2017年江苏省扬州市仪征市南师大二附中中考数学一模试卷

合集下载

2017年江苏省扬州市仪征市南师大二附中中考一模数学试卷和答案PDF

2017年江苏省扬州市仪征市南师大二附中中考一模数学试卷和答案PDF

24. (10 分)甲、乙两个公司为某敬老院各捐款 300000 元.已知甲公司的人数 比乙公司的人数多 20%,乙公司比甲公司人均多捐款 20 元.则甲、乙两公司 各有多少元? 25. (10 分)在△ABC 中,AB=BC,以 AB 为直径的⊙O 与 AC 交于点 D,过点 D 作 DF⊥BC,交 AB 的延长线于 E,垂足为 F. (Ⅰ)如图①,求证直线 DE 是⊙O 的切线; (Ⅱ)如图②,作 DG⊥AB 于 H,交⊙O 于 G,若 AB=5,AC=8,求 DG 的长.
A.80°
B.50°C.4Biblioteka °D.20° ) D.第四象限
6. (3 分)无论 m 为何值,点 A(m,5﹣2m)不可能在( A.第一象限 B.第二象限 C.第三象限
7. (3 分)如图,在△ABC 中,∠CAB=70°,将△ABC 绕点 A 逆时针旋转到△ AB′C′的位置,使得 CC′∥AB,则∠BAB′的度数是( )
26. (10 分) 如图,已知∠ABM=37°,AB=20,C 是射线 BM 上一点. (1)求点 A 到 BM 的距离;
第 4 页(共 23 页)
(2)在下列条件中,可以唯一确定 BC 长的是 序号) ①AC=13;②tan∠ACB=
; (填写所有符合条件的
;③连接 AC,△ABC 的面积为 126.
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**
2017 年江苏省扬州市仪征市南师大二附中中考数学一模试卷
一、选择题(每小题 3 分,共 24 分) 1. (3 分) A.整数 是( ) B.无理数 ) B. (a2)3=a5 D. (﹣ab)2=a2b2 C.有理数 D.自然数
2. (3 分)下列式子正确的是( A.a2+a3=a5 C.a+2b=2ab

江苏省仪征市南京师范大学第二附属初级中学八年级数学

江苏省仪征市南京师范大学第二附属初级中学八年级数学

江苏省仪征市南京师范大学第二附属初级中学2015-2016学年八年级数学5月阶段性检测试题(考试时间120分钟,满分150分) 一.选择题:(每小题3分,共24分。

) 1.以下问题,不适合...用普查的是( ▲ ) A .了解全班同学每周体育锻炼的时间 B .旅客上飞机前的安检 C .学校招聘教师,对应聘人员面试 D .了解全市中小学生每天的零花钱 2.下列各式从左到右变形正确的是( ▲ )A.y x y x y x yx 222121+-=+-B.b a b a b a b a 222.02.0++=++C.y x x y x x --=-+-11 D.ba ba b a b a +-=-+ 3.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ▲ )A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球 4. 函数1x y x =-的自变量x 的取值范围在数轴上表示为 ( ▲ )5. 已知下列命题,其中真命题的个数是( ▲ ) ①若22b a =,则b a =;②对角线互相垂直平分的四边形是菱形; ③两组对角分别相等的四边形是平行四边形; ④在反比例函数xy 2=中,如果函数值y <1时,那么自变量x >2. A .4个 B .3个 C .2个 D .1个 6.若mn >0,则一次函数y =mx n +与反比例函数y =mnx在同一坐标系中的大致图象是( ▲ )7.教室的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃后停止加热。

水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系。

直到水温降至20℃,饮水机关机。

饮水机关机后即刻自动开机。

重复上述自动程序,若在水温为20℃时,接通电源后,水温y (℃)和时间x (min)的关系如图所示,为了在上午第一节课下课时(8:45)能喝到不超过40℃的水,则接通A . B.C.D. 第4题0 12- 10 1 2 -1 0 1 2 - 1 012-1 A. B. C . D. 第6题电源的时间可以是当天上午的( ▲ )A. 7:10B. 7:20C. 7:30D. 7:508.如右图所示,将一张边长为8的正方形纸片ABCD 折叠,使点D 落在BC 的中点E 处,点A 落在点F 处,折痕为MN ,则线段MN 的长为( ▲ ) A.10 B.45 C.89 D.212二.填空题:(每小题3分,共30分)9.某校为了解该校1000名毕业生的数学考试成绩,从中抽查了100名考生的数学成绩.在这次调查中,样本容量是 ▲ .10.在下列图形:①圆 ②等边三角形 ③矩形 ④平行四边形中,既是中心对称图形又是轴对称图形的是_ ▲ (填写序号). 11.分式)(612123y x x x - ;的最简公分母是_ ▲ . 12.实数a 在数轴上的位置如图所示,化简2212a a a -++-=__▲ __.13.已知点P ()2,1-x 、Q ()3,2x 、H ()1,3x 在双曲线xa y )1(2+-=上,那么1x 、2x 、3x 的大小关系是_ ▲ . 14.要用反证法证明命题“一个三角形中不可能有两个角是直角”,首先应假设这个三角形中__ ▲ __. 15.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB =5,AC =3,则DF 的长为_ ▲ .16.如图,平行四边形ABCD 中,点E 在AD 上,以BE 为折痕,把△ABE 向上翻折,点A 正好落在CD 边的点F 处 ,若△FDE 的周长为6,△FCB 的周长为20,那么CF 的长为 ▲ . 17.关于x 的方程112=-+x ax 的解为正数,那么a 的取值范围是_ ▲ . 18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A D 、在x 轴的负半轴上,点C 在y 轴y (°C )100 20 x (min)第7题 OABNMF EDC第8题 第15题 第18题D O A B CE F xy12a第12题D CFA B E第16题DC第22题 D G EF H C AB的正半轴上,点F 在AB 上,点B E 、在反比例函数xky =的图像上,正方形ADEF 的面积为4,且2BF AF =,则k 值为__▲ __.三、解答题(10题,共96分) 19.计算(每题5分,共10分)(1)32)48312123(÷+- (2) 221()a a a a a --÷20.(6分)解方程:3911332-=-+x x x 21.(8分)先化简,再求值:22122121x x x x x x x x ----÷+++(),其中210x x --=22.( 8分) 如图,在方格纸中,△ABC 的三个顶点及H G F E D 、、、、、五个点分别位于小正方形的顶点上.(1)画出△ABC 绕点B 顺时针方向旋转90°后的图形.(2)先从H G F E 、、、四个点中任意取两个不同的点,再和D 点构成三角形,求所得三角形与△ABC 面积相等的概率是 ▲ .23.(8分)仪征市为了解2014年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A .读普通高中; B .读职业高中 C .直接进入社会就业; D .其它)进行数据统计,并绘制了两幅不完整的统计图(a )、(b ).请问:(1)该区共调查了 名初中毕业生; (2)将两幅统计图中不完整的部分补充完整; (3)若该市2014年初三毕业生共有8500人,请估计该市今年的初三毕业生中读普通高中的学生人数.24.(10分)如图所示,点O 是菱形ABCD 对角线的交点, CE ∥BD ,EB ∥AC ,连接OE ,交BC 于F .(1)求证:OE =CB ;(2)如果OC : OB =1:2,OE =5, 求菱形ABCD 的面积.25.(10分)某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数y (亩)与平均每亩产量x (万斤)之间的函数关系式,并写出自变量x 的取值范围;(总产量=亩数⨯平均每亩产量)(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了8万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?26.(12分)如图,已知直线x y 21=与双曲线)0(>=k xky 交于A 、B 两点,A 点横坐标为4. (1)求k 值;(2)直接写出关于x 的不等式021>-xkx 的解集; (3)若双曲线)0(>=k xky 上有一点C 的纵坐标为8,求△AOC 的面积. (4)若在x 轴上有点M ,y 轴上有点N ,且点M 、N 、A 、C 四点恰好构成平行四边形,直接写出点M 、N 的坐标.27.(共12分)如图,菱形ABCD 中,E 、F 分别是边AD ,CD 上的两个动点(不与菱形的顶点重合),且满足CF =DE ,∠A =60°.(1)写出图中一对全等三角形:____________________. (2)求证:△BEF 是等边三角形;(3)若菱形ABCD 的边长为2,设△DEF 的周长为m ,则m 的取值范围为 ▲ (直接写出答案); (4) 连接AC 分别与边BE 、BF 交于点M 、N ,且∠CBF =15º,试说明:222AM CN MN =+.yO x C A B28.(本题满分12分)阅读理解:对于任意正实数a 、b ,∵2()a b -≥0, ∴2a ab b -+≥0, ∴a b +≥2ab ,只有当a =b 时,等号成立.结论:在a b +≥2ab (a 、b 均为正实数)中,若ab 为定值p ,则a +b ≥2p ,只有当a=b 时,a +b 有最小值2p .根据上述内容,填空:若m >0,只有当m = 时,mm 4+有最小值,最小值为 . 探索应用:如图,已知)0,2(-A ,)3,0(-B ,P 为双曲线xy 6=(x >0)上的任意一点,过点P 作PC ⊥x 轴于点C , PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明 此时四边形ABCD 的形状.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共490元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低平均每千米的运输成本是多少元?南京师范大学第二附属初级中学2016年5月 八 年 级 数 学 参 考 答 案 一、选择题:(每小题3分,共24分)二、填空题(每小题3分,共30分)9. 100 10. ① ③ 11. )(63y x x - 12. 1 . 13.321x x x >> 14. 有两个角是直角 15. 1 16. 7 17.21-≠-<a a 且 18. -6 三、解答题(共10小题,共96分) 19.计算:(5+5共10分)(1) 解:原式=32)3433226(÷+- ………(3分) =314323328=÷ ………(5分)(2)221=(1)a a a a a -⨯-解:原式 ……… (3分)1a =+ ……… (5分)20.(6分)解:去分母:13)13(2=+-x x …………(2分) 31=x …………(4分) 检验:当31=x 时,039=-x 所以:31=x 是原方程增根,原方程无解……(6分) 21.(8分) 22212(1)=(1)(21)x x x x x x x x --++⨯+-解:原式 ………(2分) 221(1)(1)(21)x x x x x x -+=⨯+-21x x +=………(6分) 题号 1 2 3 4 5 6 7 8 答案 D A A CCACB22101=1x x x x --=∴=+∴Q 原式 ……… (8分)22.(共8分) (1)(图略)(4分)(2)21(8分) 23.(共8分)(1) 100 (2分) (2)(条形图略) 扇形统计图:C 占 25% (6分) (3)8500%40⨯=3400(人)(8分)24.(共10分)(1)证明:∵四边形ABCD 是菱形 ∴AC ⊥BD ∵CE ∥DB , BE ∥AC∴四边形OCEB 是平行四边形 ………(2分) ∴四边形OCEB 是矩形∴OE BC = ………(5分)(方法不唯一) (2)Q AC ⊥BD :1:2CO OB =5BC OE ==Q∴ Rt △BCO 中,22225)CO OB BC +== ………(7分)1,2CO OB ∴== ABCD 四边形是菱形Q2AC ∴=,4BD =142ABCD S BD AC ∴=⨯=菱形 …………(10分)25.(共10分) (1)xy 36=………(2分) )4.03.0(≤≤x ………(4分)∴2=y∴842=⨯==xy k ……(3分)(2)04<<-x 或4>x ……(6分) (3)把8=y 代入xy 8=∴1=x作CM ⊥x 轴,AN ⊥y 轴,垂点M 、N 15)28)(14(21CANM =+-⨯==∆梯S S AOC ……(10分)(方法不唯一)(4) (3,0),(0,6)M N 或(3,0),(0,6)M N --………(12分) 27.(共12分)(1)ABE ∆≌DBE ∆(或EBD ∆≌FBC ∆)(1分) (2)∵ABCD 为菱形 ∴AB AD DC BC ===∵∠A =∠C =60O∴△ABD 与△BDC 为等边三角形∴BD =BC ,∠EDB =∠C =60O∵DE =FC∴△EDB ≌△FCB (SAS ) ……(3分) ∴EB = FB ∠EBD =∠FBC∴∠EBF =60O∴△EBF 是等边三角形………(5分) (3)234m ≤< (8分)(4)把△BNC 绕点B 逆时针旋转120),使CB 与AB 重合,N 对应点为N ’,连接MN ’。

2017年江苏省扬州市中考数学试卷(解析版)

2017年江苏省扬州市中考数学试卷(解析版)

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.经过圆锥顶点的截面的形状可能是()A.B.C.D.6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.127.在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.98.如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.若=2,=6,则=.11.因式分解:3x2﹣27=.12.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=°.16.如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=cm.17.如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O 顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.解不等式组,并求出它的所有整数解.21.“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的 1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA=;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)30 35 40 45 50日销售量p(千克)600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4【考点】13:数轴.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.2.下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.3.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.4.下列统计量中,反映一组数据波动情况的是()A.平均数B.众数 C.频率 D.方差【考点】WA:统计量的选择.【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.5.经过圆锥顶点的截面的形状可能是()A.B.C.D.【考点】I9:截一个几何体.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【考点】K6:三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.7.在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【考点】37:规律型:数字的变化类.【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.8.如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【考点】H4:二次函数图象与系数的关系.【分析】抛物线经过C点时b的值即可.【解答】解:把C(2,1)代入y=x2+bx+1,得22+2b+1=1,解得b=﹣2.故b的取值范围是b≥﹣2.故选:C.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104立方米.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.10.若=2,=6,则=12.【考点】1D:有理数的除法.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.11.因式分解:3x2﹣27=3(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).12.在平行四边形ABCD中,∠B+∠D=200°,则∠A=80°.【考点】L5:平行四边形的性质.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【考点】W4:中位数.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【考点】E3:函数关系式.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.15.如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=50°.【考点】M5:圆周角定理.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=÷2=50°.故答案为:50.16.如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=(2+2)cm.【考点】PB:翻折变换(折叠问题);KK:等边三角形的性质.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.17.如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O 顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为y=.【考点】R7:坐标与图形变化﹣旋转;G6:反比例函数图象上点的坐标特征;G7:待定系数法求反比例函数解析式.【分析】设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,得到AC=n,OC=﹣m,根据全等三角形的性质得到AC=OD=n,CO=BD=﹣m,于是得到结论.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.18.若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为15.【考点】AG:无理方程.【分析】由题意m=,令y=,则x=2017﹣y2,可得m==,由m是正整数,y≥0,推出y=1时,m=12,y=2时,m=3,由此即可解决问题.【解答】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).【考点】4F:平方差公式;2C:实数的运算;35:合并同类项;4A:单项式乘多项式;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【解答】解:(1)原式=﹣4+1﹣2×+﹣1=﹣3﹣+﹣1=﹣4(2)原式=3a﹣2a2+2(a2﹣1)=3a﹣2a2+2a2﹣2=3a﹣220.解不等式组,并求出它的所有整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,∴不等式组的整数解为﹣1、0、1、2.21.“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【解答】解:(1)8÷5%=160(人),160×30%=48(人),32÷160×360°=0.2×360°=72°.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)30%×1000=300(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.22.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.23.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的 1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【考点】B7:分式方程的应用.【分析】设小芳的速度是xx米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是xx米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.24.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.【考点】LO:四边形综合题;LA:菱形的判定与性质;Q2:平移的性质;T7:解直角三角形.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣B C.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,A B=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===7.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣7.25.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【考点】MB:直线与圆的位置关系;L5:平行四边形的性质;MN:弧长的计算.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,∵OB=OF,∴OG⊥BF,∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,∴∠OCD=90°,∴DE是⊙O的切线.(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=O C.②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.26.我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=0,OC△OA= 7;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【考点】KY:三角形综合题.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DB=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S△ABC=BC×AO=6.27.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)30 35 40 45 50日销售量p(千克)600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【考点】HE:二次函数的应用.【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+x﹣,对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.28.如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC 的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.【考点】MR:圆的综合题.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由光杆司令求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x2=﹣(x﹣2)2+1,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.【解答】(1)解:∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①证明:∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②解:连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)解:设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE=x﹣x2=﹣(x﹣2)2+1,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.。

2017年江苏省扬州市中考数学试卷(含答案)

2017年江苏省扬州市中考数学试卷(含答案)

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.(3分)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.(3分)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.(3分)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.(3分)经过圆锥顶点的截面的形状可能是()A.B. C.D.6.(3分)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.127.(3分)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.98.(3分)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.(3分)若=2,=6,则=.11.(3分)因式分解:3x2﹣27=.12.(3分)在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.(3分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.(3分)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=°.16.(3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P 处,且DP⊥BC,若BP=4cm,则EC=cm.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.(3分)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m 的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.(8分)解不等式组,并求出它的所有整数解.21.(8分)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.(10分)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB 的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.(10分)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O 于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.(10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA=;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.(12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G 在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•扬州)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.2.(3分)(2017•扬州)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.【点评】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质,属于基础运算,比较简单.3.(3分)(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)(2017•扬州)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(3分)(2017•扬州)经过圆锥顶点的截面的形状可能是()A.B. C.D.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.【点评】本题考查的是用一个平面去截一个几何体,掌握圆锥的特点是解题的关键.6.(3分)(2017•扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(3分)(2017•扬州)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.8.(3分)(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【分析】对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点.【解答】解:抛物线y=x2+bx+1与y轴的交点为(0,1)∵C(2,1),∴对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,∴b≥﹣2,故选:C.【点评】本题考查了二次函数图象与系数的关系.解题时,利用了二次函数图象上点的坐标特征来求b的取值范围.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104立方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•扬州)若=2,=6,则=12.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.【点评】本题考查了有理数的除法,求得a=2b,c=是解题的关键.11.(3分)(2017•扬州)因式分解:3x2﹣27=3(x+3)(x﹣3).【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(3分)(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=80°.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.13.(3分)(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.(3分)(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=50°.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°﹣80°)÷2=50°.故答案为:50.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(3分)(2017•扬州)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=(2+2)cm.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.【点评】本题考查了翻折变换﹣折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.17.(3分)(2017•扬州)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为y=.【分析】设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,得到AC=n,OC=﹣m,根据全等三角形的性质得到AC=OD=n,CO=BD=﹣m,于是得到结论.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.18.(3分)(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为15.【分析】由题意m=,令y=,则x=2017﹣y2,可得m==,由m是正整数,y≥0,推出y=1时,m=12,y=2时,m=3,由此即可解决问题.【解答】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.【点评】本题考查无理方程、换元法、正整数等知识,解题的关键是学会利用换元法解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(2017•扬州)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).【分析】(1)根据零指数幂的意原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【解答】解:(1)原式=﹣4+1﹣2×+﹣1=﹣3﹣+﹣1=﹣4(2)原式=3a﹣2a2+2(a2﹣1)=3a﹣2a2+2a2﹣2=3a﹣2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•扬州)解不等式组,并求出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,∴不等式组的整数解为﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•扬州)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?【分析】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【解答】解:(1)8÷5%=160(人),160×30%=48(人),32÷160×360°=0.2×360°=72°.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)30%×1000=300(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(8分)(2017•扬州)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23.(10分)(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【点评】此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.24.(10分)(2017•扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===10.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣10=16.【点评】本题考查了四边形综合题,需要掌握平移的性质,解直角三角形,勾股定理以及菱形的判定与性质等知识点.解答(1)题时,往往误认为四边形ACC'A'是平行四边形,岂不知还要根据已知条件继续证得该四边形是菱形,属于易错题.25.(10分)(2017•扬州)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,∵OB=OF,∴OG⊥BF,∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,∴∠OCD=90°,∴DE是⊙O的切线.(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=OC.②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.【点评】本题考查切线的判定、平行四边形的性质、等边三角形的判定和性质、弧长公式,解直角三角形等知识,解题的关键是学会添加常用辅助线,证明三角形是等边三角形是解题的突破点,属于中考常考题型.26.(10分)(2017•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB 与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0,OC△OA=7;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DN=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S=BC×AO=6.△ABC【点评】此题是三角形综合题,主要考查了勾股定理,含30°的直角三角形的性质,勾股定理,等腰三角形的性质,解(1)的关键是求出OD,解(2)的关键是BD,解(3)的关键是用方程组的思想解决问题,是一道很好的新定义题目.27.(12分)(2017•扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+(2400+30a)x﹣(1500a+45000),对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.【点评】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.28.(12分)(2017•扬州)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x2=。

江苏省扬州市仪征市(县)南师大第二附属初级中学九年级上第三次月考数学试题

江苏省扬州市仪征市(县)南师大第二附属初级中学九年级上第三次月考数学试题

南京师范大学第二附属初级中学2013年秋学期初三年级数学12月份单元练习(考试时间120分钟,满分150分)一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1、抛物线y =ax 2过点(1,-1),则a 的值为( )A 、1B 、-1C 、21 D 、-212、相交两圆的半径分别为4和7,则它们的圆心距可能是( )A 、2B 、3C 、6D 、113、对于函数y=-x 2+2x -2使得y 随x 的增大而减小的x 的取值范围是()A 、x>1B 、x ≥0C 、x ≤0D 、x<1 4、已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是( )A 、20cm 2B 、20πcm 2C 、15cm 2D 、15πcm 25、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )A .B .C .D .6、下列说法正确的是( )A 、平分弦的直径垂直于弦;B 、半圆(或直径)所对的圆周角是直角;C 、相等的圆心角所对的弧相等;D 、若两个圆有公共点,则这两个圆相交. 7、△ABC 内接于⊙O ,∠BOC =130°,则∠A 的度数为( )A 、50°B 、50°或130°C 、65°D 、65°或115° 8、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=1.下列结论:①abc >O ,②2a+b=O ,③b 2﹣4ac <O ,④4a+2b+c >O 其中正确的是( )A 、①③B 、只有②°C 、②④D 、③④二、填空题(每小题3分,共30分)9、如图,点A 、B 、C 在O 上,A 50∠=,则BOC ∠的度数为 .(第9题图) (第13题图)10、将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后抛物线的解析式为 .11、已知⊙O 1与⊙O 2的半径分别是a ,b ,且a 、b 满足,圆心距O 1O 2=1,则两圆的位置关系是 .12、已知点P 到⊙O 的最远距离为10cm ,最近距离为4cm ,则该圆半径为 cm . 13、如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,已知CD =6,AE =1, 则⊙0的半径为14、若函数..y =(m -1)x 2+6x +1的图象与x 轴只有一个交点,则m = . 15、已知⊙O 的半径为2cm ,则其圆内接正三角形的边长为 cm . 16、如图,抛物线y =x 2+1与双曲线y =x k 的交点A 的横坐标为1,则不等式12--x xk >0的解集为 .(第16题图) (第17题图)17、正方形ABCD 在直线l 上无滑动地向右翻转,每一次转动90°,正方形边长为2,则按如图所示转动两次,点B 所经过的路线长为18、对于任何的实数t ,抛物线 y=x 2 +(2-t) x + t 总经过一个固定的点,这个点坐标是 .三、解答题(本大题共96分) 19、(本题满分8分)已知二次函数图像的顶点坐标为C (1,0),直线y=x+m 与该二次函数的图像交于A 、B 两点,其中A 点的坐标为(3,4),B 点在y 轴上.求m 的值及这个二次函数的关系式. 20、(本题8分)已知AB 为⊙O 的直径,M 、N 分别为OA 、OB 的中点,CM ⊥AB ,DN 垂直AB ,垂足分别为M 、N ,求证: ACBD21、(本题8分) 某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C 离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面3米,装货宽度为2.4米.请按照如图建立的坐标系,通过计算,判断这辆汽车能否顺利通过大门?22、(本题8分)在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径的圆弧与BC 相切于点D ,交AC 于点E ,连接AD .(1)求证:AD 平分∠BAC ;(2)已知AE=2,DC= 2 ,求圆弧的半径.23、(本题10分)写出二次函数2142y x x =-++图象的对称轴、顶点坐标和坐标轴的交点坐标,并在如图的坐标系中画出函数图象.24(本题10分)如图,在△ABC 中,AB=AC ,∠BAC=54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F . 请解答:(1)求证:BE=CE ;(2)求∠CBF 的度数;(3)若AB=6,求的长.25、(本题10分)对于问题“如图1,在一个直角三角形的内部作矩形ABCD,其中AB和AD在两直角边上,设AB=x cm,矩形ABCD的面积为yc m²,当x取何值时,y的值最大,最大值是多少?”(答案是当x=20时,y的值最大,最大值是300).小华同学提出了如下两个问题,你能帮助他解决吗?(1)如果按图2使矩形的一边BC在斜边EF上,如何解答此时求出来的最大值仍是300cm²吗?(2)你能肯定图1和图2中的两个面积最大的矩形全等吗?请说明理由.26(本题10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.27、(本题12分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.28、(本题12分)如图,对称轴为直线x=-1的抛物线2y ax bx c =++(a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)已知a=1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △P O C =4S △B O C .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.。

江苏省扬州市2017年中考数学模拟试题(二)含答案.docx

江苏省扬州市2017年中考数学模拟试题(二)含答案.docx

2017 届中考数学模拟试题2017 年江苏省扬州市中考数学模拟试卷(二)一、选择题1.的相反数是()A.B.C.D.2.据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为 10.4 万人,居世界第一,这个数用科学记数法表示是()A.1.04×104B.1.04×105C. 1.04×106D.10.4× 1043.点 P(1,﹣ 2)关于 y 轴对称的点的坐标是()A.(﹣ 1,﹣ 2)B.(1,2) C.(﹣ 1, 2)D.(﹣ 2,1)4.不等式组的最小整数解为()A.﹣ 1 B.0C.1D.45.如图,⊙ O 的半径为 5,弦 AB 的长为 8,M 是弦 AB 上的动点,则线段OM 长的最小值为()A.2B.3C.4D.56.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.7.如图, ?ABCD的周长为 16cm,AC 与 BD 相交于点 O,OE⊥AC 交 AD 于 E,则△ DCE的周长为()A.4cm B.6cm C.8cm D.10cm8.如图,△ ABC中,∠ A=30°,,AC=,则AB的长为()A.B.C.5D.=0,那么 x的值是()29.已知实数 x 满足 x ++A.1 或﹣ 2 B.﹣ 1 或 2 C.1D.﹣ 210.如图是三个反比例函数 y=,y=, y=在 x 轴上方的图象,由此观察得到 k1, k2,k3的大小关系为().1>k2>k3. 3 >k2>k12>k3>k1.3>k1>k2A kB k C. k D k11.我们知道,溶液的酸碱度由PH 确定.当 PH>7 时,溶液呈碱性;当 PH<7时,溶液呈酸性.若将给定的HCl 溶液加水稀释,那么在下列图象中,能反映HCl溶液的 PH与所加水的体积( V)的变化关系的是()A.B.C.D.12.在矩形 ABCD 中, AB=3, AD=4, P 是 AD 上的动点, PE⊥AC 于 E, PF⊥BD 于 F,则 PE+PF的值为()A.B.2C.D.1二、填空:本大题共 8 小题;每小题 4 分,共 32 分.把答案填写在题中横线上.13.( 4 分)函数 y=中,自变量x的取值范围是.14.( 4 分)已知二次函数:(1)图象不经过第三象限;( 2)图象经过点( 2,﹣5),请你写出一个同时满足( 1)和( 2)的函数关系式:.15.(4 分)某校去年对实验器材的投资为 2 万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:.16.( 4 分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE 翻折上去,使 AB 与 AD 边上的 AF 重合,则四边形 ABEF 就是一个大的正方形,他判定的方法是.17.( 4 分)如图是 2003 年 11 月份的日历,现用一矩形在日历中任意框出 4 个数,请用一个等式表示, a、 b、 c、 d 之间的关系.18.( 4 分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是cm.19.( 4 分)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.20.( 4 分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5 米时,其影长为 1.2 米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4 米,墙上影长为 1.4 米,那么这棵大树高约为米.三、解答题:(本题共 8 个小题,共 82 分)21.( 8分)计算:﹣sin60 +°(﹣)0﹣.22.( 8分)如图所示,在菱形 ABCD中,点 E, F分别在 CD, BC上,且CE=CF,求: AE=AF.23.( 8 分)某公司售部有人15 人,售部了制定某种商品的月售定,了15 人某月的售量如下:每人售件数1800 510 250 210 150120人数113532( 1)求 15 位人月售量的平均数、中位数和众数;( 2)假售人把每位的月售定320 件,你是否合理,什么?如不合理,你制定一个合理的售定,并明理由.2(1)求:于任意非零数 a,方程恒有两个异号的数根;(2) x1、 x2是方程的两个根,若 | x1|+| x2| =4,求 a 的.25.( 10 分)某学小在探索“各内角都相等的内接多形是否正多形”,行如下:甲同学:种多形不一定是正多形,如内接矩形.乙同学:我数是 6 ,它也不一定是正多形,如1,△ ABC是正三角形,,明六形 ADBECF的各内角相等,但它未必是正六形.丙同学:我能明,数是 5 ,它是正多形,我想⋯,数是7,它可能也是正多形.(1)你明乙同学构造的六形各内角相等;(2)你明,各内角都相等的内接七形 ABCDEFG(如 2)是正七形;(不必写已知,求)(3)根据以上探索程,提出你的猜想.(不必明)26.( 12 分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要 10 张 8K 大小的纸,其中 4 张为彩页, 6 张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300 元/ 张,黑白页 50 元 / 张;印刷费与印数的关系见下表.印数 a(单位:千册)1≤a<55≤a<10彩色(单位:元 / 张) 2.2 2.0黑白(单位:元 / 张)0.70.6( 1)印制这批纪念册的制版费为元;(2)若印制 2 千册,则共需多少费用?(3)如果该校希望印数至少为 4 千册,总费用至多为 60000 元,求印数的取值范围.(精确到 0.01 千册)27.( 12 分)如图,平面直角坐标系中,四边形 OABC为矩形,点 A、 B 的坐标分别为( 6, 0),(6, 8).动点 M 、N 分别从 O、 B 同时出发,以每秒 1 个单位的速度运动.其中,点 M 沿 OA 向终点 A 运动,点 N 沿 BC向终点 C 运动.过点 N 作 NP⊥BC,交 AC于 P,连接 MP.已知动点运动了 x 秒.(1) P 点的坐标为多少;(用含 x 的代数式表示)(2)试求△ MPA面积的最大值,并求此时 x 的值;(3)请你探索:当x 为何值时,△MPA 是一个等腰三角形?你发现了几种情况?写出你的研究成果.28.( 14 分)已知:如图,点 A 在 y 轴上,⊙ A 与 x 轴交于 B、C 两点,与 y 轴交于点 D(0,3)和点 E(0,﹣ 1)( 1)求经过 B、E、C 三点的二次函数的解析式;( 2)若经过第一、二、三象限的一动直线切⊙ A 于点 P(s,t ),与 x 轴交于点M,连接 PA并延长与⊙ A 交于点 Q,设 Q 点的纵坐标为 y,求 y 关于 t 的函数关系式,并观察图形写出自变量t 的取值范围;(3)在( 2)的条件下,当 y=0 时,求切线 PM 的解析式,并借助函数图象,求出( 1)中抛物线在切线 PM 下方的点的横坐标 x 的取值范围.2017 届中考数学模拟试题参考答案与试题解析一、选择题:本大题共12 小题;每小题 3 分,共 36 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.B.C.D.【解答】解:根据相反数的定义,得的相反数是.故选 A.2.据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为 10.4 万人,居世界第一,这个数用科学记数法表示是()A.1.04×104B.1.04×105C. 1.04×106D.10.4× 1045【解答】解: 10.4 万=104 000=1.04×10 .3.点 P(1,﹣ 2)关于 y 轴对称的点的坐标是()A.(﹣ 1,﹣ 2)B.(1,2) C.(﹣ 1, 2)D.(﹣ 2,1)【解答】解:∵点 P(1,﹣ 2)关于 y 轴对称,∴点 P(1,﹣ 2)关于 y 轴对称的点的坐标是(﹣1,﹣ 2).故选 A.4.不等式组的最小整数解为()A.﹣ 1 B.0C.1D.4【解答】解:化简不等式组得,2017 届中考数学模拟试题所以不等式组的解集为﹣<x≤4,则符合条件的最小整数解为0.故选 B.5.如图,⊙ O 的半径为 5,弦 AB 的长为 8,M 是弦 AB 上的动点,则线段OM 长的最小值为()A.2B.3C.4D.5【解答】解:根据垂线段最短知,当OM⊥AB 时, OM 有最小值,此时,由垂径定理知,点M 是 AB 的中点,连接 OA,AM=AB=4,由勾股定理知, OM=3.故选: B.6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.【解答】解:从折叠的图形中剪去8 个等腰直角三角形,易得将从正方形纸片中剪去 4 个小正方形,故选C.2017 届中考数学模拟试题7.如图, ?ABCD的周长为 16cm,AC 与 BD 相交于点 O,OE⊥AC 交 AD 于 E,则△ DCE的周长为()A.4cm B.6cm C.8cm D.10cm【解答】解:∵四边形 ABCD为平行四边形,∴OA=OC;∵ OE⊥AC,∴AE=EC;∵?ABCD的周长为16cm,∴ CD+AD=8cm;∴△ DCE的周长 =CD+CE+DE=CD+AD=8cm.故选: C.8.如图,△ ABC中,∠ A=30°,,AC=,则AB的长为()A.B.C.5D.【解答】解:作 CD⊥ AB于 D.在直角三角形 ACD中,∠ A=30°,AC=,∴CD= , AD=3.在直角三角形 BCD中,,∴ BD==2.∴AB=AD+BD=5.故选 C..已知实数x 满足2+=0,那么 x+的值是()9xA.1 或﹣ 2 B.﹣ 1 或 2 C.1 D.﹣ 2【解答】解:∵ x2+=0∴x )2(x+)﹣ 1]=0∴ [ ( ++ ][∴x+ =1 或﹣ 2.∵ x+ =1 无解,∴x+ =﹣2.故选 D.10.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到 k1, k2,k3的大小关系为()A.k1> k2>k3B.k3>k2>k1C. k2>k3>k1D.k3>k1> k2【解答】解:由图知, y=的图象在第二象限,y=,y=的图象在第一象限,∴k1<0,k2>0,k3> 0,又当 x=1 时,有 k2<k3,∴k3>k2>k1.故选 B.11.我们知道,溶液的酸碱度由PH 确定.当 PH>7 时,溶液呈碱性;当PH<7时,溶液呈酸性.若将给定的HCl 溶液加水稀释,那么在下列图象中,能反映HCl溶液的 PH与所加水的体积( V)的变化关系的是()A.B.C.D.【解答】解:根据题意:若将给定的 HCl 溶液加水稀释,那么开始 PH<7,随着慢慢加水,溶液的酸性越来越弱,且 PH值逐渐增大.故选 C.12.在矩形 ABCD 中, AB=3, AD=4, P 是 AD 上的动点, PE⊥AC 于 E, PF⊥BD 于 F,则 PE+PF的值为()A.B.2C.D.1【解答】解:设 AP=x, PD=4﹣x.∵∠ EAP=∠EAP,∠ AEP=∠ ADC;∴△ AEP∽△ ADC,故 =①;同理可得△ DFP∽△ DAB,故=②.① +②得=,。

仪征市2016-2017学年八年级上第一次质检数学试卷含答案解析

仪征市2016-2017学年八年级上第一次质检数学试卷含答案解析

江苏省扬州市仪征市2016-2017学年八年级(上)第一次质检数学试卷(解析版)一、选择题1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.在△ABC和△A′B′C′中,下面能得到△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C,∠B=∠B′B.AB=A′B′,BC=B′C,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′3.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4 B.5 C.6 D.不能确定4.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,已知AB=AC=BD,那么()A.∠1=∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°7.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为()A.2 B.3 C.4 D.58.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是.10.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB、CD两个木条),这样做根据的数学道理是.11.已知等腰三角形两边长为7和3,则它的周长为.12.如图,在△ABC中,DE是AC的中垂线,AD=5,BD=2,则BC长是.13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.14.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.15.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=cm.17.如图,∠MAN是一钢架,且∠MAN=15°,为使钢架更加坚固,需在其内部加一些钢管CD、DE、EF…添加的钢管长度都与AC相等,则最多能添加这样的钢管根.18.已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=.三、解答题(共计96分)19.(8分)利用网格线画图:如图,点A、B、C都在正方形网格的格点上.(1)在BC上找一点P,使PA=PB;(2)在BC上找一点Q,使点Q到AB和AC的距离相等.20.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.21.(8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.解:需添加条件是.22.(8分)已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.23.(10分)如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.24.(10分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.25.(10分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.26.(10分)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,BC=10,EF=4.(1)求△MEF的周长;(2)若∠ABC=50°,∠ACB=60°,求△EFM的三个内角的度数.27.(12分)锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰直角三角板按如图1放置,其中边BC、FP均在直线l上,边EF与边AC重合.(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.28.(12分)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇?(在横线上直接写出答案,不必书写解题过程)2016-2017学年江苏省扬州市仪征市八年级(上)第一次质检数学试卷参考答案与试题解析一、选择题(2015秋•无锡期末)下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.在△ABC和△A′B′C′中,下面能得到△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C,∠B=∠B′B.AB=A′B′,BC=B′C,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′【考点】全等三角形的判定.【分析】根据全等三角形的判定方法对各选项分析判断即可得解.【解答】解:A、AB=A′B′,AC=A′C,∠B=∠B′符合“边边角”,不能得到△ABC≌△A′B′C′,故本选项错误;B、AB=A′B′,BC=B′C,∠A=∠A′符合“边边角”,不能得到△ABC≌△A′B′C′,故本选项错误;C、AC=A′C′,BC=B′C′,∠C=∠C′,符合“边角边”,能得到△ABC≌△A′B′C′,故本选项正确;D、AC=A′C′,BC=B′C′,∠B=∠B′符合“边边角”,不能得到△ABC≌△A′B′C′,故本选项错误.故选C.【点评】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键,作出图形更形象直观.3.已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A.4 B.5 C.6 D.不能确定【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等求解即可.【解答】解:∵△ABC≌△DEF,∴DE=AB=4.故选A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.4.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定【考点】等腰三角形的性质.【分析】此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180°,可求出顶角的度数.【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选C.【点评】当外角不确定是底角的外角还是顶角的外角时,需分两种情况考虑,再根据三角形内角和180°、三角形外角的性质求解.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,已知AB=AC=BD,那么()A.∠1=∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【考点】等腰三角形的性质.【分析】根据等边对等角得出∠B=∠C,∠BAD=∠1,根据三角形外角的性质和三角形内角和得出∠C+2∠1=180°,然后根据∠C=∠1﹣∠2,即可求得3∠1﹣∠2=180°.【解答】解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.【点评】本题考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理的应用等,熟练掌握性质定理是解题的关键.7.如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为()A.2 B.3 C.4 D.5【考点】全等三角形的判定与性质.【分析】先证明△AFE∽△ACD,则∠AFE=∠C=∠BFD,再根据BF=AC,∠BFD=∠C,∠FBD=∠DAC得出△BDF≌△ADC,即可得出AF的长.【解答】解:∵AD⊥BC,BE⊥AC∴∠BDF=∠ADC=∠BEC=90°∵∠DAC=∠DAC∴△AFE∽△ACD∴∠AFE=∠C=∠BFD在△BDF与△ADC中,∵,∴△BDF≌△ADC(ASA),∴AD=BD=BC﹣CD=7﹣2=5,DF=CD,∴AF=AD﹣DF=BD﹣CD=5﹣2=3.【点评】本题考查了全等三角形的判定和性质,证明三角形的相似是解此题的关键.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④【考点】全等三角形的判定与性质.【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即③正确,根据③可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,∵在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,∵在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选D.【点评】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.二、填空题(2015秋•邗江区期中)开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是9087.【考点】镜面对称.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:由图分析可得题中所给的“”与“9087”成轴对称.故答案为:9087.【点评】本题考查了镜面对称的性质;解决本题的关键是得到对称轴,进而得到相应数字.也可以简单的写在纸上,然后从纸的后面看.10.木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即图中AB、CD两个木条),这样做根据的数学道理是三角形的稳定性.【考点】三角形的稳定性.【分析】三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】解:结合图形,为防止变形钉上两条斜拉的木板条,构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案为:三角形的稳定性.【点评】本题考查三角形的稳定性和四边形的不稳定性在实际生活中的应用问题.11.已知等腰三角形两边长为7和3,则它的周长为17.【考点】等腰三角形的性质.【分析】因为边为3和7,没说是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:当3为底时,其它两边都为7;3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7;3+3=6<7,所以不能构成三角形,此种情况不成立;所以等腰三角形的周长是17.故填:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.12.如图,在△ABC中,DE是AC的中垂线,AD=5,BD=2,则BC长是7.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后根据BC=BD+CD代入数据计算即可得解.【解答】解:∵DE是AC的中垂线,∴AD=CD,∴BC=BD+CD=BD+AD=2+5=7.故答案为:7.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质是解题的关键.13.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.14.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是8cm.【考点】等腰三角形的判定与性质;平行线的性质.【分析】分别利用角平分线的性质和平行线的判定,求得△DBP和△ECP为等腰三角形,由等腰三角形的性质得BD=PD,CE=PE,那么△PDE的周长就转化为BC边的长,即为8cm.【解答】解:∵BP、CP分别是∠ABC和∠ACB的角平分线,∴∠ABP=∠PBD,∠ACP=∠PCE,∵PD∥AB,PE∥AC,∴∠ABP=∠BPD,∠ACP=∠CPE,∴∠PBD=∠BPD,∠PCE=∠CPE,∴BD=PD,CE=PE,∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.故答案是:8.【点评】此题主要考查了平行线的判定,角平分线的性质及等腰三角形的性质等知识点.本题的关键是将△PDE的周长就转化为BC边的长.15.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.【点评】本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.16.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=2cm.【考点】角平分线的性质.【分析】过点D ,作DF ⊥BC ,垂足为点F ,根据BD 是∠ABC 的角平分线,得DE=DF ,根据等高的三角形的面积之比等于其底边长之比,得△BDC 与△BDA 的面积之比,再求出△BDA 的面积,进而求出DE .【解答】解:如图,过点D ,作DF ⊥BC ,垂足为点F∵BD 是∠ABC 的角平分线,DE ⊥AB ,∴DE=DF∵△ABC 的面积是30cm 2,AB=18cm ,BC=12cm ,∴S △ABC =•DE •AB +•DF •BC ,即×18×DE +×12×DE=30,∴DE=2(cm ).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.17.如图,∠MAN 是一钢架,且∠MAN=15°,为使钢架更加坚固,需在其内部加一些钢管CD 、DE 、EF …添加的钢管长度都与AC 相等,则最多能添加这样的钢管 5 根.【考点】等腰三角形的性质.【分析】依次计算出图形中的各个角,根据等腰三角形的底角一定是锐角,不能是直角或钝角,即可判断.【解答】解:∵AC=CD∴∠CDA=∠A=15°∴∠DCE=∠CDA +∠A=30°同理,∠CED=∠DCE=30°∴∠CDE=120°∴∠EDF=180°﹣∠ADC﹣∠CDE=180°﹣15°﹣120°=45°∵DE=EF∴∠EFD=∠EDF=45°∴∠DEF=90°∴∠GEF=180°﹣∠CED﹣∠EFD=180°﹣30°﹣90°=60°∵EF=FG∴∠EFG=60°∴∠GFN=180°﹣∠EFD﹣∠EFG=180°﹣45°﹣60°=75°∵GF=GH∴∠GHF=∠GFH=75°∴∠FGH=30°∴∠MGH=180°﹣∠EGF﹣∠FGH=180°﹣60°﹣30°=90°再作与CD相等的线段时,90°的角不能是底角,则最多能作出的线段是:CD、DE、EF、FG、GH共有5条.故答案是:5.【点评】本题主要考查了等腰三角形的性质,等边对等角,正确求得图形中各个角的度数是关键.18.已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=6.【考点】线段垂直平分线的性质;全等三角形的判定与性质;角平分线的性质.【分析】首先连接PB,PC,由∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,易得PE=PF,PB=PC,继而证得△PBE≌△PCF,AE=AF,又由AB=8,AC=4,即可求得答案.【解答】解:连接PB,PC,∵点P在BC的垂直平分线上,∴PB=PC,∵AC平分∠BAC,PE⊥AB,PF⊥AC,∴PE=PF,∠PEB=∠PFC=90°,∴∠APE=∠APF,∴AE=AF,在Rt△PBE和Rt△PCF中,,∴Rt△PBE≌Rt△PCF(HL),∴BE=CF,∵AB=AE+BE,AF=AC+CF,∴AB=AC+CF+BE,∵AB=8,AC=4,∴BE=CF=2,∴AE=AC+CF=6.故答案为:6.【点评】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.注意准确作出辅助线是解此题的关键.三、解答题(共计96分)19.利用网格线画图:如图,点A、B、C都在正方形网格的格点上.(1)在BC上找一点P,使PA=PB;(2)在BC上找一点Q,使点Q到AB和AC的距离相等.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】(1)直接利用线段垂直平分线的性质结合网格得出答案;(2)直接利用角平分线的性质结合网格得出答案.【解答】解:(1)如图所示:点P即为所求;(2)如图所示:点Q即为所求.【点评】此题主要考查了角平分线的性质以及线段垂直平分线的性质,正确借助网格作图是解题关键.20.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.21.如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.解:需添加条件是BD=CD,或BE=CF.【考点】全等三角形的判定与性质.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:需添加的条件是:BD=CD,或BE=CF.添加BD=CD的理由:如图,∵AB=AC,∴∠B=∠C.又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∴△BDE≌△CDF(AAS).∴DE=DF.添加BE=CF的理由:如图,∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD.又∵BE=CF,∴△BDE≌△CDF(ASA).∴DE=DF.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.23.(10分)(2013秋•南长区期中)如图,已知OB、OC为△ABC的角平分线,EF∥BC 交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线的定义可得∠ABO=∠CBO,根据两直线平行,内错角相等可得∠CBO=∠EBO,从而得到∠ABO=∠EOB,根据等角对等边可得BE=OE,同理可证CF=OF,然后求出△AEF的周长=AB+AC,最后根据三角形的周长的定义解答.【解答】解:∵OB平分∠ABC,∴∠ABO=∠CBO,∵EF∥BC,∴∠CBO=∠EBO,∴∠ABO=∠EOB,∴BE=OE,同理可得,CF=OF,∵△AEF的周长为15,∴AE+OE+OF+AF=AE+BE+CF+AF=AB+AC=15,∵BC=7,∴△ABC的周长=15+7=22.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,熟记性质并求出△AEF的周长=AB+AC是解题的关键,也是本题的难点.24.(10分)(2013秋•盐都区期中)如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半可得BM=AC,DM=AC,从而求出BM=DM,再根据等腰三角形三线合一的性质证明即可.【解答】证明:∵∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴BM=DM,∵N是BD的中点,∴MN⊥BD(等腰三角形三线合一).【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质是解题的关键.25.(10分)(2015秋•东平县期末)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD 垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.26.(10分)(2016秋•江阴市期中)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,BC=10,EF=4.(1)求△MEF的周长;(2)若∠ABC=50°,∠ACB=60°,求△EFM的三个内角的度数.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半求出EM、FM,再根据三角形的周长的定义列式计算即可得解;(2)根据等腰三角形两底角相等求出∠BMF,∠CME,然后根据平角等于180°列式计算即可求出∠EMF,再根据等腰三角形两底角相等求出另两个角即可.【解答】解:(1)∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=BC=5,FM=BC=5,∴△MEF周长=EF+EM+FM=4+5+5=14;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME═180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°,∴∠MEF=∠MFE=(180°﹣∠EMF)=70°,∴△MEF的三个内角分别为40°、70°、70°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,平角的定义,是基础题,熟记性质并准确识图是解题的关键.27.(12分)(2009春•高新区期末)锐角为45°的直角三角形的两直角边长也相等,这样的三角形称为等腰直角三角形.我们常用的三角板中有一块就是这样的三角形,也可称它为等腰直角三角板.把两块全等的等腰直角三角板按如图1放置,其中边BC、FP均在直线l 上,边EF与边AC重合.(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.【考点】等腰直角三角形;全等三角形的判定与性质.【分析】(1)延长BQ交AP于点M,根据等腰直角三角板的每一个锐角都是45°可得∠EPF=45°,然后求出∠CQP=45°,根据等角对等边的性质求出CQ=CP,然后利用边角边定理证明△BCQ与△ACP全等,再根据全等三角形对应边相等,即可证明BQ=AP,对应角相等可得∠CBQ=∠CAP,又∠CBQ+∠BQC=90°,所以∠CAP+∠AQM=90°,从而得到BQ⊥AP;(2)延长QB交AP于点M,根据等腰直角三角板的每一个锐角都是45°可得∠EPF=45°,根据对顶角相等得到∠CPQ=45°,然后求出∠CQP=45°,根据等角对等边的性质求出CQ=CP,然后利用边角边定理证明△BCQ与△ACP全等,再根据全等三角形对应边相等,即可证明BQ=AP,对应角相等可得∠BQC=∠APC,又∠CBQ+∠BQC=90°,所以∠PBM+∠APC=90°,从而得到BQ⊥AP.【解答】(1)BQ=AP,BQ⊥AP.证明:延长BQ交AP于点M,∵△ABC和△EFP都是等腰直角三角板,∴BC=AC,AC⊥BC,∠EPF=45°,∴∠BCQ=∠ACP=90°,∠CQP=∠EPF=45°,∴CQ=CP,在△BCQ和△ACP中,,∴△BCQ≌△ACP(SAS),∴BQ=AP,∠CBQ=∠CAP,∵∠BCQ=90°,∴∠CBQ+∠BQC=90°,∵∠BQC=∠AQM(对顶角相等),∴∠CAP+∠AQM=90°,∴∠AMB=90°,∴BQ⊥AP;(2)关系仍然成立:BQ=AP,BQ⊥AP.证明:延长QB交AP于点M,∵△ABC和△EFP都是等腰直角三角板,∴BC=AC,AC⊥BC,∠EPF=45°,∴∠BCQ=∠ACP=90°,∵∠CQP=∠EPF=45°,∴∠CPQ=∠CQP=45°,∴CQ=CP,在△BCQ和△ACP中,,∴△BCQ≌△ACP(SAS),∴BQ=AP,∠BQC=∠APC,∵∠BCQ=90°,∴∠CBQ+∠BQC=90°,∵∠PBM=∠QBC(对顶角相等),∴∠PBM+∠APC=90°,∴∠PMB=90°,∴BQ⊥AP.【点评】本题考查了等腰直角三角形的两直角边相等,每一个锐角都是45°的性质,全等三角形的判定与性质,题目不比较复杂但思路比较清晰,此类题目一般都是下一问继续沿用第一问的证明思路进行求解.28.(12分)(2016春•长清区期末)如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过24秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,。

江苏省扬州市仪征市中考数学一模试卷(含解析)(1)

江苏省扬州市仪征市中考数学一模试卷(含解析)(1)

2017年江苏省扬州市仪征市中考数学一模试卷一、选择题(本题共8个小题,每小题3分,共24分)1.3﹣1=()A.﹣ B.C.﹣3 D.32.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8D.(a3b2)2=a5b43.百度搜索“撸起袖子加油干”,为您找到相关结果约4190000个,其中4190000用科学记数法表示为()A.4.19×105B.4.19×106C.4.19×107D.0.419×1074.由6个相同的立方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.5.若一个正多边形的一个外角是36°,则这个正多边形的边数是()A.7 B.8 C.9 D.106.若a<1﹣<b,且a、b是两个连续整数,则a+b的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣47.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD 的度数为()A.63° B.54° C.36° D.27°8.如图,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小 B.一直不变 C.先增大后减小 D.先减小后增大二、填空题(本大题共10小题,每小题3分,共30分)9.若在实数范围内有意义,则a的取值范围是.10.分解因式:2x2﹣8y2= .11.甲、乙、丙、丁四位同学参加了10次数学测验,他们测验的平均成绩()与方差(S2)如下表所示,那么这四位同学中,成绩较好,且较稳定的是12.如图,若l1∥l2∥l3,如果DE=4,EF=2,AC=5,则BC= .13.已知圆锥的侧面积为15π,母线长5,则圆锥的高为.14.若x+3y﹣4=0,则3x•27y= .15.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b>的解集为.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.17.若方程(m﹣x)(x﹣n)=3(m、n为常数,且m<n)的两实数根分别为a、b(a<b),则将m,n,a,b按从小到大的顺序排列为.18.如图,在直角坐标系,矩形OABC的边OA在x轴上,边OC在y轴上,点B的坐标为(3,1),将矩形沿对角线BO翻折,C点落在D点的位置,且BD交x轴于点E.那么点D的坐标为.三、解答题(本大题共10小题,共96分)19.(1)计算:2sin60°×﹣(﹣1)0;(2)化简:﹣÷.20.解不等式组,并写出该不等式组的最小整数解.21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:请根据所提供的信息解答下列问题:(1)样本的中位数是分;(2)频率统计表中a= ,b= ;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?22.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.23.如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作▱ABDE,连接AD、EC.(1)试说明:△ADC≌△ECD;(2)若BD=CD,试说明:四边形ADCE是矩形.24.如图(1),一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在线段OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,如图(2),此时,点A、C的对应位置分别是点B、D,测量出∠ODB为37°,点D到点O的距离为28cm.(1)求B点到OP的距离.(2)求滑动支架AC的长.(参考数据:sin37°=,cos37°=,tan37°=)25.新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?26.如图,以△ABC的边AB为直径作⊙O,交边BC于点D,点E是上一点.(1)若AC为⊙O的切线,试说明:∠AED=∠CAD;(2)若AE平分∠BAD,延长DE、AB交于点P,若PB=BO,DE=2,求PD的长.27.数学活动课上,某学习小组对有一内角(∠BAD)为120°的平行四边形ABCD,将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究:在(2)的条件下,学习小组某成员探究发现AE+2AF=AC,试判断结论是否正确,并说明理由.28.如图,抛物线y=ax2﹣6x+c与x轴交于点A、B(5,0),与y轴交于点C(0,5),点P 是抛物线上的动点,设点P的横坐标为t,连接PB、PC,PC与x轴交于点D,过点P作y 轴的平行线交x轴于点H、交直线BC于点E.(1)求该抛物线所对应的函数解析式;(2)若点P在第四象限,则△BPC的面积有值(填“最大”或“最小”),并求出其值;(3)当t<5时,△BPE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.2017年江苏省扬州市仪征市中考数学一模试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)1.3﹣1=()A.﹣ B.C.﹣3 D.3【考点】6F:负整数指数幂.【分析】根据负整数指数幂的意义即可求出答案.【解答】解:原式=,故选(B)2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8D.(a3b2)2=a5b4【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】分别利用单项式乘以单项式以及单项式除以单项式、积的乘方运算法则分别化简得出答案.【解答】解:A、a7÷a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4•a2=3a6,故此选项错误;D、(a3b2)2=a6b4,故此选项错误;故选:A.3.百度搜索“撸起袖子加油干”,为您找到相关结果约4190000个,其中4190000用科学记数法表示为()A.4.19×105B.4.19×106C.4.19×107D.0.419×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4190000=4.19×106.故选:B.4.由6个相同的立方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是两个小正方形,第二列是两个小正方形,第三列是一个正方形,故选:B.5.若一个正多边形的一个外角是36°,则这个正多边形的边数是()A.7 B.8 C.9 D.10【考点】L3:多边形内角与外角.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选D.6.若a<1﹣<b,且a、b是两个连续整数,则a+b的值是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【考点】2B:估算无理数的大小.【分析】先求出的范围,再求出1﹣的范围,求出a、b的值,代入求出即可.【解答】解:∵2<<3,∴﹣2>﹣3,∴﹣1>1﹣>﹣2,∴a=﹣2,b=﹣1,∴a+b=﹣3,故选C.7.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD 的度数为()A.63° B.54° C.36° D.27°【考点】M5:圆周角定理.【分析】先根据圆周角定理得到∠ACD=∠AOD=27°,然后利用互余求解.【解答】解:∵一块直角三角板ABC的斜边AB与量角器的直径重合,∴点A、B、C、D都在以AB为直径的圆上,∵点D对应54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°﹣∠ACD=63°.故选A.8.如图,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小 B.一直不变 C.先增大后减小 D.先减小后增大【考点】E7:动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选D.二、填空题(本大题共10小题,每小题3分,共30分)9.若在实数范围内有意义,则a的取值范围是a≤3 .【考点】72:二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.【解答】解:∵在实数范围内有意义,∴3﹣a≥0,解得a≤3.故答案为:a≤3.10.分解因式:2x2﹣8y2= 2(x+2y)(x﹣2y).【考点】55:提公因式法与公式法的综合运用.【分析】观察原式2x2﹣8y2,找到公因式2,提出公因式后发现x2﹣4y2符合平方差公式,所以利用平方差公式继续分解可得.【解答】解:2x2﹣8y2=2(x2﹣4y2)=2(x+2y)(x﹣2y).故答案为:2(x+2y)(x﹣2y).11.甲、乙、丙、丁四位同学参加了10次数学测验,他们测验的平均成绩()与方差(S2)如下表所示,那么这四位同学中,成绩较好,且较稳定的是乙【考点】W7:方差.【分析】比较平均数的大小可确定乙和丙的成绩较好,然后比较乙和丙的方差即可得到成绩较好,且较稳定的同学.【解答】解:∵乙和丙的平均数比甲和丁的平均数大,∴乙和丙的成绩较好,∵S乙2<S丙2,∴乙的成绩比丙要稳定,∴这四位同学中,成绩较好,且较稳定的是乙.答案为:乙.12.如图,若l1∥l2∥l3,如果DE=4,EF=2,AC=5,则BC= .【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵l1∥l2∥l3,∴=,即=,解得,BC=,故答案为:.13.已知圆锥的侧面积为15π,母线长5,则圆锥的高为.【考点】MP:圆锥的计算.【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•5=15π,然后解方程求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得•2π•r•5=15π,解得r=3,所以圆锥的高==4.故答案为4.14.若x+3y﹣4=0,则3x•27y= 81 .【考点】46:同底数幂的乘法.【分析】将x+3y看作一个整体并求出其值,然后逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:∵x+3y﹣4=0,∴x+3y=4,∴3x•27y=3x•33y=3x+3y=34=81.故答案为:81.15.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b>的解集为﹣1<x <0或x>2 .【考点】FD:一次函数与一元一次不等式.【分析】把A(2,1).B(﹣1.﹣2)代入y=kx+b得到一次函数的解析式为y=x﹣1,解方程组即可得到结论.【解答】解:∵A(2,1).B(﹣1.﹣2),∴,∴,∴一次函数的解析式为:y=x﹣1,设y=,解:得,,∴不等式kx+b>的解集为﹣1<x<0或x>2.故答案为:﹣1<x<0或x>2.16.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】L8:菱形的性质;T7:解直角三角形.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEC=90°,∵∠ACE=∠ACG=∠BCG=60°,∴E、C、B共线,在Rt△AEB中,tan∠ABC===.故答案为.17.若方程(m﹣x)(x﹣n)=3(m、n为常数,且m<n)的两实数根分别为a、b(a<b),则将m,n,a,b按从小到大的顺序排列为m<a<b<n .【考点】AB:根与系数的关系;AA:根的判别式.【分析】利用数形结合的思想,根据题意得到二次函数y=﹣(x﹣m)(x﹣n)与直线y=3的交点的横坐标分别为a、b,加上二次函数y=﹣(x﹣m)(x﹣n)与x轴的两交点的坐标为(m,0),(n,0),抛物线开口向下,于是可得到m<a<b<n.【解答】解:因为方程(m﹣x)(x﹣n)=3(m、n为常数,且m<n)的两实数根分别为a、b(a<b),所以二次函数y=﹣(x﹣m)(x﹣n)与直线y=3的交点的横坐标分别为a、b,而二次函数y=﹣(x﹣m)(x﹣n)与x轴的两交点的坐标为(m,0),(n,0),抛物线开口向下,所以m<a<b<n.故答案为m<a<b<n.18.如图,在直角坐标系,矩形OABC 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(3,1),将矩形沿对角线BO 翻折,C 点落在D 点的位置,且BD 交x 轴于点E .那么点D 的坐标为 (,) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】根据折叠可知:BD=BC=OA=3,∠ODE=∠OAB=∠OCB=90°,OD=OC=AB=1,由AAS 证明△ODE ≌△BAE ,得出DE=AE ,OE=BE ,设AE=x ,那么OE=3﹣x ,DE=x ,在Rt △ODE 中,由勾股定理得出方程,解方程求出OE=,DE=,证明△ODF ∽△DOE ,得出对应边成比例求出OF=,DF=,即可得出点D 的坐标.【解答】解:如图,过D 作DF ⊥OC 于F ,∵点B 的坐标为(3,1),∴BC=AO=3,AB=OC=1,根据折叠可知:BD=BC=OA=3,∠ODE=∠OAB=∠OCB=90°,OD=OC=AB=1,在△ODE 和△BAE 中,,∴△ODE ≌△BAE (AAS ),∴DE=AE ,OE=BE ,设AE=x ,那么OE=3﹣x ,DE=x ,∴在Rt △ODE 中,OE 2=DE 2+OD 2,∴(3﹣x )2=x 2+12,解得:x=,∴OE=,DE=,又∵DF ⊥OC ,∴DF ∥EO ,∴∠ODF=∠EOD,∵∠DFO=∠ODE=90°,∴△ODF∽△DOE,∴==∴OF=,DF=,∴点D的坐标为(,).三、解答题(本大题共10小题,共96分)19.(1)计算:2sin60°×﹣(﹣1)0;(2)化简:﹣÷.【考点】6C:分式的混合运算;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数和零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)2sin60°×﹣(﹣1)0=2××2﹣1=6﹣1=5;(2)﹣÷===.20.解不等式组,并写出该不等式组的最小整数解.【考点】CC:一元一次不等式组的整数解;CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+4<3(x+2),得:x>﹣1,解不等式+1>x,得:x<4,∴不等式组的解集为﹣1<x<4,则不等式组的最小整数解为0.21.为了传承优秀传统文化,我市组织了一次初三年级1200名学生参加的“汉字听写”大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50分),整理得到如下的统计图表:请根据所提供的信息解答下列问题:(1)样本的中位数是44.5 分;(2)频率统计表中a= 12 ,b= 0.30 ;(3)请补全频数分布直方图;(4)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;W4:中位数.【分析】(1)根据题意可知中位数是第50个数和51个数的平均数,本题得以解决;(2)根据表格和随机抽取了100名学生的成绩,可以求得a、b的值,本题得以解决;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得该次大赛中成绩不低于41分的学生人数.【解答】解:(1)∵随机抽取了100名学生的成绩,由表格可得,1+2+3+3+6+7+5+8+15=50,50+9+59,∴中位数为: =44.5,故答案为:44.5;(2)由表格可得,a=100×0.12=12,b=30÷100=0.30,故答案为:12,0.30;(3)补全的频数分布直方图如右图所示,(4)由题意可得,1200×(0.20+0.35+0.30)=1020(人),即该次大赛中成绩不低于41分的学生有1020人.22.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是.【考点】X6:列表法与树状图法;P3:轴对称图形;R5:中心对称图形;X4:概率公式.【分析】(1)若乙固定在E处,求出移动甲后黑色方块构成的拼图一共有多少种可能,其中是轴对称图形的有几种可能,由此即可解决问题.(2)①画出树状图即可解决问题.②中心对称图形有两种可能,由此即可解决问题.【解答】解:(1)若乙固定在E处,移动甲后黑色方块构成的拼图一共有3种可能,其中有两种情形是轴对称图形,所以若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.故答案为.(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率=.②黑色方块所构拼图中是中心对称图形有两种情形,①甲在B处,乙在F处,②甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是.故答案为.23.如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作▱ABDE,连接AD、EC.(1)试说明:△ADC≌△ECD;(2)若BD=CD,试说明:四边形ADCE是矩形.【考点】LC:矩形的判定;KD:全等三角形的判定与性质;L5:平行四边形的性质.【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB,则易证△ADC ≌△ECD,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD,AE∥CD,得出平行四边形,根据AC=DE推出即可.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,又∵▱ABDE中,AB=DE,AB∥DE,∴∠B=∠EDC=∠ACB,AC=DE,在△ADC和△ECD中,,∴△ADC≌△ECD(SAS).(2)解:∵四边形ABDE是平行四边形,∴AE=BD,AE∥BC,∵D为边长中点,∴BD=CD,∴AE=CD,AE∥CD,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形.24.如图(1),一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端在线段OP上滑动,将窗户OM按图示方向向内旋转45°到达ON位置,如图(2),此时,点A、C的对应位置分别是点B、D,测量出∠ODB为37°,点D到点O的距离为28cm.(1)求B点到OP的距离.(2)求滑动支架AC的长.(参考数据:sin37°=,cos37°=,tan37°=)【考点】T8:解直角三角形的应用.【分析】(1)根据三角函数分别表示出OH和DH,再根据点D到点O的距离为28cm可列方程求解;(2)在Rt△BDH中,根据三角函数即可得到滑动支架的长.【解答】解:(1)如图所示:在Rt△BHD中,∠BDH=37°,由tan37°=,可令BH=3x,则DH=4x.由题意∠BOD=90°﹣45°=45°,则OH=BH=3x,由OD=OH+DH=28得:4x+3x=28,解得x=4,∴BH=3x=12 (cm);答:B点到OP的距离为12cm.(2)在Rt△BHD中,sin∠BDH=,∴BD=,∴AC=BD=20(cm);答:滑动支架AC的长为20cm.25.新化到长沙的距离约为200km,小王开着小轿车,张师傅开着大货车都从新化去长沙,小王比张师傅晚出发20分钟,最后两车同时到达长沙.已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?【考点】B7:分式方程的应用.【分析】设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,根据时间关系列出方程,解方程即可.【解答】解:设大货车的速度是x千米/时,则小轿车的速度是1.2x/时,由题意,得﹣=,解得x=100,经检验,x=100是原方程的解,且符合题意,则1.2x=120.答:大货车的速度为100km/h,小轿车的速度为120km/h.26.如图,以△ABC的边AB为直径作⊙O,交边BC于点D,点E是上一点.(1)若AC为⊙O的切线,试说明:∠AED=∠CAD;(2)若AE平分∠BAD,延长DE、AB交于点P,若PB=BO,DE=2,求PD的长.【考点】MC:切线的性质.【分析】(1)首先证明∠CAD=∠B,根据∠AED=∠B即可证明结论.(2)只要证明AD∥OE,可得==,由此即可解决问题.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC是切线,∴∠CAB=90°,∴∠DAB+∠DBA=90°,∠DAB+∠CAD=90°,∴∠CAD=∠DBA,∵∠DBA=∠AED,∴∠AED=∠CAD.(2)解:连接OE.∵AE平分∠BAD,∴∠DAE=∠EAB,∵OA=OE,∴∠AEO=∠EAB,∴∠DAE=∠AEO,∴AD∥OE,∴==,∴DP=3DE=6.27.数学活动课上,某学习小组对有一内角(∠BAD)为120°的平行四边形ABCD,将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究:在(2)的条件下,学习小组某成员探究发现AE+2AF=AC,试判断结论是否正确,并说明理由.【考点】LO:四边形综合题.【分析】(1)①首先证明△ABC,△ACD都是等边三角形,根据ASA即可证明.②利用①中结论,即可证明.(2)首先利用勾股定理逆定理证明△ACD是直角三角形,再证明△ACE∽△HCF,即可推出==2.(3)利用代数法证明,如图2中,由(2)可知,设FH=α,则AE=2a,设AH=x,则AH=3x,易知AC=2x,AF=3x﹣a,即可得出AE+2AF=2a+2(3x﹣a)=6x=AC.【解答】(1)①证明:如图1中,∵四边形ABCD 是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠BCF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,,∴△BCE≌△ACF.②如图1中,∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.∴AE+AF=AC.(2)证明:如图2中,设DH=x,由题意CD=2x,CH=x.∴AD=2AB=4x,AH=AD﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=16x2,AD2=16x2,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°=∠ACH,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)结论正确.理由:如图2中,由(2)可知,设FH=α,则AE=2a,设AH=x,则AH=3x,易知AC=2x,∴AF=3x﹣a,∴AE+2AF=2a+2(3x﹣a)=6x=AC.28.如图,抛物线y=ax2﹣6x+c与x轴交于点A、B(5,0),与y轴交于点C(0,5),点P 是抛物线上的动点,设点P的横坐标为t,连接PB、PC,PC与x轴交于点D,过点P作y 轴的平行线交x轴于点H、交直线BC于点E.(1)求该抛物线所对应的函数解析式;(2)若点P在第四象限,则△BPC的面积有最大值(填“最大”或“最小”),并求出其值;(3)当t<5时,△BPE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由B、C的坐标可求得抛物线解析式;(2)可求得直线BC的解析式,则可用t表示出PE的长,进一步可表示出△PBC的面积,再利用二次函数的性质可求得其最大值;(3)可用t表示出P、H、E 的坐标,由(2)可知△BHE为等腰直角三角形,可求得BE=(﹣t+5),分PE=PB、BE=BP和BE=PE三种情况,分别得到关于t的方程,可求得t的值,则可求得P点的坐标.【解答】解:(1)∵B(5,0),C(0,5),∴c=5,0=25a﹣30+c,解得a=1,∴抛物线解析式为y=x2﹣6x+5;(2)∵B(5,0),C(0,5),∴直线BC解析式为y=﹣x+5,∵P的横坐标为t,连接PB、PC,PC与x轴交于点D,过点P作y轴的平行线交x轴于点H、交直线BC于点E.∴P(t,t2﹣6t+5),E(t,﹣t+5),∴PE=﹣t+5﹣(t2﹣6t+5)=﹣t2+5t,∴S△PBC=OB•PE=×5(﹣t2+5t)=﹣(t﹣)2+,∵﹣<0,∴S△PBC有最大值,最大值为,故答案为:最大;(3)存在.理由如下:由题意可知P(t,t2﹣6t+5),则H(t,0),E(t,﹣t+5),且△BHE为等腰直角三角形,∴BE=BH=(5﹣t),∵△BPE为等腰三角形,∴有PE=PB、BE=BP和BE=PE三种情况,①当PE=PB时,由于∠PEB=45°,∴△PEB为等腰直角三角形,点P在A点处,即P(1,0),符合题意;②当BE=BP时,由于PE⊥BH,∴HE=HP,即点E与点P关于x轴对称,∴﹣t+5+t2﹣6t+5=0,解得t=2或t=5(不合题意,舍去),∴P(2,﹣3);③当BE=PE时,∵△EHB为等腰直角三角形,∴BE=HB=(5﹣t),且PE=|﹣t2+5t|,∴|﹣t2+5t|=(5﹣t),解得t=±或t=5(不舍题意,舍去),∴P(,7﹣6)或(﹣,7+6);综上可知存在满足条件的点P,其坐标为(1,0)或(2,﹣3)或(,7﹣6)或(﹣,7+6).。

江苏省仪征市南京师范大学第二附属初级中学八年级数学

江苏省仪征市南京师范大学第二附属初级中学八年级数学

江苏省仪征市南京师范大学第二附属初级中学2015-2016学年八年级数学5月阶段性检测试题(考试时间120分钟,满分150分)一.选择题:(每小题3分,共24分。

)1.以下问题,不适合...用普查的是(▲ )A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试 D.了解全市中小学生每天的零花钱2.下列各式从左到右变形正确的是(▲ )A.yxyxyxyx222121+-=+-B.babababa222.02.0++=++C.yxxyxx--=-+-11D.babababa+-=-+3.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是(▲ )A.摸出的三个球中至少有一个球是黑球 B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球4. 函数1xyx=-的自变量x的取值范围在数轴上表示为(▲ )5. 已知下列命题,其中真命题的个数是(▲ )①若22ba=,则ba=;②对角线互相垂直平分的四边形是菱形;③两组对角分别相等的四边形是平行四边形;④在反比例函数xy2=中,如果函数值y<1时,那么自变量x>2.A.4个 B.3个 C.2个 D.1个6.若mn>0,则一次函数y=mx n+与反比例函数y=mnx在同一坐标系中的大致图象是(▲ )7.教室的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃后停止加热。

水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系。

直到水温降至20℃,饮水机关机。

饮水机关机后即刻自动开机。

重复上述自动程序,若在水温为20℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,为了在上午第一节课下课时(8:45)能喝到不超过40℃的水,则接通A. B.C. D.第4题012-1012-1012- 1012-1A. B. C . D.第6题电源的时间可以是当天上午的( ▲ )A. 7:10B. 7:20C. 7:30D. 7:508.如右图所示,将一张边长为8的正方形纸片ABCD 折叠,使点D 落在BC 的中点E 处,点A 落在点F 处,折痕为MN ,则线段MN 的长为( ▲ ) A.10 B.45 C.89 D.212二.填空题:(每小题3分,共30分)9.某校为了解该校1000名毕业生的数学考试成绩,从中抽查了100名考生的数学成绩.在这次调查中,样本容量是 ▲ .10.在下列图形:①圆 ②等边三角形 ③矩形 ④平行四边形中,既是中心对称图形又是轴对称图形的是_ ▲ (填写序号). 11.分式)(612123y x x x - ;的最简公分母是_ ▲ . 12.实数a 在数轴上的位置如图所示,化简2212a a a -++-=__▲ __.13.已知点P ()2,1-x 、Q ()3,2x 、H ()1,3x 在双曲线xa y )1(2+-=上,那么1x 、2x 、3x 的大小关系是_ ▲ . 14.要用反证法证明命题“一个三角形中不可能有两个角是直角”,首先应假设这个三角形中__ ▲ __. 15.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB =5,AC =3,则DF 的长为_ ▲ .16.如图,平行四边形ABCD 中,点E 在AD 上,以BE 为折痕,把△ABE 向上翻折,点A 正好落在CD 边的点F 处 ,若△FDE 的周长为6,△FCB 的周长为20,那么CF 的长为 ▲ . 17.关于x 的方程112=-+x ax 的解为正数,那么a 的取值范围是_ ▲ . 18.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A D 、在x 轴的负半轴上,点C 在y 轴y (°C )100 20 x (min)第7题 OABNMF EDC第8题 第15题 第18题D O A B CE F xy12a第12题D CFA B E第16题OEDCF第22题 D G EF H C AB的正半轴上,点F 在AB 上,点B E 、在反比例函数xky =的图像上,正方形ADEF 的面积为4,且2BF AF =,则k 值为__▲ __.三、解答题(10题,共96分) 19.计算(每题5分,共10分)(1)32)48312123(÷+- (2) 221()a a a a a--÷ 20.(6分)解方程:3911332-=-+x x x 21.(8分)先化简,再求值:22122121x x x x x x x x ----÷+++(),其中210x x --=22.( 8分) 如图,在方格纸中,△ABC 的三个顶点及H G F E D 、、、、、五个点分别位于小正方形的顶点上.(1)画出△ABC 绕点B 顺时针方向旋转90°后的图形.(2)先从H G F E 、、、四个点中任意取两个不同的点,再和D 点构成三角形,求所得三角形与△ABC 面积相等的概率是 ▲ .23.(8分)仪征市为了解2014年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A .读普通高中; B .读职业高中 C .直接进入社会就业; D .其它)进行数据统计,并绘制了两幅不完整的统计图(a )、(b ).请问:(1)该区共调查了 名初中毕业生; (2)将两幅统计图中不完整的部分补充完整; (3)若该市2014年初三毕业生共有8500人,请估计该市今年的初三毕业生中读普通高中的学生人数.24.(10分)如图所示,点O 是菱形ABCD 对角线的交点, CE ∥BD ,EB ∥AC ,连接OE ,交BC 于F .(1)求证:OE =CB ;(2)如果OC : OB =1:2,OE =5, 求菱形ABCD 的面积.25.(10分)某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数y (亩)与平均每亩产量x (万斤)之间的函数关系式,并写出自变量x 的取值范围;(总产量=亩数⨯平均每亩产量)(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了8万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?26.(12分)如图,已知直线x y 21=与双曲线)0(>=k xky 交于A 、B 两点,A 点横坐标为4. (1)求k 值;(2)直接写出关于x 的不等式021>-xkx 的解集; (3)若双曲线)0(>=k xky 上有一点C 的纵坐标为8,求△AOC 的面积. (4)若在x 轴上有点M ,y 轴上有点N ,且点M 、N 、A 、C 四点恰好构成平行四边形,直接写出点M 、N 的坐标.27.(共12分)如图,菱形ABCD 中,E 、F 分别是边AD ,CD 上的两个动点(不与菱形的顶点重合),且满足CF =DE ,∠A =60°.(1)写出图中一对全等三角形:____________________. (2)求证:△BEF 是等边三角形;(3)若菱形ABCD 的边长为2,设△DEF 的周长为m ,则m 的取值范围为 ▲ (直接写出答案); (4) 连接AC 分别与边BE 、BF 交于点M 、N ,且∠CBF =15º,试说明:222AM CN MN =+.备用图yO x C A B28.(本题满分12分)阅读理解:对于任意正实数a 、b ,∵2()a b -≥0, ∴2a ab b -+≥0, ∴a b +≥2ab ,只有当a =b 时,等号成立.结论:在a b +≥2ab (a 、b 均为正实数)中,若ab 为定值p ,则a +b ≥2p ,只有当a=b 时,a +b 有最小值2p .根据上述内容,填空:若m >0,只有当m = 时,mm 4+有最小值,最小值为 . 探索应用:如图,已知)0,2(-A ,)3,0(-B ,P 为双曲线xy 6=(x >0)上的任意一点,过点P 作PC ⊥x 轴于点C , PD ⊥y 轴于点D .求四边形ABCD 面积的最小值,并说明 此时四边形ABCD 的形状.实际应用:已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共490元;二是燃油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本..........最低?最低平均每千米的运输成本是多少元?南京师范大学第二附属初级中学2016年5月 八 年 级 数 学 参 考 答 案 一、选择题:(每小题3分,共24分)二、填空题(每小题3分,共30分)9. 100 10. ① ③ 11. )(63y x x - 12. 1 . 13.321x x x >> 14. 有两个角是直角 15. 1 16. 7 17.21-≠-<a a 且 18. -6 三、解答题(共10小题,共96分) 19.计算:(5+5共10分)(1) 解:原式=32)3433226(÷+- ………(3分) =314323328=÷ ………(5分)(2)221=(1)a a a a a -⨯-解:原式 ……… (3分)1a =+ ……… (5分)20.(6分)解:去分母:13)13(2=+-x x …………(2分) 31=x …………(4分) 检验:当31=x 时,039=-x 所以:31=x 是原方程增根,原方程无解……(6分) 21.(8分) 22212(1)=(1)(21)x x x x x x x x --++⨯+-解:原式 ………(2分)221(1)(1)(21)x x x x x x -+=⨯+-21x x +=………(6分) 题号 1 2 3 4 5 6 7 8 答案 D A A CCACB22101=1x x x x --=∴=+∴Q 原式 ……… (8分)22.(共8分) (1)(图略)(4分)(2)21(8分) 23.(共8分)(1) 100 (2分) (2)(条形图略) 扇形统计图:C 占 25% (6分) (3)8500%40⨯=3400(人)(8分)24.(共10分)(1)证明:∵四边形ABCD 是菱形 ∴AC ⊥BD ∵CE ∥DB , BE ∥AC∴四边形OCEB 是平行四边形 ………(2分) ∴四边形OCEB 是矩形∴OE BC = ………(5分)(方法不唯一) (2)Q AC ⊥BD :1:2CO OB =5BC OE ==Q∴ Rt △BCO 中,22225)CO OB BC +== ………(7分)1,2CO OB ∴==ABCD 四边形是菱形Q2AC ∴=,4BD =142ABCD S BD AC ∴=⨯=菱形 …………(10分)25.(共10分) (1)xy 36=………(2分) )4.03.0(≤≤x ………(4分)∴842=⨯==xy k ……(3分)(2)04<<-x 或4>x ……(6分) (3)把8=y 代入xy 8=∴1=x作CM ⊥x 轴,AN ⊥y 轴,垂点M 、N 15)28)(14(21CANM =+-⨯==∆梯S S AOC ……(10分)(方法不唯一)(4) (3,0),(0,6)M N 或(3,0),(0,6)M N --………(12分) 27.(共12分)(1)ABE ∆≌DBE ∆(或EBD ∆≌FBC ∆)(1分) (2)∵ABCD 为菱形 ∴AB AD DC BC ===∵∠A =∠C =60O∴△ABD 与△BDC 为等边三角形∴BD =BC ,∠EDB =∠C =60O∵DE =FC∴△EDB ≌△FCB (SAS ) ……(3分) ∴EB = FB ∠EBD =∠FBC∴∠EBF =60O∴△EBF 是等边三角形………(5分) (3)234m ≤< (8分)(4)把△BNC 绕点B 逆时针旋转120),使CB 与AB 重合,N 对应点为N ’,连接MN ’。

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。

以下是精品学习网初中频道为大家提供的中考数学一模考试试题练习,供大家复习时使用A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3 4 11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc 0B.2a+b 0C.a-b+c 0D.4ac-b2 04.二次函数y=ax2+bx的图象如图3 4 12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3 4 13,给出下列结论:①2a+b ②b a ③若-1图3 4 1312.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3 4 14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.如图3 4 15,已知抛物线y=1a(x-2)(x+a)(a 0)与x轴交于点B,C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1 0(1)求证:n+4m=0;(2)求m,n的值;(3)当p 0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3 4 16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与△C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又△1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)△抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)△y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m= 1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.△点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=12 6 2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2. 直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:△二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:△二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1 0OA=-x1,OB=x2,x1+x2=-nm,x1 x2=pm.令x=0,得y=p,C(0,p). OC=|p|.由三角函数定义,得tan CAO=OCOA=-|p|x1,tan CBO=OCOB=|p|x2.△tan CAO-tan CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1 x2=-1|p|.将x1+x2=-nm,x1 x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|= 1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p 0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.△二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与△C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO△Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.△以点C为圆心的圆与直线BD相切,△C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2 426.则此时抛物线的对称轴与△C相离.(3)假设存在满足条件的点P(xp,yp),△A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90 时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90 时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).这就是我们为大家准备的中考数学一模考试试题练习的内容,希望符合大家的实际需要。

江苏省扬州市仪征市(县)南师大第二附属初级中学九年级上第三次月考数学试题

江苏省扬州市仪征市(县)南师大第二附属初级中学九年级上第三次月考数学试题

南京师范大学第二附属初级中学2013年秋学期初三年级数学12月份单元练习(考试时间120分钟,满分150分)一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1、抛物线y =ax 2过点(1,-1),则a 的值为( )A 、1B 、-1C 、21 D 、-212、相交两圆的半径分别为4和7,则它们的圆心距可能是( )A 、2B 、3C 、6D 、113、对于函数y=-x 2+2x -2使得y 随x 的增大而减小的x 的取值范围是()A 、x>1B 、x ≥0C 、x ≤0D 、x<1 4、已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是( )A 、20cm 2B 、20πcm 2C 、15cm 2D 、15πcm 25、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )A .B .C .D .6、下列说法正确的是( )A 、平分弦的直径垂直于弦;B 、半圆(或直径)所对的圆周角是直角;C 、相等的圆心角所对的弧相等;D 、若两个圆有公共点,则这两个圆相交. 7、△ABC 内接于⊙O ,∠BOC =130°,则∠A 的度数为( )A 、50°B 、50°或130°C 、65°D 、65°或115° 8、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴是直线x=1.下列结论:①abc >O ,②2a+b=O ,③b 2﹣4ac <O ,④4a+2b+c >O 其中正确的是( )A 、①③B 、只有②°C 、②④D 、③④二、填空题(每小题3分,共30分)9、如图,点A 、B 、C 在O 上,A 50∠=,则BOC ∠的度数为 .(第9题图) (第13题图)10、将抛物线y=(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后抛物线的解析式为 .11、已知⊙O 1与⊙O 2的半径分别是a ,b ,且a 、b 满足,圆心距O 1O 2=1,则两圆的位置关系是 .12、已知点P 到⊙O 的最远距离为10cm ,最近距离为4cm ,则该圆半径为 cm . 13、如图,AB 为⊙O 的直径,CD 为⊙O 的一条弦,CD ⊥AB ,垂足为E ,已知CD =6,AE =1, 则⊙0的半径为14、若函数..y =(m -1)x 2+6x +1的图象与x 轴只有一个交点,则m = . 15、已知⊙O 的半径为2cm ,则其圆内接正三角形的边长为 cm . 16、如图,抛物线y =x 2+1与双曲线y =x k 的交点A 的横坐标为1,则不等式12--x xk >0的解集为 .(第16题图) (第17题图)17、正方形ABCD 在直线l 上无滑动地向右翻转,每一次转动90°,正方形边长为2,则按如图所示转动两次,点B 所经过的路线长为18、对于任何的实数t ,抛物线 y=x 2 +(2-t) x + t 总经过一个固定的点,这个点坐标是 .三、解答题(本大题共96分) 19、(本题满分8分)已知二次函数图像的顶点坐标为C (1,0),直线y=x+m 与该二次函数的图像交于A 、B 两点,其中A 点的坐标为(3,4),B 点在y 轴上.求m 的值及这个二次函数的关系式. 20、(本题8分)已知AB 为⊙O 的直径,M 、N 分别为OA 、OB 的中点,CM ⊥AB ,DN 垂直AB ,垂足分别为M 、N ,求证: ACBD21、(本题8分) 某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C 离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面3米,装货宽度为2.4米.请按照如图建立的坐标系,通过计算,判断这辆汽车能否顺利通过大门?22、(本题8分)在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径的圆弧与BC 相切于点D ,交AC 于点E ,连接AD .(1)求证:AD 平分∠BAC ;(2)已知AE=2,DC= 2 ,求圆弧的半径.23、(本题10分)写出二次函数2142y x x =-++图象的对称轴、顶点坐标和坐标轴的交点坐标,并在如图的坐标系中画出函数图象.24(本题10分)如图,在△ABC 中,AB=AC ,∠BAC=54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F . 请解答:(1)求证:BE=CE ;(2)求∠CBF 的度数;(3)若AB=6,求的长.25、(本题10分)对于问题“如图1,在一个直角三角形的内部作矩形ABCD,其中AB和AD在两直角边上,设AB=x cm,矩形ABCD的面积为yc m²,当x取何值时,y的值最大,最大值是多少?”(答案是当x=20时,y的值最大,最大值是300).小华同学提出了如下两个问题,你能帮助他解决吗?(1)如果按图2使矩形的一边BC在斜边EF上,如何解答此时求出来的最大值仍是300cm²吗?(2)你能肯定图1和图2中的两个面积最大的矩形全等吗?请说明理由.26(本题10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.27、(本题12分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.28、(本题12分)如图,对称轴为直线x=-1的抛物线2y ax bx c =++(a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)已知a=1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △P O C =4S △B O C .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.。

2017年江苏省扬州市中考数学试卷含答案

2017年江苏省扬州市中考数学试卷含答案

数学试卷第1页(共20页)数学试卷第2页(共20页)绝密★启用前江苏省扬州市2017年中考试卷数学本试卷满分150分,考试时间120分钟.一、选择题(每小题3分,共24分)1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是()A .4-B .2-C .2D .42.下列算式的运算结果为6a 的是()A .6a aB .23()aC .33a a +D .6a a÷3.一元二次方程2720x x --=的实数根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定4.下列统计量中,反映一组数据波动情况的是()A .平均数B .众数C .频率D .方差5.经过圆锥顶点的截面的形状可能是()6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A .6B .7C .11D .127.在一列数:1a ,2a ,3a ,⋅⋅⋅,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A .1B .3C .7D .98.如图,已知ABC △的顶点坐标分别为(0,2)A 、(1,0)B 、(2,1)C ,若二次函数21y x bx =++的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .2b -≤B .2b -<C .2b -≥D .2b ->二、填空题(每小题3分,共30分)9.2017年5月18日,我国在南海北部神狐海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.若2a b =,6b c =,则a c=.11.因式分解:2327x -=.12.在□ABCD 中,若200B D ∠+∠=︒,则A ∠=︒.13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数表达式是9325y x =+.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.如图,已知O 是ABC △的外接圆,连接AO ,若40B ∠=︒,则OAC ∠=︒.16.如图,把等边ABC △沿着DE 折叠,使点A 恰好落在BC 边上的点P 处,且DP BC ⊥,若4BP =cm ,则EC =cm .17.如图,已知点A 是反比例函数2y x=-的图像上的一个动点,连接OA ,若将线段OA 绕点O 顺时针旋转90︒得到线段OB ,则点B 所在图像的函数表达式为.18.若关于x 的方程2201740200x m x -+-+=存在整数解,则正整数m 的所有取值的和为.三、解答题(本大题共10小题,共96分)19.(8分)计算或化简:(1)202(π2017)2sin 60|13|-+--︒+-;(2)(32)2(1)(1)a a a a -++-.ABCD-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第3页(共20页)数学试卷第4页(共20页)20.(8分)解不等式组230,550,3x x +⎧⎪⎨-⎪⎩≥>并求出它的所有整数解.21.(8分)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如下图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A 、B 、C 、D 中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A 通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.(10分)如图,将ABC △沿着射线BC 方向平移至A B C ''△,使点A '落在ACB ∠的外角平分线CD 上,连接AA '.(1)判断四边形ACC A ''的形状,并说明理由;(2)在ABC △中,90B ∠=︒,24AB =,12cos 13BAC ∠=,求CB '的长.25.(10分)如图,已知□OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD AB ⊥,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆O 于点F ,连接CF .(1)判断直线DE 与半圆O 的位置关系,并说明理由;(2)①求证:CF C =O ;②若半圆O 的半径为12,求阴影部分的周长.数学试卷第5页(共20页)数学试卷第6页(共20页)26.(10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图①,在ABC △中,AO 是BC 边上的中线,AB 与AC 的“极化值”就等于22AO BO -的值,可记为AB 22AC AO BO =-.①②③(1)在图①中,若90BAC ∠=︒,8AB =,6AC =,AO 是BC 边上的中线,则AB OA=,OC OA =;(2)如图②,在ABC △中,4AB AC ==,120BAC ∠︒=,求AB AC 、BA BC 的值;(3)如图③,在ABC △中,AB AC =,AO 是BC 边上的中线,点N 在AO 上,且13ON AO =,已知AB 14AC =,BN 10BA =,求ABC △的面积.27.(12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(0a >)的相关费用,当4045x ≤≤时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润-日支出费用)28.(12分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上,对角线EG 、PF 相交于点O .(1)若1AP =,则AE =;(2)①求证:点O 一定在APE △的外接圆上;②当点P 从点A 运动到点B 时,点O 也随之运动,求点O 经过的路径长;(3)在点P 从点A 到点B 的运动过程中,APE △的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.江苏省扬州市2017年中考试卷数学答案解析一、选择题1.【答案】D【解析】解:1|3|4AB =-=-.故选D .【提示】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【考点】数轴2.【答案】B【解析】解:A .45a a a = ,不符合题意;B .224()a a =,符合题意;C .3332a a a +=,不符合题意;D .43a a a ÷=,不符合题意,故选B .【提示】利用有关幂的运算性质直接运算后即可确定正确的选项.【考点】幂的运算销售价格x (元/千克)3035404550日销售量p (千克)600450300150-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________姓名________________考生号_____________________________________________数学试卷第7页(共20页)数学试卷第8页(共20页)3.【答案】A【解析】解:∵2(7)4(2)570∆=-⨯-=>-,∴方程有两个不相等的实数根.故选A .【提示】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【考点】一元二次方程的根的判别式4.【答案】D【解析】解:由于方差和标准差反映数据的波动情况.故选D .【提示】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【考点】数据的集中趋势和离散程度5.【答案】B【解析】解:经过圆锥顶点的截面的形状可能是B 中图形,故选:B .【提示】根据已知的特点解答【考点】立体图形的截面6.【答案】C【解析】解:设第三边的长为x ,∵三角形两边的长分别是2和4,∴4224x -<<+,即26x <<.则三角形的周长:812C <<,C 选项11符合题意,故选C .【提示】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【考点】三角形的三边关系7.【答案】B【解析】解:依题意得:13a =,27a =,31a =,47a =,57a =,69a =,73a =,87a =;周期为6;201763361÷=⋯,所以201713a a ==.故选B .【提示】本题可分别求出3n =、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【考点】数据的规律探究问题8.【答案】C【解析】解:把(2,1)C 代入21y x bx =++,得22211b ++=,解得2b =-.故b 的取值范围是2b ≥-.故选:C .【提示】抛物线经过C 点时b 的值即可【考点】二次函数的图象问题二、填空题9.【答案】41.610⨯【解析】解:将16000用科学记数法表示为:41.610⨯.故答案为:41.610⨯【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法10.【答案】12【解析】解:∵2a b =,6b c =,∴2a b =,6bc =,∴2126bb =,故答案为12.【提示】由2a b =,6b c =得2a b =,6b c =,代入ac即可求得结果.【考点】比的基本概念11.【答案】3(3)(3)x x +-【解析】解:原式23(9)3(3)(3)x x x ==--+,故答案为3(3)(3)x x +-.【提示】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【考点】多项式的因式分解12.【答案】80︒【解析】解:∵四边形ABCD 为平行四边形,∴B D ∠=∠,180A B ∠+∠=︒,∵200B D ∠+∠=︒,∴100B D ∠=∠=︒,∴180********A B ∠=︒-∠=︒-︒=︒,故答案为:80︒.【提示】利用平行四边形的对角相等、邻角互补可求得答案.数学试卷第9页(共20页)数学试卷第10页(共20页)【考点】平行四边形的性质13.【答案】135【解析】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.【提示】中位数【考点】中位数14.【答案】40-【解析】解:根据题意得9325x x +=,解得40x =-.故答案是:40-.【提示】根据题意得9325x x +=,解方程即可求得x 的值【考点】一次函数交点问题15.【答案】50【解析】解:连接CO ,∵40B ∠=︒,∴280AOC B ∠=∠=︒,∴(18080)250OAC ∠=︒-︒÷=︒.【提示】连接CO ,根据圆周角定理可得280AOC B ∠=∠=︒,进而得出OAC ∠的度数.故答案为:50.【考点】圆的性质16.【答案】2+【解析】解:∵ABC △是等边三角形,∴60A B C ∠=∠=∠=︒,AB BC =,∵DP BC ⊥,∴90BPD ∠=︒,∵4cm PB =,∴8cm BD =,PD =,∵把等边ABC △沿着DE 折叠,使点A 恰好落在BC 边上的点P 处,∴AD PD ==,60DPE A ∠=∠=︒,∴(8AB =+,∴(8BC =+,∴(4PC BC BP =-=+,∵180906030EPC ∠=︒-︒-︒=︒,∴90PEC ∠=︒,∴1(22CE PC ==+,故答案为:2+【提示】根据等边三角形的性质得到60A B C ∠=∠=∠=︒,AB BC =,根据直角三角形的性质得到8cm BD =,PD =,根据折叠的性质得到AD PD ==,60DPE A ∠=∠=︒,解直角三角形即可得到结论.【考点】等边三角形的性质,图形的对称,锐角三角函数17.【答案】2y x=【解析】解:∵点A 是反比例函数2y x=-的图象上的一个动点,设(,)A m n ,过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,∴AC n =,OC m =-,∴90ACO ADO ∠=∠=︒,∵90AOB ∠=︒,∴90CAO AOC AOC BOD ∠+∠=∠+∠=︒,∴CAO BOD ∠=∠,在ACO △与ODB △中ACO ODBCAO BOD AO BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ACO ODB △≌△,∴AC OD n ==,CO BD m ==-,∴(,)B n m -,∵2mn =-,∴()2n m -=,∴点B 所在图象的函数表达式为2y x =,故答案为:2y x=.数学试卷第11页(共20页)数学试卷第12页(共20页)【提示】设(,)A m n ,过A 作AC x ⊥轴于C ,过B 作BD x ⊥轴于D ,得到AC n =,OC m =-,根据全等三角形的性质得到AC OD n ==,CO BD m ==-,于是得到结论.【考点】图形的旋转,全等三角形的判定及性质,反比例函数系数k 的几何意义18.【答案】15【解析】解:由题意m =,令y =,则22017x y =-,∴22(2017)400142y m y y y --==-,∵m 是正整数,0y ≥,∴1y =时,12m =,2y =时,3m =,∴正整数m 的所有取值的和为15,故答案为15.【提示】由题意m =,令y =,则22017x y =-,可得22(2017)400142y m y y y--==-,由m 是正整数,0y ≥,推出1y =时,12m =,2y =时,3m =,由此即可解决问题.【考点】换元解方程三、解答题19.【答案】32a -【解析】解:(1)原式4121314=-+-+-=-=-(2)原式22223221322232a a a a a a a =-+-+=---()=【提示】(1)根据零指数幂的原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【考点】幂运算,特殊锐角三角函数,无理数的绝对值,整式的化简20.【答案】1-、0、1、2【解析】解:解不等式230x +≥,得: 1.5x ≥-,解不等式5503x ->,得:3x <,则不等式组的解集为 1.53x -≤<,∴不等式组的整数解为1-、0、1、2.【提示】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【考点】解不等式组21.【答案】(1)4872︒(2)300【解析】解:(1)85%160÷=(人),16030%48⨯=(人),321603600.236072÷⨯︒=⨯︒=︒.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72︒;(2)30%1000300⨯=(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.【提示】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【考点】数据的统计与分析22.【答案】(1)14(2)34【解析】解:(1)选择A 通道通过的概率14=,故答案为:14,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率123164==.【提示】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【考点】概率23.【答案】50米/分钟【解析】解:设小芳的速度是x 米/分钟,则小明的速度是1.2x 米/分钟,根据题意得:数学试卷第13页(共20页)数学试卷第14页(共20页)1800180061.2x x-=,解得:50x =,经检验50x =是原方程的解,答:小芳的速度是50米/分钟.【提示】设小芳的速度是x 米/分钟,则小明的速度是1.2x 米/分钟,根据÷=路程速度时间,列出方程,再求解即可.【考点】分式方程解决实际问题24.【答案】(1)见解析(2)16【解析】解:(1)四边形ACC A ''是菱形.理由如下:由平移的性质得到:AC A C ''∥,且AC A C ''=,则四边形ACC A ''是平行四边形.∴ACC AA C '''∠=∠,又∵CD ACB ∠平分的外角,即CD 平分ACC '∠,∴CD 也平分AA C ''∠,∴四边形ACC A ''是菱形.(2)∵在ABC △中,90B ∠=︒,24AB =,12cos 13BAC ∠=,∴12cos 13AB BAC AC ∠==,即241213AC =,∴26AC =.∴由勾股定理知:10BC ===.又由(1)知,四边形ACC A ''是菱形,∴26AC AA '==.由平移的性质得到:AB A B ''∥,AB A B ''=,则四边形ABB A ''是平行四边形,∴26AA BB ''==,∴261016CB BB BC ''=-=-=.【提示】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC A ''是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC A ''是菱形.(2)通过解直角ABC △得到AC ,BC 的长度,由(1)中菱形ACC A ''的性质推知AC AA '=,由平移的性质得到四边形ABB A ''是平行四边形,则AA BB ''=,所以CB BB BC ''=-.【考点】菱形的判定与性质,平行四边形的判定和性质,锐角三角函数25.【答案】(1)见解析(2)412π++【解析】解:(1)结论:DE 是O e 的切线.理由:∵四边形OABC 是平行四边形,又∵OA OC =,∴四边形OABC 是菱形,∴OA OB AB OC BC ====,∴ABO △,BCO △都是等边三角形,∴60AOB BOC COF ∠=∠=∠=︒,∵OB OF =,∴OG BF ⊥,∵AF 是直径,CD AD ⊥,∴90ABF DBG D BGC ∠=∠=∠=∠=︒,∴四边形BDCG 是矩形,∴90OCD ∠=︒,∴DE 是O e 的切线.(2)①由(1)可知:60COF ∠=︒,OC OF =,∴OCF △是等边三角形,∴CF OC =.②在Rt OCE △中,∵12OC =,60COE ∠=︒,90OCE ∠=︒,∴224OE OC ==,EC =,∵12OF =,∴12EF =,∴»CF的长60π124π180== ,∴阴影部分的周长为412π++.【提示】(1)结论:DE 是O e 的切线.首先证明ABO △,BCO △都是等边三角形,再证明四边形BDCG 是矩形,即可解决问题;(2)①只要证明OCF △是等边三角形即可解决问题;②求出EC 、EF 、弧长CF 即可解决问题.【考点】圆的相关性质,平行四边形的性质,菱形的性质,等边三角形的性质,解直角三角形,弧长公式26.【答案】(1)0,7(2)24(3)数学试卷第15页(共20页)数学试卷第16页(共20页)【解析】解:(1)∵90BAC ∠=︒,8AB =,6AC =,∴10BC =,∵点O 是BC 的中点,∴152OA OB OC BC ====,∴2225250AB AC AO BO =--==△,②如图1,取AC 的中点D ,连接OD ,∴132CD AC ==,∵5OA OC ==,∴OD AC ⊥,在Rt COD △中,4OD ==,∴221697OC OA OD CD =-=-=△,故答案为0,7;(2)①如图2,取BC 的中点D ,连接AO ,∵AB AC =,∴AO BC ⊥,在ABC △中,AB AC =,120BAC ∠=︒,∴30ABC ∠=︒,在Rt AOB △中,4AB =,30ABC ∠=︒,∴2AO =,OB =,∴224128AB AC AO BO =--==-△,②取AC 的中点D ,连接BD ,∴122AD CD AC ===,过点B 作BE AC ⊥交CA 的延长线于E ,在Rt ABE △中,18060BAE BAC ∠=︒-∠=︒,∴30ABE ∠=︒,∵4AB =,∴2AE =,BE =,∴4DE AD AE =+=,在Rt BED △中,根据勾股定理得,BD ===,∴2224BA BC BD CD ==-△;(3)如图3,设ON x =,OB OC y ==,∴2BC y =,3OA x =,∵14AB AC =△,∴2214OA OB =-,∴22914x y =-①,取AN 的中点D ,连接BD ,∴112223AD DB AN OA ON x ===⨯==,∴2OD ON DN x =+=,在Rt BOD △中,222224BD OB OD y x =+=+,∵10BN BA =△,∴2210BD DN =-,∴222410y x x -+=,∴22310x y +=②联立①②得,2x y ⎧=⎪⎨=⎪⎩或)2x y ⎧=⎪⎨=-⎪⎩舍(舍),∴4BC =,OA =,∴12ABC S BC AO =⨯=△.【提示】(1)①先根据勾股定理求出10BC =,再利用直角三角形的性质得出5OA OB OC ===,最后利用新定义即可得出结论;②再用等腰三角形的性质求出3CD =,再利用勾股定理求出OD ,最后用新定义即可得出结论;(2)①先利用含30︒的直角三角形的性质求出2AO =,23OB =,再用新定义即可得出结论;②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA ,2BD ,最后用新定义建立方程组求解即可得出结论.【考点】勾股定理,等腰三角形的性质,锐角三角函数27.【答案】(1)301500p x =-+(2)40数学试卷第17页(共20页)数学试卷第18页(共20页)(3)2【解析】解:(1)假设p 与x 成一次函数关系,设函数关系式为p kx b =+,则3060040300k b k b +=⎧⎨+=⎩,解得:30k =-,1500b =,∴301500p x =-+,检验:当35x =,450p =;当45x =,4150p =;当50x =,0p =,符合一次函数解析式,∴所求的函数关系为301500p x =-+;(2)设日销售利润(30)(301500)(30)w p x x x =-=-+-即230240045000w x x =-+-,∴当2400402(30)x =-=⨯-时,w 有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利(30)(301500)(30)w p x a x x a =--=-+--,即230w x x -=-+,对称轴为2400301402(30)2a x a +=-=+⨯-,①若10a >,则当45x =时,w 有最大值,即22501502430w a =-<(不合题意);②若10a <,则当1402x a =+时,w 有最大值,将1402x a =+代入,可得2130101004w a a ⎛⎫=+ ⎪⎝⎭-,当2430w =时,21243030101004a a ⎛=+-⎫⎪⎝⎭,解得12a =,238a =(舍去),综上所述,a 的值为2.【提示】(1)首先根据表中的数据,可猜想y 与x 是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w 与销售价格x 之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w 与销售价格x 之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a 的值.【考点】二次函数的应用28.【答案】(1)34(2)见解析(3)12【解析】(1)解:∵四边形ABCD 、四边形PEFG 是正方形,∴90A B EPG ∠=∠=∠=︒,PF EG ⊥,4AB BC ==,45OEP ∠=︒,∴90AEP APE ∠+∠=︒,90BPC APE ∠+∠=︒,∴AEP PBC ∠=∠,∴APE BCP △∽△,∴AE AP BP BC =,即1414AE =-,解得:34AE =;故答案为:34;(2)①证明:∵PF EG ⊥,∴90EOF ∠=︒,∴180EOF A ∠+∠=︒,∴A 、P 、O 、E四点共圆,∴点O 一定在APE △的外接圆上;②解:连接OA 、AC ,如图1所示:∵四边形ABCD 是正方形,∴90B ∠=︒,45BAC ∠=︒,∴AC ==,∵A 、P 、O 、E 四点共圆,∴45OAP OEP ∠=∠=︒,∴点O 在AC 上,当P 运动到点B时,O 为AC的中点,12OA AC ==O经过的路径长为(3)解:设APE △的外接圆的圆心为M ,作MN AB ⊥于N ,如图2所示:则MN AE ∥,∵ME MP =,∴AN PN =,∴12MN AE =,设AP x =,则4BP x =-,由(1)得:APE BCP △∽△,∴AE AP BP BC -,即44AE xx --,解得:2211(2)144AE x x x =---+,∴2x =时,AE 的最大值为1,此时MN 的值最大11122=⨯=,即APE △的圆心到AB边的距离的最大值为12.数学试卷第19页(共20页)数学试卷第20页(共20页)【提示】(1)由正方形的性质得出90A B EPG ∠=∠=∠=︒,PF EG ⊥,4AB BC ==,45OEP ∠=︒,由角的互余关系证出AEP PBC ∠=∠,得出APE BCP △∽△,得出对应边成比例即可求出AE 的长;(2)①A 、P 、O 、E 四点共圆,即可得出结论;②连接OA 、AC ,由光杆司令求出,由圆周角定理得出45OAP OEP ∠=∠=︒,周长点O 在AC 上,当P 运动到点B 时,O 为AC 的中点,即可得出答案;(3)设APE △的外接圆的圆心为M ,作MN AB ⊥于N ,由三角形中位线定理得出12MN AE =,设AP x =,则4BP x =-,由相似三角形的对应边成比例求出2211(2)144AE x x x =-=--+,由二次函数的最大值求出AE 的最大值为1,得出MN的最大值12=即可.【考点】确定圆的条件,点的运动轨迹,相似三角形的运用,二次函数最值的确定。

2021年江苏省扬州市仪征市南师大二附中中考数学一模试卷

2021年江苏省扬州市仪征市南师大二附中中考数学一模试卷

江苏省扬州市仪征市南师大二附中中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)是()A.整数B.无理数C.有理数D.自然数2.(3分)下列式子正确的是()A.a2+a3=a5 B.(a2)3=a5C.a+2b=2ab D.(﹣ab)2=a2b23.(3分)人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m4.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A. B.C. D.5.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°6.(3分)无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°8.(3分)方程x2﹣+1=﹣4x的正数根的取值范围是()A.0<x<1 B.1<x<2 C.2<x<3 D.3<x<4二、填空题(每小题3分,共30分)9.(3分)16的算术平方根是.10.(3分)分解因式:2x2﹣8=.11.(3分)当x=时,分式无意义.12.(3分)仪征市某活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数5191313则全体参赛选手年龄的中位数是岁.13.(3分)若a+b=2,则代数式3﹣2a﹣2b=.14.(3分)一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,则这个圆锥的高为.15.(3分)如图,直线A l A∥BB1∥CC1,若AB=8,BC=4,A1B1=6,则线段A1C1的长是.16.(3分)关于的一元二次方程kx2﹣x+1=0有两个实数根,则k的取值范围是.17.(3分)如图,用若干个全等的正五边形可以拼成一个环状,如图是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是.18.(3分)如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC于点N.若CM=3,AN=4,则tan∠CAN的值为.三、解答题(8′×4+10′×4+12′×2=96分)19.(8分)(1)计算:﹣2﹣2+sin45°﹣|1﹣|(2)解不等式组:.20.(8分)先化简,再求值:÷(1﹣),其中m满足一元二次方程m2﹣4m+3=0.21.(8分)“低碳环保,你我同行”.仪征市区的公共自行车给市民出行带来不少方便.我校数学社团小学员走进小区随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有位市民参与调查;(2)补全条形统计图;(3)根据统计结果,若市区有26万市民,请估算每天都用公共自行车的市民约有多少人?22.(8分)我校“文化氧吧”有A、B、C、D四本书是小明想拜读的,但他现阶段只打算选读两本.(1)若小明已选A书,再从其余三本书中随机选一款,恰好选中C的概率是;(2)小明随机选取两本书,请用树状图或列表法求出他恰好选中A、C两本的概率.23.(10分)已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.(1)求证:△ABM≌△CDN;(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.24.(10分)甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司各有多少元?25.(10分)在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过点D 作DF⊥BC,交AB的延长线于E,垂足为F.(Ⅰ)如图①,求证直线DE是⊙O的切线;(Ⅱ)如图②,作DG⊥AB于H,交⊙O于G,若AB=5,AC=8,求DG的长.26.(10分)如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)求点A到BM的距离;(2)在下列条件中,可以唯一确定BC长的是;(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.年龄组12岁13岁14岁15岁参赛人数5191313。

2017年江苏省扬州市中考数学试卷(解析版)

2017年江苏省扬州市中考数学试卷(解析版)

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若数轴上表示﹣1和3的两点分别是点A和点B,则点A 和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.经过圆锥顶点的截面的形状可能是()A.B.C.D.6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12 7.在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9 8.如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.若=2,=6,则= .11.因式分解:3x2﹣27= .12.在平行四边形ABCD中,∠B+∠D=200°,则∠A= .13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.如图,已知⊙O是△ABC 的外接圆,连接AO,若∠B=40°,则∠OAC= °.16.如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC= cm.17.如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.解不等式组,并求出它的所有整数解.21.“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D 中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD 上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C 作CD⊥AB,分别交AB、AO 的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA= ;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克)3354455日销售量p (千克)645315(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.如图,已知正方形ABCD 的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE 为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE 的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB 边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若数轴上表示﹣1和3的两点分别是点A和点B,则点A 和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4 【考点】13:数轴.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.2.下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3 D.a4÷a【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.3.一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【考点】AA:根的判别式.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.4.下列统计量中,反映一组数据波动情况的是()A.平均数 B.众数 C.频率D.方差【考点】WA:统计量的选择.【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.5.经过圆锥顶点的截面的形状可能是()A. B.C.D.【考点】I9:截一个几何体.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12 【考点】K6:三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.7.在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【考点】37:规律型:数字的变化类.【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.8.如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【考点】H4:二次函数图象与系数的关系.【分析】抛物线经过C点时b 的值即可.【解答】解:把C(2,1)代入y=x2+bx+1,得22+2b+1=1,解得b=﹣2.故b的取值范围是b≥﹣2.故选:C.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为1.6×104立方米.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.10.若=2,=6,则= 12 .【考点】1D:有理数的除法.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.11.因式分解:3x2﹣27= 3(x+3)(x﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).12.在平行四边形ABCD中,∠B+∠D=200°,则∠A= 80°.【考点】L5:平行四边形的性质.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.13.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135 分.【考点】W4:中位数.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40 ℃.【考点】E3:函数关系式.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.15.如图,已知⊙O是△ABC 的外接圆,连接AO,若∠B=40°,则∠OAC= 50 °.【考点】M5:圆周角定理.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=÷2=50°.故答案为:50.。

扬州市2017年初中中考数学试卷含答案解析

扬州市2017年初中中考数学试卷含答案解析

5度数值与华氏度数值扬州市2017年初中毕业、升学统一考试数学试题第I 卷(共24分) 一、选择题:(本大题共8个小题,每小题3分,共24分.) 1.若数轴上表示-1和3的两点分别是点 A . -4 B . -2 C 二和点三,则点 D . 4 -■和点二之间的距离是( 2. F 列算式的运算结果为 a 4的是( A . a 4 a B .a 2 彳 a 3 a 3 3. 元二次方程x 2 -7x - 2 =0的实数根的情况是( A .有两个不相等的实数根 B 4. 下列统计量中,反映一组数据波动情况的是( A .平均数 B .众数 C. 频率 5. 经过圆锥顶点的截面的形状可能是( .有两个相等的实数根 ) .方差C .没有实数根D .不能确定C. A. B . 6.若一个三角形的两边长分别为 A . 6 B .7 C. D . 2和4,则该三角形的周长可能是( 11 D . 12 7.在一列数: a i , a 2 , a 3 , a n 中,耳=3 , a 2 =7,从第三个数开始,每一个数都等于它前两个数之 积的个位数字, A . 1 B 则这一列数中的第 .3 C. 7 2017个数是( D 8.如图,已知 .■: -3C 的顶点坐标分别为 0,2、 B 1,0、C 2,1 ,若二次函数y = x 2 • bx T 的图象与阴影部分(含边界)一定有公共点,则实数A . b 匕—2B b 的取值范围是()b _ —2 D . b -2 b :; 一2 C. 第U卷(共126分) 3分,满分30分,将答案填在答题纸上) 我国在南海北部神弧海域进行的可燃冰试开采成功,标志 二、填空题(每题 9.2017 年 5 月 18 日, 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为 心着 10.若行2, 16000立方米,把16000立方米用科学记数法表示为 b =6,则 a = c c.11.因式分解:3x —27 = 12.在—ABCD 中,若• H 亠.D =200,则 厶:一=立方米.13. 为了了解某班数学成绩情况, 抽样调查了 13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,个100分,个80分.则这组数据的中位数为 _____________ 分. 14. 同一温度的华氏度数 y ( F )与摄氏度数x ( C )之间的函数表达式是 y=9x + 32.若某一温度的摄氏15. 如图,已知O O 是 m.C 的外接圆,连接」。

2016-2017年江苏省扬州市仪征市南师大二附中八年级(下)第一次月考数学试卷(解析版)

2016-2017年江苏省扬州市仪征市南师大二附中八年级(下)第一次月考数学试卷(解析版)

÷(
﹣ ) ,再从﹣2<x<3 的范围内选取一个你喜欢的


﹣1,同理: + +
=…= +…
,…从计算结果中找出规律,并利用这一规律计算: .
23. (8 分)如图,将▱ ABCD 的边 DC 延长到点 E,使 CE=DC,连接 AE,交 BC 于点 F. (1)求证:△ABF≌△ECF; (2)若∠AFC=2∠D,连接 AC、BE,求证:四边形 ABEC 是矩形.
D. ) D.扩大 9 倍
中的 m 和 n 都扩大 3 倍,那么分式的值( B.扩大 3 倍 C.缩小 3 倍
4. (3 分)正三角形、矩形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对 称图形的是( A.正三角形 C.等腰直角三角形 ) B.矩形 D.平行四边形. )
5. (3 分)菱形具有而矩形不一定具有的性质是( A.中心对称图形 C.对边平行
第 2 页(共 24 页)
15. (3 分)若关于 x 的方程 16. (3 分)已知 ab=1,t=
=﹣1 的解为正数,则 a 的取值范围是 + ,则 t
7. (3 分)如图,已知菱形 ABCD 的边长为 2,∠B=60°,∠PAQ=60°且∠PAQ 绕着点 A 在菱形 ABCD 内部旋转,在运动过程中△PCQ 的面积最大值是 .
24. (10 分)如图,在菱形 ABCD 中,对角线 AC、BD 相交于点 O,过点 D 作对角线 BD 的 垂线交 BA 的延长线于点 E. (1)证明:四边形 ACDE 是平行四边形; (2)若 AC=8,BD=6,求△ADE 的周长.
第 4 页(共 24 页)
25. (10 分)如图,在正方形 ABCD 中,点 M 是对角线 BD 上的一点,过点 M 作 ME∥CD 交 BC 于点 E,作 MF∥BC 交 CD 于点 F.求证:AM=EF.

(答案版)2017年江苏省扬州市中考数学试卷

(答案版)2017年江苏省扬州市中考数学试卷

2017年江苏省扬州市中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.42.(3分)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a3.(3分)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.(3分)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差5.(3分)经过圆锥顶点的截面的形状可能是()A.B. C.D.6.(3分)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.127.(3分)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.98.(3分)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为立方米.10.(3分)若=2,=6,则=.11.(3分)因式分解:3x2﹣27=.12.(3分)在平行四边形ABCD中,∠B+∠D=200°,则∠A=.13.(3分)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为分.14.(3分)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为℃.15.(3分)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=°.16.(3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P 处,且DP⊥BC,若BP=4cm,则EC=cm.17.(3分)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为.18.(3分)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m 的所有取值的和为.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).20.(8分)解不等式组,并求出它的所有整数解.21.(8分)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是,扇形统计图中“蟹黄包”部分的圆心角为°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?22.(8分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.23.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.24.(10分)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB 的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.25.(10分)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O 于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.26.(10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC=,OC△OA=;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.27.(12分)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)28.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G 在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.2017年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•扬州)若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.4【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.2.(3分)(2017•扬州)下列算式的运算结果为a4的是()A.a4•a B.(a2)2C.a3+a3D.a4÷a【分析】利用有关幂的运算性质直接运算后即可确定正确的选项.【解答】解:A、a4•a=a5,不符合题意;B、(a2)2=a4,符合题意;C、a3+a3=2a3,不符合题意;D、a4÷a=a3,不符合题意,故选B.【点评】本题考查了幂的有关运算性质,解题的关键是能够正确的运用有关性质,属于基础运算,比较简单.3.(3分)(2017•扬州)一元二次方程x2﹣7x﹣2=0的实数根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣7)2﹣4×(﹣2)=57>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.(3分)(2017•扬州)下列统计量中,反映一组数据波动情况的是()A.平均数B.众数C.频率D.方差【分析】根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.【解答】解:由于方差和标准差反映数据的波动情况.故选D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.(3分)(2017•扬州)经过圆锥顶点的截面的形状可能是()A.B. C.D.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.【点评】本题考查的是用一个平面去截一个几何体,掌握圆锥的特点是解题的关键.6.(3分)(2017•扬州)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6 B.7 C.11 D.12【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.7.(3分)(2017•扬州)在一列数:a1,a2,a3,…,a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是()A.1 B.3 C.7 D.9【分析】本题可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2017÷6=336…1,所以a2017=a1=3.故选B.【点评】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.8.(3分)(2017•扬州)如图,已知△ABC的顶点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A.b≤﹣2 B.b<﹣2 C.b≥﹣2 D.b>﹣2【分析】对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点.【解答】解:抛物线y=x2+bx+1与y轴的交点为(0,1)∵C(2,1),∴对称轴x=﹣≤1时,二次函数y=x2+bx+1的图象与阴影部分(含边界)一定有公共点,∴b≥﹣2,故选:C.【点评】本题考查了二次函数图象与系数的关系.解题时,利用了二次函数图象上点的坐标特征来求b的取值范围.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.(3分)(2017•扬州)2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气试开采量约为16000立方米,把16000立方米用科学记数法表示为 1.6×104立方米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2017•扬州)若=2,=6,则=12.【分析】由=2,=6得a=2b,c=,代入即可求得结果.【解答】解:∵=2,=6,∴a=2b,c=,∴=12,故答案为12.【点评】本题考查了有理数的除法,求得a=2b,c=是解题的关键.11.(3分)(2017•扬州)因式分解:3x2﹣27=3(x+3)(x﹣3).【分析】先提取公因式3,再根据平方差公式进行二次分解即可求得答案.注意分解要彻底.【解答】解:原式=3(x2﹣9)=3(x+3)(x﹣3),故答案为3(x+3)(x﹣3).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(3分)(2017•扬州)在平行四边形ABCD中,∠B+∠D=200°,则∠A=80°.【分析】利用平行四边形的对角相等、邻角互补可求得答案.【解答】解:∵四边形ABCD为平行四边形,∴∠B=∠D,∠A+∠B=180°,∵∠B+∠D=200°,∴∠B=∠D=100°,∴∠A=180°﹣∠B=180°﹣100°=80°,故答案为:80°.【点评】本题主要考查平行四边形的性质,掌握平行四边形的对角相等、邻角互补是解题的关键.13.(3分)(2017•扬州)为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为135分.【分析】根据中位数的定义,把13个数据从大到小排列后,中位数是第7个数.【解答】解:∵13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分,∴第7个数是135分,∴中位数为135分;故答案为135.【点评】本题主要考查中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.14.(3分)(2017•扬州)同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为﹣40℃.【分析】根据题意得x+32=x,解方程即可求得x的值.【解答】解:根据题意得x+32=x,解得x=﹣40.故答案是:﹣40.【点评】本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.(3分)(2017•扬州)如图,已知⊙O是△ABC的外接圆,连接AO,若∠B=40°,则∠OAC=50°.【分析】连接CO,根据圆周角定理可得∠AOC=2∠B=80°,进而得出∠OAC的度数.【解答】解:连接CO,∵∠B=40°,∴∠AOC=2∠B=80°,∴∠OAC=(180°﹣80°)÷2=50°.故答案为:50.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(3分)(2017•扬州)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=(2+2)cm.【分析】根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.【解答】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC﹣BP=(4+4)cm,∵∠EPC=180°﹣90°﹣60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.【点评】本题考查了翻折变换﹣折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.17.(3分)(2017•扬州)如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为y=.【分析】设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,得到AC=n,OC=﹣m,根据全等三角形的性质得到AC=OD=n,CO=BD=﹣m,于是得到结论.【解答】解:∵点A是反比例函数y=﹣的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为y=,故答案为:y=.【点评】本题考查了坐标与图形变化﹣旋转,反比例函数图形上点的坐标特征,待定系数法求反比例函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.18.(3分)(2017•扬州)若关于x的方程﹣2x+m+4020=0存在整数解,则正整数m的所有取值的和为15.【分析】由题意m=,令y=,则x=2017﹣y2,可得m==,由m是正整数,y≥0,推出y=1时,m=12,y=2时,m=3,由此即可解决问题.【解答】解:由题意m=,令y=,则x=2017﹣y2,∴m==,∵m是正整数,y≥0,∴y=1时,m=12,y=2时,m=3,∴正整数m的所有取值的和为15,故答案为15.【点评】本题考查无理方程、换元法、正整数等知识,解题的关键是学会利用换元法解决问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19.(8分)(2017•扬州)计算或化简:(1)﹣22+(π﹣2017)0﹣2sin60°+|1﹣|;(2)a(3﹣2a)+2(a+1)(a﹣1).【分析】(1)根据零指数幂的意原式=义以及特殊角锐角三角函数即可求出答案;(2)根据平方差公式以及单项式乘以多项式的法则即可求出答案.【解答】解:(1)原式=﹣4+1﹣2×+﹣1=﹣3﹣+﹣1=﹣4(2)原式=3a﹣2a2+2(a2﹣1)=3a﹣2a2+2a2﹣2=3a﹣2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•扬州)解不等式组,并求出它的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x+3≥0,得:x≥﹣1.5,解不等式5﹣x>0,得:x<3,则不等式组的解集为﹣1.5≤x<3,∴不等式组的整数解为﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2017•扬州)“富春包子”是扬州特色早点,富春茶社为了了解顾客对各种早点的喜爱情况,设计了如右图的调查问卷,对顾客进行了抽样调查.根据统计数据绘制了如下尚不完整的统计图.根据以上信息,解决下列问题:(1)条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)根据抽样调查结果,请你估计富春茶社1000名顾客中喜欢“汤包”的有多少人?【分析】(1)由喜欢“其他”的人数除以所占的百分比即可求出调查的总人数;由喜欢“汤包”所占的百分比乘以总人数求出“汤包”的人数;由喜欢“蟹黄包”的人数除以调查的总人数即可得到所占的百分比,再乘以360即可求出结果;(2)用顾客中喜欢“汤包”所占的百分比,乘以1000即可得到结果.【解答】解:(1)8÷5%=160(人),160×30%=48(人),32÷160×360°=0.2×360°=72°.故条形统计图中“汤包”的人数是48人,扇形统计图中“蟹黄包”部分的圆心角为72°;(2)30%×1000=300(人).故估计富春茶社1000名顾客中喜欢“汤包”的有300人.故答案为:48人,72.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(8分)(2017•扬州)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是;(2)求两辆车经过此收费站时,选择不同通道通过的概率.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:,(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23.(10分)(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【解答】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【点评】此题主要考查了分式方程的应用,掌握行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间是解题的关键.24.(10分)(2017•扬州)如图,将△ABC沿着射线BC方向平移至△A'B'C',使点A'落在∠ACB的外角平分线CD上,连结AA'.(1)判断四边形ACC'A'的形状,并说明理由;(2)在△ABC中,∠B=90°,A B=24,cos∠BAC=,求CB'的长.【分析】(1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平四边形)推知四边形ACC'A'是平行四边形.又对角线平分对角的平行四边形是菱形推知四边形ACC'A'是菱形.(2)通过解直角△ABC得到AC、BC的长度,由(1)中菱形ACC'A'的性质推知AC=AA′,由平移的性质得到四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′﹣BC.【解答】解:(1)四边形ACC'A'是菱形.理由如下:由平移的性质得到:AC∥A′C′,且AC=A′C′,则四边形ACC'A'是平行四边形.∴∠ACC′=∠AA′C′,又∵CD平分∠ACB的外角,即CD平分∠ACC′,∴CD也平分∠AA′C′,∴四边形ACC'A'是菱形.(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,∴cos∠BAC==,即=,∴AC=26.∴由勾股定理知:BC===10.又由(1)知,四边形ACC'A'是菱形,∴AC=AA′=26.由平移的性质得到:AB∥A′B′,AB=A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′﹣BC=26﹣10=16.【点评】本题考查了四边形综合题,需要掌握平移的性质,解直角三角形,勾股定理以及菱形的判定与性质等知识点.解答(1)题时,往往误认为四边形ACC'A'是平行四边形,岂不知还要根据已知条件继续证得该四边形是菱形,属于易错题.25.(10分)(2017•扬州)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.【分析】(1)结论:DE是⊙O的切线.首先证明△ABO,△BCO都是等边三角形,再证明四边形BDCG是矩形,即可解决问题;(2)①只要证明△OCF是等边三角形即可解决问题;②求出EC、EF、弧长CF即可解决问题.【解答】解:(1)结论:DE是⊙O的切线.理由:∵四边形OABC是平行四边形,又∵OA=OC,∴四边形OABC是菱形,∴OA=OB=AB=OC=BC,∴△ABO,△BCO都是等边三角形,∴∠AOB=∠BOC=∠COF=60°,∵OB=OF,∴OG⊥BF,∵AF是直径,CD⊥AD,∴∠ABF=∠DBG=∠D=∠BGC=90°,∴四边形BDCG是矩形,∴∠OCD=90°,∴DE是⊙O的切线.(2)①由(1)可知:∠COF=60°,OC=OF,∴△OCF是等边三角形,∴CF=OC.②在Rt△OCE中,∵OC=12,∠COE=60°,∠OCE=90°,∴OE=2OC=24,EC=12,∵OF=12,∴EF=12,∴的长==4π,∴阴影部分的周长为4π+12+12.【点评】本题考查切线的判定、平行四边形的性质、等边三角形的判定和性质、弧长公式,解直角三角形等知识,解题的关键是学会添加常用辅助线,证明三角形是等边三角形是解题的突破点,属于中考常考题型.26.(10分)(2017•扬州)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB 与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= 0,OC△OA=7;(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON=AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.【分析】(1)①先根据勾股定理求出BC=10,再利用直角三角形的性质得出OA=OB=OC=5,最后利用新定义即可得出结论;②再用等腰三角形的性质求出CD=3,再利用勾股定理求出OD,最后用新定义即可得出结论;(2)①先利用含30°的直角三角形的性质求出AO=2,OB=2,再用新定义即可得出结论;②先构造直角三角形求出BE,AE,再用勾股定理求出BD,最后用新定义即可得出结论;(3)先构造直角三角形,表述出OA,BD2,最后用新定义建立方程组求解即可得出结论.【解答】解:①∵∠BAC=90°,AB=8,AC=6,∴BC=10,∵点O是BC的中点,∴OA=OB=OC=BC=5,∴AB△AC=AO2﹣BO2=25﹣25=0,②如图1,取AC的中点D,连接OD,∴CD=AC=3,∵OA=OC=5,∴OD⊥AC,在Rt△COD中,OD==4,∴OC△OA=OD2﹣CD2=16﹣9=7,故答案为0,7;(2)①如图2,取BC的中点D,连接AO,∵AB=AC,∴AO⊥BC,在△ABC中,AB=AC,∠BAC=120°,∴∠ABC=30°,在Rt△AOB中,AB=4,∠ABC=30°,∴AO=2,OB=2,∴AB△AC=AO2﹣BO2=4﹣12=﹣8,②取AC的中点D,连接BD,∴AD=CD=AC=2,过点B作BE⊥AC交CA的延长线于E,在Rt△ABE中,∠BAE=180°﹣∠BAC=60°,∴∠ABE=30°,∵AB=4,∴AE=2,BE=2,∴DE=AD+AE=4,在Rt△BED中,根据勾股定理得,BD===2,∴BA△BC=BD2﹣CD2=24;(3)如图3,设ON=x,OB=OC=y,∴BC=2y,OA=3x,∵AB△AC=14,∴OA2﹣OB2=14,∴9x2﹣y2=14①,取AN的中点D,连接BD,∴AD=DN=AN=×OA=ON=x,∴OD=ON+DN=2x,在Rt△BOD中,BD2=OB2+OD2=y2+4x2,∵BN△BA=10,∴BD2﹣DN2=10,∴y2+4x2﹣x2=10,∴3x2+y2=10②联立①②得,或(舍),∴BC=4,OA=3,∴S=BC×AO=6.△ABC【点评】此题是三角形综合题,主要考查了勾股定理,含30°的直角三角形的性质,勾股定理,等腰三角形的性质,解(1)的关键是求出OD,解(2)的关键是BD,解(3)的关键是用方程组的思想解决问题,是一道很好的新定义题目.27.(12分)(2017•扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=4150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+(2400+30a)x﹣(1500a+45000),对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.【点评】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.28.(12分)(2017•扬州)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x2=。

2016-2017学年江苏省扬州市仪征市南师大二附中八年级(上)月考数学试卷(10月份)

2016-2017学年江苏省扬州市仪征市南师大二附中八年级(上)月考数学试卷(10月份)

2016-2017学年江苏省扬州市仪征市南师大二附中八年级(上)月考数学试卷(10月份)一、选择题(每题3分,共8题,总分24分)1.(3分)下列四副图案中,不是轴对称图形的是()A.B.C.D.2.(3分)下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,173.(3分)等腰三角形的一边等于5,一边等于12,则它的周长是()A.22 B.29 C.22或29 D.174.(3分)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块5.(3分)下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE6.(3分)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm7.(3分)如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为()A.11 B.15 C.10 D.228.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形二、填空题(每题3分,共10题,满分30分)9.(3分)若一个正数的两个平方根分别是2x﹣1和3﹣x,则x=.10.(3分)已知等腰三角形的腰长为5cm,底边上的中线长为4cm,则它的周长为cm.11.(3分)直角三角形两条直角边长度分别为3cm和4cm,则斜边上的高等于cm.12.(3分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).13.(3分)工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.14.(3分)若直角三角形的三边分别为3,4,x,则x2=.15.(3分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是度.16.(3分)如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,若S1=9,S2=16,则S3=.17.(3分)如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.18.(3分)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=5,ON=12,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.三、解答题19.(8分)(1)请你先在图1BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.(2)如图2,求作点P,使点P同时满足:①PM=PN;②到BA,BC的距离相等.(尺规作图,保留作图痕迹,不写作法)20.(8分)如图,在△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为12cm,求△ABC的周长.21.(8分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长.22.(8分)如图,已知AB=AD,∠ABC=∠ADC,求证:BC=DC.23.(10分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.24.(10分)如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC ⊥a,DE⊥b,点M、N是中点.求证:(1)DM=BM;(2)MN⊥BD.25.(10分)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.26.(10分)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.27.(12分)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.28.(12分)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE 旋转至点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.2016-2017学年江苏省扬州市仪征市南师大二附中八年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.(3分)(2008•枣庄)下列四副图案中,不是轴对称图形的是()A.B.C.D.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:A、沿某条直线折叠后直线两旁的部分不能够完全重合,不是轴对称图形,故A符合题意;B、C、D都是轴对称图形,不符合题意.故选:A.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(3分)(2016秋•仪征市校级月考)下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,17【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:A、62+122≠132,故错误;B、32+42≠72,故错误;C、7.5,8.5不是正整数,故错误;D、82+152=172,故正确.故选D.【点评】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.3.(3分)(2015秋•赤峰校级期中)等腰三角形的一边等于5,一边等于12,则它的周长是()A.22 B.29 C.22或29 D.17【分析】分别从若5为底边长,12为腰长与若12为底边长,5为腰长去分析求解即可求得答案.【解答】解:若5为底边长,12为腰长,∵12+5>12,∴能组成三角形,∴此时它的周长是:12+12+5=29;若12为底边长,5为腰长,∵5+5<12,∴不能组成三角形,故舍去.∴它的周长是29.故选B.【点评】此题考查了等腰三角形的性质与三角形的三边关系.注意分类讨论思想的应用.4.(3分)(2014春•郑州期末)小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.5.(3分)(2017春•南京期末)下列条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看已知是否符合条件,即可得出答案.【解答】解:A、根据AB=DE,BC=EF和∠A=∠D不能判定两三角形全等,故本选项错误;B、根据∠A=∠D,∠C=∠F,AC=DF才能得出两三角形全等,故本选项错误;C、根据∠B=∠E,∠A=∠D,AC=DF才能得出两三角形全等,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF(ASA),故本选项正确;故选:D.【点评】本题考查了全等三角形的判定定理,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②应对应相等,符合条件才能得出两三角形全等.6.(3分)(2016春•灵石县期末)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是5cm,∴P1P2=5cm.故选:C.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.7.(3分)(2013秋•仪征市期末)如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为()A.11 B.15 C.10 D.22【分析】由直角三角形的勾股定理以及正方形的面积公式,不难发现:a的面积等于1的面积加上2的面积,b的面积等于2加上3,据此可以求出三个的面积的和.【解答】解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选B.【点评】本题考查了勾股定理的运用,结合正方形的面积公式求解.8.(3分)(2015•黄冈中学自主招生)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP ≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.二、填空题(每题3分,共10题,满分30分)9.(3分)(2016春•山西校级期中)若一个正数的两个平方根分别是2x﹣1和3﹣x,则x=﹣2.【分析】利用平方根的定义列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1+3﹣x=0,解得:x=﹣2,故答案为:﹣2【点评】此题考查了平方根,解题的关键是:一个正数的平方根有两个,且互为相反数.10.(3分)(2016秋•仪征市校级月考)已知等腰三角形的腰长为5cm,底边上的中线长为4cm,则它的周长为16cm.【分析】首先根据等腰三角形的三线合一的性质求得底边的一半,然后求得周长即可.【解答】解:∵等腰三角形的腰长为5cm,底边上的中线长为4cm,∴底边的一半==3cm,∴底边长为6cm,∴周长=5+5+6=16cm,故答案为:16.【点评】本题考查了等腰三角形的性质及勾股定理的应用,解题的关键是首先求得底边的一半长,难度不大.11.(3分)(2016秋•仪征市校级月考)直角三角形两条直角边长度分别为3cm 和4cm,则斜边上的高等于 2.4cm.【分析】先根据勾股定理求出斜边长,再设这个直角三角形斜边上的高为h,根据三角的面积公式求出h的值即可.【解答】解:∵直角三角形两直角边长为3cm,4cm,∴斜边==5(cm).设这个直角三角形斜边上的高为h,则h==2.4cm.故答案为:2.4.【点评】本题考查了勾股定理、三角形面积的计算方法;由勾股定理求出斜边长是解决问题的关键.12.(3分)(2015秋•无锡期末)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.【点评】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.13.(3分)(2006•永州)工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的稳定性.【分析】根据题目中为防止变形的做法,显然运用了三角形的稳定性.【解答】解:为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的稳定性.【点评】能够运用数学知识解释生活中的现象.14.(3分)(2016秋•扬中市期中)若直角三角形的三边分别为3,4,x,则x2= 25或7.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,所以x2=25;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,所以x2=7;故答案为25或7;【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.15.(3分)(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.【点评】本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.16.(3分)(2016秋•仪征市校级月考)如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,若S1=9,S2=16,则S3=7.【分析】根据勾股定理求出BC2=AB2﹣AC2=7,即可得出结果.【解答】解:根据题意得:AB2=16,AC2=9,∵∠ACB=90°,∴BC2=AB2﹣AC2=16﹣9=7,则S3=BC2=7.故答案为:7.【点评】考查了勾股定理、正方形的性质、正方形的面积;熟练掌握勾股定理,由勾股定理求出BC的平方是解决问题的关键.17.(3分)(2013秋•门头沟区期末)如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【分析】求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【解答】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.18.(3分)(2015秋•广陵区校级期末)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=5,ON=12,点P、Q分别在边OB、OA上,则MP+PQ+QN 的最小值是13.【分析】首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而求得答案.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=5,ON′=ON=12,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==13.故答案为:13.【点评】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.三、解答题19.(8分)(2016秋•仪征市校级月考)(1)请你先在图1BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.(2)如图2,求作点P,使点P同时满足:①PM=PN;②到BA,BC的距离相等.(尺规作图,保留作图痕迹,不写作法)【分析】(1)利用网格特点,作∠BAC的平分线AP,再作BC的垂直平分线交AP于Q,则点Q满足条件;(2)分别作∠ABC的平分线和MN的垂直平分线,它们的交点即为P点.【解答】解:(1)如图1,点P和点Q为所作;(2)如图2,点P为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.(8分)(2014秋•旬阳县期中)如图,在△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为12cm,求△ABC的周长.【分析】先根据线段垂直平分线的性质求出AC的长,再由△ABD的周长为12cm 得出AB+BD+AD=12cm,故可得出AB+BC=12cm,由此可得出结论.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AD=CD,AC=2AE=8cm.∵△ABD的周长为12cm,∴AB+BD+AD=12cm,∴AB+BD+CD=12cm,即AB+BC=12cm,∴AB+BC+AC=12+8=20cm,即△ABC的周长是20cm.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.(8分)(2012春•惠州期末)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长.【分析】(1)由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长;(2)有(1)的数据和勾股定理求出AD的长,进而求出AB的长.【解答】解:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;(2)在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.【点评】本题考查了勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.(8分)(2011秋•海珠区期末)如图,已知AB=AD,∠ABC=∠ADC,求证:BC=DC.【分析】根据等腰三角形性质推出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形判定推出即可.【解答】证明:∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴BC=DC.【点评】本题考查了等腰三角形的性质和判定的应用,注意:等角对等边,等边对等角.23.(10分)(2014秋•会宁县期末)如图,折叠矩形的一边AD,使点D落在BC 边的点F处,已知AB=8cm,BC=10cm,求EC的长.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.24.(10分)(2011•化州市一模)如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是中点.求证:(1)DM=BM;(2)MN⊥BD.【分析】(1)由BC⊥a,DE⊥b,易得△CBE,△CDE为直角三角形,又由点M 是EC中点,根据直角三角形斜边的中线等于斜边的一半,即可证得:DM=BM;(2)根据等腰三角形中的三线合一,即可证得.【解答】证明:(1)∵BC⊥a,DE⊥b,∴∠CDE=∠CBE=90°,∴△CBE,△CDE为直角三角形,∵点M是中点,∴DM=BM=EC,∴DM=BM;(2)∵DM=BM,∴△MDB为等腰三角形,又∵N为BD的中点,∴MN为BD边上的中线,∴MN⊥BD(三线合一).【点评】此题考查了直角三角形中斜边的中线等于斜边的一半与等腰三角形的三线合一的性质.此题图形比较复杂,但难度不大,解题的关键是要注意数形结合思想的应用.25.(10分)(2015•蚌埠二模)我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:11,60,61;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和,请用所学知识说明它们是一组勾股数.【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一.【解答】解:(1)11,60,61;(2)后两个数表示为和,∵,,∴.又∵n≥3,且n为奇数,∴由n,,三个数组成的数是勾股数.故答案为:11,60,61.【点评】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及关系式进行猜想、证明即可.26.(10分)(2016秋•盐城期中)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.【分析】(1)根据点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位可知,当t=6秒时,DP=6,AQ=3即可画出线段PQ;(2)设时间为t,则在t秒钟,P运动了t个单位,Q运动了t个单位,由题意得PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)如图所示,由勾股定理得PQ==5;(2)设时间为t,则在t秒钟,P运动了t格,Q运动了t格,由题意得PQ=BQ,即(t﹣t)2+42=(8﹣t)2,解得t=6(秒).答:当t为6秒时.△PQB是以BP为底的等腰三角形.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.27.(12分)(2013•惠山区校级一模)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB或CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】解:(1)①CF⊥BD,CF=BD …(2分)故答案为:垂直、相等.②成立,理由如下:…(3分)∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵∴△BAD≌△CAF(SAS)(5分)∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD …(7分)(2)当∠ACB=45°时可得CF⊥BC,理由如下:…(8分)过点A作AC的垂线与CB所在直线交于G …(9分)则∵∠ACB=45°∴AG=AC,∠AGC=∠ACG=45°∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS)…(10分)∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC …(12分)【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.28.(12分)(2016秋•江都区校级期中)(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD、BE之间的数量关系是AD=BE.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.【分析】(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)根据等腰直角三角形的性质得到CA=CB,CD=CE,∠ACB=∠DCE=90°.根据全等三角形的性质得到AD=BE=AE﹣DE=8,∠ADC=∠BEC,由平角的定义得到∠ADC=135°.求得∠BEC=135°.根据勾股定理即可得到结论;(3)由(1)知△ACD≌△BCE,得∠CAD=∠CBE,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根据三角形的内角和定理可知∠AOE=60°.【解答】解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE=AE﹣DE=8,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∴AB==17;(3)如图3,由(1)知△ACD≌△BCE,∴∠CAD=∠CBE,∵∠CAB=∠CBA=60°,∴∠OAB+∠OBA=120°∴∠AOE=180°﹣120°=60°,如图4,同理求得∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.【点评】本题考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.参与本试卷答题和审题的老师有:bang;未来;HJJ;zcx;gbl210;zjx111;73zzx;sjzx;kuaile;sks;王学峰;家有儿女;lf2﹣9;心若在;1987483819;zxw;399462;gsls;ZJX;wd1899;CJX;马兴田(排名不分先后)菁优网2017年8月18日第31页(共31页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省扬州市仪征市南师大二附中中考数学一模试卷一、选择题(每小题3分,共24分)1.(3分)是()A.整数B.无理数C.有理数D.自然数2.(3分)下列式子正确的是()A.a2+a3=a5B.(a2)3=a5C.a+2b=2ab D.(﹣ab)2=a2b23.(3分)人体中红细胞的直径约为0.0000077m,用科学记数法表示数的结果是()A.0.77×10﹣5m B.0.77×10﹣6m C.7.7×10﹣5m D.7.7×10﹣6m4.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C. D.5.(3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°6.(3分)无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°8.(3分)方程x2﹣+1=﹣4x的正数根的取值范围是()A.0<x<1 B.1<x<2 C.2<x<3 D.3<x<4二、填空题(每小题3分,共30分)9.(3分)16的算术平方根是.10.(3分)分解因式:2x2﹣8=.11.(3分)当x=时,分式无意义.12.(3分)仪征市某活动中心组织一次少年跳绳比赛,各年龄组的参赛人数如表所示:则全体参赛选手年龄的中位数是岁.13.(3分)若a+b=2,则代数式3﹣2a﹣2b=.14.(3分)一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,则这个圆锥的高为.15.(3分)如图,直线A1A∥BB1∥CC1,若AB=8,BC=4,A1B1=6,则线段A1C1的长是.16.(3分)关于的一元二次方程kx2﹣x+1=0有两个实数根,则k的取值范围是.17.(3分)如图,用若干个全等的正五边形可以拼成一个环状,如图是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是.18.(3分)如图,Rt△ABC中,∠ACB=90°,CM为AB边上的中线,AN⊥CM,交BC于点N.若CM=3,AN=4,则tan∠CAN的值为.三、解答题(8′×4+10′×4+12′×2=96分)19.(8分)(1)计算:﹣2﹣2+sin45°﹣|1﹣|.(2)解不等式组:.20.(8分)先化简,再求值:÷(1﹣),其中m满足一元二次方程m2﹣4m+3=0.21.(8分)“低碳环保,你我同行”.仪征市区的公共自行车给市民出行带来不少方便.我校数学社团小学员走进小区随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有位市民参与调查;(2)补全条形统计图;(3)根据统计结果,若市区有26万市民,请估算每天都用公共自行车的市民约有多少人?22.(8分)我校“文化氧吧”有A,B,C,D四本书是小明想阅读的,但他现阶段只打算选读两本.(1)若小明已选A书,再从其余三本书中随机选一款,恰好选中C的概率是.(2)小明随机选取两本书,请用树状图或列表法求出他恰好选中A,C两本的概率.23.(10分)已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.(1)求证:△ABM≌△CDN.(2)矩形ABCD和矩形AECF满足何种关系时,四边形AMCN是菱形,证明你的结论.24.(10分)甲、乙两个公司为某敬老院各捐款300000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐款20元.则甲、乙两公司人均捐款各有多少元?25.(10分)在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过点D作DF⊥BC,交AB的延长线于E,垂足为F.(1)如图①,求证直线DE是⊙O的切线.(2)如图②,作DG⊥AB于H,交⊙O于G,若AB=5,AC=8,求DG的长.26.(10分)如图,已知∠ABM=37°,AB=20,C是射线BM上一点.(1)求点A到BM的距离.(2)在下列条件中,可以唯一确定BC长的是.(填写所有符合条件的序号)①AC=13;②tan∠ACB=;③连接AC,△ABC的面积为126.(3)在(2)的答案中,选择一个作为条件,画出草图,求BC.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)27.(12分)阅读下面材料:实际问题:如图(1),一圆柱的底面半径为5厘米,BC是底面直径,高AB为5厘米,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线.解决方案:路线1:侧面展开图中的线段AC,如图(2)所示,设路线l的长度为l1:则l12=AC2=AB2+BC2=52+(5π)2=25+25π2;路线2:高线AB+底面直径BC,如图(1)所示.设路线2的长度为l2:则l22=(AB+BC)2=(5+10)2=225.为比较l1,l2的大小,我们采用“作差法”:∵l12﹣l22=25(π2﹣8)>0∴l12>l22∴l1>l2,小明认为应选择路线2较短.(1)问题类比:小亮对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1厘米,高AB为5厘米.”.请你用上述方法帮小亮比较出l1与l2的大小.(2)问题拓展:请你帮他们继续研究:在一般情况下,当圆柱的底面半径为r厘米时,高为h厘米,蚂蚁从A点出发沿圆柱表面爬行到点C,当满足什么条件时,选择路线2最短?请说明理由.(3)问题解决:如图(3)为2个相同的圆柱紧密排列在一起,高为5厘米,当蚂蚁从点A出发沿圆柱表面爬行到C点的两条路线长度相等时,求圆柱的底面半径r.(注:按上面小明所设计的两条路线方式).28.(12分)先让我们一起来学习方程m2+1=的解法:解:令m2=a,则a+1=,方程两边平方可得,(a+1)2=a+3解得a1=1,a2=﹣2,∵m2≥0,∴m2=1,∴m=±1,点评:类似的方程可以用“整体换元”的思想解决.不妨一试:如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P 为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式.(2)①当P点运动到A点处时,通过计算发现:PO PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有何数量关系,并证明你的猜想.(3)当△PHO为等边三角形时,求点P坐标.(4)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC 相似?若存在,求出P点的坐标;若不存在,请说明理由.2017年江苏省扬州市仪征市南师大二附中中考数学一模试卷参考答案与试题解析1.C.2.D.3.D.4.D.5.A.6.C.7.C.8.B.9.4.10.2(x+2)(x﹣2).11.﹣2.12.14.13.﹣1.14.2.15.9.16.k≤且k≠0.17.7.18..19.解:(1)原式=﹣+2×﹣(﹣1)=﹣+2﹣+1=﹣;(2)∵解不等式①得:x>3,解不等式②得:x≥0,∴不等式组的解集为x>3.20.解:原式=÷=•=,由m2﹣4m+3=0,变形得:(m﹣1)(m﹣3)=0,解得:m=1(不合题意,舍去)或m=3,则当m=3时,原式=.21.解:(1)本次活动共参与的市民30÷15%=200人,答案:200(2)B的人数有200×28%=56(人),C的人数有200×52%=104(人),A的人数有200﹣56﹣104﹣30=10(人),补全条形统计图如图:;(3)26×(1﹣28%﹣52%﹣15%)=1.3(万人),答:每天都用公共自行车的市民约有1.3万人.22.解:(1)∵小明已选A书,再从其余三本书中随机选一款,∴恰好选中C的概率是:.答案:(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(选中A,C)==.答:选中A,C两本的概率是.23.(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC,∵四边形AECF是矩形,∴AE∥CF,∴四边形AMCN是平行四边形,∴AM=CN,在Rt△ABM和Rt△CDN中,∵,∴Rt△ABM≌Rt△CDN(HL).(2)解:当AB=AF时,四边形AMCN是菱形,理由:∵四边形ABCD,AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°,∴∠BAD﹣∠NAM=∠EAF﹣∠NAM,即∠BAM=∠FAN,在△ABM和△AFN中∠BAM=∠FAN,AB=AF,∠B=∠F.∵,∴△ABM≌△AFN(ASA),∴AM=AN,由(1)知四边形AMCN是平行四边形,∴□AMCN是菱形.24.解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,根据题意得:=×(1+20%)解得:x=100经检验x=100是原方程的根,故x+20=100+20=120.答:甲公司人均捐款100元,乙公司人均捐款120元. 25.(1)证明:连接OD,如图,∵AB=BC,∴∠A=∠C.∵OA=OD,∴∠A=∠ADO.∴∠C=∠ADO.∴OD∥BC.∵DF⊥BC,∴∠ODE=90°.∴直线DE是⊙O的切线.(2)解:连接DB,∵AB是⊙O的直径,∴∠ADB=90°.∵AB=BC,∴AD=DC.∵AC=8,∴AD=4.在Rt△ADB中,BD===3,∵DG⊥AB于H,由三角形面积公式,得AB•DH=AD•DB.∴DH==,∵AB⊥DG,∴DG=2DH=.26.解:(1)作AD⊥BM于D,则∠ADB=90°.在Rt△ABD中,∵∠ADB=90°,∴AD=AB•sinB=12.(2)①以点A为圆心、13为半径画圆,与BM有两个交点,不唯一;②由tan∠ACB=知∠ACB的大小确定,在△ABC中,∠ACB、∠B及AB确定,此时的三角形唯一;③AB的长度和三角形的面积均确定,则点C到AB的距离即可确定,则BM上的点C是唯一的;答案:②③(3)方案一:选②,由(1)得,AD=12,BD=AB•cosB=16,在Rt△ACD中,∵∠ADC=90°,∴CD==5,∴BC=BD+CD=21.方案二:选③,作CE⊥AB于E,则∠BEC=90°,=AB•CE得CE=12.6,由S△ABC在Rt△BEC中,∵∠BEC=90°,∴BC==21.27.解:(1)如图(2).∵圆柱的底面半径为1厘米,高AB为5厘米,∴路线1:l12=AC2=AB2+BC2=25+π2;路线2:l2=AB+BC=5+2=7,l22=(AB+BC)2=49.∵l12﹣l22=25+π2﹣49=π2﹣24<0,∴l12<l22,∴l1<l2,∴选择路线1较短.(2)如图(2).∵圆柱的底面半径为r厘米,高为h厘米,∴路线1:l12=AC2=AB2+BC2=h2+(πr)2=h2+π2r2,路线2:l22=(AB+BC)2=(h+2r)2,∴l12﹣l22=h2+(πr)2﹣(h+2r)2=r(π2r﹣4r﹣4h)=r[(π2﹣4)r﹣4h];∵r恒大于0,∴当(π2﹣4)r﹣4h>0,即>时,l12>l22,即此时选择的路2最短.(3)如图(3),圆柱的高为5厘米.l12=AC2=AB2+BC2=25+(2πr)2,l22=(AB+BC)2=(5+4r)2,由题意,得25+(2πr)2=(5+4r)2,解得r=.即当圆柱的底面半径r为厘米时,蚂蚁从点A出发沿圆柱表面爬行到C点的两条线段相等.28.解:(1)∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,(2)①当P点运动到A点处时.∵PO=5,PH=5,∴PO=PH.故答案为:=②结论:PO=PH.理由:设点P坐标(m,﹣m2+1),∵PH=2﹣(﹣m2+1)=m2+1, PO==m2+1,∴PO=PH.(3)∵△PHO为等边三角形,∴OP=OH.由两点间的距离公式可知:OH=.∴m2+1=,解得:m=±2,∴P(2,﹣2)、(﹣2,﹣2).(4)∵BC==,AC==,AB==4.∴BC=AC,∵PO=PH,以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣m2+1),∴=,解得m=±1.∴点P坐标(1,)或(﹣1,).。

相关文档
最新文档