2014年广东省中考数学模拟试卷(一)学生版

合集下载

2014年中考数学模拟(一)

2014年中考数学模拟(一)

2014年初中毕业生学业考试模拟试题数 学 试 卷 (一)说 明:本试卷共6页,23小题,满分120分.考试用时90分钟.注意事项:1.答题前,考生务必在密封线内相应的位置上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,不要遗漏。

2.考生必须保持试卷的整洁,请仔细审题,细心答题。

参考公式:二次函数c bx ax y ++=2的对称轴是直线x =a b 2-,顶点坐标是(a b 2-,a b ac 442-). 一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的,把所选答案的编号填写在题目后面的括号内.1.-5的相反数是( )A .15B .15- C .5 D .-5 2.不等式组⎩⎨⎧+≥≤x 43513﹣,+x 的解集表示在数轴上正确的是( )3.如图,在菱形ABCD 中,AB =5,∠BCD =120°,则对角线AC 等于( )A .20B .15C .10D .54.分别由5个大小相同的正方体组成的甲、乙两个几何体如图所示,它们的三视图中完全一致的是( )A .主视图B .俯视图C .左视图D .三视图5.下面是按一定规律摆放的图案,按此规律,第2011个图案应该和第几个相同?( )第1个 第2个 第3个 第4个 第5个 第6个A .第1个B .第2个C .第3个D .第4个二、填空题:本大题共8小题,每小题3分,共24分,把答案填写在题中横线上6.函数2+=x y 中自变量x 的取值范围是 .7.2011年3月11日,日本大地震,举世关注,小明上网搜索“日本大地震”获得约7940000条结果,其中7940000用科学记数法表示应为 .8.如图,正方形ABCD 的边长为1,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D '处,连接AD ',则sin D '∠= .9.若分式41x x +-的值为0,则x 的值为 . 10.一组数据为3、1、2、3、3,则这组数据的众数和中位数的和是 .11.如图,PA ,PB 切⊙O 于A ,B 两点,若60APB =∠,⊙O 的半径为3,则阴影部分的面积为 .12.如图,A 为反比例函数x y 3-=的图象在第二象限上的任一点, AB ⊥x 轴于B ,AC ⊥y 轴于C .则矩形ABOC 的面积为 .13.如图是与杨辉三角有类似性质的三角形数垒,a 、b 、c 、d 是相邻两行的前四个数(如图所示),那么当a =8时,c = ,d = .三、解答下列各题:本题有10小题,共81分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分.计算:1sin 30π+32-+0°+().解方程:0222=-+x x16.本题满分7分. 先化简,再求值:42)122(2-÷-+-x x x x ,其中22-=x17.本题满分7分.一布袋中放有红、黄、白、黑四种颜色的球各一个,它们除颜色外其他都一样,小菲从布袋中摸出一球后放回去摇匀,再摸出一个球,请你利用列举法(列表或画树状图)分析并求出小菲两次都能摸到同色球的概率.18.本题满分8分. 如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i =BD 的长是50米,在山坡的坡底B 处测得铁架顶端A 的仰角为45,在山坡的坡顶D 处测得铁架顶端A 的仰角为60.(1)求小山的高度;(2)求铁架的高度. 1.73≈,精确到0.1米)A BC D EO 某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A B C D 、、、四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的百分比b =___________;(2)补全条形统计图;(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)约有___________名.20.本题满分8分.已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ;(2)设AD =2,AE =1,求⊙O 直径的长.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?22.本题满分10分.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB= 5 .(1)求证:△APD≌△AEB;(2)探究EB与ED的位置关系,并说明理由;(3)求正方形ABCD的面积.如图,抛物线交x 轴于点()20A -,,点()40B ,,交y 轴于点()04C -,.(1)求抛物线的解析式,并写出顶点D 的坐标;(2)若直线y x =-交抛物线于M ,N 两点,交抛物线的对称轴于点E ,连接BC EB EC ,,.试判断EBC △的形状,并加以证明;(3)设P 为直线MN 上的动点,过P 作PF ED ∥交直线MN 下方的抛物线于点F .问:在直线MN 上是否存在点P ,使得以P E D F 、、、为顶点的四边形是平行四边形?若存在,请求出点P 及相应的点F 的坐标;若不存在,请说明理由.。

2014年广东省初中毕业生学业考试数学模拟试题

2014年广东省初中毕业生学业考试数学模拟试题

2014年广东省初中毕业生学业考试数 学 模 拟 卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的相反数是A .21-B .21C .2-D .22.下列四个几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为A .1210126.0⨯元 B .121026.1⨯元 C .111026.1⨯元 D .11106.12⨯元 4.已知实数a 、b ,若b a >,则下列结论正确的是A .55-<-b aB .b a +<+22C .33b a < D .b a 33> 5.数学1、2、5、3、5、3、3的中位数是A .1B .2C .3D .56.如题6图,DF AC //,EF AB //,点D 、E 分别在AB 、AC 上,若︒=∠502,则1∠的大小是A .︒30B .︒40C .︒50D .︒607.下列等式正确的是A .1)1(3=--B .1)4(0=-C .6322)2()2(-=-⨯-D .2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.分解因式:92-x = .12.若实数a 、b 满足042=-++b a ,则=ba 2 . 13.一个六边形的内角和是 .14.在ABC Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A sin .15.如题15图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D逆时针旋转︒180,点E 到了点E '位置,则四边形E E AC '的形状是 . 16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=,82,1y x y x 18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD ∆≌EFC ∆四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设CBD Rt ∆的面积为1S ,BFC Rt ∆的面积为2S ,DCE Rt ∆的面积为3S ,则1S 2S +3S (用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如题23图,当2=m 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PD PC +最短?,若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是ABC Rt ∆的外接圆,︒=∠90ABC ,弦BD=BA ,AB=12,BC=5,DC BE ⊥交DC的延长线于点E.(1)求证:BAD BCA ∠=∠;(2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,︒=∠90BAC ,AB=AC=6,在三角板DEF 中,︒=∠90FDE ,DF=4,34=DE .将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 到点A 重合时,设EF 与BC 交于点M ,则=∠EMC 度;(2)如题25图(3),当三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设x BF =,两块三角板重叠部分的面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.。

2014广东省初中毕业生学业考试数学模拟试卷

2014广东省初中毕业生学业考试数学模拟试卷

2014广东省初中毕业生学业考试数学模拟试卷时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的)1.下面四个数中比-2小的数是( ) A .- 3 B .0 C .-1 D .-3 2.下列运算正确的是( )A .a +a =a 2B .(-a 3)2=a 5C .3a ·a 2=a 3D .(2a )2=2a 23.分别由5个大小相同的正方体组成的甲、乙两个几何体如图M1-1所示,它们的三视图中完全一致的是( )A .主视图B .俯视图C .左视图D .三视图图M1-1 图M1-24.若分式x 2-4x 2-2x的值为零,则x 的值为( )A .-2B .2C .0D .-2或25.下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D6.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( )A .a <-1B .-1<a <32C .-32<a <1D .a >327.小刚同学把一个含有45°角的直角三角板放在如图M1-2所示的两条平行线m ,n 上,测得∠α=110°,则∠β的度数是( )A .75°B .65° C. 55° D. 45° 8.下列说法不正确的是( )A .方程x 2=x 有一根为0B .方程x 2-1=0的两根互为相反数C .方程(x -1)2-1=0的两根互为相反数D .方程x 2-x +2=0无实数根 9.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图M1-3,下列结论错误的是( )A .轮船的速度为20千米/时B .快艇的速度为803千米/时C .轮船比快艇先出发2小时D .快艇比轮船早到2小时图M1-3 图M1-410.如图M1-4,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式3x 3-12x = ____________.12.使式子m -2有意义的最小整数m 是________________________________. 13.如图M1-5,分别以n 边形的顶点为圆心,以1 cm 为半径画圆,则图中阴影部分的面积之和为______ cm 2.图M1-5 图M1-6 图M1-714.如图M1-6,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =1,则EF =__________. 15.袋中装有2个红球和2个白球,它们除了颜色外都相同.随机从中摸出一球,记下颜色后放回袋中,再随机摸出一球,则两次都摸到红球的概率是________.16.一个边长为4 cm 的等边三角形ABC 与⊙O 等高,按图M1-7放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为__________cm.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.计算:2-2sin45°-(1+8)0+2-1+18.18.如图M1-8,在△ABC 中,AB =AC ,∠ABC =72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法); (2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.图M1-819.已知下列关于x 的分式方程:方程1:1x -1=2x ;方程2:2x =3x +1;方程3:3x +1=4x +2;…;方程n …(1)填空:分式方程1的解为________,分式方程2的解为__________; (2)解分式方程3;(3)根据上述方程的规律及解的特点,直接写出方程n 及它的解.四、解答题(二)(本大题共3小题,每小题8分,共24分)20.如图M1-9,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,2),B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)图M1-9(1)点A关于点O中心对称的点的坐标为________________;(2)点A1的坐标为__________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为__________.21.如图M1-10,有一个晾衣架放置在水平地面上.在其示意图中,支架OA,OB的长均为160 cm,支架两个着地点之间的距离AB为120 cm.(1)求支架OA与地面AB的夹角∠BAO的度数(结果精确到0.1°);(2)小丽的连衣裙穿在衣架后的总长度达到140 cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(可用计算器计算,参考数据:sin68.0°≈0.927,cos68.0°≈0.375,tan68.0°≈2.475)图M1-1022.体力、腿力测试将健康状况分为四个等级:如一步迈两个台阶,能快速登上五层楼,说明健康状况良好;一级一级登上5层楼,没有明显的气喘现象,说明健康状况不错.如果气喘吁吁,呼吸急促,为较差型;登上三楼就感到又累又喘,意味着身体虚弱.某数学学习小组随机抽查本校初一年级若干名同学进行测试,并将测试结果制成了不完整统计图如图M1-11:(1) (2)图M1-11(1)该数学学习小组抽查了多少名初一同学进行测试?(2)补全图M1-11(1)中的条形统计图,并求出图M1-11(2)中健康状况良好所在扇形的圆心角度数;(3)若该校初一年级有1000名同学,请你估算初一年级大约有多少名同学属于健康状况虚弱?五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-12,直线y =k 1x +b (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A (1,m ),B (-2,-1)两点.(1)求直线和双曲线的解析式.(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式.图M1-1224.如图M1-13,已知抛物线L 1:y 1=34x 2,平移后经过点A (-1,0),B (4,0)得到抛物线L 2,与y 轴交于点C .(1) 求抛物线L 2的解析式;(2) 判断△ABC 的形状,并说明理由;(3) 点P 为抛物线L 2上的动点,过点P 作PD ⊥x 轴,与抛物线L 1交于点D ,是否存在PD =2OC ,若存在,求出点P 的坐标;若不存在,说明理由.图M1-1325.在一张长方形纸片ABCD中,AB=25 cm,AD=20 cm,现将这张纸片按下列图示方法折叠,请解决下列问题.(1)如图M1-14(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;(2)如图M1-14(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;(3)如图M1-14(3),在图M1-14(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,判断重叠四边形的形状,并证明;(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.(1)(2)(3)图M1-14广东省初中毕业生学业考试数学模拟试卷1.D2.D3.C4.A5.B6.B7.B8.C 9.B 10.C 11.3x (x +2)(x -2) 12.2 13.π14.2 15.1416.317.解:原式=2-2×22-1+12+3 2=-12+3 2.18.解:(1)作图如图110.(2)∵在△ABC 中,AB =AC ,∠ABC =72°, ∴∠A =180°-2∠ABC =180°-144°=36°. ∵BD 是∠ABC 的平分线,∴∠ABD =12∠ABC =12×72°=36°.∵∠BDC 是△ABD 的外角, ∴∠BDC =∠A +∠ABD =36°+36°=72°.图11019.解:(1)x =2 x =2(2)方程3去分母,得3(x +2)=4(x +1), 解得x =2.检验:当x =2时,公分母不为0, ∴x =2是原方程的解.(3)方程n :nx +n -2=n +1x +n -1,解为x =2.20.(1)(-3,-2) (2)(-2,3) (3)102π21.解:(1)如图111,过点O 作OD ⊥AB 于D ,图111∵OA =OB ,∴AD =12AB =60.在Rt △ADO 中,∠ADO =90°,cos ∠OAD =AD OA =60160=0.375,∴∠DAO ≈68.0°.(2)(方法一)在Rt △ADO 中, OD = 1602-602≈148.3. ∵148.3>140,∴垂挂在晒衣架上是不会拖落到地面.(方法二)在Rt △ADO 中,sin ∠DAO =ODOA,OD =sin68.0° ×160≈0.927×160≈148.3.∵148.3>140,∴垂挂在晒衣架上是不会拖落到地面. 22.解:(1)50(2)补全条形统计图如图112,图112健康状况良好所在扇形的圆心角度数为360°×(1-48%-16%-6%)=108°. (3)1000×6%=60(名).23.解:(1)∵B (-2,-1)在双曲线上,∴-1=k 2-2,解得k 2=2.∴双曲线的解析式为y=2x ,又点A (1,m )在双曲线上,∴m =21=2.∴A (1,2). ∵A ,B 两点在直线上,∴⎩⎪⎨⎪⎧ k 1+b =2,-2k 1+b =-1,解得⎩⎪⎨⎪⎧k 1=1,b =1,∴直线的解析式为y =x +1.(2)∵对于双曲线,在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0. 又0<x 3,∴y 3>0,∴y 2<y 1<y 3.24.解:(1)设抛物线L 2的解析式为y =34x 2+bx +c ,经过点A (-1,0),B (4,0),根据题意,得⎩⎪⎨⎪⎧ 34-b +c =0,12+4b +c =0,解得⎩⎪⎨⎪⎧b =-94,c =-3.∴抛物线L 2的解析式为y =34x 2-94x -3.(2)△ABC 的形状是等腰三角形. 理由:根据题意,得C (0,-3),∵AB =4-(-1)=5,BC =42+32=5,AC =12+32=10,∴△ABC 的形状是等腰三角形.(3)存在PD =2OC .设P ⎝⎛⎭⎫a ,34a 2-94a -3,D ⎝⎛⎭⎫a ,34a 2, 根据题意,得PD =⎪⎪⎪⎪34a 2-94a -3-34a 2=⎪⎪⎪⎪94a +3,OC =3, 当⎪⎪⎪⎪94a +3=6时,解得a 1=43,a 2=-4.∴P 1⎝⎛⎭⎫43,-143,P 2(-4,18). 25.解:(1)∵四边形ADFE 是正方形,∴DE =20 2.(2)∵由折叠可知DG =12AD =12DF ,∴在Rt △DGF 中,∠GFD =30°,∠GDF =60°, ∵∠GDE =∠EDF ,∴∠EDA =30°.∴在Rt △ADE 中,tan ∠EDA =AEAD,∴AE =AD ·tan30°=20 33.∴S △DEF =12AE ·AD =12×20×20 33=200 33.(3)重叠四边形MNPQ 的形状是菱形. 证明:因纸片都是矩形,则重叠四边形的对边互相平行,则四边形MNPQ 是平行四边形. 如图113,过Q 作QL ⊥NP 于点L ,QK ⊥NM 于点K , 又QL =QK , ∴S MNPQ =PN ·QL =MN ·QK .∴MN =NP ,∴四边形MNPQ 的形状是菱形.图113 图114(4)当矩形纸片互相垂直时,这个菱形的周长最短是40 cm. 最大的菱形如图114所示放置时,重叠部分的菱形面积最大. 设GK =x ,则HK =25-x .在Rt △KHB 中,x 2=(25-x )2+102, 解得x =14.5.则菱形的最大周长为58 cm.。

广州市2014年中考模拟试题1数学(附答案)

广州市2014年中考模拟试题1数学(附答案)

2014年广州市中考数学模拟试题1本试卷分选择题和非选择题两部分,共三大题25小题,共5页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。)1.用四舍五入法取267304的近似值,要求保留二个有效数字,结果是( )A.2.7×105B.270000C.2.67×105D.2.6×1052.下列说法正确的是( )A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数3.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2﹣1D.2+14.若,则代数式x y的值为( )A.4B.C.﹣4D.5.若a是方程2x2﹣x﹣3=0的一个解,则6a2﹣3a的值为( )A.3B.-3C.9D.﹣96.若不等式3x﹣m≤0的正整数解是1、2、3.则m的取值范围为( )A.m<12B.m≥9C.9≤m≤12D.9≤m<127.若a、b、c为△ABC的三边,那么关于代数式(a﹣b)2﹣c2的值,以下判断正确的是( )A.大于0B.等于0C.小于0D.以上均有可能8.自由转动转盘,指针停在白色区域的机会为的转盘是( )A. B. C. D.9.用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )A.3cmB.5cmC.6cmD.8cm10.如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:①EF∥AD;②S△=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.其中正确的个数是( )ABOA.1个B.2个C.3个D.4个第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.﹣3的倒数是.12.不等式组的整数解为.13.若x2﹣2ax+16是完全平方式,则a= .14.如图,一次函数y=z+5的图象经过点P(a,b)和Q(c,d),则a(c﹣d)﹣b(c﹣d)的值为.第14题第15题第16题15.如图,AB是⊙O的直径,CD是圆上的两点(不与A、B重合),已知BC=2,tan∠ADC=,则AB= .16.如图,在平面直角坐标系中,边长为1的正方形OA1B1C的对角线A1C和OB1交于点M1;以M1A1为对角线作第二个正方形A2A1B2M1,对角线A1M1和A2B2交于点M2;以M2A1为对角线作第三个正方形A3A1B3M2,对角线A1M2和A3B3交于点M3;…,依此类推,这样作的第n 个正方形对角线交点M n的坐标为.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(每小题5分,共10分)(1)解方程:; (2)解不等式组:.18.已知a+b+c=0,a2+b2+c2=1,求代数式a(b+c)+b(a+c)+c(a+b)的值.(8分)19.已知,如图,点D在边BC上,点E在△ABC外部,DE交AC于F,若AD=AB,∠1=∠2=∠3.求证:BC=DE.(10分)20.如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.(10分)21.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?(12分)22.某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.(12分)(1)根据图示填写下表;(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.(方差公式:.23.如图,在矩形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,点P在矩形ABCD内,若AB=4,BC=6,AE=CG=3,BF=DH=4,四边形AEPH的面积为5,求四边形PFCG的面积.(12分)24.如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(14分)(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.25.(14分)如图,抛物线与直线交于点A(4,2)、B(0,﹣1).(1)求抛物线的解析式;(2)点D在直线l下方的抛物线上,过点D作DE∥y轴交l于E、作DF⊥l于F,设点D的横坐标为t.①用含t的代数式表示DE的长;②设Rt△DEF的周长为p,求p与t的函数关系式,并求p的最大值及此时点D的坐标;(3)点M在抛物线上,点N在x轴上,若△BMN是以M为直角顶点的等腰直角三角形,请直接写出点M的坐标.D、两个数互为倒数,则它们的相同次幂仍互为倒数,正确.故选D.3、解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选D.4、解:根据题意,得,解得x=,∴y=﹣2; ∴x y==4.故选A.5、解:若a是方程2x2﹣x﹣3=0的一个根,则有2a2﹣a﹣3=0, 变形得,2a2﹣a=3, 故6a2﹣3a=3×3=9.故选C.故选C.8、解:A停在白色区域的概率为:=; B停在白色区域的概率为:=;C停在白色区域的概率为:=;D停在白色区域的概率为:=.故选C.9、解:∵底面周长是6πcm,∴底面的半径为3cm,∵圆锥的高为4cm,∴圆锥的母线长为:=5∴扇形的半径为5cm,故选B.∵EF∥BC,∴∠OGH=∠OBC,∠OHG=∠OCB,已知四边形ABCD是梯形,不一定是等腰梯形,即∠OBC和∠OCB不一定相等,即∠OGH和∠OHG不一定相等,∠GOH和∠OGH或∠OHG也不能证出相等, ∴说△OGH是等腰三角形不对,∴③错误;∵EF∥BC,AE=BE(E为AB中点),∴BG=DG,∴④正确;∵EF∥BC,AE=BE(E为AB中点),∴AH=CH,∵E、F分别为AB、CD的中点,∴EH=BC,FG=BC,∴EH=FG,∴EG=FH,∴EH﹣GH=FG﹣GH,∴EG=HF,∴⑤正确;∴正确的个数是4个,故选D.第二部分非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11、解:﹣3的倒数是﹣.12、解:由①得x>﹣, 由②得x<,不等式组的解集为﹣<x<,则不等式组的整数解为0,1,2.13、解:∵x2﹣2ax+16是完全平方式,∴﹣2ax=±2×x×4∴a=±4.14、解:由P(a,b),Q(c,d)两点在一次函数y=z+5的图象上,则b=a+5,d=c+5,即:a﹣b=﹣5,c﹣d=﹣5.16、解:设正方形的边长为1,则正方形四个顶点坐标为O(0,0),C(0,1),B1(1,1),A1(1,0);根据正方形对角线定理得M1的坐标为();同理得M2的坐标为(,);M3的坐标为(,),…,依此类推:M n坐标为(,)=(,)三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤) 17、解:(1)去分母得,2+2x﹣4=x+1,移项得,2x﹣x=1+4﹣2,合并同类项得,x=3,经检验,x=3是原方程的根;(2),由①得,x>1;由②得,x≤3,∴∠2+∠DAC=∠1+∠DAC,∴∠BAC=∠DAE,又∵∠DFC=∠AFE,∠3=∠1,∴由三角形的内角和定理得:∠C=∠E,∵在△ABC和△ADE中,∴△ABC≌△ADE(AAS),∴BC=DE.20、解:由直线与x轴交于点A的坐标为(﹣1,0), ∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.22、解:(1)=(70+100+100+75+80)=85分,众数为100分中位数为:85分;(2)九(1)班成绩好些,因为两个班级的平均数相同,九(1)班的中位数高,所以在平均数相同的情况下中位数高的九(1)班成绩好些;(3)S12=[(75﹣85)2+(80﹣85)2+2×(85﹣85)2+(100﹣85)2]=70分2,S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160分2.23、解:解法一、连接AP,CP,设△AHP在AH边上的高为x,△AEP在AE边上的高为y.则△CFP在CF边上的高为4﹣x,△CGP在CG边上的高为6﹣y.=(26﹣10)×,=8.解法二、连接HE、EF、FG、GH,证△DHG≌△BFE,推出HG=EF, 推理HE=GF,则四边形EFGH由条件知是平行四边形,面积为4×6﹣×3×2﹣×3×2﹣×4×1﹣×4×1=14,24、(1)直线DE与⊙O的位置关系是相切,证明:连接OD,∵AO=BO,BD=DC,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为半径,直线DE是⊙O的切线,即直线DE与⊙O的位置关系是相切;(2)解:∵OD∥AC,∠BAC=60°,∴∠DOB=∠A=60°,∵DE是⊙O切线,∴∠ODF=90°,∴∠F=30°,∴FO=2OD=12,由勾股定理得:DF=6,∴阴影部分的面积S=S△ODF﹣S扇形DOB=×6×6﹣=18﹣6π.∴BG==,∴△OBG的周长为1++=4;∵DE∥y轴,∴△GBO∽△DEF,∴=∴p=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,p max=,此时D(2,﹣).(3)以点M在y轴左侧为例,如右图;过M作x轴的垂线,设垂足为R;若点B作MR的垂线,设垂足为S; ∵在△MNR与△BMS中,,∴△MNR≌△BMS,MR=BS=OR;当点M在x轴左侧时,与上相同,所以可设M(a,±a);当点M的坐标为(a,a)时,有:a2﹣a﹣1=a,解得:a=; 当点M的坐标为(a,﹣a)时,有:a2﹣a﹣1=﹣a,解得:a=;。

2014年广东省粤西地区初中毕业生学业模拟考试(一)数学试题及参考答案

2014年广东省粤西地区初中毕业生学业模拟考试(一)数学试题及参考答案

2014年广东省粤西地区初中毕业生学业模拟考试(一)数 学说明:① 全卷共4页,五大题;②考试时间100分,试卷满分120分,请在答题卡上作答。

一 选择题:(本大题10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.-12的绝对值是( )A 、-2B 、-12C、12D 、22.下列运算正确的是( ) A 、()4520xx -= B 、824x x x ÷= C 、m n nm x x x =· D 、3362x x x +=3.2014年湛江市春节黄金周商贸销售总额约元,这个数据用科学记数法可表示为( ) A 、91034.0⨯B 、8104.3⨯C 、71034⨯D 、7104.3⨯4.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )5.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ) A 、 19和20 B 、 20和19 C 、20和21 D 、20和206.如图,AB 是⊙O 的直径,点C 、D 都在⊙O 上,若50ABC ∠=, 则BDC ∠=( )A 、50 B 、30 C 、45D 、407.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°, 则∠CAE 的度数是( ) A 、80° B 、70° C 、60° D 、40°8.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球共15个,从中摸出红球的概率为13,则袋中红球的个数为( ) A 、3 B 、5C 、10D 、159.在Rt △ABC 中,∠C=90°,cosA=23,则tanB 等于( ) A 、35 BC 、25 D7题图A B CD10.如图,正比例函数x k y 11=和反比例函数xk y 22=的图象交于 )2,1(-A 、),(21-B 两点,若21y y <,则x 的取值范围是( )A 、01<<-x 或1>xB 、1-<x 或1>xC 、01<<-x 或10<<xD 、1-<x 或10<<x二 填空题:(本大题共6小题,每小题4分,共24分) 11.函数y =x 的取值范围是 . 12. 分解因式39x x -=______________。

2014广东省中考数学卷(含标准答案)

2014广东省中考数学卷(含标准答案)

2014年广东数学中考试卷年级姓名一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-a D、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BD B、AC⊥BDC、AB=CDD、AB=BC题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为( )A、17 B、15 C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()ABD题10图A 、函数有最小值 B、对称轴是直线x =21 C 、当x <21,y 随x 的增大而减小 D、当 -1 < x < 2时,y>0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ; 16、如题16图,△AB C绕点A 顺时针旋转45° 得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图则图中阴影部分的面积等于 。

最新2014年广东省中考模拟试题数学试卷

最新2014年广东省中考模拟试题数学试卷

校内学科排序: 评 审 编 号:
2014 年佛山市高中阶段招生考试模拟试题数学科试卷
说 明:本试卷分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 6 页,满分 120 分,考试时间 100 分钟。
注意事项:
1、 试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上
2、 要作图(含辅助线)或画表,先用铅笔进行画线、绘图,再用黑色字迹的钢笔或签 字等描黑。
第 I 卷(选择题 共 30 分)
一.选择题(本大题共 10 小题,每小题 3 分,共 30 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。答案 选项填涂在答题卡上。)
1. 5 的倒数是(
A、 5
2. (2a 2 )3 等于( )
A.6 a5
B、5
B.6 a6

C、 1 5
C.8 a5
16.先化简,再求值: x2 2x 1 3 ,其中 x 2 . x2 x x
17.四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。 (1)若随机抽取一张扑克牌,则牌面数字恰好 为 5 的概率是_____________; (2)规定游戏规则如下:若同时随机抽取两张 扑克牌,抽到两张牌的牌面数字之和是偶数为胜; 反之,则为负。你认为这个游戏是否公平?请说明理由。
h
O A .
h
tO B .
tO C .
h
10.图 1 是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)。将它们拼成 如图 2 的新几何体,则该新几何体的体积为( )
4
4
A.48 cm3
6
4
4
图1
6

(高清版)2014年广东省中考数学试卷

(高清版)2014年广东省中考数学试卷

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前广东省2014年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在1,0,2,3-这四个数中,最大的数是( )A .1B .0C .2D .3-2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )AB C D 3.计算32a a -的结果正确的是( ) A .1B .aC .a -D .5a - 4.把39x x -分解因式,结果正确的是( )A .2(9)x x -B .2(3)x x -C .2(3)x x +D .(3)(3)x x x +- 5.一个多边形的内角和是900o ,这个多边形的边数是( )A .10B .9C .8D .76.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率为( )A.47B .37C .34D .137.如图,□ABCD 中,下列说法一定正确的是 ( )A .AC BD =B .AC BD ⊥ C .AB CD =D .AB BC =8.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是 ( )A .94m >B .94m <C .94m =D .94m <- 9.一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或1710.二次函数2(0)y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线12x =C .当12x <时,y 随x 的增大而减小 D .当12x -<<时,0y >第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.计算32=x x ÷ .12.据报道,截至2013年12月我国网民规模达618000000人.将618000000用科学记数法表示为 .13.如图,在ABC △中,点D ,E 分别是AB ,AC 的中点,若6BC =,则DE = .14.如图,在O e 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)15.不等式组28,41+2x x x ⎧⎨-⎩<>的解集是 .16.如图,ABC △绕点A 顺时针旋转45o 得到''AB C △,若90BAC ∠=o,AB AC ==则图中阴影部分的面积等于.三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)11|4|(1)()2--+--.18.(本小题满分6分) 先化简,再求值:221()(1)11x x x +--+g ,其中x =19.(本小题满分6分)如图,点D 在ABC △的AB 边上,且ACD A ∠=∠.(1)作BDC ∠的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).20.(本小题满分7分)如图,某数学兴趣小组想测量一棵树CD 的高度.他们先在点A 处测得树顶C 的仰角为30o ,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60o (A B D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m ).( 1.414 1.732≈)21.(本小题满分7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(==)利润售价-进价利润率进价进价(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?数学试卷 第5页(共20页) 数学试卷 第6页(共20页)22.(本小题满分7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图1和图2所示的不完整的统计图.图1图2(1)这次被调查的同学共有 名; (2)把条形统计图(图1)补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?23.(本小题满分9分)如图,已知1(4,)2A -,(1,2)B -是一次函数()y kx b k b =+≠与反比例函数m y x=(0,0)m x ≠<图象的两个交点,AC x ⊥轴于点C ,BD y ⊥轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA △和PDB △面积相等,求点P 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)24.(本小题满分9分)如图,O e 是ABC △的外接圆,AC 是直径.过点O 作线段OD AB ⊥于点D ,延长DO 交O e 于点P ,过点P 作PE AC ⊥于点E ,作射线DE 交BC 的延长线于点F ,连接PF .(1)若60POC ∠=o ,12AC =,求劣弧»PC的长(结果保留π); (2)求证:OD OE =; (3)求证:PF 是O e 的切线.25.(本小题满分9分)如图,在ABC △中,AB AC =,AD BC ⊥点D ,10cm BC =,8cm AD =.点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB ,AC ,AD 于E ,F ,H .当点P 到达点C 时,点P 与直线m 同时停止运动.设运动时间为t秒(0)t >.备用图(1)当2t =时,连接DE ,DF .求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF △的面积存在最大值.当PEF △的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF △为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.广东省2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】根据正数大于0,0大于负数,可得3012-<<<,最大的数是2,故选C. 【考点】有理数比较大小. 2.【答案】C【解析】判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.A ,B既不是轴对称数学试卷 第9页(共20页) 数学试卷 第10页(共20页)图形,也不是中心对称图形;C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选C. 【考点】中心对称,轴对称. 3.【答案】B【解析】根据合并同类项的法则,原式(32)a a =-=,故选B. 【考点】合并同类项. 4.【答案】D【解析】一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,329(9)(3)(3)x x x x x x x -=-=+-g ,故选D.【考点】提公因式法,公式分解法因式分解. 5.【答案】D【解析】设这个多边形是n 边形,根据多边形的内角和公式等于(2)180n -°g ,得(2)180=900n -°°g ,解得7n =,故选D.【考点】多边形的内角和公式. 6.【答案】B【解析】∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随即摸出一个球,摸出的球是红球的概率37P =,故选B.【考点】概率公式. 7.【答案】C【解析】根据平行四边形的性质,一般情况下,AC BD ≠,A 选项错误;一般情况下,AC 不垂直BD ,B 选项错误;由平行四边形的对边相等得AB CD =,C 选项正确;一般情况下,AB BC ≠,D 选项错误,故选C. 【考点】平行四边形的性质. 8.【答案】B【解析】因为一元二次方程230x x m -+=有两个不相等的实数根,所以2(3)40m ∆=-->,解得94m <,故选B. 【考点】一元二次方程的根的判别式.9.【答案】A【解析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:①当等腰三角形的腰为3,底为7时,337+<不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为37717++=,这个等腰三角形的周长是17,故选A. 【考点】等腰三角形的性质,三角形三边关系. 【提示】本题易因忽略构成三角形的三边关系而错选D. 10.【答案】D【解析】由抛物线的开口向上,可知0a >,函数有最小值,A 正确;由图象可知,对称轴为2(1)122x +-==,B 正确;因为0a >,所以当12x <时,y 随x 的增大而减小,C 正确;由图象可知,当12x -<<时,0y <,D 错误,故选D. 【考点】二次函数的图象和性质.第Ⅱ卷二、填空题 11.【答案】22x【解析】利用整式的除法运算法则3222x x x ÷=. 【考点】整式的除法. 12.【答案】86.1810⨯【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a ≤<,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即8618000000 6.1810=⨯.【考点】科学记数法. 13.【答案】3【解析】由D ,E 分别是AB ,AC 的中点可知,DE 是ABC △的中位线,由三角形中位线的性质得132DE BC ==.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)【考点】三角形中位线的性质. 14.【答案】3【解析】作OC AB ⊥于点C ,连接OA ,∵OC AB ⊥,∴118422AC BC AB ===⨯=,在Rt AOC △中,5OA =,∴3OC =,即圆心O 到AB 的距离为3.【考点】垂径定理,勾股定理. 15.【答案】14x <<【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分,即28412x x x <⎧⎨->+⎩①,②,由①得4x <;由②得1x >,则不等式组的解集为14x <<. 【考点】一元一次不等式组的解法. 16.1【解析】设BC 与AC '交于点D ,BC 与B C ''交于点E ,AB 与B C ''交于点F ,∵ABC△绕点A 顺时针旋转45°得到AB C ''△,90BAC ∠=°,AB AC =2BC =,45C B CAC C ''∠=∠=∠=∠=°,∴AD BC ⊥,B C AB ''⊥,∴112AD BC ==,1AF FC AC ''===,∴图中阴影部分的面积211111)122AFC DEC S S ''=-=⨯⨯-⨯△△.【考点】旋转的性质,等腰直角三角形的性质. 三、解答题 17.【答案】6【解析】解:原式34126=++-=【考点】实数的综合运算能力.18.【答案】31x +【解析】解:原式2(1)(1)(1)(1)(1)(1)x x x x x x ++-=+-+-g 2(1)(1)x x =++-31x =+当13x =时,原式1313=⨯+=【考点】分式的化简求值.19.【答案】(1)作图正确(实线、虚线均可).结论:DE 即为所求. (2)DE AC ∥【考点】基本作图,平行线的判定.20.【答案】解:∵30CAB ∠=°,60CBD ∠=°,∴603030ACB ∠=-=°°°,∴CAB ACB ∠=∠, ∴10BC AB ==.在Rt CBD △中,sin60=CD°,∴sin 60108.7(m)2CD BC ==⨯=°g .答:这棵树高约8.7m .【考点】直角三角形的应用,仰角俯角问题. 21.【答案】(1)设该款空调机每台的进价是x 元, 根据题意,得16350.89x x ⨯-=%g ,解得1200x =.答:该款空调机每台的进价是1200元.(2)101200910800⨯⨯=%(元). 答:商场盈利10800元.数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【考点】分式方程的应用. 22.【答案】(1)1000名.(2)剩少量饭菜的人数为1000(400250150)200-++=(人)。

2014年广东省惠州市中考数学模拟卷及参考答案

2014年广东省惠州市中考数学模拟卷及参考答案

快乐的学习,快乐的考试! 1 惠州2014年中考数学模拟试卷(时间:100分钟,满分120分) 一、选择题(本大题共10小题,每小题3分,共30分;分;) ) 1、27的立方根是()A 、3 B 、3-C 、9 D 、9-2、参观上海世博会的游客约为505 000人.505 000用科学记数法表示为( ) A 、505×505×10103B 、5.05×5.05×10103C 、5.05×5.05×10104D 、5.05×5.05×101053、下列计算正确的是( ) A 、a 4+a 2=a 6B 、2a ·4a =8aC 、a 5÷a 2=a 3D 、(a 2)3=a 54、方程组îïíïìx +y =3x -y =-1的解是( ) A 、îïíïìx =1y =2B 、îïíïìx =1y =-2C 、îïíïìx =2y =1D 、îïíïìx =0y =-15、一个几何体的三视图如图所示.那么这个几何体是( ) 6、函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是()7、四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的机会是()A 、41 B B、、21 C C、、43D D、、1 8、已知1O ⊙和2O ⊙相切,1O ⊙的直径为9Cm ,2O ⊙的直径为4cm .则12O O 的长是()A 、5cm 或13cm B 、2.5cm C 、6.5cm D 、2.5cm 或6.5cm 9、一个正多边形的一个内角为120度,则这个正多边形的边数为()A 、9B、B、8 8C、C、7 7D、D、6 61010、如下图,小亮在操场上玩,一段时间内沿、如下图,小亮在操场上玩,一段时间内沿M →A →B →M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与时间x 之间关系的函数图像是(之间关系的函数图像是()二、填空题(本大题共6小题,每小题4分,共24分)11、若x 、y 为实数,且x +3+|y -2|=0,则x +y = . 12、如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24, 则OH 的长等于的长等于 . 13、一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是,那么这组数据的中位数是 . 14、双曲线y =2k -1x 的图象经过第二、四象限,则k 的取值范围是的取值范围是. 15、如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有个图中黑色正六边形有 个.个.16、已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等°,则该圆锥的母线长等 于 .三、解答题(一)(本大题共3小题,每小题6分,共18分)17、计算:110334(1)1x x +ì-ïíï--<î≥18、先化简,再求值:èçæø÷öa -1a 2-4a +4-a +2a 2-2a ÷èæøö4a -1,其中a =2- 3. 19、如图,在直角坐标系中,线段AB 的两个端点的坐标分别为A (﹣3,0),B (0,4).(1)画出线段AB 先向右平移3个单位,再向下平移4个单位后得到的线段CD ,并写出A 的对应点的对应点 D 的坐标,B 的对应点C 的坐标;的坐标;(2)连接AD 、BC ,判断所得图形的形状. 四、解答题(二)(本大题共3小题,每小题7分,共21分)20、如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.两点.(1)求这个二次函数的解析式;求这个二次函数的解析式; (2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.的面积.2121、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m 6 m,,∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示图所示)).(1)(1)求调整后楼梯求调整后楼梯AD 的长;的长;(2)(2)(2)求求BD 的长的长((结果保留根号结果保留根号)).22、2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某 市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x 个红球与3x 个白球的袋子,白球的袋子,让爸爸摸出一个球,让爸爸摸出一个球,让爸爸摸出一个球,如果摸出的是红球,如果摸出的是红球,如果摸出的是红球,妹妹去听讲座,妹妹去听讲座,妹妹去听讲座,如果摸出的是白球,如果摸出的是白球,如果摸出的是白球,小明去听讲座.小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有请问摸球的结果是对小明有请问摸球的结果是对小明有 利还是对妹妹有利,说明理由.利还是对妹妹有利,说明理由.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E . (1)求证:点D 是AB 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;的位置关系,并证明你的结论; (3)若⊙O 的直径为18,cos B =13,求DE 的长.的长.24、如图,已知二次函数y =-x 2+bx +c 的图象经过A (-2,-1),B (0,7)两点.两点.(1)求该抛物线的解析式及对称轴;(2)当x 为何值时,y >0? (3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C 、D 两点(点C 在对称轴的左侧),过点C 、D 作x 轴的垂线,垂足分别为F 、E .当矩形CDEF 为正方形时,求C 点的坐标.点的坐标.25、如图所示,在平行四边形ABCD 中,中, 4AD cm =,∠A =60°,BD ⊥AD ,一动点P 从A 出发,以每秒1cm 的速度沿A B C ®®的路线匀速运动,过点P 作直线PM ,使PM ⊥AD. (1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;的面积;(2)当点P 运动2秒时,秒时,另一动点另一动点Q 也从A 出发沿A B C ®®的路线运动,的路线运动,且在且在AB 上以每秒1cm 的速度匀速运动,在BC 上以每秒2cm 的速度匀速运动.过Q 作直线QN ,使QN//PM.设点Q 运动的时间为t 秒(0≤t ≤10),直线PM 与QN 截平行四边形ABCD 所得图形的面积为Scm 2. ①求S 关于t 的函数关系式;②求S 的最大值. 参考答案一、选择题1—5:A 、D 、C 、A 、C; 6C; 6——10:C 、B 、D 、D 、C; 二、填空题11、-1 12、3 13、5 14、k <12 15、100 16、15三、解答题(一)17、解:解:1.5<x 1.5<x 1.5<x≤≤218、解:原式=2124(2)(2)a a aa a a a éù-+--¸êú--ëû=2(1)(2)(2)(2)4a a a a aa a a---+´--=21(2)a - 当23a =-时,原式=1319、解:(1)如图所示,)如图所示,CD CD 即为所求作的线段,即为所求作的线段,D D (0,-4-4)),C (3,0); (2)∵)∵AC AC AC、、BD 互相垂直平分,∴四边形ABCD 是菱形.是菱形. 四、解答题(二)20.20.解:解:解:(1)(1)(1)把把A (2,0)(2,0),,B (0(0,-,-,-6)6)6)代入代入212y x bx c =-++得îíì-2+2b +c =0c =-=-66,解得îíìb =4c =-=-66.∴这个二次函数的解析式为 21462y x x =-+-(2)(2)∵该抛物线对称轴为直线∵该抛物线对称轴为直线4412()2x =-=´-, ∴点C 的坐标为的坐标为(4,0)(4,0)(4,0),, ∴∴AC =OC -OA =4-2=2, ∴S △ABC =12³AC ³OB =12³2³6=6.2121、解:、解:、解:(1)(1)(1)已知已知AB =6 m 6 m,∠,∠ABC =45°,=45°, ∴AC =BC =AB ²sin45°=6³22=3 2, ∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ²cos30°= 6 2³32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为的长为(3 (3 6-3 2)m.2222、解:、解:、解: (1) (1) (1)∵红球有∵红球有2x 个,白球有3x 个,个, ∴P (红球红球))=2x 2x +3x =25, P (白球白球))=3x 2x +3x =35, ∴P (红球红球)< )< P (白球白球)),∴这个办法不公平.∴这个办法不公平. (2)(2)取出取出3个白球后,红球有2x 个,白球有个,白球有(3(3x -3)3)个,个,个, ∴P (红球红球))=2x 5x -3,P (白球白球))=3x -35x -3,x 为正整数,为正整数, ∴P (红球红球))- P (白球白球))=3-x5x -3. ①当x <3时,则P (红球红球)> )> P (白球白球)),∴对小妹有利.,∴对小妹有利. ②当x =3时,则P (红球红球))= P (白球白球)),∴对小妹、小明是公平的.,∴对小妹、小明是公平的. ③当x >3时,则P (红球红球)< )< P (白球白球)),∴对小明有利.,∴对小明有利.五、解答题(三)2323、解:、解:、解:(1)(1)(1)证明:如图,连接证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC , ∴AD =BD , , 即点即点D 是AB 的中点.的中点. (2)(2)解:解:DE 是⊙O 的切线.的切线.理由是:连接OD ,则DO 是△ABC 的中位线,的中位线, ∴DO ∥AC .又∵DE ⊥AC , ∴DE ⊥DO ,又∵OD 是⊙O 的半径,的半径, ∴DE 是⊙O 的切线.的切线. (3)(3)∵∵AC =BC ,∴∠B =∠A , ∴cos cos∠∠B =cos cos∠∠A =13. ∵cos cos∠∠B =BD BC =13,BC =1818,, ∴BD =6,∴AD =6.∵cos cos∠∠A =AE AD =13,∴AE =2.在Rt Rt△△AED 中,DE =AD 2-AE 2=4 2.2424、解:、解:、解:(1)(1)(1)把把A (-2,-,-1)1)1),,B (0,7)(0,7)两点的坐标代入两点的坐标代入两点的坐标代入 y =-x 2+bx +c ,得,得îíì -4-2b +c =-=-11c =7,解得îíìb =2c =7.所以,该抛物线的解析式为y =-x 2+2x +7, 又因为y =-x 2+2x +7=-=-((x -1)2+8,所以对称轴为直线x =1. (2)(2)当函数值当函数值y =0时,时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1<1++2 2时,y >0. (3)(3)当矩形当矩形CDEF 为正方形时,设C 点的坐标为点的坐标为((m ,n ), 则n =-m 2+2m +7,即CF =-m 2+2m +7. 因为C 、D 两点的纵坐标相等,两点的纵坐标相等,所以C 、D 两点关于对称轴x =1对称,对称, 设点D 的横坐标为p ,则1-m =p -1, 所以p =2-m ,所以CD =(2(2--m )-m =2-2m . 因为CD =CF ,所以2-2m =-m 2+2m +7, 整理,得m 2-4m -5=0,解得m =-=-11或5. 因为点C 在对称轴的左侧,所以m 只能取-只能取-1. 1. 当m =-=-11时,时, n =-m 2+2m +7=-=-((-1)2+2³(-1)1)++7=4. 于是,点C 的坐标为的坐标为((-1,4)1,4)..2525、解:、解:、解: (1)当点P 运动2秒时,秒时,AP AP AP==2cm 2cm,由∠,由∠,由∠A A =6060°,知°,知AE AE==1,PE PE==3.∴32APE S D =.(2)①()①(i i )当0≤t ≤6时,点P 与点Q 都在AB 上运动,设PM 与AD 交于点G ,QN 与AD 交于点F ,则AQ AQ==t ,AF AF==2t ,QF QF==32,AP AP==t+2t+2,,AG AG==1+2t ,PG PG==332+.∴此时两平行线截平行四边形ABCD 的面积为3322S t =+. (ii ii)当)当6≤t ≤8时,点P 在BC 上运动,点Q 仍在AB 上运动,设PM 与DC 交于点G ,QN 与AD 交于点F ,则AQ AQ==t ,AF AF==2t ,DF DF==4-2t ,QF QF==32t ,BP BP==t -6,CP CP==1010--t ,PG PG=(=(=(101010--t )3. 而BD BD==43,故此时两平行线截平行四边形ABCD 的面积为2531033438S t t =-+-.(iii iii)当)当8≤t ≤10时,点P 和点Q 都在BC 上运动,设PM 与DC 交于点G ,QN 与DC 交于点F ,则CQ CQ==2020--2t 2t,,OF OF=(=(=(202020--2t 2t),),),CP CP CP==1010--t ,PG PG=(=(=(101010--t )3. ∴此时两平行线截平行四边形ABCD 的面积为23330315038S t t =-+.故S 关于t 的函数关系式为的函数关系式为::2233t +(0t 6)2253S =-t +103t -343(6t 8)833t -303t +1503(8t 10)8ìïïïïíïïïî≤≤≤≤≤≤ ②当0≤t ≤6时,时,S S 的最大值为732;当6≤t ≤8时,时,S S 的最大值为63. 当8≤t ≤10时,时,S S 的最大值为63 所以当t =8时,时,SS 有最大值为63.。

广州2014年中考数学模拟试题参考答案

广州2014年中考数学模拟试题参考答案

参考答案一、选择题:二、填空题:11.(2)a a + 12.51.63510⨯ 13.18 14.2或0 15.26y x =16.11m- 三、解答题:17.(本题满分 9分)解:不等式⑴的解集为:1x ≥----------------------3分不等式⑵的解集为:3x ≤----------------------6分 ∴不等式组的解集为:13x ≤≤----------------------8分 画图1分18. (本题满分9分)证明:∵∠BAF =∠CAE ,∴∠BAE =∠CAF ,又∵AB =AC ,∴∠B =∠C ,在⊿ABE 和⊿ACF 中:∵⎪⎩⎪⎨⎧∠=∠=∠=∠C B AC AB CAFBAE ∴⊿ABE ≌⊿ACF , ∴BE =CF 。

19. (本题满分9分) 解:原式=11()11(1)x x x x x x --÷--- ----------------------4分 =1(1)1x x x ---g ----------------------6分 = x -----------------------8分当x =2时,原式=-2;----------------------9分20.(本题满分10分)解:(1)100 ; ………………4分 (2)条形统计图:70, ………………5分扇形统计图:赞成:10﹪,反对:70﹪; ………………7分 (3)25. ………………10分21.(本题满分10分)解:(1)设该市对市区绿化工程投入资金的年平均增长率为x ---------------------1分根据题意得,22000(1)2420x += ---------------------5分得 110%x =,2 2.1x =-(舍去) ---------------------7分答:该市对市区绿化工程投入资金的年平均增长率为10﹪. ---------------------8分 (2)2012年需投入资金:22420(110%)2928.2⨯+=(万元) 答:2012年需投入资金2928.2万元. ---------------------10分22.(本题满分12分)解:过点B 作B D ⊥AC 于点D ,过C 作方位线,由平行得到---------------------2分 ∠1=∠2=25°,又∠3=20°,∴∠BCD=45°---------------------4分 ∴△BCD 为等腰直角三角形---------------------5分∴BD=CD=30km)---------------------8分∵0tan 30)3AD BD km ===g ---------------------10分∴)CA km =---------------------12分23.(本题满分12分)(1)证明:连接OD ,∵BC 是⊙O 的切线,∴∠ABC =90°, …………1分 ∵CD =CB , ∴∠CBD =∠CDB , ∵OB =OD ,∴∠OBD =∠ODB , ∴∠ODC =∠ABC =90°,即OD ⊥CD , ……………3分 ∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分(2)如图,∠DOE =∠ODB +∠OBD =2∠DBE ,…………………5分由(1)得:OD ⊥EC 于点D ,∴∠E +∠C =∠E +∠DOE =90°, ………………6分 ∴∠C =∠DOE =2∠DBE . ………………………………………………………7分 (3)作OF ⊥DB 于点F ,连接AD ,由EA =AO 可得:AD 是Rt △ODE 斜边的中线,∴AD =AO =OD ,∴∠DOA =60°,∴∠OBD =30°, ………………………………8分 又∵OB =AO =2,OF ⊥BD ,∴ OF =1,BF =, ………………………………9分 ∴BD =2BF =2,∠BOD =180°-∠DOA =120°, ……………………………10分 ∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分24.(本题满分14分)(1)证明:∵在△ABC 和△ADC 中,---------------------1分∴△ABC ≌△ADC (SSS ),---------------------2分 ∴∠BAC =∠DAC ,---------------------3分 ∵在△ABF 和△ADF 中,---------------------3分∴△ABF ≌△ADF ,---------------------4分∴∠AFD =∠AFB , ∵∠AFB =∠CFE , ∴∠AFD =∠CFE ,∴∠BAC =∠DAC ,∠AFD =∠CFE . ---------------------6分(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD ,---------------------7分又∵∠BAC =∠DAC , ∴∠CAD =∠ACD , ∴AD =CD ,---------------------9分∵AB=AD ,CB=CD ,∴AB=CB=CD=AD , ∴四边形ABCD 是菱形;---------------------10分(3)当EB ⊥CD 时,∠EFD =∠BCD ,---------------------11分理由:∵四边形ABCD 为菱形, ∴BC =CD ,∠BCF =∠DCF , 在△BCF 和△DCF 中,---------------------12分∴△BCF ≌△DCF (SAS ),∴∠CBF =∠CDF ,---------------------13分∵BE ⊥CD ,∴∠BEC =∠DEF =90°,∴∠EFD =∠BCD .---------------------14分25.(本题满分14分) 解:(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m=-⨯-. 解得m =4.---------------------2分(2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.---------------------5分(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.---------------------6分设对称轴与x 轴的交点为P ,那么HP EOCP CO=.---------------------7分 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.---------------------9分(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BCCB BF=,即2B C C E B F=⋅时,△BCE ∽△FBC .---------------------10分设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+.解得x =m +2.所以F ′(m +2, 0).---------------------11分由'CO BF CE BF =4m BF +=.所以BF =. 由2BC CE BF =⋅,得2(2)m +=整理,得0=16.此方程无解.---------------------12分图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′, 由于∠EBC =∠CBF ,所以BE BCBC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+.解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2)BF m =+.由2BC BE BF =⋅,得2(2)2)m m +=+.解得2m =±---------------------13分综合①、②,符合题意的m 为2+---------------------14分。

2014年广东省中考(初中毕业生学业考试)数学全真模拟试卷一

2014年广东省中考(初中毕业生学业考试)数学全真模拟试卷一

AB CDEF 2014年广东省初中毕业生学业考试数学全真模拟试卷(一)说明:1.答题前,请将姓名、准考证号、考场、试室号和座位号用规定的笔写在试卷指定的位置上.2.全卷分两部分,第一部分为选择题,第二部分为非选择题,共8页.考试时间100分钟,满分120分.3.考生必须在试卷上按规定作答;不在指定位置上,其答案一律无效.试卷必须保持清洁,不能折叠.4.本卷选择题(1-10),每小题选出答案后,将答案填写在题后对应的括号内.答非选择题(11-25),答案必须用规定的笔填写在试卷指定位置上.5.考试结束后,请将本试卷交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列各数中,小于-2的是( )A .1B .-1C .-2D .-32.P 点在平面直角坐标系的第二象限,P 到x 轴的距离为1,到y 轴的距离为2,则P 点的坐标是( )A .)2 , 1(-B .)1, 2(-C .)2 , 1(-D .)1 , 2(-3.分式12-+x x 中,x 的取值范围是( ) A .1≠x B .2-≠x C .1>x D .2->x 4.把不等式01<+x 的解集在数轴上表示出来,正确的是( )A.B .C .D .5.如图,CD AB //,CF 与AB 相交于E 。

若070=∠AEF ,则=∠C ( )A .70°B .100°C .110°D .120°6.下列选项中,非轴对称的是( )A .平行四边形B .正五边形C .正六边形D .圆7.在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成三角形,又能拼成平行四边形和梯形的可能是( )A .B .C .D .8.已知⊙O 的半径是3,点O 到直线 l 的距离是2,则直线 l 与⊙O ( )A .相切B .相交C .相离D .以上都不是9.某同学对甲、乙、丙、丁四个市场五月份蔬菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为3.22=甲s 、.122=乙s 、9.12=丙s 、3.12=丁s ,则五月份蔬菜价格最稳定的市场是( )A .甲B .乙C .丙D .丁10.从-1、1、2三个数中随机取一个数为k ,再随机取一个数(可重复)为b ,则直线b kx y +=与x 轴的交点在x 轴正半轴的概率是( ) A .95B .32 C .21 D .31 第二部分 非选择题(共90分)二、填空题(本大题6小题,每小题4分,共24分)11.使二次根式12-x 有意义的x 的取值范围是_________.12.如右图,矩形OABC 的顶点)0 , 3(A 、)2 , 0(C ,反比例函数xky =的图象经过顶点B ,则常数=k _________.13.一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为_________. 14.一个底面水平放置的圆柱的主视图是面积为1的长方形,这个圆柱的侧面积=S _______. 15.袋中有20个红球和若干黑球,它们除颜色不同外其他都相同。

2014广东中考数学模拟

2014广东中考数学模拟

2014年广东省初中毕业生学业考试模拟卷数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(2010•菏泽)负实数a 的倒数是( )A . ﹣aB .C . ﹣D . a2.港、珠、澳大桥工程估计投资726亿元,用科学记数法表示正确的是( )A . 7.26×1010元B . 72.6×109元C . 0.726×1011元D . 7.26×1011元3.(2013•盐城)下面的几何体中,主视图不是矩形的是( )A .B .C .D .4.下列运算中,错误的是( )A .B .C .D .5.(2011•昭通)将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A . 45°B . 60°C . 75°D . 85°6.(2013•盐城)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )工资(元)2000 2200 2400 2600 人数(人)1 3 4 2A . 2400元、2400元B . 2400元、2300元C . 2200元、2200元D . 2200元、2300元7.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(2013•雅安)二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的大致图象为( )A .B .C .D .9.(2013•营口)不等式组的解集在数轴上表示正确的是( ) A . B . C . D .10.(2013•泸州)函数自变量x 的取值范围是( ) A . x ≥1且x≠3B . x ≥1C . x ≠3D . x >1且x≠3二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.(2013•南平)分解因式:3a 2+6a+3= _________ .12.(2013•苏州)方程=的解为 _________ .13.(2013•荆门)如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=,则DE= _________ .14.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_________.15.(2011•成都)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_________.16.(2006•威海)如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为_________.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(2011•武汉)解方程:x2+3x+1=0.18.先化简,再求值:,其中x=.19.(2012•宜昌)如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某市从今年1月1日起调整居民用水每立方米的价格,每立方米价格上涨,小丽家去年12月份的水费是15元,而今年5月份的水费是30元,已知小丽家今年5月份的用水量比去年12月份的用水量多5立方米,求该市去年和今年居民用水每立方米的价格各是多少?21.(2012•湘西州)如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.22.(2013•泉州)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.四、解答题(三)(本大题3小题,每小题9分,共27分)23.已知:关于x的方程x2﹣kx﹣2=0.(1)求证:无论k为何值时,方程有两个不相等的实数根.(2)设方程的两个实数根为x1,x2,若2(x1+x2)>x1x2,求k的取值范围.(3)设方程的两个实数根为x1,x2,且满足,求k的值.24.(2013•义乌市)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=,求EF的长.25.(2012•莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.。

2014年广东省中考数学模拟试卷 (1)

2014年广东省中考数学模拟试卷 (1)

2014年广东省中考数学模拟试卷(1)2014年广东省中考数学模拟试卷(1)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.C D3.(3分)(2013•宜昌)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()25.(3分)(2013•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别6.(3分)如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()C DC D10.(3分)(2013•雅安)二次函数y=ax 2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2013•无锡)分解因式:2x2﹣4x=_________.12.(4分)(2013•黔西南州)已知,则a b=_________.13.(4分)(2012•徐州)∠α=80°,则α的补角为_________°.14.(4分)(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为_________米.15.(4分)(2013•厦门)如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=_________.16.(4分)(2013•宿迁)如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是_________.(结果保留π)三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2013•梧州)解方程:.18.(5分)(2013•红河州模拟)先化简,再求值:,再选择一个使原式有意义的x代入求值.19.(5分)(2013•乐山)如图,已知线段AB.(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M,N(线段AB的上方).连结AM,AN,BM,BN.求证:∠MAN=∠MBN.四、解答题(二)(本大题3小题,每小题8分,共24分)20.(8分)(2013•来宾)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.(8分)保障房建设是民心工程,广东省某市从2009年开始加快保障房建设进程,现统计了该市2009年到2013年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小丽看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小丽说法正确吗?请说明理由.(2)求补全条形统计图.(3)求这5年平均每年新建保障房的套数.22.(8分)(2013•乌鲁木齐)如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC 于F,求证:(1)△AEB∽△OFC;(2)AD=2FO.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2013•镇江)如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).(1)写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.24.(9分)(2013•义乌市)已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE 是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sinA=,求EF的长.25.(9分)(2013•重庆)已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形ABCD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.。

2014年广东省中考数学模拟试题(一)

2014年广东省中考数学模拟试题(一)

最新中考数学全真模拟试题一、选择题(共10小题,每小题3分,满分30分) 1.-5的相反数是 ( ) A .51 B.5 C. 5- D.51- 2. 图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为( )6. 如图,直线a 与直线b 被直线c 所截,a ∥b ,若 ,则的度数为 ( )A .B .C .D .7. 下列等式中正确的是()8.不等式的解集在数轴上表示正确的是()A. B. C. D.9. 下列图形中,是中心对称图形但不是轴对称图形的是()A. B. D.10. 已知k1<0<k2,则函数y=k1x和的图象大致是().A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11. 分解因式:x2+2xy+y2-4=___________.12. 若a+b=2011,a-b=1,z则a2-b2=_________________.13. 一个边形的每一个外角都是,则这个边形的内角和是。

14. 在Rt△ABC中,∠C=90°,3a=,则sinA= .15. 如图,点D是等边△ABC的边BC上一点,△ABD绕点A逆时针旋转到△ACE的位置,则∠DAE=_________________16. 如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组:..18. 在三个整式x2-1,x2+2x+1,x2+x中,请你从中任意选择两个,将其中一个作为分子,另一个作为分母组成一个分式,并将这个分式进行化简,再求当x=2时分式的值.19. 如图,四边形ABCD是平行四边形.(1)用尺规作图作∠ABC的平分线交AD于E(保留作图痕迹,不要求写作法,不要求证明)(2)求证:AB=AE.四、解答题(二)(本大题3小题,每小题8分,共24分)20. 为了解某中学全校学生对排球、乒乓球、篮球、羽毛球、足球五项体育运动的喜爱情况,从中随机调查了若干名学生,并将调查结果绘制成统计表和统计图(不完整).请根据图中提供信息,解答下列问题:(1)补全统计表和统计图.22.如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE 上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,(2)∠BAE=30°,求AE的长;四、解答题(三)(本大题3小题,每小题9分,共27分)23如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA・PB=PC・PD;(2)设BC的中点为F,连结FP并延长交AD于E,求证:EF⊥AD:(3)若AB=8,CD=6,求OP的长.25. 如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°∠EDF=30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014新思维中考数学冲刺试卷一
一、选择题(本大题8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请将答题卡上对应的小题所选的选项涂黑. 1.(4分)下列各组数中,互为相反数的是( )
A . 2和
B . ﹣2和﹣
C . ﹣2和|﹣2|
D . 和 2.(4分)股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95 000 000,正向1亿挺进,95 000 000用科学记数法表示为( )户.
A . 9.5×106
B . 9.5×107
C . 9.5×108
D . 9.5×109 3.(4分)下列各式正确的是( )
A . a 4×a 5=a 20
B . a 2×2a 2=2a 4
C . (﹣a 2b 3)2=a 4b 9
D . a 4÷a=a 2
4.(4分)下面的图形中,既是轴对称图形又是中心对称图形的是( )
A .
B .
C .
D .
5.(4分)如图,在一本书上放置一个乒乓球,则此几何体的俯视图是( )
A .
B .
C .
D . 6.(4分)下列事件中是必然事件的是( )
A . 打开电视机,正在播广告 C .
小沈阳一定能上2014年春节
联欢晚会
B . 今年10月1日,潮南区的天气一定是晴天 D . 从一个只装有
白球的缸里摸
出一个球,摸出
的球是白球
7.(4分)如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )
A .
B M >DN
B . B M <DN
C . B M=DN
D . 无法确定
8.(4分)如图,B是线段AC的中点,过点C的直线l与AC成60°的角,在直线L上取一点P,使∠APB=30°,则满足条件的点P的个数是()
A.3个B.2个C.1个D.不存在
二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答卷相应的位置上.9.(4分)3减去﹣2的结果是_________.
10.(4分)已知反比例函数的图象过点(6,﹣),则k=_________.
11.(4分)如图,AB是⊙O的直径,∠COB=70°,则∠A=_________度.
12.(4分)如图,点O是正△ACE和正△BDF的中心,且AE∥BD,则∠AOF=_________度.
13.(4分)将正方形A的一个顶点与正方形B的对角线交叉重合,如图1位置,则阴影部分面积是正方形A面积
的,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的_________.
三、解答题(一)(本大题5小题,每小题7分,共35分)
14.(7分)计算:(﹣1)2008﹣(π﹣3)0+
15.(7分)解不等式组,并将解集在数轴上表示出来.
16.(7分)如图,AC是平行四边形ABCD的对角线.
(1)请按如下步骤在图中完成作图(保留作图痕迹):
①分别以A,C为圆心,以大于AC长为半径画弧,弧在AC两侧的交点分别为P,Q.
②连接PQ,PQ分别与AB,AC,CD交于点E,O,F;
(2)求证:AE=CF.
17.(7分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.
(1)根据图象,分别写出A、B的坐标;
(2)求一次函数y=kx+b解析式.
18.(7分)一个三角形的三边长分别为、、
(1)求它的周长(要求结果化简);
(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.
四、解答题(二)(本大题3小题,每小题9分,共27分)
19.(9分)商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)问商场经营该商品原来一天可获利润多少元?
(2)若商场经营该商品一天要获利润2160元,则每件商品售价应为多少元?
20.(9分)透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字以外都相同.
(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?
(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由.
21.(9分)(菏泽)我市在城市建设中,要折除旧烟囱AB(如图所示),在烟囱正西方向的楼CD的顶端C,测得烟囱的顶端A的仰角为45°,底端B的俯角为30°,已量得DB=21m.
(1)在原图上画出点C望点A的仰角和点C望点B的俯角,并分别标出仰角和俯角的大小;
(2)拆除时若让烟囱向正东倒下,试问:距离烟囱正东35m远的一棵大树是否被歪倒的烟囱砸着?请说明理由.(≈1.732)
五、解答题(三)(本大题3小题,每小题12分,共36分)
22.(12分)(湛江)先观察下列等式,然后用你发现的规律解答下列问题.
┅┅
(1)计算=_________;
(2)探究=_________;(用含有n的式子表示)
(3)若的值为,求n的值.
23.(12分)(安徽)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP:PQ:QR.
24.(12分)(双柏县)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标.。

相关文档
最新文档