2.1.2离散型随机变量的分布列(一)

合集下载

2.1.2《离散型随机变量的分布列》

2.1.2《离散型随机变量的分布列》

解:X的取值有1、2、3、4、5、6 则P(X=1)=1/6, P(X=2)=1/6,
P(X=3)=1/6, P(X=4)=1/6, P(X=5)=1/6, P(X=6)=1/6 列成表格形式为 表2 1
X
1
2
3
4
5
6
1
1
1
1
1
1
P
6
6
6
6
6
6
4、求离散型随机变量的分布列的步骤:
(1)找出随机变量ξ的所有可能的取值(明确随机变量的具体取
bability distriution),简称为X的分 布 列 (distributio
nseries).有时为了表达简单,也用等式PX xi
pi,i 1,2, ,n 表 示X的 分布 列.
P
离 散 型 随 机 变 量 分 布 列的 变 0.2
化 情 况 可 以 用 图 象 表 示.如 在
2 根 据 随 机 变 量 X的 分 布 列, 可 得 只 少 取 到 1
件次品的概率
PX 1 PX 1 PX 2 PX 3
0.138 06 0.005 88 0.000 06
0.144 00.
也可以用P(X≥1)=1-P(X=0)来做
一 般 地, 在 含 有M件 次 品 的N件 产 品 中, 任 取n件,
2.1.2离散型随机变量 的分布列
莱西市实验学校 吕淑丽
一、复习回顾,巩固旧知 1、随机变量 2、离散型随机变量 3、概率的性质
二、创设情境,引入新课 【引例】抛掷一枚质地均匀的骰子,所得的点数X有 哪些值?是否是离散型随机变量?取每个值的概率是 多少?以试验结果设计奖项,可有哪些设计方案?

离散型随机变量的分布列(一)

离散型随机变量的分布列(一)
件一件的抽取产品,设各个产品被抽到的可能性相 同,在下列两种情况下,分别求出取到合格品为止
时所需抽取次数 的分布列。
(1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后
再取另一产品。
变式引申:
1、某射手射击目标的概率为0.9,求从开始射击到击中目标
所需的射击次数 的概率分布。
分布列的是(B )
A
0
1
P
0.6 0.3
B
0
1
2
P 0.9025 0.095 0.0025
C 0 1 2 …n D 0 1 2 … n
P 1 1 1 …1
2 48
2n1
P
1 3
12 33
1 3
2 3
2

1 3
2 3
n
2、设随机变量
的分布列为
P(
i)
a
1
i
,
i
1,2,3
则 a的值
27
3
引例
抛掷一枚骰子,所得的点数 有哪些值? 取每个
值的概率是多少?
解: 的取值有1、2、3、4、5、6
则 P( 1) 1
6
P( 4) 1
6
P( 2) 1
6
P( 5) 1
6
P( 3) 1
6
P( 6) 1
6
12
34
56
1
1
1
1
1
1
P6
6
6
6
6
6
⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
6
O 1 2 3 4 5 6 78
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。

2[1].1.2离散型随机变量的分布列导学案(选修2-3)1

2[1].1.2离散型随机变量的分布列导学案(选修2-3)1

§2.1.2离散型随机变量的分布列预习案一、教学目标1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列;2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题.3. 理解二点分布的意义.二、预习自测:问题一:(1)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球2次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一种情况吗?随机变量是如何定义的?问题二:按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。

那么,随机变量与函数有类似的地方吗?问题三:下列试验的结果能否用离散型随机变量表示?为什么?(1)已知在从汕头到广州的铁道线上,每隔50米有一个电线铁站,这些电线铁站的编号;(2)任意抽取一瓶某种标有2500ml的饮料,其实际量与规定量之差;(3)某城市1天之内的温度;(4)某车站1小时内旅客流动的人数;(5)连续不断地投篮,第一次投中需要的投篮次数.(6)在优、良、中、及格、不及格5个等级的测试中,某同学可能取得的等级。

导学案重点:离散型随机变量的分布列的意义及基本性质. 难点:分布列的求法和性质的应用.1.离散型随机变量 随着试验结果的变化而变化的变量称为随机变量,通常用字母X 、Y 表示。

如果对于随机变量可能取到的值,可以按 一一列出,这样的变量就叫离散型随机变量。

2.离散型随机变量的分布列(1)设离散型随机变量X 可能取的值为12,,,,i x x x ,X 取每一个值(1,2,)i x i = 的概率()i i P X x p ==,则表称为随机变量X 的概率分布,简称X 的分布列。

离散型随机变量的概率分布还可以用条形图表示, 如图所示。

离散型随机变量的分布列具有以下两个性质:① ;②一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 。

2.1.2离散型随机变量的分布列

2.1.2离散型随机变量的分布列

5
0.3
解:由离散型随机变量的分布列的性质有
0.16 + a + a2 + a + 0.3 = 1
10
5
解得:a = - 9 (舍)或 a = 3
10
5
(3)设随机变量 的分布列为:P(ξ k) k ,k 1,2,3,4,5,
15
求 ① P( 1或 2) ;
② P( 1 ξ 5 ) ;
思考
抛掷一枚骰子,求所得点数及取各值的概率.
X1 2 3 4 5 6
P
1 6
1111 6666
1 6
2.1.2离散型随机 变量的分布列
知识要点
1.分布列
设离散型随机变量ξ可能取得值为
x1,x2,x3,…,
新疆 王新敞
奎屯
ξ取每一个值xi(i=1,2,…)的概率为
P(ξ= xi)=pi,则称表
ξ
x1
ξ
-1
0
1
P
0.3
Hale Waihona Puke 0.40.3ξ
1
2
3
P
0.3
0.4
0.4
3.解答题
(1)某厂生产电子元件,其产品的次品率 为5%,现从一批产品中的任意连续取出2件, 求次品数的概率分布.
解: ξ的取值分别为0、1、2
ξ =0表示抽取两件均为正品 ; ∴p(ξ=0)=C20(1-0.05)2=0.9025 .
继续解答
0.5
0.25
3. 设抽出的5张牌中包含A牌的张数为X,则X
服从超几何分布,其分布列为 P(X=i)=C4iC485-i/C525,i=0,1,2,3,4 .
因此抽出的5张牌中至少有3张A的概率为

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列

C35C09 5 C130 0
五、超几何分布列
一般地,在含有M件次品的N件产品中,任取n件, 其中恰有X件次品数,则事件{X=k}发生的概率为
P其(中Xm=mkin){M,nC},且M k CCnNnNNn,MkMN, k,n,M,N0,1N,*2., , m,
称分布列
X
0
1

m
P
CM0
C n0 N M
CM1
C n1 N M

CMm
C nm N M
CNn
CNn
CNn
为超几何分布列.
如果随机变量X的分布列为超几何分布列,则称 随机变量X服从超几何分布.
例3、某年级的联欢会上设计了一个摸奖游戏,在 一个口袋中有10个红球和20个白球,这些球除颜色 外完全相同.一次从中摸出5个球,至少摸到3个红球 就中奖.求中奖的概率.
练习: 5.将一枚质地均匀的骰子抛掷10次,试写出1点向上的 次数ξ的分布列.
答案:
ξ 0 1 2 … k … 10
P
510 C110 59 C120 58 … C1k0 510k …
610 610 610
610
1 610
二.分布列的表示法: (1) 表格法: 优点: 能直观得到随机变量取各个不同值的概率. 缺点: 当随机变量的取值个数较多时,不容易制作. (2) 解析式法:
3. 随机变量与函数的类比: 随机变量和函数都是映射. 随机变量把随机试验的结果映为实数, 函数把实数映 为实数. 试验结果的范围相当于函数的定义域, 随机变 量的取值范围相当于函数的值域. 随机变量的取值范围叫做随机变量的值域.
4. 离散型随机变量: 所有取值可以一一列出的随机变量 称为离散型随机变量.

第二章 2.1.2 离散型随机变量的分布列(一)

第二章 2.1.2 离散型随机变量的分布列(一)

2.1.2 离散型随机变量的分布列(一)学习目标 1.在对具体问题的分析中,理解取有限个值的离散型随机变量及其分布列的概念;认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为x ,则x 可取哪些数字?x 取不同的值时,其概率分别是多少?你能用表格表示x 与p 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)1.离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:的分布列. 2.离散型随机变量的分布列的性质 (1)p i ≥0,i =1,2,3,…,n ; (2)∑i =1np i =1.类型一 离散型随机变量的分布列的性质的应用例1 设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3}); (2)P ⎝⎛⎭⎫12<X <52.解 题中所给的分布列为由离散型随机变量分布列的性质得a +2a +3a +4a =1,解得a =110.(1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25. (2)P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2) =110+210=310. 反思与感悟 1.本例利用方程的思想求出常数a 的值. 2.利用分布列及其性质解题时要注意以下两个问题: (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1(1)下面是某同学求得的离散型随机变量X 的分布列.试说明该同学的计算结果是否正确.(2)设ξ是一个离散型随机变量,其分布列为①求q 的值; ②求P (ξ<0),P (ξ≤0).解 (1)因为P (X =-1)+P (X =0)+P (X =1)=12+14+16=1112,不满足概率之和为1的性质,因而该同学的计算结果不正确.(2)①由分布列的性质得,1-2q ≥0,q 2≥0,12+(1-2q )+q 2=1, ∴q =1-22. ②P (ξ<0)=P (ξ=-1)=12,P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2⎝⎛⎭⎫1-22=2-12. 类型二 求离散型随机变量的分布列例2 一袋中装有6个同样大小的黑球,编号分别为1,2,3,4,5,6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.解 随机变量X 的可能取值为3,4,5,6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 11C 22,事件“X =4”包含的基本事件总数为C 11C 23,事件“X =5”包含的基本事件总数为C 11C 24,事件“X =6”包含的基本事件总数为C 11C 25, 从而有P (X =3)=C 11C 22C 36=120,P (X =4)=C 11C 23C 36=320,P (X =5)=C 11C 24C 36=310,P (X =6)=C 11C 25C 36=12,所以随机变量X 的分布列为:反思与感悟 求离散型随机变量的分布列的步骤(1)明确随机变量的所有可能取值以及取每个值所表示的意义. (2)利用概率的有关知识,求出随机变量取每个值的概率. (3)按规范形式写出分布列,并用分布列的性质验证.跟踪训练2 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X 的分布列. 解 X 的可能取值为1,2,3,4,5,则第1次取到白球的概率为P (X =1)=15,第2次取到白球的概率为P (X =2)=4×15×4=15,第3次取到白球的概率为P (X =3)=4×3×15×4×3=15,第4次取到白球的概率为P (X =4)=4×3×2×15×4×3×2=15,第5次取到白球的概率为P (X =5)=4×3×2×1×15×4×3×2×1=15,所以X 的分布列为类型三 离散型随机变量的分布列的综合应用例3 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数. (2)求随机变量ξ的分布列. (3)求甲取到白球的概率.解 (1)设袋中原有n 个白球,由题意知17=C 2nC 27=n (n -1)27×62=n (n -1)7×6.可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为:(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练3 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率.(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列.解 (1)选取的5只恰好组成完整“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139 D.1310 答案 C解析 P (X =10)=1-23-…-239=139.2.设随机变量ξ的分布列为P (ξ=k )=k15(k =1,2,3,4,5),则P ⎝⎛⎭⎫12<ξ<52等于( ) A.12 B.19 C.16 D.15 答案 D解析 由12<ξ<52知ξ=1,2.P (ξ=1)=115,P (ξ=2)=215,∴P ⎝⎛⎭⎫12<ξ<52=P (ξ=1)+P (ξ=2)=15. 3.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________. 答案 0.75解析 P (0<X <3)=1-P (X =0)-P (X =3) =1-123-123=0.75.4.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列. 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P (ξ=2)=3C 16C 16=336=112;P (ξ=3)=5C 16C 16=536;P (ξ=4)=7C 16C 16=736;P (ξ=5)=9C 16C 16=936=14;P (ξ=6)=11C 16C 16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.随机变量ξ的所有可能的取值为1,2,3,…,10,且P (ξ=k )=ak (k =1,2,…,10),则a 的值为( )A.1110B.155 C.110 D.55 答案 B解析 ∵随机变量ξ的所有可能的取值为1,2,3,…,10, 且P (ξ=k )=ak (k =1,2,…,10), ∴a +2a +3a +…+10a =1, ∴55a =1,∴a =155.2.若随机变量X 的概率分布列为:P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1, ∴a =54.∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 3.若随机变量η的分布列如下:则当P (η<x )=0.8时,实数x 的取值范围是( ) A.x ≤1 B.1≤x ≤2 C.1<x ≤2 D.1≤x <2答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得:ξ=1, ∴P (ξ=1)=13.5.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C.[-3,3] D.[0,1]答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.6.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( )A.16B.13C.12D.23 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2), 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.二、填空题7.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 答案 47解析 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为72k 个.∴分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 8.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 答案 0.6解析 由离散型随机变量的分布列的性质可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.9.甲、乙两队在一次对抗赛的某一轮中有3道题,比赛规则:对于每道题,没有抢到题的队伍得0分,抢到题,并回答正确的得1分,抢到题目但回答错误的扣1分(即-1分),若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能值为________. 答案 -1,0,1,2,3解析 X =-1表示甲抢到1题但答错了, 若乙两题都答错,则甲获胜; 甲获胜还有以下可能:X =0,甲没抢到题,或甲抢到2题,但答时1对1错. X =1时,甲抢到1题,且答对或甲抢到3题,且1错2对. X =2时,甲抢到2题均答对. X =3时,甲抢到3题均答对.10.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________. 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题11.某篮球运动员在一次投篮训练中的得分ξ的分布列如下表,其中a ,b ,c 成等差数列,且c =ab .求这名运动员投中3分的概率.解 由题中条件知,2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以投中3分的概率是16.12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列.解 (1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以事件A 包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为:13.某商店试销某种商品20天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解(1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2) =P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.故X的分布列为。

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.离散型随机变量的分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:(2)表示:离散型随机变量可以用表格法、解析法、图象法表示. (3)性质:离散型随机变量的分布列具有如下性质: ①p i ≥0,i =1,2,…,n ; ②11=∑=ni ip2.两个特殊分布列 (1)两点分布列如果随机变量X 的分布列是P (X =1)为成功概率. (2)超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,称分布列如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.(3)公式P (X =k )=C k M C n -k N -MC n N的推导由于事件{X =k }表示从含有M 件次品的N 件产品中,任取n 件,其中恰有k 件次品这一随机事件,因此它的基本事件为从N 件产品中任取n 件.由于任一个基本事件是等可能出现的,并且它有nN C 个基本事件,而其中恰有k 件次品,则必有(n -k )件正品,因此事件{X =k }中含有kn M N k M C C --个基本事件,由古典概型的概率公式可知P (X =k )=C k M C n -kN -MC n N.[知识点拨]1.离散型随机变量分布列表格形式的结构特征分布列的结构为两行,第一行为随机变量的所有可能取得的值;第二行为对应于随机变量取值的事件发生的概率.看每一列,实际上是:上为“事件”,下为事件发生的概率. 2.两点分布的特点(1)两点分布中只有两个对应结果,且两个结果是对立的. (2)由对立事件的概率求法可知:P(X =0)+P(X =1)=1.3.两点分布的适用范围(1)研究只有两个结果的随机试验的概率分布规律. (2)研究某一随机事件是否发生的概率分布规律.如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等,都可以用两点分布列来研究.4.对超几何分布的三点说明 (1)超几何分布的模型是不放回抽样. (2)超几何分布中的参数是M ,N ,n.(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.题型一、离散型随机变量的分布列例1、一袋中装有6个同样大小的小球,编号分别为1、2、3、4、5、6,现从中随机取出3个球,以X 表示取出球的最大号码,求X 的分布列.[解析] 随机变量X 的可能取值为3、4、5、6.从袋中随机地取出3个球,包含的基本事件总数为C 36,事件“X =3”包含的基本事件总数为C 33;事件“X =4”包含的基本事件总数为C 23;事件“X =5”包含的基本事件总数为C 24;事件“X =6”包含的基本事件总数为C 25.从而有P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.所以随机变量X 的分布列如下表:例[解析] 将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1、2、3、4、5、6.P (ξ=1)=136,ξ=2包含三个基本事件(1,2)、(2,1)、(2,2),(x ,y )表示第一枚骰子点数为x ,第二枚骰子点数为y .∴P (ξ=2)=336=112.同理可求P (ξ=3)=536,P (ξ=4)=736,P (ξ=5)=14,P (ξ=6)=1136,∴ξ的分布列为例3、设随机变量ξ的分布列为P (ξ=k )=a (13)k .(k =1,2,…,n ),求实数a 的值.[解析] 依题意,有P (ξ=1)=13a ,P (ξ=2)=(13)2a ,…,P (ξ=n )=(13)n a ,由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1知,a (13+132+…+13n )=1.则a ·13(1-13n )1-13=1.∴a =2×3n 3n -1.例4、(1)设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.(2)设随机变量X 的概率分布列为,则P (|X -3|=1)=________.[答案] (1)37 (2)512题型三、两点分布例5、袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎨⎧0,两球全红;1,两球非全红.求X 的分布列.[解析] 由题设可知X 服从两点分布P (X =0)=C 25C 215=221,P (X =1)=1-P (X =0)=1921.∴X 的分布列为例6η,才能使η满足两点分布,并求其分布列.[解析] 随机变量η可以定义为:η=⎩⎨⎧1 掷出点数小于4,0 掷出点数不小于4.显然η只取0,1两个值.且P (η=1)=P (掷出点数小于4)=36=12,故η的分布列为题型四、超几何分布列例7、盒中有16个白球和4个黑球,从中任意取出3个,设ξ表示其中黑球的个数,求出ξ的分布列.(精确到0.001)[解析] ξ可能取的值为0、1、2、3,P (ξ=0)=C 04C 316C 320≈0.491,P (ξ=1)=C 14C 216C 320≈0.421,P (ξ=2)=C 24C 116C 320≈0.084,P (ξ=3)=C 34C 016C 320≈0.004.∴ξ的分布列为箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.[解析] 由题意得X 取3、4、5、6,且P (X =3)=C 35C 39=542;P (X =4)=C 14·C 25C 39=1021;P (X =5)=C 24·C 15C 39=514;P (X =6)=C 34C 39=121. 所以X 的分布列为题型五、综合应用例9、已知A 盒中有2个红球和2个黑球;B 盒中有2个红球和3个黑球,现从A 盒与B 盒中同时各取出一个球再放入对方盒中.(1)求A 盒中有2个红球的概率;(2)求A 盒中红球数ξ的分布列.[解析] (1)A 盒与B 盒中各取出一个球来再放入对方盒中后,A 盒中还有2个红球有下面两种情况:①互换的是红球,将该事件记为A 1,则P (A 1)=C 12·C 12C 14·C 15=15. ②互换的是黑球,将该事件记为A 2,则P (A 2)=C 12·C 13C 14·C 15=310.故A 盒中有2个红球的概率为P =P (A 1)+P (A 2)=15+310=12.(2)A 盒中红球数ξ的所有可能取值为1,2,3.而P (ξ=1)=C 12·C 13C 14·C 15=310;P (ξ=2)=12; P (ξ=3)=C 12·C 12C 14·C 15=15,因而ξ的分布列为抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数X 的分布列.[解析] (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A -表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式,得P (A )=1-P (A -)=1-C 23C 26=1-15=45.(2)X 的所有可能值为0、1、2、3、4,且P (X =0)=5C 26=13;P (X =1)=4C 26=415;P (X =2)=3C 26=15;P (X =3)=2C 26=215;P (X =4)=1C 26=115.从而知X 的分布列为:用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.[正解] ξ的所有可能取值为3,4,5,6.P (ξ=3)=C 33C 312=1220;P (ξ=4)=C 19C 23C 312=27220;P (ξ=5)=C 29C 13C 312=2755;P (ξ=6)=C 39C 312=2155.所以ξ的分布列为例12在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和; (2)若胜场次数为X ,求X 的分布列.[解析] (1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为课后作业1.已知随机变量X 的分布列为:P (X =k )=12k ,k =1、2、…,则P (2<X ≤4)=( )A .316B .14C .116D .516[答案] A[解析] P (2<X ≤4)=P (X =3)+P (X =4) =123+124=316. 2.已知随机变量ξ的概率分布如下:则P (ξ=10)=( A .239 B .2310 C .139D .1310[答案] C[解析] P (ξ=10)=m =1-⎝⎛⎭⎫23+232+…+239=1-23⎣⎡⎦⎤1-⎝⎛⎭⎫1391-13=139.3.已知随机变量ξ的分布列为P (ξ=i )=i2a(i =1,2,3),则P (ξ=2)=( )A .19B .16C .13D .14[答案] C[解析] 由离散型随机变量分布列的性质知12a +22a +32a =1,∴62a =1,即a =3,∴P (ξ=2)=1a =13.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%[答案] B[解析] 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-xC 210=x (10-x )45=1645,∴x =2或8. ∵次品率不超过40%,∴x =2, ∴次品率为210=20%.5.设随机变量ξ的概率分布为P (ξ=k )=ck +1,k =0、1、2、3,则c =________.[答案]1225[解析] c +c 2+c 3+c 4=1,∴c =1225.6.已知离散型随机变量X 的分布列P (X =k )=k15,k =1、2、3、4、5,令Y =2X -2,则P (Y >0)=________.[答案]1415[解析] 由已知Y 取值为0、2、4、6、8,且P (Y =0)=115,P (Y =2)=215,P (Y =4)=315=15,P (Y =6)=415,P (Y =8)=515.则P (Y >0)=P (Y =2)+P (Y =4)+P (Y =6)+P (Y =8)=1415. 7.某学院为了调查本校学生2015年9月“健康上网”(健康上网是指每天上网不超过两个小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得的数据分成以下六组:[0,5],(5,10],(10,15],…,(25,30],由此画出样本的频率分布直方图,如图所示.导学号 03960365(1)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数;(2)现从这40名学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列.[解析] (1)由图可知,健康上网天数未超过20天的频率为(0.01+0.02+0.03+0.09)×5=0.15×5=0.75,所以健康上网天数超过20天的学生人数是40×(1-0.75)=40×0.25=10. (2)随机变量Y 的所有可能取值为0、1、2.P (Y =0)=C 230C 240=2952;P (Y =1)=C 110C 130C 240=513;P (Y =2)=C 210C 240=352.所以Y 的分布列为:8.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A .12B .56C .34D .23[答案] B[解析] 由题可知,函数y =23mx 3-nx +1在[1,+∞)上单调递增,所以y ′=2mx 2-n ≥0在[1,+∞)上恒成立,所以2m ≥n ,则不满足条件的(m ,n )有(1,3),(1,4),(1,5),(1,6),(2,5),(2,6)共6种情况,所以满足条件的共有30种情况,则函数y =23mx 3-nx +1在[1,+∞)上单调递增的概率为P =3036=56,故选B .9.从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 56[解析] 从10名同学中选出3名同学有C 310种不同选法,在3名同学中没有女同学的选法有C 36种,∴所求概率为P =1-C 36C 310=56.10.某校2015~2016学年高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中男生的人数.(1)请列出X 的分布列;(2)根据你所列的分布列求选出的4人中至少有3名男生的概率. [解析] (1)依题意得,随机变量X 服从超几何分布, ∵随机变量X 表示其中男生的人数,∴X 可能取的值为0,1,2,3,4.∴P (X =k )=C k 6·C 4-k4C 410,k =0,1,2,3,4.∴X 的分布列为:(2)即P (X ≥3)=P (X =3)+P (x =4)=821+114=1942.11.盒子中装着标有数字1、2、3、4、5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用ξ表示取出的3张卡片上的最大数字,求: (1)取出的3张卡片上的数字互不相同的概率; (2)随机变量ξ的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A ,则P (A )=C 35C 12C 12C 12C 310=23. (2)由题意ξ可能的取值为2、3、4、5,P (ξ=2)=C 22C 12+C 12C 22C 310=130, P (ξ=3)=C 24C 12+C 14C 22C 310=215,P (ξ=4)=C 26C 12+C 16C 22C 310=310, P (ξ=5)=C 28C 12+C 18C 22C 310=815.所以随机变量ξ的分布列为:。

高中数学必修2-3第二章2.1 2.1.2离散型随机变量的分布列

高中数学必修2-3第二章2.1 2.1.2离散型随机变量的分布列

2.1.2 离散型随机变量的分布列1.问题导航(1)离散型随机变量的分布列的定义是什么?两点分布和超几何分布的定义是什么? (2)离散型随机变量分布列的性质有什么作用?两点分布与超几何分布的联系和区别是什么?2.例题导读(1)例1是求两点分布列,请试做教材P 49练习1题.(2)例2、例3是求超几何分布,请试做教材P 49练习3、4题.1.离散型随机变量的分布列(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n ,以表格的形式表示如下:这个表格称为离散型随机变量X 的________概率分布列,简称为X 的________分布列. (2)离散型随机变量的分布列的性质: ①________p i ≥0,i =1,2,…,n ; ② i =1np i =1.2.两个特殊分布 (1)两点分布若随机变量X p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -M C n N,k =0,1,2,…,m ,即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N .如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.1.判断(对的打“√”,错的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.()(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.()(3)在离散型随机变量分布列中,所有概率之和为1.()答案:(1)×(2)×(3)√2.下列表中能成为随机变量ξ的分布列的是()A.B.C.D.答案:C3A.0.28 B.0.88C.0.79 D.0.51答案:C4.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y =-2)=________.答案:0.8离散型随机变量分布列的三点说明(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且也能看出取每一个值的概率的大小,从而反映出随机变量在随机试验中取值的分布情况,是进一步研究随机试验数量特征的基础.(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.(3)离散型随机变量可以用分布列、解析式、图象表示.离散型随机变量的分布列 [学生用书P 32]从装有6个白球、4个黑球和2个黄球的箱中随机取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X 表示赢得的钱数,随机变量X 可以取哪些值呢?求X 的分布列.[解] 从箱中取两个球的情形有以下6种:{2白球},{1白球1黄球},{1白球1黑球},{2黄球},{1黑球1黄球},{2黑球}. 当取到2白球时,随机变量X =-2;当取到1白球1黄球时,随机变量X =-1; 当取到1白球1黑球时,随机变量X =1; 当取到2黄球时,随机变量X =0;当取到1黑球1黄球时,随机变量X =2; 当取到2黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4.P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:[解:P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.∴赢钱的概率为1933.求分布列的一般步骤为:(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n );(2)P (X =x i )的确定;(3)列出X 的分布列或概率分布表;(4)检验X 的分布列或概率分布表(用随机变量的分布列的两条性质验算).1求随机变量η=12ξ的分布列.解:由η=12ξ,对于ξ取不同的值-2,-1,0,1,2,3时,η的值分别为-1,-12,0,12,1,32.所以η的分布列为:离散型随机变量的分布列的性质 [学生用书P 32]设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710).[解] (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1, 解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),∴P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.(3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量的分布列的两个性质主要解决以下两类问题:①通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列.②求对立事件的概率或判断某概率是否成立.2.已知离散型随机变量则q 的值为________. 解析:∵14+1-q +q 2=1,∴q 2-q +14=0.∴q =12.答案:12两点分布与超几何分布在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.[解] (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为1.两点分布的几个特点:(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P (X =0)(或P (X =1)),便可求出P (X =1)(或P (X =0)).2.解决超几何分布问题的两个关键点:(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M ,N ,n ,就可以利用公式求出X 取不同k 的概率P (X =k ),从而求出X 的分布列.3.(1)篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球一次得分的分布列为________.解析:用随机变量X 表示“每次罚球所得分值”,根据题意,X 可能的取值为0,1,且取这两个值的概率分别为0.3,0.7,因此所求的分布列为答案:(2)某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.(本题满分12分)(2014·高考天津卷节选)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.[解] (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960.6分 (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).9分 所以,随机变量X12分[规范与警示] (1)解答本例的3个关键步骤:①首先确定随机变量X 的取值,是正确作答的关键.②要明确X 取不同值的意义,才能正确求X 所对应值的概率.③解答本题时易文字叙述严重缺失,如第(1)问只写出P (A )=C 13C 27+C 03C 37C 310=4960. (2)解答本类问题一是要正确理解题意,将实际问题转化为数学问题,二是在明确随机变量取每一个值所对应的随机事件外,还必须准确求出每个随机事件的概率.1.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.设随机变量XA.P (X =1.5)=0 B .P (X >-1)=1 C .P (X <3)=0.5 D .P (X <0)=0解析:选A.由分布列知X =1.5不能取到,故P (X =1.5)=0,正确;而P (X >-1)=0.9,P (X <3)=0.6,P (X <0)=0.1.故A 正确.3.随机变量η则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.一个口袋里有5个同样大小的球,编号为1,2,3,4,5,从中同时取出3个球,以X 表示取出的球的最小编号,求随机变量X 的概率分布.解:X 所有可能的取值为1,2,3.当X =1时,其余两球可在余下的4个球中任意选取.∴P (X =1)=C 24C 35=35.当X =2时,其余两球在编号为3,4,5的球中任意选取, ∴P (X =1)=C 23C 35=310.当X =3时,取出的球只能是编号为3,4,5的球. ∴P (X =3)=1C 35=110.∴随机变量X 的概率分布为:[A.基础达标]1.(2015·东营高二检测)已知随机变量ξ的分布列为P (ξ=k )=12k ,k =1,2,…,则P (2<ξ≤4)等于( )A.316B.14C.116D.15解析:选A.2<ξ≤4时,ξ=3,4, ∴P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球的个数X 是一个随机变量,则P (X =4)的值为( )A.27220B.27110C.111D.211解析:选A.由题意取出的3个球必为2个旧球,1个新球.故P (X =4)=C 23C 19C 312=27220.3.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12D.23解析:选A.根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.4.某一随机变量X则mn 的最大值为( A .0.8 B .0.2 C .0.08 D .0.6解析:选C.由分布列的性质知m ∈(0,1),2n ∈(0,1),且0.1+m +2n +0.1=1, 即m +2n =0.8.mn =(0.8-2n )×n =0.8n -2n 2=-2(n -0.2)2+0.08, ∴当n =0.2时,mn 有最大值为0.08.5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品解析:选D.P (都不是一等品)=C 22C 25=110,P (恰有一件一等品)=C 13·C 12C 25=610, P (至少有一件一等品)=1-110=910, P (至多有一件一等品)=1-C 23C 25=710.6.则ξ为奇数的概率为________.解析:P (ξ=1)+P (ξ=3)+P (ξ=5)=215+845+29=815.答案:8157则(1)x =(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.558.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量ξ表示所选3人中男生的人数,则P (ξ≤2)=________.解析:由题意可知ξ的可能取值为1,2,3,且ξ服从超几何分布,即P (ξ=k )=C 3-k 2C k 4C 36,k =1,2,3,故P (ξ≤2)=P (ξ=1)+P (ξ=2)=C 14C 22C 36+C 24C 12C 36=15+35=45. 答案:459试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, ∴m =0.3.列表为:(1)2X +1(2)|X -1|10.,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.解:分别用x 1,x 2,x 3表示“小于5”的情况,“等于5”的情况,“大于5”的情况. 设ξ是随机变量,其可能取值分别为x 1、x 2、x 3,则P (ξ=x 1)=510=12,P (ξ=x 2)=110,P (ξ=x 3)=410=25.故ξ的分布列为1.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取两个,其中白球的个数记为ξ,则下列概率中等于C 122C 14+C 222C 226的是( )A .P (0<ξ≤2)B .P (ξ≤1)C .P (ξ=2)D .P (ξ=1)解析:选B.由已知得ξ的可能取值为0,1,2.P (ξ=0)=C 222C 226,P (ξ=1)=C 122C 14C 226,P (ξ=2)=C 24C 226,故P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 122C 14+C 222C 226.2.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎡⎦⎤0,13B.⎣⎡⎤-13,13 C .[-3,3] D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.3.设随机变量ξ的分布列为P (ξ=k )=c k (k +1),k =1,2,3,c 为常数,则P (0.5<ξ<2.5)=________.解析:由概率和为1,得1=c (11×2+12×3+13×4)=34c ,∴c =43,∴P (ξ=1)=23,P (ξ=2)=29,∴P (0.5<ξ<2.5)=P (ξ=1)+P (ξ=2)=89.答案:894.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机取一个检验,其级别为随机变量ξ,则P (13≤ξ≤53)=________.解析:设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k2个.∴分布列为P (13≤ξ≤53)=P (ξ=1)=47. 答案:475.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2. 所以,ξ的分布列为(2)由(1)知“所选3P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.6.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求X 的分布列.解:(1)由题意知,设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实根”为事件C ,则Ω={(b ,c )|b ,c =1,2,…,6},A ={(b ,c )|b 2-4c <0,b ,c =1,2,…,6},B ={(b ,c )|b 2-4c =0,b ,c =1,2,…,6},C ={(b ,c )|b 2-4c >0,b ,c =1,2,…,6},∴Ω中的基本事件总数为36,A 中的基本事件总数为17,B 中的基本事件总数为2,C 中的基本事件总数为17.又∵B ,C 是互斥事件,故所求概率P =P (B )+P (C )=236+1736=1936.(2)由题意,X 可能的取值为0,1,2,则 P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为。

2.1.2离散型随机变量的分布列(一)

2.1.2离散型随机变量的分布列(一)

X P
x1 p1
x2 p2
… …
xn pn
为随机变量X的概率分布列,简称X的分布列. 也可用 P(X=xi)= pi ,i=1,2,3 …n 表示X的分布列. 思考:根据随机变量的意义与概率的性质,你能得出分 布列有什么性质? 注:1.离散型随机变量的分布列具有下述两个性质:
(1) pi 0, i 1,2, , n
【典型例题】
例1. 某一射手射击所得环数ξ 的分布列如下: ξ P 4
0.02
5
0.04
6
0.06
7
0.09
8
0.28
9
0.29
10
0.22
求此射手“射击一次命中环数≥7”的概率. 分析: “射击一次命中环数≥7”是指互斥事件 “ξ=7”, “ξ=8”, “ξ=9”, “ξ=10” 的和. 解: 根据射手射击所得环数ξ 的分布列,有 P(ξ=7)=0.09,P(ξ=8)=0.28, P(ξ=9)=0.29, P(ξ=10)=0.22, 所求的概率为 P(ξ≥7)=0.09+ 0.28+ 0.29+ 0.22= 0.88
例2、随机变量X的分布列为
X
P
-1
0.16
0
a/10
1
a2
2
a/5
3
0.3
(1)求常数a;(2)求P(1<X<4) 解:(1)由离散型随机变量的分布列的性质有
a a 2 0.16 a 0.3 1 10 5
9 3 a 解得: (舍)或 a 10 5
(2)P(1<X<4)=P(X=2)+P(X=3)=0.12+0.3=0.42

人教A版必修第三册课件2.1.2离散型随机变量的分布列

人教A版必修第三册课件2.1.2离散型随机变量的分布列
的概率.
(2)从盒子中随机取出4个球,其中红球个数记为X,求随 机变量X的分布列.
【解题指南】(1)计算取出2个球的基本事件总数,计算 取出2个相同颜色的球的基本事件数,结合古典概型计
算公式,计算概率,即可. (2)分别计算出X=0,1,2,3,4对应的概率,列出分布列即 可.
【解析】(1)一个盒子里装有9个球,其中有4个红球,3
答案:①②③
2.甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个 不同的岗位服务,每个岗位至少有一名志愿者.设随机 变量ξ为这五名志愿者中参加A岗位服务的人数,则ξ 的分布列为________.
【解析】随机变量ξ可能取的值为1,2.
事件“ξ=1”是指有1人参加A岗位服务,则P(ξ=1)
=
C15C42A33
的可能取值为0,1,2,3,4,P(X=0)= C54 P5 (,X=1)=
PC(C14XC94 =35 4P)26=03(X,CC9444=21)21=6所,以随CC24机C94P52(变X1量2=013,X)的= 分C布94 列12为C6C34C:94 15
10 , 63
【方法总结】求离散型随机变量的分布列的步骤
A.(-∞,2]
B.[1,2]
C.(1,2]
D.(1,2)
【解析】选C.由随机变量X的分布列知:P(X<-1)= 0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当 P(X<a)=0.8时,实数a的取值范围是(1,2].
2.下列表格中,不是某个随机变量的分布列的是( )
张,每张可获价值10元的奖品;其余6张没有奖品.
(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的 分布列.

2.1.2 离散型随机变量的分布列

2.1.2 离散型随机变量的分布列

ξ
2
3
4
5
6
7
8
1 1 3 1 3 1 1 P(ξ) 16 8 16 4 16 8 16
变 式 训 练
2.将一颗骰子掷两次,求两 次掷出的最大点数ξ的分布列.
变 式 训 练
解:将一颗骰子连掷两次共出现 6×6=36(种)等可能 的基本事件,其最大点数 ξ 可能取的值为 1 1,2,3,4,5,6.P(ξ=1)= ,用(x,y)表示第一枚骰子点数 36 为 x,第二枚骰子点数为 y,则 ξ=2 包含三个基本事 3 1 件 (1,2),(2,1), (2,2),则 P(ξ= 2)= = .同理可求 36 12 5 7 9 1 P(ξ= 3)= , P(ξ= 4)= , P(ξ= 5)= = ,P(ξ= 36 36 36 4 11 6)= . 36
自 测 自 评
2.如果 ξ 是一个离散型随机变量,那么下 列命题中假命题是( D )
A. ξ 取每个可能值的概率是非负实数 B. ξ 取所有可能值的概率之和为 1 C.ξ 取某 2 个可能值的概率等于分别取其 中每个值的概率之和 D. ξ 取某 2 个可能值
的概率大于分别取其中每个值的概率之和
自 测 自 评
c c c c 解析:由 P(ξ=k)= ,k=1,2,3,可知 + + 2 6 12 k1+k 4 1 4 c =1, 解得 c= .故 P(ξ≥2)=1-P(ξ=1)=1- =1- × = 3 2 2 3 1 ,故选 C. 3 答案:C
题型二 求离散型随机变量的分布列
例2
一个正四面体玩具的四个面分
别标有数字1,2,3,4,将这个玩具连续抛掷 两次,记与桌面接触的面的数字之和为ξ,
求ξ的分布列.
解: ξ 的可取的值为 2,3,4,5,6,7,8. 将这个玩具连续抛掷两次, 所以可能事件总 数有 4×4=16 个,根据古典概率的计算公 1 2 1 式得 P(ξ= 2)= , P(ξ= 3)= = ,P(ξ= 16 16 8 3 4 1 3 4)= ,P(ξ=5)= = ,P(ξ=6)= ,P(ξ 16 16 4 16 2 1 1 =7)= = , P(ξ=8)= . 16 8 16 所以,所求的 ξ 的分布列为:

高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列

所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0

高中数学第二章 2.1.2离散型随机变量的分布列(一)课件

高中数学第二章 2.1.2离散型随机变量的分布列(一)课件

答案 是.离散型随机变量的各个可能值表示的事件不会同时发生,是 彼此互斥的.
答案
返回
题型探究
重点突破
题型一 求离散型随机变量的分布列 例1 一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中 摸出2个球. (1)求摸出的2个球中有1个白球和1个红球的概率; (2)有X表示摸出的2个球中的白球个数,求X的分布列.
解析 根据所给的分布列,
由离散型随机变量的性质得12+13+p=1,解得 p=16.故选 B.
解析答案
1234
2.设随机变量 ξ 的分布列为 P(ξ=i)=a(13)i,i=1,2,3,则 a 的值为( C )
9
27
11
A.1
B.13
C.13
D.13
解析 由分布列的性质,得 a(13+19+217)=1, ∴a=1237.
假设身高在175 cm以上(包括175 cm)定义为“高个子〞,身高在175 cm 以下定义为“非高个子〞,且只有“女高个子〞才能担任“礼仪小姐
(1)如果用分层抽样的方法从“高个子〞和“非高个子〞中抽取5人,再从 这5人中选2人,那么至少有1人是“高个子〞的概率是多少?
解析答案
(2)假设从所有“高个子〞中选3名志愿者,用ξ表示所选志愿者中能担任 “礼仪小姐〞的人数,试写出ξ的分布列. 解 依题意,ξ的可能取值为0,1,2,3,那么 P(ξ=0)=CC31382=1545,P(ξ=1)=CC14C31228=2585, P(ξ=2)=CC24C31218=1525,P(ξ=3)=CC31342=515. 因此,ξ的分布列为
P
1 10
3 10
3 5
解析答案
易错点 无视分布列的性质致误

2.1.2 离散型随机变量的分布列

2.1.2  离散型随机变量的分布列
6
23
11 32
一般地,若离散型随机变量X的所有可能取值
为x1,x2,…,xi,…, xn,X取每一个值xi(i= 1,2,…,n)的概率P(X=xi)=pi,以表格的形式
表示如下:
X x1 x2 … xi … xn P p1 p2 … pi … pn
上表称为离散型随机变量X的概率分布列,简称为X 的分布列.
P(X≥3)=P(X=3)+P(X=4)+P(X=5)
=
C C 3 53 10 3010
C140
C≈350041.0191C150
C55 30 10
C530
C350
C350
思考:若将这个游戏的中奖概率控制在55%左右,那 么应该如何设计中奖规则?
游戏规则可定为至少摸到2个红球就中奖.
【提升总结】 两点分布与超几何分布
(1)两点分布又称为0-1分布或伯努利分布,它反映 了随机试验的结果只有两种可能,如抽取的奖券是 否中奖;买回的一件产品是否为正品;一次投篮是 否命中等.在两点分布中,随机变量的取值必须是0 和1,否则就不是两点分布; (2)超几何分布列给出了一类用数字模型解决的问 题,对该类问题直接套用公式即可.但在解决相关
变量X的分布列具有上表的形式,则称随机变量X服
从超几何分布.
例3 在某年级的联欢会上设计了一个摸奖游戏, 在一个口袋中装有10个红球和20个白球,这些球除 颜色外完全相同.一次从中摸出5个球,至少摸到3 个红球就中奖,求中奖的概率.
解:设摸出红球的个数为X,则X服从超几何分布,
其中N=30,M=10,n=5.于是中奖的概率
X∈{1,2,3,4,5,6}, P(X i) 1 ,(i 1,2,3,4,5,6)
6

离散型随机变量的分布列

离散型随机变量的分布列

P(Y=60)=CC11C21031=435=115.
(10 分)
因此随机变量 Y 的分布列为
Y
010 205060P12
1
2
1
(12分)
3
5
15
15 15
【题后反思】 解决超几何分布问题的两个关键点 (1)超几何分布是概率分布的一种形式,一定要注意公式 中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆. (2)超几何分布中,只要知道M,N,n就可以利用公式求 出X取不同k的概率P(X=k),从而求出X的分布列.
张中奖或 2 张都中奖.故所求概率 P=C14C16C+210C24C06=3405=23. (6 分)
②X 的所有可能取值为 0,10,20,50,60,且
P(Y=0)=CC04C21062=1455=13,P(Y=10)=CC13C21061=1485=25,
P(Y=20)=CC23C21060=435=115,P(Y=50)=CC11C21061=465=125,
(2)超几何分布列
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其中
恰有 k 件次品,则事件{X=k}发生的概率为 P(X=k)=
CkMCCnNnN--kM,k=0,1,2,…,m,其中 m=min{M,n},且 n≤N, M≤N,n,M,N∈N*,则称分布列
X
0
1

m
P
C0MCnN--0M ___C__nN___
离散型随机变量的分布列
1.离散型随机变量的分布列 (1)定义:若离散型随机变量X可能取的不同值为x1, x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的 概率P(X=xi)=pi,以表格的形式表示如下:

选修2-3 第二章 2.1.2 离散型随机变量的分布列

选修2-3 第二章  2.1.2 离散型随机变量的分布列


2.1.2 离散型随机变量的分布列 刷基础
题型4 超几何分布
11.[吉林吉化一中2018高二期末]一袋中装有10个大小相同的黑球和白球,已知从袋中任意摸出2个球, 至少得到1个白球的概率是 .
(1)求白球的个数; (2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.

2.1.2 离散型随机变量的分布列 刷基础
2.1.2 离散型随机变量的分布列 刷基础
题型1 离散型随机变量的分布列
2.设X是一个离散型随机变量,其分布列如下表,则q等于________.
X
-1
0
1
P
0.5
1- q
q2
解析
2.1.2 离散型随机变量的分布列
题型2 离散型随机变量分布列的性质
刷基础
3.[河南2019高二期中]已知随机变量X的分布列如表所示.
解析
将50名学生看作一批产品,其中选修A课程为不合格品,选修B课程为合格品,随机抽取两名学生
,X表示选修A课程的学生数,则X服从超几何分布,其中N=50,M=15,n=2.依题意所求概率
为P(X=1)=
=.
2.1.2 离散型随机变量的分布列 刷基础
题型4 超几何分布
10.[广西南宁四中2019高二月考]现有一批产品共10件,其中8件为正品,2件为次品,从中抽取3件. (1)恰有1件次品的抽法有多少种; (2)求取到次品数X的分布列.
2.1.2 离散型随机变量的分布列
题型5 综合问题
刷基础
12.[四川成都外国语学校2019高二月考]在10件产品中,有3件一等品,4件二等品,3件三等品.从这10 件产品中任取3件.求:
(1)取出的3件产品中一等品件数X的分布列; (2)取出的3件产品中一等品件数多于二等品件数的概率.

分布列(2.1.2)

分布列(2.1.2)

2.1.2 离散型随机变量的分布列知识一 离散型随机变量的分布列 【问题导思】掷一枚骰子,所得点数为x ,则x 可取哪些数字?x 取不同的值时,其概率分别是多少? 离散型随机变量分布列(1)定义:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:的 ,简称为的 .为了简单起见,也用等式 ,i =1,2,…,n 表示X 的分布列. (2)性质:①p i ,i =1,2,…,n ; ②∑i =1np i = .知识二 两个特殊分布 【问题导思】(1)在同时抛掷两枚骰子的随机试验中,令Y =⎩⎪⎨⎪⎧0 向上点数之和为奇数;1 向上点数之和为偶数.试写出随机变量Y 的分布列;(2)某人从含2个不合格骰子的4个骰子中任取2个同时抛掷,经过大量试验,发现“向上点数之和X ”的各频率值与概率值相差很大,这意味着什么,试分析此现象发生的可能性大小?两个特殊分布 (1)两点分布若随机变量X = 为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )= ,k =0,1,2,…,m , 其中m =min {}M ,n ,且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布. 类型一 分布列的性质及应用例1.设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值;(2)求P (X ≥35);(3)求P (110<X <710).规律方法1.本题利用方程的思想求出常数a 的值.2.利用离散型随机变量分布列的性质可以求随机变量在某个范围内取值的概率,此时只需根据随机变量的取值范围确定随机变量可取哪几个值,再利用分布列即可得到它的概率,注意分布列中随机变量取不同值时所表示的随机事件彼此互斥,因此利用概率的加法公式即可求出其概率. 变式训练已知随机变量X 的分布列如下表:则x 的值为________,P (23<X <92)=________.类型二 两点分布例2.袋内有10个白球,5个红球,从中摸出2个球,记X =⎩⎪⎨⎪⎧0,两球全红;1,两球非全红.求X 的分布列.规律方法1.在两点分布中,无论求出P (X =0)或者P (X =1)都能写出分布列,因为P (X =0)+P (X =1)=1.2.两点分布又称为0-1分布或伯努利分布,它是一种比较特殊的分布列,反映了随机试验的结果只有两种可能且其概率之和为1. 变式训练袋中装有3个红球,2个绿球,从中摸出1个球,记X =⎩⎪⎨⎪⎧0 (摸出绿球)1 (摸出红球),求X 的分布列.类型三 超几何分布例3.袋中有8个球,其中5个黑球,3个红球,从袋中任取3个球,求取出的红球数X 的分布列,并求至少有一个红球的概率.规律方法求超几何分布的分布列,关键是明确随机变量是否服从超几何分布,分清M 、N 、n 、k 的值,然后求出相应的概率,最后列表即可.变式训练若本例条件不变,问题改为“求取出的黑球数X 的分布列”该如何解?离散型随机变量分布列的应用典例.(12分)袋中装有标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的概率分布列;(3)计算介于20分到40分之间的概率.当堂达标1.(2013·合肥检测)下列四个表格中,可以作为离散型随机变量分布列的是() A.B.C.D.2则a的值为()A.0.6B.0.7C.0.8D.0.33.设随机变量ξ等可能取值1,2,3,…,n,若P(ξ<4)=0.3,则n的值为________.4.一个袋中有形状、大小完全相同的3个白球和4个红球.(1)从中任意摸出一球,用0表示摸出白球,用1表示摸出红球,即X =⎩⎪⎨⎪⎧0,摸出白球,1,摸出红球.求X的分布列;(2)从中任意摸出两个球,用“X =0”表示两个球全是白球,用“X =1”表示两个球不全是白球,求X 的分布列.5.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X 为第二天开始营业时该商品的件数,求X 的分布列.6.一袋中装有6个同样大小的小球,编号为1,2,3,4,5,6.现从中随机取出3个球,用ξ表示取出的球最大号码,ξ可以取得哪些值?写出ξ的分布列.当堂检测(一)一、基础过关1.若随机变量X( )A.1B.12C.13D.162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A.1718B.2738C.1719D.27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( )A.16B.13C.12D.234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( ) A.1112 B.3136 C.536 D.1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎡⎦⎤0,13B.⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.当堂检测(二)一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A.150B.125C.1825D.14 950 2.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A.C 34C 248C 552B.C 348C 24C 552 C .1-C 148C 44C 552 D.C 34C 248+C 44C 148C 552 3.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 222C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2)4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A.15B.16C.115D.135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品6.若离散型随机变量X则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A.310B.710C.2140D.740 8.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____.9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.求X 的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求: (1)取出的3个小球上的数字互不相同的概率;(2)随机变量X 的分布列; (3)计算介于20分到40分之间的概率.。

2-2.1.2离散型随机变量的分布列

2-2.1.2离散型随机变量的分布列

袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3 个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可 能性都相等,用X表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率; (2)随机变量X的概率分布列; (3)计算介于20分到40分之间的概率.
工具
第二章 随第机36页变,共量54页。及其分布
栏目导引
解析: P(ξ>-1)=1-P(ξ=-1)=190, P(ξ<3)=1-P(ξ=3)=1-25=35, P(ξ<0)=P(ξ=-1)=110. 答案: A
工具
第二章 随第机15页变,共量54页。及其分布
栏目导引
3.若离散型随机变量X的分布列为
X
0
1
P
2a
3a
则a=________.
解析: 由离散型随机变量分布列的性质可知,2a+3a=1,
栏目导引
由题目可获取以下主要信息: ①随机变量的分布列已知; ②求参数a的值及相应区间上的概率. 解答本题中的(1)可利用分布列的性质,对于(2)(3)两问可借 助互斥事件的概率求法求解.
工具
第二章 随第机21页变,共量54页。及其分布
栏目导引
[解题过程] (1)由PX=5k=ak,k=1,2,3,4,5可知
称分布列
X
0
1

m
P
CM0CN-Mn-0 CM1CN-Mn-1
CNn
CNn

CMmCN-Mn-m CNn
工具
第二章 随第机10页变,共量54页。及其分布
栏目导引
为超几何分布列.如果随机变量X的分布列为超几何分布列, 则称随机变量X服从超几何分布.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 选修2-3
2.1.2离散型随机变 量的分布列(1)
复习引入:
1、什么是随机事件?什么是基本事件?
在一定条件下可能发生也可能不发生的事件,叫做 随机事件。试验的每一个可能的结果称为基本事件。
2、什么是随机试验?
凡是对现象或为此而进行的实验,都称之为试验。
如果试验具有下述特点: 试验可以在相同条件下重复进行;每次试验的所有 可能结果都是明确可知的,并且不止一个;每次试 验总是恰好出现这些结果中的一个,但在一次试验 之前却不能肯定这次试验会出现哪一个结果。它被 称为一个随机试验。简称试验。
1 2 1 1 4 8
D

0
1 3
1
2

n
P

1 2 n 1
P
1 2 1 2 2 … 1 2 n 3 3 3 3 3 3
i
1 2、设随机变量 的分布列为 P( i ) a , i 1,2,3 3 27 则 的值 为 . 13
a
课堂练习:
3、设随机变量的分布列如下:

P
1
K
2
2K
3
4K


n
2 K
n 1
求常数K。
4、袋中有7个球,其中3个黑球,4个红球,从袋中 任取个3球,求取出的红球数 的分布列。
例4: 已知随机变量

的分布列如下:
-2
1 12
-1
1 4
1
0
1 3
1
1 12
2
1 6
3
1 12
P
分别求出随机变量⑴ 1 ;⑵ 2 2 的分布列. 2 1 1 3 1 1 、0、 、1、 ⑴由 1 可得 1 的取值为 、 解: 2 2 2 2 且相应取值的概率没有变化 ∴ 1 的分布列为:
研究性问题
设一部机器在一天发生故障的概率为0.2,机 器发生故障时全天停止工作,若一周5个工作日 里无故障可获利润10万元,发生一次故障可获利 5万元,若发生两次故障所获利润0万元,发生三 次或三次以上就亏损2万元.试写出一周所获利 润可能的取值及每个值的概率.
练 习二
一个口袋中有5只同样大小的球,编号为1,2,3, 4,5,从中同时取出3只球,以ξ表示取出球的 最大号码,求ξ的分布列。
有时为了表达简单,也用等式 P( xi ) pi , i 1, 2,3,..., n
表示

的分布列
2.概率分布还经常用图象来表示. 可以看出 的取值范 p 围是{1,2,3,4,5,6},它 0.2 取每一个值的概率都 1。 是 0.1
O 1 2 3 4 5 6 7 8

6
1、离散型随机变量的分布列完全描述了由这个随机 变量所刻画的随机现象。 2、函数可以用解析式、表格或图象表示,离散型随 机变量可以用分布列、等式或图象来表示。
例 6、从一批有10个合格品与3个次品的产品中,一
件一件的抽取产品,设各个产品被抽到的可能性相 同,在下列两种情况下,分别求出取到合格品为止 的分布列。 时所需抽取次数 (1)每次取出的产品都不放回该产品中; (2)每次取出的产品都立即放回该批产品中,然后 再取另一产品。
变式引申:
1、某射手射击目标的概率为0.9,求从开始射击到击中目标 所需的射击次数 的概率分布。
2、数字1,2,3,4任意排成一列,如果数字k 恰好在第k个 位置上,则称有一个巧合,求巧合数 的分布列。
思考1.一个口袋里有5只球,编号为1,2,3,4,5,在袋中 同时取出3只,以ξ表示取出的3个球中的最小号码,试 写出ξ的分布列.
思考2.将一枚骰子掷2次,求下列随机变量的概率分布. (1)两次掷出的最大点数ξ; (2)第一次掷出的点数减去第二次掷出的点数之差η .
2、离散型随机变量
在上面的射击、产品检验等例子中,对于随机变 量可能取的值,我们可以按一定次序一一列出,这样
的随机变量叫做离散型随机变量.
所有取值可以一一列出的随机变量,称为离 散型随机变量。
a
注3:
若 是随机变量,则 b (其中a、b是常数)也是随机变量 .
3、古典概型:
①试验中所有可能出现的基本事件只有有限个; ②每个基本事件出现的可能性相等。


∴ 随机变量 的分布列为:

3
1 20
4
3 20
5
3 10
6
1 2
P
说明:在写出ξ的分布列后,要及时检查所有的概率之和是否为1.
课堂练习:
1、下列A、B、C、D四个表,其中能成为随机变量 的 分布列的是(B )
A

P
0
0.6
1
0.3
B

P
0
0.9025
1
0.095
2
0.0025
C

0 1 2 … n
m P ( A) n
引例
抛掷一枚骰子,所得的点数 有哪些值? 取每个 值的概率是多少? 解: 的取值有1、2、3、4、5、6 则
1 6 1 P( 4) 6
P( 1)
P( 2)
1 6 1 P( 5) 6
1 6 1 P( 6) 6
P( 3)

1
1 6
2
1 6
3
1 6
4
1 6
5
1 6
6
1 6
PHale Waihona Puke ⑴列出了随机变量 的所有取值. ⑵求出了 的每一个取值的概率.
二、离散型随机变量的分布列
1、设随机变量 的所有可能的取值为 x1 , x2 , x3 , , xi , , xn 的每一个取值 x i (i 1, 2, , n) 的概率为 P( xi ) pi,则称表格
a2
a/5
0.3
(1)求常数a;(2)求P(1<ξ<4)
一袋中装有6个同样大小的小球,编号为1、2、3、4、5、 例3 : 6,现从中随机取出3个小球,以 表示取出球的最大号码, 求 的分布列. 解:
的所有取值为:3、4、5、6.

1 20 3 20 3 10 1 2
1 2 C C2 表示其中一个球号码等于 1 “ 3” ∴ P( 3) 3 C6 “3”,另两个都比“3”小 1 2 C1 C3 “ 4” 表示其中一个球号码等于“4”, ∴ P( 4) 3 另两个都比“4”小 C6 1 2 C1 C4 “ 5” 表示其中一个球号码等于“5”, ∴ P( 5) 3 另两个都比“5”小 C6 1 2 C1 C5 “ 6” 表示其中一个球号码等于“3”, ∴ P( 6) 3 另两个都比“3”小 C6
P(2 0) P( 0)
P(2 4) P( 2) P( 2) 1 1 1
1 3
P(2 1) P( 1) P( 1)
1 12
12 6
1 1 4 12
1 3
P(2 9) P( 3)
∴ 2 的分布列为:
例如: 在问题1中:某人射击一次,命中的环数为ξ.
ξ=0,表示命中 0 环; ξ=1,表示命中 1 环; ξ=10,表示命中 10 环; 在问题2中:产品检查任意抽取 4件, 含有的次品数为η;
η=0,表示含有 0 个次品; η=1,表示含有 1 个次品; η=2,表示含有 2 个次品;

η=4,表示含有 4 个次品;
0.02
的分布列如下:
5
0.04
6
0.06
7
0.09
8
0.28
9
0.29
10
0.22
求此射手”射击一次命中环数≥7”的概率. 分析: ”射击一次命中环数≥7”是指互斥事 件”ξ=7”, ”ξ=8”, ”ξ=9”, ”ξ=10” 的和.
例2.随机变量ξ的分布列为
ξ -1 0 1 2 3
p
0.16
a/10
1
-1
1 12
1 2
1 4
0
1 3
1 2
1 12
1
1 6
3 2
1 12
P
例4: 已知随机变量

的分布列如下:
-2
1 12
-1
1 4
1 2
0
1 3
1
1 12
2
1 6
3
1 12
P
分别求出随机变量⑴ 1 ;⑵ 2 2 的分布列.
解:⑵由 2 2 可得2 的取值为0、1、4、9
,命中 10 环等结果.
在上面例子中,随机试验有下列特点:
①试验的所有可能结果可以用一个数来表示; ②每次试验总是恰好出现这些结果中的一个,但在一 次试验之前却不能肯定这次试验会出现哪一个结果.
1. 随机变量
如果随机试验的结果可以用一个变量来表示,(或 随着试验结果变化而变化的变量),那么这样的变量 叫做随机变量. 随机变量常用希腊字母X、Y、ξ、η等表示。
4
2
0
1 3
1
1 3
4
1 4
9
1 12
P
例 5、在掷一枚图钉的随机试验中,令
1, 针尖向上 X 0, 针尖向下
如果会尖向上的概率为p,试写出随机变量X的分布列 解:根据分布列的性质,针尖向下的概率是(1—p),于是, 随机变量X的分布列是:
X P 3、两点分布列
0 1—p
1 p
象上面这样的分布列称为两点分布列。如果随机变量X的分 布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为 成功概率。
相关文档
最新文档