(-1);
r=G.vertices[u].firstarc;
int w;
for(;r!=NULL;r=r->nextarc)
{ w=r->adjvex;
if(visited[w]==0)
{
visited[w]=1;
typedef struct
{
QueuePtr front;
QueuePtr rear;
}LinkQueue;
void InitQueue (LinkQueue &Q)//建立一个空队列
{
Q.front=Q.rear=(QueuePtr)malloc(sizeof(QNode));
图的遍历演示
以邻接多重表为存储结构,实现连通无向图的深度优先和广度优先遍历.
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集.
*******************************************/
#include<iostream>
# include <string.h>
if(!Q.front) exit(-1);
Q.front->next=NULL;
}
void EnQueue (LinkQueue &Q,int e)//进队
{
QNode *p;
p=(QNode*)malloc(sizeof(QNode));
if(!p) exit(-1);
{ w=y->adjvex;
if(visited[w]==0)
{
cout<<u<<"--->"<<w<<endl;
DFSB(G,w);
}
}
}
typedef struct QNode
{
int data;
QNode *next;
}QNode,*QueuePtr;
{
visited[v]=1;
ArcNode *y;
y=(ArcNode*)malloc(sizeof(ArcNode));
if(!y) exit(-1);
y=G.vertices[v].firstarc;
int u=G.vertices[v].data;
int w;
for(;y;y=y->nextarc)
p=(QNode*)malloc(sizeof(QNode));
if(!p) exit(-1);
p=Q.front->next;
e=p->data;
Q.front->next=p->next;
if(Q.rear==p)
Q.rear=Q.front;
free(p);
return e;
}
}
void DFS (ALGraph G,int v )//深度搜索
{
visited[v]=1;
cout<<G.vertices[v].data<<" ";
ArcNode *x;
x=(ArcNode*)malloc(sizeof(ArcNode));
if(!x) exit(-1);
for( i=0;i<30;i++)
visited[i]=0;
cout<<"深度搜索:"<<endl;
DFS(G,n);
for( i=0;i<30;i++)
visited[i]=0;
cout<<endl;
cout<<"边集:"<<endl;
DFSB(G,n);
for(int i=1;i<v2;i++)
{
int m;
cout<<"请输入与第"<<k<<"个结点相连的结点编号: ";
cin>>m;
ArcNode *q;
q=(ArcNode *)malloc(sizeof(ArcNode));//动态指针
}
int QueueEmpty (LinkQueue Q)//判断队列是否为空
{
if(Q.front==Q.rear)
return 1;
return 0;
}
ห้องสมุดไป่ตู้
void BFS(ALGraph G,int v)//广度搜索
{
int u;
LinkQueue Q;
p->data=e;
p->next=NULL;
Q.rear->next=p;
Q.rear=p;
//free(p);
}
int DeQueue (LinkQueue &Q,int &e)//出队
{
if(Q.front==Q.rear)
return -1;
QNode *p;
typedef struct//图
{
AdjList vertices;
int vexnum,arcnum;
int kind;
}ALGraph;
void CreateDG(ALGraph &G)
{
int k,i,v1;
cout<<endl<<"请输入结点个数: ";
LinkQueue Q;
InitQueue(Q);
if(visited[v]==0)
{
visited[v]=1;