6.5 一次函数图象的应用(1)(含答案)-

合集下载

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1

鲁教版数学七年级上册6.5《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是鲁教版数学七年级上册第六章第五节的内容。

本节内容是在学生已经掌握了函数概念和一次函数的基础上,进一步探讨一次函数在实际生活中的应用。

通过本节内容的学习,使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。

二. 学情分析七年级的学生已经具备了一定的函数知识,对一次函数的概念和性质有一定的了解。

但是,对于一次函数在实际生活中的应用,可能还存在一定的困难。

因此,在教学过程中,需要教师引导学生将理论知识与实际生活相结合,通过实际问题,引导学生理解和运用一次函数。

三. 教学目标1.知识与技能:使学生能够理解一次函数的实际意义,能够运用一次函数解决实际问题。

2.过程与方法:通过实际问题的解决,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:一次函数在实际生活中的应用。

2.难点:如何将实际问题转化为一次函数问题,如何运用一次函数解决实际问题。

五. 教学方法采用问题驱动法,通过实际问题的提出,引导学生思考和探索,从而理解和掌握一次函数在实际生活中的应用。

同时,采用小组合作学习法,鼓励学生之间的交流和合作,提高学生的学习效果。

六. 教学准备教师准备一些实际问题,用于引导学生思考和探索。

同时,准备一次函数的图像,用于帮助学生理解和掌握一次函数的性质。

七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾一次函数的知识,如一次函数的定义、图像等。

然后,教师提出一个问题:“你们认为一次函数在实际生活中有什么应用呢?”让学生思考和讨论。

2.呈现(10分钟)教师呈现一些实际问题,如“小明每天骑自行车上学,他每小时行驶6公里,问小明从家到学校需要多少时间?”让学生尝试解决。

在学生解决过程中,教师引导学生将实际问题转化为一次函数问题。

一次函数应用题(讲义及答案). (1)

一次函数应用题(讲义及答案). (1)

一次函数应用题(讲义)➢课前预习1. 一条公路旁依次有A,B,C三个村庄,甲、乙两人骑自行车分别从A村、B村同时出发前往C村,甲、乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B 两村相距10 km;②出发1.25 h 后两人相遇;③出发2 h 后甲到达C 村庄;④甲每小时比乙多骑行8km.其中正确的个数是()A.1 个B.2 个C.3 个D.4 个➢知识点睛一次函数应用题的处理思路:1.理解题意,梳理信息结合图象、文字信息理解题意,将实际场景与图象中轴、点、线对应起来理解分析.①看轴,明确横轴和纵轴表示的实际意义.②看点,明确起点、终点、状态转折点表示的具体意义,还原实际情景,提取每个点对应的数据.③看线,观察每段线的变化趋势(增长或下降等),分析每段数据的变化情况.2.辨识类型,建立模型①将所求目标转化为函数元素,借助图象特征,利用表达式进行求解;②将图象中的点坐标还原成实际场景中的数据,借助实际场景中的等量关系列方程求解.3.求解验证,回归实际1➢精讲精练1.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400 米,先到终点的人原地休息.已知甲先出发4 分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60 米/分;②甲走完全程用了40 分钟;③乙用16 分钟追上甲;④乙走完全程用了30 分钟;⑤乙到达终点时,甲离终点还有300 米.其中正确的结论是.(填序号)2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地的过程中y 与x 之间的函数关系,结合图象解答下列问题:(1)求线段AB 所在直线的函数解析式以及甲、乙两地之间的距离;(2)求a 的值;(3)出发多长时间,两车相距140 千米?3.甲、乙两台机器共同加工一批零件,一共用了6 小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲的加工时间x(h)之间的函数图象为折线OA-AB-BC,如图所示,结合图象解答下列问题:(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)求y 与x 之间的函数关系式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?4.在一条笔直的公路上依次有A,C,B 三地,甲、乙两人同时出发,甲从A 地骑自行车去B 地,途经C 地休息1 分钟,继续按原速骑行至B 地,甲到达B 地后,立即按原路原速返回A 地;乙步行从B 地前往A 地.甲、乙两人距A 地的路程y(米)与时间x(分)之间的函数关系如图所示,结合图象解答下列问题:(1)甲的骑行速度为米/分,点M 的坐标为;(2)求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3)甲从A 地出发,经过多长时间在返回途中追上乙?5.某工厂安排甲、乙两个运输队各从仓库调运物资300 吨,两队同时开始工作,甲运输队工作3 天后因故停止,2天后重新开始工作,由于工厂调离了部分工人,甲运输队的工作效率1降低到原来的;乙运输队在整个运输过程中工作效率保持2不变.甲、乙运输队调运物资的数量y(吨)与甲的工作时间x(天)的函数图象如图所示,结合图象解答下列问题:(1)a= ,b= .(2)求甲运输队重新开始工作后,甲运输队调运物资的数量y(吨)与工作时间x(天)的函数关系式;(3)直接写出乙运输队比甲运输队多运50 吨物资时x 的值.6.快、慢两车分别从相距480 千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1 小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,结合图象解答下列问题:(1)慢车的行驶速度为千米/时,a= ;(2)求快车的速度和B 点坐标;(3)两车出发后几小时相距的路程为200 千米?请直接写出答案.⎨ ⎩【参考答案】➢ 课前预习1. D➢ 精讲精练1. ①②④2. (1)线段 AB 所在直线的函数解析式为 y = -140x + 280 ;甲乙两地之间的距离为 280 千米;(2)a 的值为 210;(3)出发 1 h 或 3 h 时,两车相距 140 千米.3. (1)270,20,40;⎧50x (0 < x ≤1) (2) y = ⎪20x + 30(1 < x ≤3);⎪60x - 90(3 < x ≤ 6) (3)在整个加工过程中,甲加工 1.5 小时或 4.5 小时时, 甲与乙加工的零件个数相等.4. (1)240,(6,1200);(2) y = -240x + 2640 ;(3)甲从 A 地出发,经过 8 分钟在返回途中追上乙;5. (1)5,11;(2) y = 25x + 25 (5 ≤ x ≤11) ;(3)乙运输队比甲运输队多运 50 吨物资时,x 的值为 6 或 9.6. (1)60,360;(2) 快车的速度为 120km/h ,B 点的坐标为(4,0);(3) 两车出发14 h , 34 h 或14 h 时,相距的路程为 2009 9 3千米.。

6、5一次函数的应用 同步练习题 -鲁教版(五四制)七年级数学上册

6、5一次函数的应用 同步练习题 -鲁教版(五四制)七年级数学上册

2021-2022学年鲁教版七年级数学上册《6.5一次函数的应用》同步练习题(附答案)1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m22.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2B.x=0C.x=﹣1D.x=﹣33.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是()A.B.C.D.4.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.5.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.6.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y=k1x+b1,直线CD的表达式为y=k2x+b2,则k1•k2=.7.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.8.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.9.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围成的三角形面积为4,那么b1﹣b2等于.10.如图,直线l:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.11.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.12.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页)5102030…甲复印店收费(元)0.52…乙复印店收费(元)0.6 2.4…(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x 的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.13.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.14.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?15.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?16.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?14.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?18.某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)19.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时a超过150千瓦时但不超过300千瓦时的部b分超过300千瓦时的部分a+0.35月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?20.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.参考答案1.解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.2.解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣3,0),∴方程ax+b=0的解是x=﹣3,故选:D.3.解:5x﹣1=2x+5,∴实际上求出直线y=5x﹣1和y=2x+5的交点坐标,把x=0分别代入解析式得:y1=﹣1,y2=5,∴直线y=5x﹣1与y轴的交点是(0,﹣1),y=2x+5与y轴的交点是(0,5),选项A、B、C、D都符合,∴直线y=5x﹣1中y随x的增大而增大,故选项D错误;∵直线y=2x+5中y随x的增大而增大,故选项C错误;当x=2时,y=5x﹣1=9,故选项B错误;选项A正确;故选:A.4.解:由直线y=x+b(b>0),可知∠1=45°,∵∠α=75°,∴∠ABO=180°﹣45°﹣75°=60°,∴OB=OA÷tan∠ABO=.∴点B的坐标为(0,),∴b=.故选:B.5.解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.6.解:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1==,k2==,∴k1•k2=1,故答案为:1.7.解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.8.解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.9.解:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.故答案为:4.10.解:过点C作CE⊥x轴于点E由直线AB的解析式可知当x=0时,y=,即OB=当y=0时,x=1,即OA=1∵∠AOB=∠C=90°,tan∠3=OB:OA=∴∠3=60°∵△AOB与△ACB关于直线l对称∴∠2=∠3=60°,AC=OA=1∴∠1=180°﹣∠2﹣∠3=60°在RT△ACE中AE=CE=∴OE=1+=∴点C的坐标是(,).11.解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.12.解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;(2)y1=0.1x(x≥0);y2=;(3)顾客在乙复印店复印花费少;当x>70时,y1=0.1x,y2=0.09x+0.6,设y=y1﹣y2,∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,设y=0.01x﹣0.6,由0.01>0,则y随x的增大而增大,当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,∴当x>70时,顾客在乙复印店复印花费少.13.解:(1)由图象可知A、B两城之间距离是300千米.(2)设乙车出发x小时追上甲车.由图象可知,甲的速度==60千米/小时.乙的速度==100千米/小时.由题意60(x+1)=100x解得x=1.5小时.(3)设y甲=kt+b,则解得,∴y甲=60t﹣300,设y乙=k′t+b′,则,解得,∴y乙=100t﹣600,∵两车相距20千米,∴y甲﹣y乙=20或y乙﹣y甲=20或y甲=20或y甲=280,即60t﹣300﹣(100t﹣600)=20或100t﹣600﹣(60t﹣300)=20或60t﹣300=20或60t ﹣300=280解得t=7或8或或,∵7﹣5=2,8﹣5=3,﹣5=,﹣5=∴甲车出发2小时或3小时或小时或小时,两车相距20千米.14.解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.15.解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0≤x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x<60x+6000,解得x>200,所以至少买201张票时选择方案一比较合算.16.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯(1200﹣a)只,商场的获利为y 元,由题意,得y=(30﹣25)a+(60﹣45)(1200﹣a),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45(1200﹣a)]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.17.解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴25≤x≤100,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.18.解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ma+n,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65,由(2)知:成本每台为2000÷50=40(万元).总利润为:25×(65﹣40)=625(万元).答:该厂第一个月销售这种机器的利润为625万元.19.解:(1)根据5月份,该市居民甲用电100千瓦时,交电费60元;得出:a=60÷100=0.6,居民乙用电200千瓦时,交电费122.5元.则(122.5﹣0.6×150)÷(200﹣150)=0.65,故:a=0.6;b=0.65.(2)当x≤150时,y=0.6x.当150<x≤300时,y=0.65(x﹣150)+0.6×150=0.65x﹣7.5,当x>300时,y=0.9(x﹣300)+0.6×150+0.65×150=0.9x﹣82.5;(3)当居民月用电量x≤150时,0.6x≤0.62x,故x≥0,当居民月用电量x满足150<x≤300时,0.65x﹣7.5≤0.62x,解得:x≤250,当居民月用电量x满足x>300时,0.9x﹣82.5≤0.62x,解得:x≤294,综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过250千瓦时时,其月平均电价每千瓦时不超过0.62元.20.解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).方法四:设小明离家a小时到达乙地,则妈妈到达乙地时,小明离家(a﹣)小时,则60(a﹣﹣)=20(a﹣),解得,a=2,20×(2﹣)=30,∴从家到乙地的路程为30(km).。

6.5 一次函数图象的应用2

6.5 一次函数图象的应用2
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
5000 4000 3000
L1 L2
问1:这个图象与前一 节课所看到的图 象有何不同?
问2:你能说出这两 个函数代表的函数 的自变量与因变量 分别指什么? 问3:你能说出x轴、y 轴分别表示什么量?
.
7、小结:
问:经过本堂课的学习,你有什么收获?
1)学会解较为复杂的一次函数的应用题
2)学会把复杂的图象转化为几个简单的图象去 解决问题
布置作业:第178页,T1,T2 《同步测试》第48页,T4,T5
1、当同一直角坐标系中出 现多个函数图象时,一定 要注意对应的关系。 2、根据函数的的图象的确 定该函数的类型.
2000
1000 0 1 2 3 4 5 6
x/吨
4、做一做
我边防局接到情报,近海处有一可疑船只A正向公海 方向行使。边防局迅速派出快艇B追赶(如图(1)), 图(2)中L1、L2分别表示两船相对海岸的距离S(海 里)与追赶时间t(分)之间的关系。
一次函数的应用
学习目标: 1、提高学生的读图能力,解决与两个一次函数 相关的图象信息题。 2、进一步培养学生数形结合思想,以及分析、解 决问题的能力,提高思维能力。 3、通过小组合作学习,培养学生探究意识。
重点:读懂图象,并从图象中获取已知条件解决问题。 难点:同一坐标的两个函数的联系。
1、想一想:
(2002年四川中考题) 6、练一练:
某图书馆开展两种方式的租书业务:一种是使用会员 卡,一种是使用租书卡,使用这两种卡租书,租书金额y(元) 与租书时间x(天)之间的关系如下图: 1)分别写出用租书卡和会员卡 Y(元) 租书的金额y(元)与租书时间 x(天)之间的函数关系式; 2)两种租书方式每天租书的 50 收费分别是多少? 会员卡 3)若两种租书卡的使用期限 租书卡 20 X(天) 均为一年,则在这一年中如 何选取这两种租书方式比 100 较划算?

6.5一次函数的应用同步测试含解析鲁教版七年级上册数学

6.5一次函数的应用同步测试含解析鲁教版七年级上册数学

知能提升作业(三十五)5 一次函数的应用(30分钟 50分)一、选择题(每小题4分,共12分)1.两个物体A、B所受压强分别为P A帕与P B帕(P A、P B为常数),它们所受压力F(牛)与受力面积S(m2)的函数关系图象分别是射线l A、l B.如图所示,则( )(A)P A<P B(B)P A=P B(C)P A>P B(D)P A≤P B2.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )(A)汽车在高速公路上行驶速度为100km/h(B)乡村公路总长为90km(C)汽车在乡村公路上行驶速度为60km/h(D)该记者在出发后4.5h到达采访地3.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是( )(A)①②(B)②③④(C)②③(D)①②③二、填空题(每小题4分,共12分)4.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比甲单独完成这项工程所需时间少______天.5.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=4的解为________.6.拖拉机工作时,油箱中有24L油,如果每小时耗油4L,那么油箱中的剩余油量y(L)与工作时间x(h)之间的函数关系为________,当油箱中剩余油量为12L 时,拖拉机工作了______小时.三、解答题(共26分)7.(12分) 2011年11月16日召开的国务院常务会议,会议决定建立三江源国家生态保护综合实验区.现要把228t物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为ω元,求出ω与a的函数关系式(写出自变量的取值范围).【拓展延伸】8.(14分)某气象研究中心观测到一场沙尘暴从发生到结束的全过程,开始时风速平均每小时增加2km ,4小时后沙尘暴经过开阔的荒漠地,风速平均每小时增加4km ,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减少1km ,最终停止,结合图象回答下列问题. (1)y 轴左侧括号内依次应填入多少? (2)沙尘暴从发生到结束,共经历多长时间?(3)求出当x ≥25时,风速y(km/h)与时间x(h)之间的函数关系式.1.【解析】选A.由压强的公式:P=F S ,得S=1PF , 所以1P A >1P B ,P A <P B .2.【解析】选C.汽车在高速公路上行驶速度为180÷2=90km/h ,A 错误; 由图象知高速公路长180km ,且总长为360km ,故乡村公路长180km ,B 错误; 汽车在乡村公路上行驶速度为90÷1.5=60km/h ,C 正确;该记者从出发到到达采访地的时间为2+(360-180)÷60=5h ,D 错误.3.【解析】选D.由图象可得甲、乙的交点为(2,4),所以售2件时,两家售价都是4元,所以①正确.当x=1时乙所对应的函数值比甲所对应的函数值小,所以②正确;当x=3时甲对应的函数值比乙对应的函数值小,所以③正确;乙家1件的售价小于3元.4.【解析】甲的工作效率是14÷10=140, 所以甲完成总工程需要1÷140=40(天), 甲乙合作的工作效率是(12-14)÷(14-10)=116,所以实际完成这项工程所用的时间是10+(1-14)÷116=22(天),40-22=18(天).答案:185.【解析】根据图象可把(2,3),(0,1)代入表达式求得k=1,b=1; 所以kx+b=4即为x+1=4,故x=3. 答案:x=36.【解析】已知每小时耗油4L ,则xh 可耗油4x L ,则油箱中余油量为:y=24-4x(0≤x ≤6).当y=12L 时,12=24-4x ,解得:x=3. 答案:y=-4x+24(0≤x ≤6) 37.【解析】(1)设大货车用x 辆,则小货车用(18-x)辆,根据题意得 16x+10(18-x)=228,解得x=8,所以18-x=18-8=10(辆).答:大货车用8辆,小货车用10辆.(2)ω=720a+800(8-a)+500(9-a)+650[10-(9-a)]=70a+11550,所以ω=70a+11550(0≤a≤8且为整数).(3)若运往甲地的物资正好为120t,则16a+10(9-a)=120,解得a=5.又运往甲地的物资不少于120t,所以a≥5.又因为0≤a≤8,所以5≤a≤8且为整数.因为ω=70a+11550,k=70>0,ω随a的增大而增大,所以当a=5时,ω最小.最小值为ω=70×5+11550=11900(元).答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少总运费为11900元.8.【解析】(1)当x=4时,y=2×4=8;当x=10时,y=8+4×(10-4)=32.(2)由题意得,32÷1=32(h),25+32=57(h),即沙尘暴从发生到结束共经历57小时.(3)设所求函数的关系式为y=kx+b(k≠0)由图象知该函数图象经过点(25,32)和(57,0),所以得25k+b=32,57k+b=0,解得k=-1,b=57.所以函数的关系式为y=-x+57(25≤x≤57).。

一次函数图象的应用6.5(2)

一次函数图象的应用6.5(2)

课题:6.5一次函数图象的应用(2)【教学目标】 1、通过函数图象解决实际问题,进一步发展学生的数学应用能力。

2、从函数图象中正确读取信息,进一步发展学生的数形结合能力。

一、自主探究阅读课本202p 页,并完成相应的空格部分。

例1、如图,1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售的关系,根据图象填空.①当销售量为2t 时,销售收入= , 销售成本= .②当销售量为6t 时,销售收入= , 销售成本= . ③当销售量等于 时, 销售收入等于销售成本.④当销售量 时,该公司赢利, 当销售量 时,该公司亏损. ⑤1l 对应的函数解析式是 . 2l 对应的函数解析式是 .二、练习:1、如图分别是龟兔赛跑中路程与时间之间的函数图象。

根据图象可以知道:(1)这一次是 米赛跑(2)表示兔子的图象是(3)当兔子到达终点时,乌龟距终点还有 米 (4)乌龟要与兔子同时到达终点乌龟要先跑 米 (5)乌龟要先到达终点,至少要比兔子早跑 分钟三、自学课本P203-204页,并完成相应的问题。

例2、我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶 (如图),下图中l 1,l 2分别表示两船相对于海岸 的距离s (海里)与追赶时间t (分)之间的关系.(1)哪条线表示B 到海岸的距离与时间之间的关系?t(2)A,B哪个速度快?(3)15分钟内B能否追上A?(4)如果一直追下去,那么B能否追上A(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?四、练习:1、一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?2、如图:OA、BA分别表示甲乙两名学生跑步过程的一次函数的图象,图中s和t分别表示运动的路程和时间,根据图象请你判断: (1)甲乙谁的速度比较快?为什么?(2)快者的速度比慢者的速度每秒快多少米?3、一家小型放影厅盈利额y (元)同售票数x 之间的 关系如图2 所示,其中保险部门规定:超过150人时, 要缴纳公安消防保险费50元.试根据关系图回答下列问题: (1) 当售票数x 满足0<x ≤150时,求盈利额y (元)与x 之间的函数关系式?(2) 当售票数x 满足150<x ≤200时,求盈利额y (元)与x 之间的函数关系式?(3) 当售票数x 为__________时,不赔不赚;当售票数x 满足__________时,放影厅要赔本;若放影厅要 获得最大利润200元,此时售票数x 应为________.t(秒)。

一次函数图象的应用(图象共存问题)(人教版)(含答案)

一次函数图象的应用(图象共存问题)(人教版)(含答案)

学生做题前请先回答以下问题问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第_______象限;当k0时,图象必过第_______象限;当b0时,图象必过第_______象限;当b0时,图象必过第_______象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质_____________;②验证___________________________________.以下是问题及答案,请对比参考:问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第象限;当k0时,图象必过第象限;当b0时,图象必过第象限;当b0时,图象必过第象限.答:对于一次函数y=kx+b来讲,当k0时,图象必过第一、三象限;当k0时,图象必过第二、四象限;当b0时,图象必过第一、二象限;当b0时,图象必过第三、四象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质;②验证.答:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质判断k,b的符号;②验证另一个函数图象存在的合理性.一次函数图象的应用(图象共存问题)(人教版)一、单选题(共8道,每道12分)1.一次函数y=-ax+4与正比例函数y=2ax(a为常数,且a≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题2.一次函数y=kx-k2与正比例函数y=-kx(k为常数且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题3.一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题4.一次函数y=kx-b与正比例函数y=kbx(k,b为常数,且kb≠0)在同一坐标系内的大致图象不可能的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题5.两条直线与(k,b为常数,且kb≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题6.一次函数y=-kx+4-k与正比例函数y=3kx(k为常数,且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:图象共存问题7.一次函数y=ax-b与y=abx(ab≠0)在同一坐标系中的图象可能是( )A.①②B.③④C.②④D.①③答案:D解题思路:试题难度:三颗星知识点:图象共存问题8.两条直线y=mx-n与y=nx+m(m,n为常数,且mn≠0)在同一坐标系中的图象可能是( )A.①③B.①②C.②③D.③④答案:D解题思路:试题难度:三颗星知识点:图象共存问题。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

6.5一次函数的应用(1)

6.5一次函数的应用(1)




图1
图2


观察图象变化,你看出了些什么? 设想一下此时又发生了什么情况?
1.某植物t天后的高度为ycm,图中反映了y 与t之间的关系,根据图象回答下列问题:
y cm
(1)植物刚栽的时候多高?
24
l (2)3天后该植物高为多少?
21
18
15
(3)几天后该植物高度可
12 9
达21cm?
6
3 2 4 6 8 1012 14 t/天(再4)计先算写长出到y与10t的0c关m系需式几,
由于持续高温和无雨,某水库的蓄水量随着时间 的增加而减少。干旱持续时间t(天)与蓄水量V(万 米3 )的关系如图所示,回答下列问题:
V/万米3 A 1200 1000 800 600 400
(1)干旱持续10天,蓄 水量为多少
连续干旱23天呢?
200
B
0 10 20 30 40 50 60 70 t/天
天?
2.某手机的电板剩余 电量y毫安是使用天 数x的一次函数x和y 关系如图 :
y/毫安
x/天
此种手机的电板最大带电量是多少?
3.某地长途汽车客运公司规定旅客可随身携 带一定质量的行李,如果超过规定,则需要 购买行李票,行李票费用y元与行李质量的关 系如图:
⑴想一想紫红色那段 图象表示什么意思? 旅客最多可免费携带 多少千克行李?
(2)蓄水量小于400万米3时,将发出严重干 旱警报,干旱多少天后发出严重警报?
V/万米3 A 1200 1000
800
600 400
200
B
0 10 20 30 40 50 60 70 t/天
(3)按照这个规律,预计持续干旱多

6.5一次函数的应用

6.5一次函数的应用

6.5一次函数的应用导学案1一、学习目标:1.使学生能够将实际问题转化为一次函数的问题.2.能够根据实际意义准确地列出解析式并画出函数图像.3.体验到数学与生活的联系,进一步发展学生解决问题的能力.二、自主学习、合作探究1.预习课本198页的引例,并解答;2.合作探究,分小组展示预习成果;3.独立完成引例。

上面我们通过观察函数图象,从函数图象上获取信息,应用待定系数法解决了这道题,想一想解决这一类型的题目的一般步骤是什么?独立完成:某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图象如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)求运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.现有小组讨论再进行个人解决问题.四、课堂检测1.汽车由南京驶往相距300千米的上海,当它的平均速度是100千米/时,下面哪个图形表示汽车距上海的路程s(千米)与行驶时间t(小时)的函数关系?()2.某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。

(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。

(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。

一次函数图象性质应用(习题及答案).

一次函数图象性质应用(习题及答案).

一次函数图象性质应用(习题)➢复习巩固1.一次函数y=mx+2 与正比例函数y=2mx(m 为常数,且m≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.2.在同一坐标系中,函数y=-ax 与y =2x -a 的图象大致是3()A.B.C.D.3.两条直线y1=ax+b 与y2=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.4.已知一次函数y=kx+b 与正比例函数y=kbx,它们在同一平面直角坐标系中的图象可能是()A.B.C.D.15.函数y=mx-n 与正比例函数y=mnx(m,n 为常数,且mn≠0)在同一平面直角坐标系中的图象中,一定不正确的是()A.B.C.D.6. 已知点(-2,y1),(1,y2)在直线y=5x+3 上,则y1,y2 的大小关系是.7. 若A(-4,y1),B(2,y2),C(3,y3)三点都在直线y=(-k2-4)x-k上,则下列结论正确的是()A.y1>y2>y3 B.y1>y3>y2C.y3>y1>y2 D.y2>y3>y18. 若A(x1,-3),B(x2,2)是直线y=-2x+k 上的两点,则x1,x2的大小关系是.9.若一次函数y=kx+b的图象过第一、三、四象限,点A(-1,y1),B(3,y2)在其图象上,则y1,y2的大小关系是.10.若A(-2,y1),B(1,y2)在一次函数y=kx-1的图象上,且y1>y2,则一次函数y=kx-1的图象不经过第象限.11.一次函数y=kx+b的图象如图所示,则方程kx+b=3的解为.第11 题图第12 题图12.一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则关于x的方程k1x+b1=k2x+b2的解是.2⎩⎨2x -y =-n⎨⎪13.如图,直线y=x+1与直线y=mx-n相交于点M(1,b),则关于x,⎧x +1 =yy的方程组⎨mx -y =n的解为.⎧x -3 -y = 0 ⎧x =-514.已知方程组⎨2x + 2 -y = 0的解为⎨y =-8,则直线y=x-3与⎩⎩y=2x+2交点的坐标为.15.已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x,y的二元一次方程组⎧2x -y =-m的解的个数为⎩()A.0 个B.1 个C.2 个D.无数个⎧5x + 6 y = 1616.若关于x,y的方程组⎪6x +⎩ 5⎧4x + 5 y = 7y = 4m有无穷多组解,则关于x,y的方程组⎨⎩10mx + 7 y =11的解为.3⎩ ⎨ 【参考答案】 ➢ 复习巩固1. C2. A3. D4. A5. A6. y 2 > y 17. A8. x 1 > x 29. y 2 > y 110. 一11. x =212. x =-2 13. ⎧x = 1⎨ y = 214. (-5,-8)15. A ⎧x = 116. ⎪ 2 ⎪⎩ y = 14。

6.5二元一次函数的图像解法

6.5二元一次函数的图像解法

有无数个解。
x 0 y 3 x 3 y 3
x 1 y 1
3 x 2 y 0
在直角坐标系中画出一次函数 y
= 2x – 3 的图象
标出以上述这些解为坐标的点,有什么发现?
二元一次方程2x-y-3=0的解 与一次函数y=2x-3图象上的点 有什么关系?
所以一次函数y =-x+4与y=2x+1的图象交点坐标 (1,3)


x+2y=4
利用一次函数的图象 解二元一次方程组 2x-y=3
解:由x+2y=4,得
y
1 x2 2
1 y x2 2
y 2x 3
由2x-y=3,得 y=2x-3
y
P(2,1)
在同一直角坐标系中,画 出这两个函数的图象. ∵ 它们的交点坐标为P(2,1) X=2 ∴原二元一次方程组的解是 y=1
它的图象是一条直线 ,
通常过(
3 2
,0 )、(0 , 3 )两点画图。
2x-y-3
=0 是关于未知数 x 、y 的二元一次方程。
2x-y-3=0
二元一次方程 2x – y – 3 = 0 有多少个解呢? 你能举几个例子吗? 例如: x 1 y 5 x 2 y 1
65二元一次函数的图像解法二元一次函数图像二元一次函数二元一次函数知识点excel二元一次函数二元一次函数公式一次函数的图像和性质一次函数ykxb的图像一次函数的图像一次函数yaxb的图像
二元一次方程组的图象解法
y = 2x-3
让你可以想到什么呢? 你还可以想到什么呢?
y = 2x-3 是以x为自变量的一次函数,
y 2 5 x 3 3

北师大版八年级数学上册课程纲要(精编)

北师大版八年级数学上册课程纲要(精编)

北师大版八年级数学上册课程纲要(精编)第一章勾股定理
1.1探索勾股定理
1.2能得到直角三角形吗
1.3蚂蚁怎样走最近
第一章小结
第二章实数
2.1数怎么又不够用了
2.2平方根
2.3立方根
2.4公园有多宽
2.5用计算器开方
2.6实数
第二章小结
第三章图形的平移与旋转
3.1生活中的平移
3.2简单的平移作图
3.3生活中的旋转
3.4简单的旋转作图
3.5它们是怎样变过来的
3.6简单的图案设计
第三章小结
第四章四边形性质的探索
4.1平行四边形的性质
4.2平行四边形的判别
4.3菱形
4.4矩形、正方形
4.5梯形
4.6探索多边形的内角和与外角和4.7中心对称图形
课题学习平面图形的镶嵌
第四章小结
第五章位置的确定
5.1确定位置
5.2平面直角坐标系
5.3变化的“鱼”
第五章小结
第六章一次函数
6.1函数
6.2一次函数
6.3一次函数的图象
6.4确定一次函数表达式
6.5一次函数图象的应用
第六章小结
第七章二元一次方程组
7.1谁的包裹多。

7.2解二元一次方程组。

7.3鸡兔同笼。

7.4增收节支。

7.5里程碑上的数。

7.6二元一次方程与一次函数。

第七章小结
第八章数据的代表
8.1平均数。

8.2中位数与众数。

8.3利用计算器求平均数。

2019-2020年初中数学各版本新教材目录体系比较

2019-2020年初中数学各版本新教材目录体系比较

2019-2020年初中数学各版本新教材目录体系比较七年级上册浙教版第1章三角形的初步知识1.1认识三角形.1.2三角形的角平分线和中线.1.3三角形的高1.4全等三角形1.5三角形全等的条件◊阅读材料拼图游戏1.6作三角形第2章图形和变换2.1轴对称图形2. 2轴对称变换◊阅读材料现实中的轴对称现象2. 3平移变换2. 4旋转变换2. 5相似变换2.6图形变换的简单应用◊课题学习美妙的镶嵌第3章事件的可能性3.1认识事件的可能性3.2可能性的大小◊阅读材料机会均等3.3可能性和概率第4章二元一次方程组4.1二元一次方程4.2二元一次方程组4.3解二元一次方程组◊阅读材料《九章算术》中的“方程”4.4 一元一次方程组的应用第5章整式的乘除5.1同底数幂的乘法5.2单项式的乘法◊阅读材料长度测量单位5.3多项式的乘法5.4乘法公式5.5整式的化简5.6同底数幂的除法5.7整式的除法◊阅读材料杨辉与三角两数和的乘方第6章因式分解5.1因式分解5.2提取公因式法6.3用乘法公式分解因式6.4因式分解的简单应用第7章分式7.1分式7.2分式的乘除7.3分式的加减7.4分式方程◊阅读材料王冠疑案与浮力定律北师大版第一章整式的运算7.1整式7.2整式的加减7.3同底数幂的乘法7.4幂的乘方与积的乘方7.5同底数幂的除法7.6整式的乘法7.7平方差公式7.8完全平方公式7.9整式的除法第二章平行线与相交线2.1台球桌面上的角2.2探索直线平行的条件2.3平行线的特征2.4用尺规作线段和角第三章生活中的数据3.1认识百万分之一3.2近似数和有效数字3.3世界新生儿图第四章概率4.1游戏公平吗4.2摸到红球的概率4.3停留在黑砖上的概率第五章三角形5.1认识三角形5.2图形的全等5.3图案设计5.4全等三角形5.5探索三角形的全等条件5.6作三角形5.7利用三角形全等测距离5.8探索直角三角形全等的条件第六章变量之间的关系6.1小车下滑的时间6.2变化中的三角形6.3温度的变化6.4速度的变化第七章生活中的轴对称7.1轴对称现象7.2简单的轴对称图形(一)(二)7.3简单的轴对称图形(二)7.4探索轴对称的性质7.5利用轴对称设计图案7.6镜子改变了什么7.7镶边与剪纸华师大版第6章一元一次方程6.1从实际问题到方程6.2解一元一次方程⑴方程的简单变形⑵解一元一次方程阅读材料:方程史话6.3实践与探索阅读材料:2=3?第7章二元一次方程7.1二元一次方程组和它的解7.2二元一次方程组的解法7.3实践与探索阅读材料:鸡兔同笼第8章多边形8.1瓷砖的铺设8.2三角形⑴认识三角形⑵三角形的外角和⑶三角形的三边关系8.3多边形的内角和与外角和8.4用正多边形拼地板⑴用相同的正多边形拼地板⑵用多种正多边形拼地板阅读材料:多姿多彩的图案课题学习:图形的镶嵌第9章轴对称9.1生活中的轴对称阅读材料:剪正五角星9.2轴对称的认识⑴简单的轴对称图形⑵画图形的对称轴⑶画轴对称图形⑷设计轴对称图案阅读材料:对称拼图游戏9.3等腰三角形⑴等腰三角形⑵等腰三角形的识别阅读材料:Timesanddates第10章统计的初步认识10.1统计的意义⑴人口普查和抽样调查⑵从部分看全体10.2平均数、中位数和众数⑴平均数、中位数和众数⑵用计算器计算平均数⑶计算机帮我们求平均数、中位数和众数阅读材料:“均贫富”10.3平均数、中位数和众数的使用⑴平均数、中位数和众数的选用⑵ 警惕平均数的误用阅读材料:对平均数、中位数和众数说长道短10.4机会的均等与不等⑴确定与不确定⑵成功与失败⑶游戏的公平与不公平阅读材料:搅匀对保证公平很重要课题学习:心率与年龄人教版第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习:镶嵌第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习:利用不等关系分析比赛第十章实数10.1平方根10.2立方根10.3实数八年级上册北师大版第一章一元一次不等式和一元一次不等式组1.1不等关系1.2不等式的基本性质1.3不等式的解集1.4一元一次不等式1.5一元一次不等式与一次函数1.6一元一次不等式组第二章分解因式2.1分解因式2.2提公因式法2.3运用公式法第三章分式3.1分式3.2分式的乘除法3.3分式的加减法3.4分式方程第四章相似图形4.1线段的比4.2黄金分割4.3形状相同的图形4.4相似多边形4.5相似三角形4.6探索三角形相似的条件4.7测量旗杆的高度4.8相似多边形的周长比和面积比4.9图形的放大与缩小第五章数据的收集与处理5.1每周干家务活的时间5.2数据的收集5.3频数与频率5.4数据的波动第六章证明(一)6.1你能肯定吗6.2定义与命题6.3为什么它们平行6.4如果两条直线平行6.5三角形内角和定理的证明6.6关注三角形的外角华师大版第16章数的开方16.1平方根与立方根⑴平方根⑵立方根阅读材料:蚂蚁和大象一样重吗16.2二次根式⑴二次根式的概念⑵二次根式的乘除法⑶二次根式的加减法16.3实数与数轴 _阅_读材料:为什么说不是有理数击的算法第17章函数及其图像17.1变量与函数17.2函数的图象⑴平面直角坐标系⑵函数的图象阅读材料:笛卡儿的故事17.3一次函数⑴一次函数⑵一次函数的图象⑶一次函数的性质阅读材料:小明算得正确吗17.4反比例函数⑴反比例函数⑵反比例函数的图象和性质17.5实践与探索阅读材料:T heGraphofa F unction第18章图形的相似18.1相似的图形18.2相似图形的特征阅读材料:黄金分割18.3相似三角形⑴相似三角形⑵相似三角形的识别⑶相似三角形的性质⑷相似三角形的应用阅读材料:线段的等分18.4画相似图形阅读材料:数学与艺术的美妙结合一—分形_18.5图形与坐标⑴用坐标来确定位置⑵图形的运动与坐标第19章解直角三角形19.1测量19.2勾股定理阅读材料:勾股定理史话美丽的勾股树19.3锐角三角函数⑴锐角三角函数⑵用计算器求锐角三角函数值19.4解直角三角形阅读材料:葭生池中第20章数据的整理与初步处理20.1选择合适的图表进行数据整理⑴扇形统计图⑵频数分布表和频数分布直方图⑶选择合适的统计图表阅读材料:各种各样的统计图20.2极差、方差与标准差⑴表示一组数据离散程度的指标⑵用计算器求标准差阅读材料:借助计算机求方差与标准差早穿皮袄午穿纱20.3机会大小的比较⑴按机会的大小排序⑵列举所有等可能的结果课题学习:通讯录的设计人教版第十六章分式16.1分式16.2分式的运算16.3整数指数幂16.4分式方程第十七章反比例函数17.1反比例函数17.2反比例函数的应用17.3课题学习:现实中的反比例关系第十八章勾股定理18.1勾股定理18.2勾股定理的应用第十九章四边形19.1平行四边形19.2特殊的平行四边形19.3梯形19.4课题学习:重心第二十章数据的分析20.1数据的集中程度20.2数据的离散程度20.3抽样20.4用样本估计总体20.5课题学习:体检后的数据分析浙教版第一章二次根式第二章一元二次方程第三章频数分布及其图形第四章图形与证明第五章平行四边形第六章特殊平行四边形与梯形九年级下册北师大版第一章直角三角形的边角关系1.1从梯子的倾斜程度谈起1.230°,45°,60°角的三角函数值1.3三角函数的有关计算1.4船有触礁的危险吗1.5测量物体的高度第二章二次函数2.1二次函数所描述的关系2.2结识抛物线2.3刹车距离与二次函数2.4二次函数y=ax2+bx+c的图象2.5用三种方式表示二次函数2.6何时获得最大利润2.7最大面积是多少2.8二次函数与一元二次方程第三章圆3.1车轮为什么做成圆形3.2圆的对称性3.3圆周角和圆心角的关系3.4确定圆的条件3.5直线和圆的位置关系3.6圆和圆的位置关系3.7弧长及扇形的面积3.8圆锥的侧面积第四章统计与概率4.150年的变化4.2哪种方式更合算4.3游戏公平吗华师大版第26章二次函数26.1二次函数26.2二次函数的图象与性质⑴二次函数y=ax2的图像与性质⑵二次函数y=ax2+bx+c的图象与性质⑶求二次函数的函数关系阅读材料:生活中的抛物线26.3实践与探索第27章证明27.1证明的再认识阅读材料:图形中的“裂缝”27.2用推理方法研究三角形⑴等腰三角形⑵角平分线⑶线段的垂直平分线⑷逆命题、逆定理27.3用推理方法研究四边形⑴平行四边形⑵矩形、菱形⑶正方形⑷等腰梯形⑸中位线⑹反证法阅读材料:《几何原本》课题学习:中点四边形第28章数据分析与决策28.1借助媒体作决策⑴查询数据作决策⑵全面分析媒体信息28.2亲自调查作决策⑴这样问好吗⑵怎样整理数据好阅读材料:漫谈收视率28.3在理论指导下决策⑴考虑不同的仅重⑵平均要买几个才能得奖⑶考试分数说明了什么阅读材料:标准分课题学习:改进我们的课桌椅浙教版第一章锐角三角函数第二章正多边形第三章投影与三视图第四章直线与圆、圆与圆的位置关系第五章问题解决的策略(二)人教版第二十六章二次函数26.1二次函数及其图象、性质26.2二次函数的应用26.3课题学习:建立函数模型第二十七章相似27.1相似形27.2相似三角形27.3相似多边形第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形28.3课题学习:测量第二十九章视图与投影29.1三视图29.2展开图29.3课题学习:图纸与实物模型。

《一次函数图像的应用》第一课时教学课件

《一次函数图像的应用》第一课时教学课件

一箱汽油可供摩托车行驶多少千米?
(1)当 y=0时, x=500,因此一箱汽油可 供摩托车行驶ห้องสมุดไป่ตู้00千米.
(2). 摩托车每行驶100千米消耗多少升?
(2).x从100增加到200时, y从8减少到6,减少了2, 因此摩托车每行驶100千米消耗2升汽油.
(100,8) (200,6)
(3). 油箱中的剩余油量小于1升时将自 动报警.行驶多少千米后,摩托车将自动报警?
答:够
理由:由图象上观察的:
400千米处设加油站,
图1
到700米处油用完,说 明所加油最多可供行驶
300千米。
应用与延伸(2)
若加油之后变为图 2呢的情况?观察图 象变化,你看出了 些什么?设想一下 此时又发生了什么 情况?
图2 加油之后
议一议
一元一次方程0.5x+1=0与一次函数 y=0.5x+1有什么联系?
• (2)直线对应的函数表达式是 ________________ .
试一试
1、某地长途汽车客运公司规定旅客可随身携带一 定质量的行李,如果超过规定,则需要购买行李 票,行李票费用y元与行李质量的关系如图:
(1)旅客最多可免费携 带多少千克行李?
30千克 ⑵超过30千克后,每 千克需付多少元?
0.2元
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么 到第几年底,该地区的沙漠面积能减少到176万千米2.
解:(1)如果不采取任何措施,那么到第5年底, 该地区沙漠面积将新增加10万千米2.
(2)从图象可知,每年的土地面积减少2万千 米2,现有土地面积100万千米2,100÷2=50, 故从现在开始,第50年底后,该地区将丧失 土地资源. (3)如果从现在开始采取植树造林等措施, 每年改造4万千米2沙漠,每年沙化2万千 米2,实际每年改造面积2万千米2,由于 (200-176)÷2=12,故到第12年底,该地 区的沙漠面积能减少到176万千米2.

函数的应用(一)(第一课时)-2024学年高一数学同步精讲课件(人教B版2019必修第一册)

函数的应用(一)(第一课时)-2024学年高一数学同步精讲课件(人教B版2019必修第一册)
2
2

2
所以,当 = 时,的最大值为 .
4
16

此时,矩形的长、宽都为 .
4
例5 已知某产品的总成本与年产量之间的关系为 = 2 +
3000,且当年产量是100时,总成本是6000,设该产品年产量为
时的平均成本为().
(1)求()的解析式;
(2)求年产量为多少时,平均成本最小,并求最小值.
度为,如果要使围墙围出的场地面积最大,则矩形的长、宽各等于多
少?
【解析】设矩形的长为时,场地的面积为.
1
因为矩形的周长为,所以矩形的宽为 ( − 2).
1
则 = ( − 2)
2

2
= − + = −(
2
2

2 2
) +
4
16
>0

又因为 1 ( − 2) > 0 ⟹ 0 < <
城镇常住人口数.
【解析】因为每一年城镇常住人口的增加量都相等,所以()是一次函数.
设() = + ,其中, 是常数.
因为2013年是1978年后的第2013-1978=35年,所以
(0) = 1.7
= 1.7

(35) = 7.3
35 + = 7.3
解得 = 0.16, = 1.7
【解析】(1)因为 = 100时 = 6000,
3
2
所以6000 = 100 + 3000,解得 = .
所以 =
3 2
10
10
均值不等
式求最值
+ 3000.因此,

3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.5 一次函数图象的应用(一)
◆基础训练
一、选择题
1.打篮球时,一运动员跳起将球投出,入篮得分,•描绘篮球出手后的高度与时间的关系的图象可能为().
2.某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B•地后跑步回A地,乙则是先跑步到B地后骑自行车回A地(•骑自行车的速度快于跑步的速度),最后两人恰好同时回到A地.已知甲骑自行车比乙骑自行车的速度快.•若学生离A地的距离s与所用时间t的函数关系用图象表示如下(实线表示甲的图象,•虚线表示乙的图象),则正确的是().
二、填空题
3.小李以每千克0.8元的价格从批发市场购进若干千
克西瓜到市场去销售,在销售了部分西瓜之后,
余下的每千克降价0.4元,全部售完.销售金额
与卖瓜千克数之间的关系如图所示,那么小李赚
了________元.
三、解答题
4.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)•与摩托车行驶路程x(千米)之间的关系如图所示,根据回答下列问题:
(1)一箱汽油可供摩托车行驶多少千米?
(2)摩托车每行驶100千米消耗多少升汽油?
(3)油箱中的剩余油量小于1升时,摩托车将自动报警.行驶多少千米后,•摩托车将自动报警?
5.如图是某汽车行驶的路程s(km)与时间t(min)的函数关系图象.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?
(3)当16≤t≤30时,求s与t的函数关系式.
◆能力提高
一、解答题
6.4×100米接力赛是学校运动会最精彩的项目之一.下图中的实线和虚线分别是初三(1)班和初三(2)班代表队在比赛时运动员所跑的路程y(米)与所用时间x(•秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
(1)初三(2)班跑得最快的是第_____接力棒的运动员;
(2)发令后经过多长时间两班运动员第一次并列?
◆拓展训练
7.某工厂有甲、乙两条生产线先后投产,在乙生产线投产前,甲生产线已生产了200吨成品.从乙生产线投产开始,甲,乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲,乙两条生产线投产后,总产量y(吨)与从乙投产以来所用时间x (天)之间的函数关系式,并求出第几天结束时,甲,乙两条生产线的总产量相同;
(2)在直角坐标系中,作出甲,乙的图象.观察图象,分别指出第15天和第25•天结束时,哪条生产线的总产量最高?
答案:
1.A 2.B 3.36
4.(1)500千米(2)2升(3)450千米
5.(1)4
3
千米/分(2)7分钟(3)y=2x-20
6.(1)一(2)在第25秒至第40秒之间,实线所表示的解析式为y=25100
33
x-,虚
线表示的解析式为y=25175
44
x-,由题意得
25100
33
x-=
25175
44
x-,则x=37.
7.(1)y甲=20x+200,y乙=30x,由200+20x=30x,得x=20.
(2)第15天结束后,甲产量最高,第25天结束后,乙产量最高,图象略.。

相关文档
最新文档