高一数学上学期期中试题及答案 (5)
福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)
厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
人教版高一数学上学期期中考试试题及详细答案解析全文
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)
2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。
四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)
绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。
2021-2022学年高一上学期期中考试数学试卷及答案解析
2021-2022学年高一上学期期中考试数学试卷一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 23.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .35.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M6.已知a =312,b =log 2√3,c =log 92,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a7.函数y =4xx 2+1的图象大致为( ) A .B .C.D.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅10.函数f(x)是定义在R上的奇函数,下列命题中正确的有()A.f(0)=0B.若f(x)在[0,+∞)上有最小值﹣1,则f(x)在(﹣∞,0]上有最大值1C.若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数D.若x>0时,f(x)=x2﹣2x,则当x<0时,f(x)=﹣x2﹣2x11.如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积不超过80m2D.若浮萍蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则2t2=t1+t3 12.若集合A={x∈R|ax2﹣3x+2=0}中只有一个元素,则a的取值可以是()A.92B.98C.0D.1三.填空题(共4小题,满分20分,每小题5分)13.若函数f(x)的定义域为[﹣2,2],则函数f(3﹣2x)的定义域为.14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表:销售单价/元6789101112日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为元/桶时能获得最大利润.15.不等式0.1x﹣ln(x﹣1)>0.01的解集为.16.对于函数f(x),若在定义域存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x﹣m•2x﹣3是定义在R上的“局部奇函数”,则实数m的取值范围为.四.解答题(共6小题,满分70分)17.(10分)(1)已知a ≤2,化简:√(a −2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地表示为y=12x2+40x+3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?21.(12分)定义在R上的奇函数f(x)是单调函数,满足f(3)=6,且f(x+y)=f(x)+f(y)(x,y∈R).(1)求f(0),f(1);(2)若对于任意x∈[12,3]都有f(kx2)+f(2x﹣1)<0成立,求实数k的取值范围.22.(12分)已知函数f(x)=2x−12x,g(x)=(4﹣lnx)•lnx+b(b∈R).(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;2021-2022学年高一上学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2解:命题p :∀x ∈N ,x 3>x 2的否定形式是特称命题; ∴¬p :“∃x ∈N ,x 3≤x 2”. 故选:D .3.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:p :|m +1|<1等价于﹣2<m <0,∵幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减, ∴m 2﹣m ﹣1=1,且m <0, 解得m =﹣1,∴p 是q 的必要不充分条件, 故选:B .4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .3解:∵幂函数f (x )=x 2m ﹣1的图象经过点(2,8),∴22m ﹣1=8,∴m =2, 故选:C .5.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M解:①当n =2m ,m ∈Z 时,x =4m +1,m ∈Z , ②当n =2m +1,m ∈Z 时,x =4m +3,m ∈Z , 综合①②得:集合N ={x |x =4m +1或x =4m +3,m ∈Z }, 又集合M ={x |x =4n +1,n ∈Z }, 即M ⫋N , 故选:A . 6.已知a =312,b=log 2√3,c =log 92,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a解;∵a =312∈(1,2),b=log 2√3>log 2√2=12,∵log 2√3<log 22=1, ∴12<b <1,c =log 92<log 93=12, 则a >b >c , 故选:A . 7.函数y =4xx 2+1的图象大致为( ) A .B.C.D.解:函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(﹣x)=−4xx2+1=−f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3解:①a2+3﹣2a=(a﹣1)2+2>0恒成立,所以a2+3>2a,故①正确;②a2+b2﹣2a+2b+2=(a﹣1)2+(b﹣1)2≥0,所以a2+b2≥2(a﹣b﹣1),故②正确;③x2+y2≥2xy,当且仅当x=y时等号成立,故③不正确.故恒成立的个数是2.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅解:在A 项中,依题意可得a =0,且3b +3=0,解得b =﹣1,此时不等式为﹣x +3>0,解得x <3,故A 项错误;在B 项中,取a =1,b =2,可得x 2+2x +3=(x +1)2+2>0,解集为R ,故B 项正确; 在C 项中,依题意可得a <0,且{−1+3=−ba −1×3=3a ,解得{a =−1b =2,符合题意,故C 项正确.在D 选中,当x =0时,ax 2+bx +3=3>0,可得其解集不为∅,故D 选错误; 故选:BC .10.函数f (x )是定义在R 上的奇函数,下列命题中正确的有( ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值﹣1,则f (x )在(﹣∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为减函数D .若x >0时,f (x )=x 2﹣2x ,则当x <0时,f (x )=﹣x 2﹣2x 解:根据题意,依次分析选项:对于A ,函数f (x )是定义在R 上的奇函数,则f (﹣x )=﹣f (x ),当x =0时,有f (0)=﹣f (0),变形可得f (0)=0,A 正确,对于B ,若f (x )在[0,+∞)上有最小值﹣1,即x ≥0时,f (x )≥﹣1,则有﹣x ≤0,f (﹣x )=﹣f (x )≤1,即f (x )在(﹣∞,0]上有最大值1,B 正确,对于C ,奇函数在对应的区间上单调性相同,则若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为增函数,C 错误,对于D ,设x <0,则﹣x >0,则f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,则f (x )=﹣f (﹣x )=﹣(x 2+2x )=﹣x 2﹣2x ,D 正确, 故选:ABD .11.如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过80m 2D .若浮萍蔓延到2m 2,4m 2,8m 2所经过的时间分别是t 1,t 2,t 3,则2t 2=t 1+t 3 解:图象可知,函数过点(1,3), ∴a =3,∴函数解析式为y =3t , ∴浮萍每月的增长率为:3t+1−3t3t=2×3t 3t=2,故选项A 正确,∵函数y =3t 是指数函数,是曲线型函数,∴浮萍每月增加的面积不相等,故选项B 错误, 当t =4时,y =34=81>80,故选项C 错误,对于D 选项,∵3t 1=2,3t 2=4,3t 3=8,∴t 1=log 32,t 2=log 34,t 3=log 38, 又∵2log 34=log 316=log 32+log 38,∴2t 2=t 1+t 3,故选项D 正确, 故选:AD .12.若集合A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,则a 的取值可以是( ) A .92B .98C .0D .1解:∵A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,∴若a =0,方程等价为﹣3x +2=0,解得x =23,满足条件. 若a ≠0,则方程满足△=0,即9﹣8a =0,解得a =98.故选:BC .三.填空题(共4小题,满分20分,每小题5分)13.若函数f (x )的定义域为[﹣2,2],则函数f (3﹣2x )的定义域为 [12,52] . 解:∵函数f (x )的定义域为[﹣2,2], ∴由﹣2≤3﹣2x ≤2,解得12≤x ≤52.∴函数f (3﹣2x )的定义域为[12,52].故答案为:[12,52].14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表: 销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为 11.5 元/桶时能获得最大利润. 解:由表可知,销售单价每增加1元,日均销售就减少40桶. 设每桶水的价格为(6+x )元,公司日利润为y 元,则y =(6+x ﹣5)(480﹣40x )﹣200=﹣40x 2+440x +280=﹣40(x −112)2+1490, 所以当x =5.5时,y 取得最大值,所以每桶水定价为11.5元时,公司日利润最大. 故答案为:11.5.15.不等式0.1x ﹣ln (x ﹣1)>0.01的解集为 (1,2) . 解:设函数f (x )=0.1x ﹣ln (x ﹣1), ∵y =0.1x 和y =﹣ln (x ﹣1)均为减函数, ∴函数f (x )为减函数,∵f (2)=0.01,且函数的定义域为(1,+∞), ∴原不等式等价于f (x )>f (2), ∴1<x <2,∴不等式的解集为(1,2). 故答案为:(1,2).16.对于函数f (x ),若在定义域存在实数x ,满足f (﹣x )=﹣f (x ),则称f (x )为“局部奇函数”.若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则实数m 的取值范围为 [﹣2,+∞) .解:根据题意,由“局部奇函数”的定义可知:若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则方程f (﹣x )=﹣f (x )有解; 即4﹣x ﹣m •2﹣x ﹣3=﹣(4x ﹣m •2x ﹣3)有解;变形可得4x +4﹣x ﹣m (2x +2﹣x )﹣6=0,即(2x +2﹣x )2﹣m (2x +2﹣x )﹣8=0有解即可;设2x +2﹣x =t (t ≥2),则方程等价为t 2﹣mt ﹣8=0在t ≥2时有解;设g (t )=t 2﹣mt ﹣8=0,必有g (2)=4﹣2m ﹣8=﹣2m ﹣4≤0, 解可得:m ≥﹣2,即m 的取值范围为[﹣2,+∞); 故答案为:[﹣2,+∞).四.解答题(共6小题,满分70分) 17.(10分)(1)已知a ≤2,化简:√(a−2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927. 解:(1)∵a ≤2, ∴√(a −2)2+√(a +3)33+(14)−12, =2﹣a +a +3+2=7;(2)3−log 32+log 610⋅(lg2+lg3)+log 927, =12+log 610⋅lg6+32, =12+1+32=3.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.解:(1)∵集合A ={x |1≤x <5},B ={x |2<x <8}∴A ∪B ={x |1≤x <8},(∁U A )={x |x <1或x ≥5},(∁U A )∩B ={x |5≤x <8}(2)∵“x ∈C ”为“x ∈A ”的充分不必要条件,C ={x |a <x ≤a +3}∴C ⫋A ,∴{a +3<5a ≥1,解得1≤a <2,故a的取值范围是[1,2).19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.解:(1)当a=4时,f(x)=x−2x+4x=x+4x−2,当x∈(0,+∞)时,f(x)=x+4x−2≥2√x×4x−2=2,当且仅当x=4x即x=2时等号成立,所以f(x)的最小值为2.(2)根据题意可得x2﹣2x+a>0在x∈(0,+∞)上恒成立,等价于a>﹣x2+2x在x∈(0,+∞)上恒成立,因为g(x)=﹣x2+2x在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1,所以a>1.(3)f(x)=x+ax−2,设0<x1<x2<√a,f(x1)﹣f(x2)=x1﹣x2+ax1−a x2=(x1﹣x2)(1−ax1x2)=(x1−x2)(x1x2−a)x1x2,∵0<x1<x2<√a,∴x1x2<a,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在(0,√a)单调递减,同理可证f(x)在(√a,+∞)单调递增,当0<a≤4时,0<√a≤2,函数f(x)在[2,+∞)上单调递增,f(x)min=f(2)=a 2,当a>4时,√a>2,函数f(x)在[2,√a)上单调递减,在(√a,+∞)上单调递增,f(x)min=f(√a)=2√a−2.所以f(x)min={a2(0<a<4)2√a−2(a>4).20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%. 某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为y =12x 2+40x +3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种. ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x .如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么? 解:(Ⅰ)由题意可知,每吨厨余垃圾平均加工成本为yx=x 2+3200x+40,x ∈[70,100],而x2+3200x +40≥2√x 2⋅3200x+40=2×40+40=120,当且仅当x2=3200x,即x =80时,每吨厨余垃圾的平均加工成本最低.因为80<100,所以此时该企业处理1吨厨余垃圾处于亏损状态.(Ⅱ)若该企业采用补贴方式①,设该企业每日获利为y 1,y 1=100x −(12x 2+40x +3200)+2300=−12x 2+60x −900=−12(x −60)2+900, 因为x ∈[70,100],所以当x =70吨时,企业获得最大利润,为850元. 若该企业采用补贴方式②,设该企业每日获利为y 2,y 2=130x −(12x 2+40x +3200)=−12x 2+90x −3200=−12(x −90)2+850, 因为x ∈[70,100],所以当x =90吨时,企业获得最大利润,为850元.结论:选择方案一,当日加工处理量为70吨时,可以获得最大利润;选择方案二,当日加工处理量为90吨时,获得最大利润, 由于最大利润相同,所以选择两种方案均可.21.(12分)定义在R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y )(x ,y ∈R ). (1)求f (0),f (1);(2)若对于任意x ∈[12,3]都有f (kx 2)+f (2x ﹣1)<0成立,求实数k 的取值范围. 解:(1)因为R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y ).令x =y =0可得f (0)=2f (0), 所以f (0)=0,令x =1,y =1,可得f (2)=2f (1),令x =2,y =1可得f (3)=f (1)+f (2)=3f (1)=6, 所以f (1)=2;(2)∵f (x )是奇函数,且f (kx 2)+f (2x ﹣1)<0在x ∈[12,3]上恒成立, ∴f (kx 2)<f (1﹣2x )在x ∈[12,3]上恒成立,且f (0)=0<f (1)=2; ∴f (x )在R 上是增函数,∴kx 2<1﹣2x 在x ∈[12,3]上恒成立, ∴k <(1x )2−2(1x )在x ∈[12,3]上恒成立, 令g(x)=(1x )2−2(1x )=(1x −1)2−1. 由于12≤x ≤3,∴13≤1x≤2.∴g (x )min =g (1)=﹣1,∴k <﹣1,即实数k 的取值范围为(﹣∞,﹣1). 22.(12分)已知函数f (x )=2x −12x ,g (x )=(4﹣lnx )•lnx +b (b ∈R ). (1)若f (x )>0,求实数x 的取值范围;(2)若存在x 1,x 2∈[1,+∞),使得f (x 1)=g (x 2),求实数b 的取值范围;解:(1)f(x)>0⇔2x−12x>0,∴2x>2﹣x,∴x>﹣x,即x>0.∴实数x的取值范围为(0,+∞).(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B.∵f(x)=2x−12x在[1,+∞)上单调递增,∴A=[32,+∞).∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4(b∈R).∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,依题意可得A∩B≠∅,∴b+4≥32,即b≥−32.∴实数b的取值范围为[−32,+∞).。
四川省成都市新都一中2024_2025学年高一数学上学期期中试题
四川省成都市新都一中2024-2025学年高一数学上学期期中试题考试时间:120分钟 满分:150分第Ⅰ卷 选择题(满分 60分)一、选择题(每题5分,共60分) 1.已知幂函数21()m f x x-=的图象经过点(2,8),则实数m 的值是()A .1-B .12C .2D .32.已知集合{}2log 1A x x =<,集合{}|11B x x =-≤≤,则A B =()A .[1,1]-B .[1,2)-C .(]0,1D .(),2∞-3.函数()1lg(2)f x x x =-++的定义域为()A .(2,1)-B .[2,1]-C .(2,)-+∞D .(2,1]-4.函数11y x =-+在区间[]1,2上的最大值为() A .13-B .12-C .1-D .不存在5.已知函数1()3()3x xf x =-,则()f x ()A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数6.已知39log 2a =,1314b ⎛⎫= ⎪⎝⎭,13log 6c =,则a ,b ,c 的大小关系为()A .a b c >>B .b a c >>C .c b a >>D .c a b >> 7.函数在上单调递减,且为奇函数.若,则满意的x的取值范围是 A.B.C.D.8.函数1xy x =+的图象是( ) A .B .C .D .9.已知为了抗击新型冠状病毒肺炎保障师生平安,我校确定每天对教室进行消毒工作,已知药物释放过程中,室内空气中的含药量y(3/mg m )与时间t (h )成正比(102t <<);药物释放完毕后,y 与t 的函数关系式为1()4t a y -=(a 为常数,12t ≥),据测定,当空气中每立方米的含药量降低到0.5(3/mg m )以下时,学生方可进教室,则学校应支配工作人员至少提前( )分钟进行消毒工作 A .30 B .40 C .60 D .9010.函数2()ln(43)f x x x =+-的单调递减区间是()A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦11.已知函数的定义域为R ,且对随意的12,x x 且12x x ≠都有()()()12120f x f x x x ⎡⎤-->⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( )A .()1,2-B .[]1,2-C .(,1)(2,)-∞-+∞D .(][),12,-∞-⋃+∞12.已知定义在R 上的奇函数()f x 满意()()20f x f x +--=,且当[]0,1x ∈时,()()2log 1f x x =+,则下列结论正确的是()①()f x 的图象关于直线1x =对称;②()f x 是周期函数,且2是其一个周期;③16132f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;④关于x 的方程()0f x t -=(01t <<)在区间()2,7-上的全部实根之和是12. A .①④B .①②④C .③④D .①②③第Ⅱ卷 非选择题(满分 90分)二、填空题(每题5分,共20分)13.24432(3)(3)log 6427π-+-+-=__________14.已知函数831x y a-=-(0a >,且1a ≠)的图像恒过定点(,)A m n ,则log m n =_______15.已知3()4f x ax bx =+-,若(2)6f =,则(2)f -=________16.若平面直角坐标系内两点P ,Q 满意条件:,Q 都在函数的图象上;,Q 关于原点对称,则称点对是函数的图象上的一个“友好点对”已知函数且,若此函数的“友好点对”有且只有一对,则实数a 的取值范围是________三、解答题(共70分)17.(本小题满分10分)设全集U =R ,集合{}1A x x =≤,20x B xx ⎧⎫-=<⎨⎬⎩⎭.求: (1)A B ;(2)()UA B .18.(本小题满分12分)已知幂函数()213()322mf x m m x +=--+在(0,)+∞上为增函数.(1)求()f x 解析式;(2)若函数2()(21)1y f x a x a =-++-在区间(2,3)上为单调函数,求实数a 的取值范围.19.(本小题满分12分)已知函数是定义在上的奇函数,满意,当时,有.求实数a ,b 的值; 求函数在区间上的解析式,并利用定义证明函数在上的单调性.20.(本小题满分12分)已知定义在R 上的函数满意对随意且不恒为0.求和的值;试推断的奇偶性,并加以证明; 若时为增函数,求满意不等式的x 的取值集合.21.(本小题满分12分)习近平总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,削减排放,既符合我国的国情,也代表了世界汽车产业发展的方向.十九大指出中国的电动汽车革命早已绽开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的支配,2024年某企业支配引进新能源汽车生产设备看,通过市场分析,全年需投入固定成本3000万元,每生产x (百辆)需另投入成本y (万元),且210100,040100005014500,40x x x y x x x ⎧+<<⎪=⎨+-≥⎪⎩.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.(1)求出2024年的利润S (万元)关于年产量x 的函数关系式;(利润=销售额—成本) (2)当2024年产量为多少辆时,企业所获利润最大?并求出最大利润.22.(本小题满分12分)在函数定义域内,若存在区间,使得函数值域为[,]m p n p ++,则称此函数为“p 档类正方形函数”,已知函数,当时,求函数的值域;若函数的最大值是1,求实数k 的值;当时,是否存在,使得函数为“1档类正方形函数”?若存在,求出实数k 的取值范围;若不存在,请说明理由.答案1.【答案】C【解析】因为幂函数21()m f x x -=的图象经过点(2,8),所以2128m -=,解得2m =.2.【答案】C【解析】因为{}{}2log 102A x x x x =<=<<,{}|11B x x =-≤≤, 所以{}(]010,1A B x x ⋂=<≤=. 3.【答案】D【解析】函数()lg(2)f x x =+有意义等价于102120x x x -≥⎧⇔-<≤⎨+>⎩,所以定义域为(2,1]-,4.【答案】A【解析】因为函数1y x =-在()0,∞+上单调递增,11y x =-+是由1y x =-向左平移一个单调后得到的函数,所以11y x =-+在()1,-+∞上单调递增,则11y x =-+在区间[]1,2上单调递增,所以最大值为max 11213y =-=-+. 5.【答案】A【解析】函数()133xxf x ⎛⎫=- ⎪⎝⎭的定义域为R ,()()111333,333xxx xxx f x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xxy ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.6.【答案】A 7.【答案】D解:为奇函数,,.在上单调递减, 由,得,即.8.【答案】C【解析】由题意,函数可化简得:1111x y x x -==+++ 则可将反比例函数1y x-=的图象由左平移一个单位,再向上平移一个单位, 即可得到函数1xy x =+的图象,答案为选项C. 9.【答案】C【解析】依据图像:函数过点1,12⎛⎫ ⎪⎝⎭,故()1212,0211(),42t x t y f t t -⎧<<⎪⎪==⎨⎪≥⎪⎩, 当12t ≥时,取()1211()42t f t -==,解得1t =小时60=分钟.10.【答案】B【解析】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以234t x x =-++在31,2⎛⎫- ⎪⎝⎭单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减,所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,11.【答案】A【解析】由()()()12120f x f x x x -->⎡⎤⎣⎦,则函数()f x 在R 上为增函数,由()()2211f x f m m +>--对x ∈R 恒成立,故22min 1(1)m m x --<+,即211m m --<解得-1<m<2,12.【答案】A【解析】由()()20f x f x +--=可知()f x 的图象关于直线1x =对称,①正确;因为()f x 是奇函数,所以()()()2f x f x f x +=-=-,所以()()()42f x f x f x +=-+=,所以()f x 是周期函数,其一个周期为4,但不能说明2是()f x 的周期,故②错误;由()f x 的周期性和对称性可得1644243333f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.又当[]0,1x ∈时,()()2log 1f x x =+,所以()f x 在[]0,1x ∈时单调递增,所以1223f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即16132f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,③错误;又[]0,1x ∈时,()()2log 1f x x =+,则可画出()f x 在区间[]2,8-上对应的函数图象改变趋势,如图.易得()0f x t -=(01t <<)即()f x t =(01t <<)在区间()2,7-上的根分别关于1,5对称,故零点之和为()21512⨯+=,④正确. 13.【答案】1【解析】依据指数幂运算及对数的性质,化简可得240432(3)(3)log 6427π-+-+-()2633231log 23=-++-31691=++-=.14.【答案】13【解析】令x ﹣8=0,解得x =8,则y =3﹣1=2,即恒过定点A (8,2), ∴m =8,n =2,∴log m n =81log 23=. 15.【答案】.14-解:∵3()4f x ax bx =+-33()()4()()48f x f x ax bx a x b x ∴+-=+-+-+⨯--=- ∴()()8f x f x +-=-∵(2)6f =(2)14f ∴-=-16.【答案】解:当时,函数关于原点对称的函数为,即,,若此函数的“友好点对”有且只有一对, 则等价为函数,与,,只有一个交点,作出两个函数的图象如图:若,则,与,,只有一个交点,满意条件,当时,,若,要使两个函数只有一个交点,则满意,即得,得或,,,综上或, 即实数a 的取值范围是,故答案为:.17.【解析】(1){}{}111A x x x x =≤=-≤≤,{}2002x B xx x x ⎧⎫-=<=<<⎨⎬⎩⎭, 因此,{}01A B x x ⋂=<≤;(2)全集U =R ,{1UA x x ∴=<-或}1x >,因此,(){1U A B x x ⋃=<-或}0x >.18.【解析】(1)∵幂函数解析式为213()(322)mf x m m x+=--+,∴23221m m --+=,即23210m m +-=,解得1m =-或13, 当1m =-时,2()f x x -=在(0,)+∞上为减函数,不合题意,舍去;当13m =时,2()f x x =在(0,)+∞上为增函数,符合题意,∴2()f x x =.(2)22(21)1y x a x a =-++-在区间(2,3)上为单调函数,函数对称轴为212a x +=,∴有2122a +≤或2132a +≥,解得32a ≤或52a ≥, ∴实数a 的取值范围为3{|2a a ≤或5}3a ≥.19.【解析】解:函数是定义在上的奇函数, ,即,,又因为,所以,即,所以,综上可知,,由可知当时,,当时,,且函数是奇函数,当时,函数的解析式为,任取,,且,则,,,且,,,,于是,即,故在区间上是单调增函数20.【答案】解:令,得,,令,得,,是偶函数:令,则,是偶函数. 由式得式,由得,函数是偶函数,则不等式等价为,时为增函数,不等式等价为, 平方得,即,即,即满意不等式的x 取值集合为.21.【解析】(1)由题意,当040x <<时,25100101003000S x x x =⨯---2104003000x x =-+-;当40x ≥时,51005014100001000050030001500S x x x x x ⎛⎫=⨯--+-=-+ ⎪⎝⎭; 所以2104003000,040100001500,40x x x S x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩; (2)当040x <<时,210(20)1000S x =--+, 当且仅当20x 时,max ()1000L x =;当40x ≥时,1000010000()1500150021300L x x x x x ⎛⎫=-+≤-⋅= ⎪⎝⎭ (当且仅当10000x x=,即100x =时,“=”成立) 因为10001300<,所以,当100x =时,即2020年生产100百辆时,该企业获得利润最大,且最大利润为1300万元.22.解:时,,因为,所以,所以函数的值域为. 设,,则, 若,则函数无最大值,即无最大值,不合题意;故,因此最大值在时取到,且,所以,解得或,由,所以. 因为时,设,设真数为,此时对称轴,所以当时,为增函数,且,即在上为增函数所以,,即方程在上有两个不同实根,即,设,所以即方程有两个大于1的不等实根,因为,所以解得,由,得.即存在,使得函数为“1档类正方形函数”,且.。
广西壮族自治区南宁市2024-2025学年高一上学期期中考试数学试题(含答案)
南宁市2024-2025学年秋季学期期中考试高一数学试卷考试时长: 120分钟满分: 150分一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 全称量词命题“∀x∈R,x²≥0”的否定是,( )^ ∀x∈R,x²≤0 B. ∃x∈R, x²<0C. ∃x∈R,x²≥0 D ∀x∈R, x²<02. 已知集合A={0,1,2}, B={x|-2<x≤3},则A∩B= ( )A. {1}B. {1,2}C. {0,1}D. {0,1,2}3. 集合{1,2}的子集个数为( )A. 1个B. 2个C. 3个D. 4个4. “我住在广西”是“我住在中国”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 如果m>0, 那么m+4的最小值为( )mA. 2B. 22C. 4D. 86. 函数f(x)=x+3的定义域是( )A. {x|x≥-3}B. {x|x>0}C. {x|x≥3}D. {x|x≥4}7. 已知f(x―3)=2x²―3x+1,则f(1)= ( )A. 15B. 21C. 3D. 08. 若不等式kx²―6kx+k+8≥0的解集为R,则实数k的取值范围是 ( )A. 0≤k≤1B. 0<k≤1C. k<0或k>1D. k≤0或k≥1第1页,共4页二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若a<b<0, 则下列不等式正确的是 ( )A1 a <1bB.ab<a⁷ c |a| D.1a>1b10. 下列各组函数表示同一函数的是( )A.f(x)=x,g(x)=x2B.f(x)=x²,g(x)=|x|²C.f(x)=x+1,g(x)=x2―1x―1D.f(x)=x0x,g(x)=xx211. 若函数y=x²+bx+c的图象与x轴的两个交点是A(-2,0),B(1,0),则下列结论正确的是( )A. b+c=-1B. 方程x²+bx+c=0的两根是-2, 1C. 不等式.x²+bx+c>0的解集是{x|-2<x<1}D. 不等式x²+bx+c≤0的解集是{x|-2≤x≤1}三、填空题:本题共3小题,每小题5分,共15分.12. 设集合A={2,1-a,5}, 若4∈A,则a= .13. 已知函数那么f(f(3))= .14. 不等式x+3x―5<0的解集为 .四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.15.(本题13分) 已知全集U=R, 集合.A=x|x≥4,B=x|―6≤x≤6.(1)求A∩B和A∪B;(2)求((C U A)∩(C U B)第2页,共4页16.(本题15分) 设集合U=R,A=x|0≤x≤3,B=x|m―1≤x≤2m.(1)m=3,求A∪(C U B);(2) 若B⊆A求m的取值范围.17.(本题15分) 已知二次函数f(x)=x²―ax+b,f(1)=2,f(3)=―6.(1) 求f(x)的解析式;(2) 写出f(x)的单调区间; 并求.x∈[―1,5]时,f(x)的最大值与最小值.第3页,共4页18.(本题17分) 求下列函数的最值. (1) 已知x>2, 求y=x+1x―2的最小值;(2) 已知:x>0,y>0,且2x+y=1.求1x +9y的最小值.(3) 已知(0<x<4,求x(4―3x)的最大值.19.(本题17分)已知函数f(x)=,且f(1)=10.(1) 求a的值;(2) 判断函数f(x)在[3,+∞)上的单调性,并用定义法证明;(3) 求函数f(x)在区间[3,6]上的最大值和最小值.第4页,共4页高一数学11月期中考试参考答案题号1234567891011答案BDDBCABABDBDABD1. B 【详解】全称量词命题“∀x∈R, x²≥0”的否定是 ∃x ∈R,x²<0,故选: B.2. D 【详解】由题意. A =0.1,2,B =x|―2<x ≤3,所以A∩B={0,1,2}.故选: D.3. D 【详解】因为A={0.1}, 所以集合A 有∅,{0},{1},{0,1}共4个子集.故选: D4. B 【详解】“我住在广西”则一定有“我住在中国”,反之不成立,所以“我住在广西”则一定有“我住在中国”的充分不必要条件.故选:B5. C 【详解】 m >0,m +4m ≥2m ⋅4m =4,当且仅当 m =4m ,即m=2时取等号,所以 m +4m 的最小值为4.故选:C6. A 【详解】要使函数 f (x )=x +3有意义, 需x+3≥0, 解得x≥-3, 即得函数的定义域为:{x|x≥-3}.故选: A.7. B 【详解】∵f(x-3)=2x²-3x+1, ∴f(1)=(4-3)=2×4²-3×4+1=21,故选B.8. A 【详解】若k=0, 则不等式为8>0, 满足条件,若k≠0,要使不等式恒成立,则满足 {k >0=36k 2―4k (k +8)≤0, 即 {k >0k 2―k ≤0 则 {k >00≤k ≤1,所以0<k≤1, 综上, 实数k 的取值范围为0≤k≤1. 故选: A9. BD 【详解】对于A 、D,因为a<b<0,所以 ab>0,则 1ab >0,所以 a ⋅1ab <b ⋅1ab ,即 1b <1a ,故A 错误, D 正确; 对于B, 因为a<b<0, 所以a·a>b·a, 即 ab <a²,故 B 正确;对于C, 若a<-1<b<0, 则|a|>1, 0<|b|<1, 所以有|a|>|b|, 故C 错误.故选: BD.10. BD 【分析】同一个函数的定义:如果两个函数的定义域相同,对应关系完全一致,那么这两个函数为同一个函数.根据定义判断选项.【详解】A. f(x)=x,g(x)=|x|,对应关系不一致,不是同一函数.B.f (x )=x²,g (x )=|x|²=x²,定义域相同,对应关系一致,是同一函数.C. f(x)定义域为R, g(x)定义域为{x|x≠1}, 定义域不同, 不是同一函数.D. f(x)定义域为{x|x≠0},可化为 f (x )=1x ,g(x)定义域为 x|x ≠0,可化为 g (x )=1x ,是同一函数.故选: BD.11. ABD 【详解】依题意, 方程 x²+bx +c =0的两根是-2, 1, B 正确;显然-b=-1,c=-2,即b=1,c=-2,b+c=-1, A 正确;不等式 x²+bx +c >0, 即 x²+x ―2>0的解集为{x|x<-2或x>1}, C 错误;不等式 x²+bx +c ≤0,即 x²+x ―2≤0的解集是 x|―2≤x ≤1,D 正确.故选: ABD 12. - 3【详解】集合A={2,1-a,5},若4∈A, 则1-a=4⇒a=-3.故答案为: - 313. - 1【详解】因为 f (x )={2―x (x ≥1)x 2+x ―1(x <1),所以f(3)=2-3=-1,所以 f (f (3))=f (―1)=(―1)²―1―1=―1, 故答案为: -1.14. {x|-3<x<5}【详解】 x +3x ―5<0(x +3)(x ―5)<0,解得 ―3<x <5..故答案为: x|―3<x <5答案第1页,共3页15.【详解】(1) A={x|x≥4},B={x|-6≤x≤6},A∩B={x|4≤x≤6}3分A∪B=x|x≥―6 .6分(2)C U A={x|x<4} .8分或x>6}- .10分(C U A)∩(C U B)={x|x<―6} .13分16. 【详解】A={x|0≤x≤3}(1)1分故可得或x>6}- .3分所以或x>6}-(2) 由题B⊆A:当B=∅时,m-1>2m,解得m<-1,符合题意;分 (9)分 (13)综上可得,m的取值范围为m<-1或 (15)17.【详解】(1) 因为f(x)=x²―ax+b,且f(1)=2,f(3)=-6,.............................................................................................2分解得(a=8, b=9, .........................................................5分(只有一个正确得2分)....................................................................................所以6分(2)由(1)知.对称轴为x=4,图象开口朝上分 (8)所以f(x)的减区间是(-∞,4],增区间是....................................[4,+∞)10又4∈[-1,5],所以f(x)在区间[-1,4]上单调递减,在区间[4,5]上单调递增, (12)所以f(x)ₘᵢₙ=f(4)=―7, ………………………………13分f(x)最大值在f(-1)或f(5)取到, f(-1)=18, f(5)=-6,∴f(-1)>f(5)·f(x)ₘₐₓ=f(―1)=18 ………………………………………15分18.【详解】(1)∵x>2,x―2>0,1x―2>0.6分…14分而y=x+1x―2=x―2+1x―2+2≥2(x―2)⋅1x―2+2=4, .3分当且仅当即x=3时取等号,所以……………………………………………………………5分(2)1x+9y=(1x+9y)(2x+y)=11+y x+18x y211+2yx ⋅18xy=11+62, ..8分当且仅当时,取等号,又2x+y=1,即时分101 x +9y取得最小值11+62 11分(3)15分当且仅当3x=4-3x时取等号,即(满足0<x<4)时x(4-3x)最大值为 (17)法二:函数y=x(4―3x)=―3x²+4x的开口向下,对称轴为x=―4―6=23, ..15分所以当时,x(4-3x)取得最大值为1719.【详解】(1) 函数f(x)=x2+ax,因为f(1)=10,…………………………………………………………………………………………………3分(2)函数f(x)在[3,+∞)上单调递增,知由下面证明单调区间,设3≤x₁<x₂,则f(x1)―f(x2)=x1―x2+9x1―9x2=(x1―x2)(x1x2―9x1x2), .8分由3≤x₁<x₂,则x₁x₂―9>0,x₁―x₂<0,x₁x₂>0, 11分所以(x1―x2)x1x2―9x1x2<0⇒f(x1)―f(x2)<0,即f(x₁)<f(x₂), ..12分……………………………………………………………………………………………13分(3)由(2)可知f(x)在区间[3,+∞)上单调递增,则在区间[3,6]上单调递增…………14分所以f(x)mn=f(3)=3+93=6,f(x)max=f(6)=6+96=152, 16分 (6)答案第3页,共3页。
2021-2022学年高一上学期期中考试数学试卷含答案
A.{x|﹣4≤x<﹣2 或 3<x≤7}
B.{x|﹣4<x≤﹣2 或 3≤x<7}
C.{x|x≤﹣2 或 x>3}
D.{x|x<﹣2 或 x≥3}
3.(5 分)设 M=3x2﹣x+1,N=2x2+x,则( )
A.M≥N
B.M>N
C.M<N
D.M≤N
4.(5 分)已知实数 x,“x≥2”是“x≥1”的( )
故选:A.
3.(5 分)设 M=3x2﹣x+1,N=2x2+x,则( )
A.M≥N
B.M>N
C.M<N
D.M≤N
【解答】解:M﹣N=3x2﹣x+1﹣2x2﹣x=x2﹣2x+1=(x﹣1)2≥0.
பைடு நூலகம்
∴M≥N.
故选:A.
4.(5 分)已知实数 x,“x≥2”是“x≥1”的( )
A.充分不必要条件
B.必要不充分条件
对于 B,0<x<1⇒x2<1,故 B 正确;
对于 C,﹣1<x<0⇒x2<1,故 C 正确;
对于 D,﹣1<x<1⇔x2<1,故 D 错误.
故选:BC.
11.(5 分)下列说法正确的是( )
A.已知集合 M={2,3,4},则 M 的子集个数是 8
B.函数 y
与 y=( )2 是同一函数
t C.不等式
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
5.(5 分)不等式 x2>8 的解集是( )
A.(﹣2 ,2 )
B.(﹣∞,﹣2 )∪(2 ,+∞)
C.(﹣4 ,4 ) 6.(5 分)下列函数中,最小值为 2 的是(
四川省成都市2023-2024学年高一上学期期中数学试题(含答案)
成都2023-2024学年度上期高2026届半期考试数学试题(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全称量词命题“5,lg 4x x x ∀∈+≠R ”的否定是()A.x ∃∈R ,5lg 4x x +=B.x ∀∈R ,5lg 4x x +=C.x ∃∈R ,5lg 4x x +≠D.x ∀∉R ,5lg 4x x +≠【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题.【详解】“5,lg 4x x x ∀∈+≠R ”的否定是“x ∃∈R ,5lg 4x x +=”.故选:A .2.下列命题为真命题的是()A.若33a bc c<,则a b < B.若a b <,则33<ac bc C.若a b <,c d <,则a c b d -<- D.若a c b d -<-,c d <,则a c b d+<+【答案】D 【解析】【分析】举反例可判断选项A 、B 、C ,由不等式的性质可判断选项D.【详解】对于选项A ,当1c =-时,若33a bc c<,则a b >,与a b <矛盾,故选项A 错误;对于选项B ,当0c =时,若a b <,则330ac bc ==,与33<ac bc 矛盾,故选项B 错误;对于选项C ,当56a b ==,,10c d =-=,,满足a b <,c d <,但a c b d -=-,这与a c b d -<-矛盾,故选项C 错误;对于选项D ,因为a c b d -<-,c d <,所以由不等式性质可得:()()a c c b d d -+<-+,即a b <.因为a b <,c d <,由不等式性质可得:a c b d +<+,故选项D 正确.故选:D.3.设函数()ln 26f x x x x =+-,用二分法求方程ln 260x x x +-=在()2,3x ∈内的近似解的过程中,计算得(2)0,(2.5)0,(2.25)0f f f <>>,则下列必有方程的根的区间为()A.()2.5,3 B.()2.25,2.5 C.()2,2.25 D.不能确定【答案】C 【解析】【分析】利用零点存在性定理及二分法的相关知识即可判断.【详解】显然函数()ln 26f x x x x =+-在[]2,3x ∈上是连续不断的曲线,由于(2)0,(2.25)0f f <>,所以()()2· 2.250f f <,由零点存在性定理可得:()ln 26f x x x x =+-的零点所在区间为()2,2.25,所以方程ln 260x x x +-=在区间()2,2.25内一定有根.故选:C.4.函数2||3()33x x f x =-的图象大致为()A. B. C. D.【答案】D 【解析】【分析】根据函数的奇偶性、定义域、正负性,结合指数函数的单调性进行判断即可.【详解】由33011xx x -≠⇒≠⇒≠±,所以该函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,显然关于原点对称,因为()()()22||||333333x x x x f x f x ---===--,所以该函数是偶函数,图象关于纵轴对称,故排除选项AC ,当1x >时,()33=3300xxf x --<⇒<,排除选项B ,故选:D5.若0a >,0b >,则“221a b +≤”是“a b +≤”的()A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据不等式之间的关系,利用充分条件和必要条件的定义进行判断即可得到结论.【详解】当0a >,0b >,且221a b +≤时,()()22222222a b a b ab a b +=++≤+≤,当且仅当2a b ==时等号成立,所以a b +≤,充分性成立;1a =,14b =,满足0a >,0b >且a b +≤,此时221a b +>,必要性不成立.则“221a b +≤”是“a b +≤”的充分不必要条件.故选:A6.已知当生物死亡后,它机体内原有的碳14含量y 与死亡年数x 的关系为573012x y ⎛⎫= ⎪⎝⎭.不久前,考古学家在某遗址中提取了数百份不同类型的样品,包括木炭、骨头、陶器等,得到了一系列的碳14测年数据,发现生物组织内碳14的含量是死亡前的34.则可以推断,该遗址距离今天大约多少年(参考数据ln 20.7≈,ln 3 1.1≈)()A.2355B.2455C.2555D.2655【答案】B 【解析】【分析】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,再根据对数的运算性质及换底公式计算即可.【详解】设该遗址距离今天大约0x 年,则0573005730132412x ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,即057301324x ⎛⎫= ⎪⎝⎭,所以01222234ln 3 1.1log log log 4log 322573043ln 20.7x ===-=-≈-,所以0115730224557x ⎛⎫≈⨯-= ⎪⎝⎭,即该遗址距离今天大约2455年.故选:B .7.已知函数2295,1()1,1a x ax x f x xx -⎧-+≤=⎨+>⎩,是R 上的减函数,则a 的取值范围是()A.92,2⎡⎫⎪⎢⎣⎭B.94,2⎡⎫⎪⎢⎣⎭C.[]2,4 D.(]9,2,2⎛⎤-∞+∞⎥⎝⎦【答案】C 【解析】【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a aa a -⎧≥⎪⎪-<⎨⎪-⨯+≥+⎪⎩,解得24a ≤≤,所以a 的取值范围是[]2,4故选:C8.设358log 2,log 3,log 5a b c ===,则()A.a c b <<B.a b c<< C.b<c<aD.c<a<b【答案】B 【解析】【分析】利用中间值比较大小得到23<a ,2334b <<,34c >,从而得到答案.【详解】333log 22log 20o 33938l g a --=-=<,故23<a ,555log 27log 2522log 30333b --=-=>,555log 81log 12533log 30444b --=-=<,故2334b <<,888log 5log 33log 5054246124c --=-=>,34c >,故a b c <<故选:B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.任何集合都是它自身的真子集B.集合{},,,a b c d 共有16个子集C.集合{}{}42,Z 42,Zx x n n x x n n =+∈==-∈D.集合{}{}22|1,|22,x x a a x x a a a ++=+∈==-+∈N N 【答案】BC 【解析】【分析】根据真子集的性质、子集个数公式,结合集合的描述法逐一判断即可.【详解】A :根据真子集的定义可知:任何集合都不是它自身的真子集,所以本选项说法不正确;B :集合{},,,a b c d 中有四个元素,所以它的子集个数为42=16,所以本选项说法正确;C :因为{}(){}42,Z 412,Z x x n n x x n n =-∈==-+∈,所以{}42,Z x x n n =+∈与{}42,Z x x n n =-∈均表示4的倍数与2的和所组成的集合,所以{}{}42,Z 42,Z x x n n x x n n =+∈==-∈,因此本选项说法正确;D :对于{}2|22,x x a a a +=-+∈N ,当1a =时,2221x a a =-+=,即{}21|22,x x a a a +∈=-+∈N ,但{}21|1,x x a a +∉=+∈N ,所以两个集合不相等,因此本选项说法不正确.故选:BC.10.已知正实数x ,y 满足1x y +=,则下列不等式成立的有()A.22x y +≥ B.14≤xy C.124x x y+≥ D.1174xy xy +≥【答案】ABD【解析】【分析】选项A 用基本不等式性质判断即可;选项B 用基本不等式的推论即可;选项C 将1x y +=带入,再用基本不等式判断;D 利用对勾函数的单调性判断.【详解】对A :因为x ,y为正实数22x y +≥==,当且仅当12x y ==时取等号,所以A 正确;对B :因为2211224x y xy +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12x y ==时取等号,所以B 正确;对C:因为1222111x x y x y x x y x y x y ++=+=++≥+=+2y x x y =时取等号,所以C 错误;对D :由B 选项可知14≤xy ,令xy t =,则104t <≤,11xy t xy t +=+()1104f t t t t ⎛⎫=+<≤ ⎪⎝⎭因为对勾函数在104t <≤上是减函数,所以()11744f t f ⎛⎫≥= ⎪⎝⎭,所以D 正确;故选:ABD 11.已知()1121xa f x +=+-是奇函数,则()A.1a = B.()f x 在()(),00,x ∈-∞⋃+∞上单调递减C.()f x 的值域为()(),11,-∞-⋃+∞ D.()()3log 2f x f >的解集为()0,9x ∈【答案】AC 【解析】【分析】由奇函数的定义可判定A 项,利用指数函数的性质可判定B 项,进而可求值域判定C 项,可结合对数函数的性质解不等式判定D 项.【详解】因为函数()1121xa f x +=+-是奇函数,易知2100x x -≠⇒≠,则有()()()()()11211112210212121x x x xa a a f x f x a -+-++-+=+++=+=-+=---,解之得1a =,故A 正确;则()2121xf x =+-,易知当0210x x y >⇒=->且有21xy =-单调递增,故此时()2121x f x =+-单调递减,又由奇函数的性质可知0x <时()f x 也是单调递减,故()f x 在(),0∞-和()0,∞+上单调递减,故B 错误;由上可知0x >时,222100112121xx x ->⇒>⇒+>--,即此时()1f x >,由奇函数的性质可知0x <时,()1f x <-,则函数()f x 的值域为()(),11,-∞-⋃+∞,故C 正确;由上可知()()()33log 20log 21,9f x f x x >⇒<<⇒∈,故D 错误.故选:AC12.已知定义在(0,)+∞上的函数()f x 在区间()0,6上满足()()6f x f x -=,当(]0,3x ∈时,()13log f x x =;当[)6,x ∈+∞时,()21448f x x x =-+-.若直线y m =与函数()f x 的图象有6个不同的交点,各交点的横坐标为()1,2,3,4,5,6i x i =,且123456x x x x x x <<<<<,则下列结论正确的是()A.122x x +>B.()5648,49x x ∈C.()()34661x x --> D.()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ 【答案】ABD 【解析】【分析】先利用函数的对称性和解析式作出函数图象,分别求出直线y m =与函数()f x 的图象的交点的横坐标的范围,运用基本不等式和二次函数的值域依次检验选项即得.【详解】如图,依题意可得13132log ,03()log (6),361448,6x x f x x x x x x ⎧<≤⎪⎪⎪⎪=-<<⎨⎪⎪-+-≥⎪⎪⎩,作出函数()y f x =在(0,)+∞上的图象,设直线1y =与()y f x =的图象分别交于,,,A B C D 四点,显然有1(,1),(3,1),(7,1)3A B D ,由()()6f x f x -=知函数()f x 在区间()0,6上关于直线3x =对称,故可得:17(,1)3C .对于A 选项,由12()()f x f x =可得121133x x <<<<,111233log log x x =-,化简得121=x x ,由基本不等式得:122x x +>=,故A 项正确;对于B 选项,当[)6,x ∈+∞时,由()21448f x x x =-+-可知其对称轴为直线7x =,故562714,x x +=⨯=又因56678x x <<<<,故()25655551414x x x x x x =-=-+25(7)+49x =--在区间()6,7上为增函数,则有564849x x <<,故B 项正确;对于C 选项,由34()()f x f x =可得34356x x <<<<,131433log (6)log (6)x x -=--,化简得1343log [(6)(6)]0x x --=,故有()()34661x x --=,即C 项错误;对于D 选项,依题意,1236()()()(),f x f x f x f x m ===== 且01m <<,故()()()112266126()x f x x f x x f x x x x m +++=+++ ,又因函数()f x 在区间()0,6上关于直线3x =对称,故1423236,x x x x +=+=⨯=又由B 项分析知5614,x x +=于是126661426,x x x +++=++= 故得:()()()()1122660,26x f x x f x x f x +++∈⎡⎤⎣⎦ ,故D 项正确.故选:ABD.【点睛】关键点点睛:本题考查分段函数与直线y m =的交点横坐标的范围界定,关键在于充分利用绝对值函数与对称函数的图象特征进行作图,运用数形结合的思想进行结论检验.三、填空题:本大题共4小题,每小题5分,共20分.13.若定义在[]4,4-上的奇函数()f x 的部分图象如图所示,则()f x 的单调增区间为______.【答案】[]2,4和[]4,2--【解析】【分析】直接根据图象结合奇函数性质得到答案.【详解】根据图象,0x >时函数在[]2,4上单调递增,函数为奇函数,故函数在[]4,2--上也单调递增.故答案为:[]2,4和[]4,2--.14.若()()2log ,0215,0xx x f x f x x >⎧=⎨++≤⎩,则(1)(7)f f --=______.【答案】32【解析】【分析】直接计算得到答案.【详解】()()2log ,0215,0x x x f x f x x >⎧=⎨++≤⎩,则()()2221113(1)(7)147log 14log 7log 22222f f f f --=+-=+-=+=.故答案为:32.15.石室中学“跳蚤市场”活动即将开启,学生们在该活动中的商品所卖款项将用来支持慈善事业.为了在这次活动中最大限度地筹集资金,某班进行了前期调查.若商品进货价每件10元,当售卖价格(每件x 元)在1025x <≤时,本次活动售出的件数()42105P x =-,若想在本次活动中筹集的资金最多,则售卖价格每件应定为______元.【答案】15【解析】【分析】结合已知条件,求出利润()f x 的解析式,然后结合换元法和基本不等式即可求解.【详解】由题意可知,利润4210(10)()(5)x f x x -=-,1025x <≤,不妨令10(0,15]t x =-∈,则利润44421010()50025(5)10t f x y t t t ===≤+++,当且仅当25t t=时,即5t =时,即15x =时,不等式取等号,故销售价格每件应定为15元.故答案为:15.16.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.那么,函数()323f x x x x =--图象的对称中心是______.【答案】()1,3-【解析】【分析】计算出()()b f x a b f x a +-++--()232662622a x a a a b =-+---,得到3266026220a a a a b -=⎧⎨---=⎩,求出13a b =⎧⎨=-⎩,得到对称中心.【详解】()()bf x a b f x a +-++--()()()()()()3232332x a x a x a x a x a x a b =+-+-++-+--+--+-32232232233336333x ax a x a x ax a x a x ax a x a =+++------+-+223632x ax a x a b-+-+--()232662622a x a a a b =-+---,要想函数()y f x a b =+-为奇函数,只需()2326626220a x a a a b -+---=恒成立,即3266026220a a a a b -=⎧⎨---=⎩,解得13a b =⎧⎨=-⎩,故()323f x x x x =--图象的对称中心为()1,3-故答案为:()1,3-四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(1)计算2173ln 383log 210e 22lg 527log 10-⎛⎫-⨯--⎪⎝⎭;(2)已知11224x x-+=,求3322x x -+的值.【答案】(1)0(2)52【解析】【分析】(1)结合指数运算及对数运算性质,换底公式即可求解;(2)考察两式间的内在联系,结合立方和公式即可求解.【详解】(1)21723ln 3833log 2101727e22lg 52()(lg 5lg 2)27log 10864-⎛⎫-⨯--=--+ ⎪⎝⎭1791088--==;(2)由11224x x-+=,则112122()216x x x x --+=++=,则114x x -+=,则3322x x-+()11122141352x x x x --⎛⎫=+-+=⨯= ⎪⎝⎭.18.已知全集R U =,集合5|1,{|16}2A x B x x x ⎧⎫=>=<≤⎨⎬-⎩⎭,{1C x x a =≤-∣或21}x a ≥+.(1)求()U A B ∩ð;(2)若()A B C ⊆ ,求实数a 的取值范围.【答案】(1){31}xx -<≤∣(2)(],2[7,)-∞-+∞ 【解析】【分析】(1)解出分式不等式,求出集合A ,再利用交集和补集的含义即可得到答案;(2)分R C =和R C ≠讨论即可.【小问1详解】{}5310(3)(2)0{32}22x A x x x x x x x x x +⎧⎫⎧⎫=>=>=+->=-<<⎨⎬⎨⎬--⎩⎭⎩⎭∣∣∣∣{16}B x x =<≤∣,{1U B x x ∴=≤∣ð或6}x >,(){31}U A B x x ∴=-<≤ ∣ð.【小问2详解】{36}A B x x =-<≤ ∣,且()A B C ⊆ ,①R C =,1212a a a -≥+⇒≤-,此时满足()A B C ⊆ ,②R C ≠,2a >-,此时213a +>-,则167-≥⇒≥a a ,此时满足()A B C ⊆ ,综上所述,实数a 的取值范围为(],2[7,)-∞-+∞ .19.在“①函数()f x 是偶函数;②函数()f x 是奇函数.”这两个条件中选择一个补充在下列的横线上,并作答问题.注:如果选择多个条件分别解答,按第一个解答计分.已知函数()ln(e )ln(e )f x x k x =++-,且______.(1)求()f x 的解析式;(2)判断()f x 在()0,e 上的单调性,并根据单调性定义证明你的结论.【答案】(1)选择①时,()ln(e )ln(e )f x x x =++-;选择②时,()ln(e )ln(e )f x x x =+--(2)答案见解析【解析】【分析】(1)根据函数的奇偶性的定义求解参数k ,即可得()f x 的解析式;(2)根据函数单调性的定义证明即可得结论.【小问1详解】选择①:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是偶函数,所以()()()()ln e ln e f x x k x f x -=-++=,则()()()()ln e ln e ln e ln e x k x x k x -++=++-,则1k =所以()ln(e )ln(e )f x x x =++-;选择②:函数()ln(e )ln(e )f x x k x =++-的定义域满足e 0e 0x x +>⎧⎨->⎩,解得e e x -<<,故定义域为()e,e -,若函数()f x 是奇函数,所以()()()()ln e ln e f x x k x f x -=-++=-,则()()()()ln e ln e ln e ln e x k x x k x -++=-+--,则1k =-所以()ln(e )ln(e )f x x x =+--;【小问2详解】选择①:函数22()ln(e )ln(e )ln(e )f x x x x =++-=-在()0,e 上单调递减.证明:1x ∀,()20,e x ∈,且12x x <,有,有22222221121212(e )(e )()()x x x x x x x x ---=-=+-,由120e x x <<<,得120x x +>,120x x -<,所以1212()()0x x x x +-<,于是222212e e 0x x ->->,所以222221e 01e x x -<<-,所以22222222121221e ()()ln(e )ln(e )ln ln10e xf x f x x x x --=---=<=-,即12()()f x f x >,所以函数22()ln(e )f x x =-在()0,e 上单调递减.选择②:函数e ()ln(e )ln(e )ln e xf x x x x+=+--=-在()0,e 上单调递增.证明:1x ∀,()20,e x ∈,且12x x <,则21211221212121e e (e )(e )(e )(e )2()e e (e )(e )(e )(e )x x x x x x x x x x x x x x +++--+---==------由120e x x <<<,得210x x ->,2e 0x ->,1e 0x ->,所以21212()0(e )(e )x x x x ->--,即2121e e 0e e x x x x ++>>--,于是2211e e 1e e x x x x +->+-,所以2212211211e e e e ()()lnln ln ln10e e e e x x x x f x f x x x x x +++--=-=>=+---,即12()()f x f x <,所以函数e ()lne xf x x+=-在()0,e 上单调递增.20.酒驾是严重危害交通安全的违法行为,为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的含量变化规律的“散点图"”如图,该函数近似模型如下:()20.43()49.18,02256.26e14.73,2x a x x f x x -⎧-+≤<⎪=⎨⎪⋅+≥⎩,又已知酒后1小时测得酒精含量值为46.18毫克/百毫升,根据上述条件,解答以下问题:(1)当02x ≤<时,确定()f x 的表达式;(2)喝1瓶啤酒后多长时间后才可以驾车?(时间以整分钟计算)(附参考数据:ln527 6.27,ln56268.63,ln14737.29===)【答案】(1)23()12()49.182f x x =--+(2)314分钟后【解析】【分析】(1)根据题中条件,建立方程(1)46.18f =,解出即可;(2)根据题意建立不等式,解出即可.【小问1详解】根据题意知,当02x ≤<时,23()()49.182f x a x =-+,所以23(1)(149.1846.182f a =-+=,解得12a =-,所以当02x ≤<,23()12()49.182f x x =--+.【小问2详解】由题意知,当车辆驾驶人员血液中的酒精含量小于20mg /百毫升时可以驾车,当02x ≤<时,()20f x >,此时2x ≥,由0.456.26e 14.7320x -⋅+<,得0.4 5.27527e56.265626x-<=,两边取自然对数可得,0.4ln 527ln 5626 6.278.36 2.09x -<-=-=-,所以 2.095.2250.4x >=,又5.225小时=313.5分钟,故喝1瓶啤酒314分钟后才可以驾车.21.已知函数12x y a -=-(0a >,且1a ≠)过定点A ,且点A 在函数()()ln 1f x x m =+-,(R)m ∈的图象上.(1)求函数()f x 的解析式;(2)若定义在[]1,2上的函数()()ln 2y f x k x =+-恰有一个零点,求实数k 的取值范围.【答案】(1)()ln 1f x x =-(2)e 2e,42⎛⎤++ ⎥⎝⎦【解析】【分析】(1)把定点A 代入函数()f x 的解析式求出m 的值即可;(2)问题等价于()22e g x x kx =-+在[]1,2上恰有一个零点,根据函数零点的定义,结合二次函数的性质进行求解即可;【小问1详解】函数12x y a -=-(0a >,且1a ≠)过定点()1,1A -,函数()()ln 1f x x m =+-(R)m ∈的图象过点()1,1A -,即()ln 111m +-=-,解得0m =,函数()f x 的解析式为()ln 1f x x =-.【小问2详解】函数()()()ln 2ln 1ln 2y f x k x x k x +--==+-定义在[]1,2上,20k x ->在[]1,2上恒成立,可得4k >,令()()2ln 1ln 2ln 210y x k x kx x =-+--=-=,得22e 0xkx -+=,设()22e g x x kx =-+,函数()()ln 2y f x k x =+-在[]1,2上恰有一个零点,等价于()g x 在[]1,2上恰有一个零点,函数()22e g x x kx =-+图像抛物线开口向上,对称轴14kx =>,若()()12e 0282e 0g k g k ⎧=-+=⎪⎨=-+<⎪⎩,无解,不成立;若()()()()122e 82e 0g g k k ⋅=-+-+<,解得e2e 42k +<<+,满足题意;若()24282e 0k g k ⎧≥⎪⎨⎪=-+=⎩,无解,不成立;若()()12e 0124282e 0g k kg k ⎧=-+<⎪⎪<<⎨⎪=-+=⎪⎩,解得e 42k =+,满足题意.所以实数k 的取值范围为e 2e,42⎛⎤++ ⎥⎝⎦.22.若函数()f x 与()g x 满足:对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x g x m =成立,则称()f x 是()g x 在区间D 上的“m 阶伴随函数”;对任意的1x D ∈,总存在唯一的2x D ∈,使()()12f x f x m=成立,则称()f x 是区间D 上的“m 阶自伴函数”.(1)判断()22111f x x x =+++是否为区间[]0,4上的“2阶自伴函数”?并说明理由;(2)若函数()32πx f x -=区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,求b 的值;(3)若()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”,求实数a 的取值范围.【答案】(1)不是,理由见解析(2)1b =(3)314a ≤≤【解析】【分析】(1)根据给定的定义,取12x =,判断2()1f x =在[]0,4是否有实数解即可;(2)根据给定的定义,当11,3x b ⎡⎤∈⎢⎥⎣⎦时,用1x 表示2x 并判断单调性,求出值域,借助集合的包含关系求解即可;(3)根据()g x 的单调性求解其在区间[0,2]上的值域,进而将问题转化为()f x 在区间[0,2]上的值域是[]4,1--的子集,再结合二次函数的性质,分类讨论即可求解.【小问1详解】假定函数()22111f x x x =+++是区间[]0,4上的“2阶自伴函数”,则对任意的[]10,4x ∈,总存在唯一的[]20,4x ∈,使()()122f x f x =成立,取10x =,1()2f x =,由12()()2f x f x =,得2()1f x =,则()222221111f x x x =++=+,则()()222221110x x +-++=,进而可得()222131024x ⎡⎤+-+=⎢⎣⎦显然此方程无实数解,所以函数()22111f x x x =+++不是区间[]0,4上的“2阶自伴函数”,【小问2详解】函数()32πx f x -=为区间1,3b ⎡⎤⎢⎥⎣⎦上的“1阶自伴函数”,则对任意11,3x b ⎡⎤∈⎢⎥⎣⎦,总存在唯一的21,3x b ⎡⎤∈⎢⎥⎣⎦,使得12()()1f x f x =,即123232ππ1x x --=,进而1243x x +=,得2143x x =-,显然函数2143x x =-在11,3x b ⎡⎤∈⎢⎥⎣⎦上单调递减,且当113x =时,21x =,当1x b =时,243x b =-,因此对1,3b ⎡⎤⎢⎥⎣⎦内的每一个1x ,在4[,1]3b -内有唯一2x 值与之对应,而21,3x b ⎡⎤∈⎢⎥⎣⎦,所以41[,1][,]33b b -⊆,所以14133b b ≥⎧⎪⎨-≥⎪⎩,解得11b b ≥⎧⎨≤⎩,即1b =,所以b 的值是1.【小问3详解】由于41log 67,t x y t =-=分别为定义域内单调递增和单调递减函数,所以函数()4log (167)g x x =--在[0,2]上单调递增,且()()102,22g g =-=-得函数()g x 的值域为12,2⎡⎤--⎢⎥⎣⎦,由函数()2214f x x ax a =-+-是()4log (167)g x x =--在区间[0,2]上的“2阶伴随函数”可知,对任意的1[0x ∈,2],总存在唯一的2[0x ∈,2]时,使得12()()2f x g x =成立,于是[]122()4,1()f xg x =∈--,则()2214f x x ax a =-+-在区间上[0,2]的值域是区间[]4,1--的子集,而函数()2214f x x ax a =-+-图象开口向上,对称轴为x a =,显然(0)14f a =-,()258f a =-,()241f a a a =--+,当0a ≤时,()f x 在[0,2]上单调递增,则min max ()(0)4()(2)1f x f f x f =≥-⎧⎨=≤-⎩,即0144581a a a ≤⎧⎪-≥-⎨⎪-≤-⎩,无解;当2a ≥时,()f x 在[0,2]上单调递减,则min max ()(2)4()(0)1f x f f x f =≥-⎧⎨=≤-⎩,即2584141a a a ≥⎧⎪-≥-⎨⎪-≤-⎩,无解;当02a <<时,()f x 在[0,]a 上单调递减,在[a ,2]上单调递增,则()()4(2)101f a f f ≥-⎧⎪≤-⎨⎪≤-⎩,即202581141144a a a a a <<⎧⎪-≤-⎪⎨-≤-⎪⎪-+-≥-⎩,解得314a ≤≤;综上,a 的取值范围是314a ≤≤.。
高一上学期期中考试数学试卷含答案(共5套)
高一年级第一学期期中考试数学试卷考试时间120分钟,满分150分。
卷Ⅰ(选择题共60分)一.选择题(共12小题,每小题5 分,计60分。
在每小题给出的四个选项中,只有1个选项符合题意)1.已知集合A={x|x2-2x-3<0},集合B={x|2x+1>1},则C B A= ()A. B. C. D.2.若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A. B. C. D.3.函数y=的图象是()A. B. C. D.4.幂函数在时是减函数,则实数m的值为A. 2或B.C. 2D. 或15.若函数y=f(x)的定义域是(0,4],则函数g(x)=f(x)+f(x2)的定义域是()A. B. C. D.6.在下列区间中,函数的零点所在的区间为()A. B. C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)表达式是()A. B. C. D.8.函数f(x)在(-∞,+∞)上单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A. B. C. D.9.已知函数f(x)=|lg x|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.10.若函数f(x)=,且满足对任意的实数x1≠x2都有>0成立,则实数a的取值范围是()A. B. C. D.11.若在区间上递减,则a的取值范围为()A. B. C. D.12.已知函数f(x)=则函数g(x)=f[f(x)]-1的零点个数为()A. 1B. 3C. 4D. 6卷Ⅱ(非选择题共90分)二、填空题(本大题共4小题,共20分)13.方程的一根在内,另一根在内,则实数m的取值范围是______.14.若函数的图象与x轴有公共点,则m的取值范围是______ .15.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是______ .16.已知函数的定义域为D,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是______三、解答题(本大题共6小题,共70分,其中17题10分,18-22题12分)17.计算下列各式的值:(1)(2).18.已知集合A={x|m-1≤x≤2m+3},函数f(x)=lg(-x2+2x+8)的定义域为B.(1)当m=2时,求A∪B、(∁R A)∩B;(2)若A∩B=A,求实数m的取值范围.19.已知函数,且.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)当时,求使的的解集.20.已知定义域为R的函数是奇函数.(1)求b的值;(2)判断函数f(x)的单调性,并用定义证明;(3)当时,f(kx2)+f(2x-1)>0恒成立,求实数k的取值范围.21.“绿水青山就是金山银山”,随着我国经济的快速发展,国家加大了对环境污染的治理力度,某环保部门对其辖区内的一工厂的废气排放进行了监察,发现该厂产生的废气经过过滤排放后,过滤过程中废气的污染物数量千克/升与时间小时间的关系为,如果在前个小时消除了的污染物,(1)小时后还剩百分之几的污染物(2)污染物减少需要花多少时间(精确到小时)参考数据:22.设函数是增函数,对于任意x,都有.求;证明奇函数;解不等式.第一学期期中考试高一年级数学试卷答案1.【答案】A解:因为A={x|x2-2x-3<0}={x|-1<x<3},B={x|2x+1>1}={x|x>-1},则C B A=[3,+∞) ,故选A.2.【答案】C解:a=log20.5<0,b=20.5>1,0<c=0.52<1,则a<c<b,则选:C.3.【答案】B解:函数y=是奇函数,排除A,C;当x=时,y=ln<0,对应点在第四象限,排除D.故选B.4.【答案】B解:由于幂函数在(0,+∞)时是减函数,故有,解得m =-1,故选B.5.【答案】A解:∵函数f(x)的定义域为(0,4],∴由,得,即0<x≤2,则函数g(x)的定义域为(0,2],故选:A.6.【答案】C解:∵函数f(x)=e x+4x-3在R上连续,且f(0)=e0-3=-2<0,f()=+2-3=-1=-e0>0,∴f(0)f()<0,∴函数f(x)=e x+4x-3的零点所在的区间为(0,).故选C.7.【答案】D解:设x<0,则-x>0,∵当x≥0时,,∴f(-x)=-x(1+)=-x(1-),∵函数y=f(x)是定义在R上的奇函数,∴f(x)=-f(-x),∴f(x)=x(1-),故选D.8.【答案】D解:∵函数f(x)为奇函数,若f(1)=-1,则f(-1)=-f(1)=1,又∵函数f(x)在(-∞,+∞)上单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:1≤x≤3,所以x的取值范围是[1,3].故选D.9.【答案】C解:因为f(a)=f(b),所以|lg a|=|lg b|,所以a=b(舍去),或,所以a+2b=又0<a<b,所以0<a<1<b,令,由“对勾”函数的性质知函数f(a)在a∈(0,1)上为减函数,所以f(a)>f(1)=1+=3,即a+2b的取值范围是(3,+∞).故选C.10.【答案】D解:∵对任意的实数x1≠x2都有>0成立,∴函数f(x)=在R上单调递增,∴,解得a∈[4,8),故选D.11.【答案】A解:令u=x2-2ax+1+a,则f(u)=lg u,配方得u=x2-2ax+1+a=(x-a)2 -a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2-2ax+1+a在区间(-∞,1]上单调递减,又真数x2-2ax+1+a>0,二次函数u=x2-2ax+1+a在(-∞,1]上单调递减,故只需当x=1时,若x2-2ax+1+a>0,则x∈(-∞,1]时,真数x2-2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选:A.由题意,在区间(-∞,1]上,a的取值需令真数x2-2ax+1+a>0,且函数u=x2-2ax+1+a在区间(-∞,1]上应单调递减,这样复合函数才能单调递减.本题考查复合函数的单调性,考查学生分析解决问题的能力,复合函数单调性遵从同增异减的原则.12.【答案】C解:令f(x)=1,当时,,解得x1=-,x2=1,当时,,解得x3=5,综上f(x)=1解得x1=-,x2=1,x3=5,令g(x)=f[f(x)]-1=0,作出f(x)图象如图所示:由图象可得当f(x)=-无解,f(x)=1有3个解,f(x)=5有1个解,综上所述函数g(x)=f[f(x)]-1的零点个数为4,故选C.13.【答案】(1,2)解:设f(x)=x2-2mx+m2-1,则f(x)=0的一个零点在(0,1)内,另一零点在(2,3)内.∴,即,解得1<m<2.故答案为(1,2).14.【答案】[-1,0)解:作出函数的图象如下图所示,由图象可知0<g(x)≤1,则m<g(x)+m≤1+m,即m<f(x)≤1+m,要使函数的图象与x轴有公共点,则,解得-1≤m<0.故答15.案为[-1,0).【答案】.解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m-5.∴m的取值范围是.故答案为:..利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.本题考查不等式在定区间上的恒成立问题.利用一元二次函数图象分析求解是解决此类问题的常用方法.16.【答案】[5,+∞)解:函数的定义域为:x≤2,当x∈D时,f(x)≤m恒成立,令t=≥0,可得2x=4-t2,所以f(t)=5-t2-t,是开口向下的二次函数,t≥0,f(t)≤5,当x∈D时,f(x)≤m恒成立,则实数m的取值范围是:m≥5.故答案为:[5,+∞).求出函数的定义域,利用换元法结合函数的性质,求解实数m的取值范围.本题考查函数的最值的求法,换元法的应用,函数恒成立体积的应用,是基本知识的考查.17.【答案】解:(1)原式===;-----------(5分)(2)原式===log39-9=2-9=-7.----(10分)18.【答案】解:(1)根据题意,当m=2时,A={x|1≤x≤7},B={x|-2<x<4},----(1分)则A∪B={x|-2<x≤7},----(3分)又∁R A={x|x<1或x>7},则(∁R A)∩B={x|-2<x<1};----(5分)(2)根据题意,若A∩B=A,则A⊆B,分2种情况讨论:①当A=∅时,有m-1>2m+3,解可得m<-4,----(7分)②当A≠∅时,若有A⊆B,必有,解可得-1<m<,----(11分)综上可得:m的取值范围是:(-∞,-4)∪(-1,).----(12分)19.【答案】解:(1),若要式子有意义,则,即,所以定义域为. ----(4分)(2)f(x)的定义域为,且所以f(x)是奇函数. ----(8分)(3)又f(x)>0,即,有.当时,上述不等式,解得. ----(12分)20.【答案】解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即,则b=1,经检验,当b=1时,是奇函数,所以b=1;----(3分)(2),f(x)在R上是减函数,证明如下:在R上任取,,且,则,因为在R上单调递增,且,则,又因为,所以,即,所以f(x)在R上是减函数; ----(7分)(3)因为,所以,而f(x)是奇函数,则,又f(x)在R上是减函数,所以,即在上恒成立,令,,,,因为,则k<-1.所以k的取值范围为. ----(12分)21.【答案】解:(1)由已知,∴,当时,,故小时后还剩的污染物. ----(5分)(2)由已知,即两边取自然对数得:,∴,∴污染物减少需要花32小时. ----(12分)22.【答案】解:(1)由题设,令x=y=0,恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0;----(3分)(2)证明:令y=-x,则由f(x+y)=f(x)+f(y)得f(0)=0=f(x)+f(-x),即f(-x)=-f(x),故f(x)是奇函数;----(7分)(3)∵,,即,又由已知f(x+y)=f(x)+f(y)得:f(x+x)=2f(x),∴f(x2-3x)>f(2x),由函数f(x)是增函数,不等式转化为x2-3x>2x,即x2-5x>0,∴不等式的解集{x|x<0或x>5}.----(12分)2019-2020学年第一学期期中考试高一数学试题说明:本试卷分为第I 卷和第Ⅱ卷两部分,共三个大题,22个小题。
高一数学上学期期中考试试卷含答案(共5套)
高一年级第一学期数学期中考试卷本试卷共4页,22小题,满分150分。
考试用时120分钟。
第一部分 选择题(共60分)一、单选题(本大题共8小题,每小题5分,满分40分)1.设集合{}1,2,3,4A =,{}1,0,2,3B =-,{}12C x R x =∈-≤<,则()A B C =( )A .{}1,1-B .{}0,1C .{}1,0,1-D .{}2,3,42.已知集合A={x∈N|x 2+2x ﹣3≤0},则集合A 的真子集个数为 ( )A .3B .4C .31D .323.下列命题为真命题的是( )A .x Z ∃∈,143x <<B .x Z ∃∈,1510x +=C .x R ∀∈,210x -=D .x R ∀∈,220x x ++>4.设x ∈R ,则“12x <<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知函数()f x =m 的取值范围是( )A .04m <≤B .01m ≤≤C .4m ≥D .04m ≤≤6.已知实数m , n 满足22m n +=,其中0mn >,则12m n +的最小值为( ) A .4 B .6 C .8 D .127.若函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且,()00f =,(2)0=g ,则使得()0f x <的x 的取值范围是( )A .(﹣∞,2)B .(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)8.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,已知 2.7e ≈,则()2f -、()f e 、()3f -的大小关系为( )A .()()()32f e f f <-<-B .()()()23f f e f -<<-C .()()()32f f f e -<-<D .()()()32f f e f -<<- 二、多选题(本大题共4小题,每小题5分,漏选3分,错选0分,满分20分)9.已知A B ⊆,A C ⊆,{}2,0,1,8B =,{}1,9,3,8C =,则A 可以是( )A .{}1,8B .{}2,3C .{}1D .{}210.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C .2()f x x =与2()g x x =D .21()1x f x x +=-与1()1g x x =- 11.已知函数()22,1,12x x f x x x +≤-⎧=⎨-<<⎩,关于函数()f x 的结论正确的是( ) A .()f x 的定义域为RB .()f x 的值域为(,4)-∞C .若()3f x =,则xD .()1f x <的解集为(1,1)-12.若函数()22,14,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( ) A .0B .1C .32D .3第二部分 非选择题(共90分)三、填空题(本大题共3小题,每小题5分, 共15分)13.已知2()1,()1f x x g x x =+=+,则((2))g f =_________.14.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.15.如果函数()2x 23f ax x =+-在区间(),4-∞上是单调递增的,则实数a 的取值范围是______.四、双空题(本大题共1小题,第一空3分,第二空2分, 共5分)16.函数()2x f x x =+在区间[]2,4上的最大值为________,最小值为_________五、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题10分)已知函数()233f x x x =+-A ,()222g x x x =-+的值域为B . (Ⅰ)求A 、B ; (Ⅱ)求()R AB .18.(本小题12分)已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-.(1)若()U A B R ⋃=,求a 的取值范围; (2)若A B B ≠,求a 的取值范围.19.(本小题12分)已知函数23,[1,2](){3,(2,5]x x f x x x -∈-=-∈. (1)在如图给定的直角坐标系内画出()f x 的图象;(2)写出()f x 的单调递增区间及值域;(3)求不等式()1f x >的解集.20.(本小题12分)已知函数()f x =21ax b x ++是定义在(-1,1)上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在(-1,1)上是增函数;(3)解不等式:(1)()0f t f t -+<.21.(本小题12分)某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?22.(本小题12分)已知二次函数()f x 满足(1)()21f x f x x +-=-+,且(2)15f =.(1)求函数()f x 的解析式;(2) 令()(22)()g x m x f x =--,求函数()g x 在x ∈[0,2]上的最小值.参考答案1.C【详解】由{}1,2,3,4A =,{}1,0,2,3B =-,则{}1,0,1,2,3,4AB =- 又{}12C x R x =∈-≤<,所以(){}1,0,1AB C =-故选:C2.A 由题集合{}2{|230}{|31}01A x N x x x N x =∈+-≤=∈-≤≤=, , ∴集合A 的真子集个数为2213-= .故选A .【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.D求解不等式判断A ;方程的解判断B ;反例判断C ;二次函数的性质判断D ;【详解】解:143x <<,可得1344x <<,所以不存在x ∈Z ,143x <<,所以A 不正确; 1510x +=,解得115x =-,所以不存在x ∈Z ,1510x +=,所以B 不正确; 0x =,210x -≠,所以x R ∀∈,210x -=不正确,所以C 不正确;x ∈R ,2217720244y x x x ⎛⎫=++=++≥> ⎪⎝⎭,所以D 正确;故选:D .【点睛】本题主要考查命题的真假的判断,考查不等式的解法以及方程的解,属于基础题.4.A【解析】【分析】先解不等式,再根据两个解集包含关系得结果.【详解】 21121,13x x x -<∴-<-<<<,又1,2()1,3,所以“12x <<”是“21x -<”的充分不必要条件,选A.【点睛】充分、必要条件的三种判断方法. 1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 5.D【解析】试题分析:因为函数()f x =的定义域是一切实数,所以当0m =时,函数1f x 对定义域上的一切实数恒成立;当0m >时,则240m m ∆=-≤,解得04m <≤,综上所述,可知实数m 的取值范围是04m ≤≤,故选D.考点:函数的定义域.6.A【解析】实数m ,n 满足22m n +=,其中0mn >12112141(2)()(4)(44222n m m n m n m n m n ∴+=++=++≥+=,当且仅当422,n m m n m n =+=,即22n m ==时取等号.12m n∴+的最小值是4.所以A 选项是正确的. 点睛:本题主要考查基本不等式求最值,在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.解决本题的关键是巧妙地将已知条件22m n +=化为1,即112112(2)1,(2)()22m n m n m n m n+=∴+=++. 7.C【解析】【分析】根据函数的图象关于原点对称,可得知函数()g x 在()0,∞+上是减函数,即可利用其单调性在(,0)-∞和()0,∞+上解不等式即可.【详解】函数()()g x xf x =的定义域为R ,图象关于原点对称,在(,0)-∞上是减函数,且()20g =,所以函数()g x 在()0,∞+上是减函数.当0x =时,()00f =,显然0x =不是()0f x <的解.当()0,x ∈+∞时,()0f x <,即()()0g x xf x =<,而()20g =,所以()()20g x g <=,解得2x >;当(),0x ∈-∞时,()0f x <,即()()0g x xf x =>,而()()220g g -==,所以()()2g x g >-,解得2x <-.综上,()0f x <的x 的取值范围是(﹣∞,﹣2)∪(2,+∞).故选:C.【点睛】本题主要考查利用函数的性质解不等式,意在考查学生的转化能力和数学运算能力,属于基础题. 8.D【解析】【分析】由已知条件得出单调性,再由偶函数把自变量转化到同一单调区间上,由单调性得结论.【详解】因为对任意的[)()1212,0,x x x x ∈+∞≠,有()()21210f x f x x x -<-,所以当12x x <时,12()()f x f x >,所以()f x 在[0,)+∞上是减函数,又()f x 是偶函数,所以(3)(3)f f -=,(2)(2)f f -=,因为23e <<,所以(2)()(3)f f e f >>,即(2)()(3)f f e f ->>-.故选:D .【点睛】本题考查函数的单调性与奇偶性,解题方法是利用奇偶性化自变量为同一单调区间,利用单调性比较大小.9.AC【解析】【分析】推导出(){1A B C A ⊆⇒⊆,8},由此能求出结果.【详解】∵A B ⊆,A C ⊆,()A B C ∴⊆{}2,0,1,8B =,{}1,9,3,8C =,{}1,8A ∴⊆∴结合选项可知A ,C 均满足题意.【点睛】本题考查集合的求法,考查子集定义等基础知识,考查运算求解能力,是基础题.10.BC【解析】【分析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.【详解】对于A :()g x x ==,两个函数的对应法则不一致,所以不是相同函数,故选项A 不正确; 对于B :()|1|f t t =-与()|1|g x x =-定义域和对应关系都相同,所以是相同函数,故选项B 正确; 对于C :2()f x x =与2()g x x =定义域都是R ,22()g x x x ==,所以两个函数是相同函数,故选项C 正确对于D :21()1x f x x +=-定义域是{}|1x x ≠±,1()1g x x =-定义域是{}|1x x ≠,两个函数定义域不同,所以不是相等函数,故故选项D 不正确;故选:BC【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.11.BC【解析】【分析】根据分段函数的形式可求其定义域和值域,从而判断A 、 B 的正误,再分段求C 、D 中对应的方程的解和不等式的解后可判断C 、D 的正误.【详解】由题意知函数()f x 的定义域为(,2)-∞,故A 错误;当1x ≤-时,()f x 的取值范围是(,1]-∞当12x -<<时,()f x 的取值范围是[0,4),因此()f x 的值域为(,4)-∞,故B 正确;当1x ≤-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =x =,故C 正确;当1x ≤-时,21x +<,解得1x <-,当12x -<<时,21x <,解得-11x -<<,因此()1f x <的解集为(,1)(1,1)-∞--,故D 错误.故选:BC .【点睛】 本题考查分段函数的性质,对于与分段函数相关的不等式或方程的解的问题,一般用分段讨论的方法,本题属于中档题.12.BC【解析】【分析】根据函数的单调性求出a 的取值范围,即可得到选项.【详解】当1x ≤-时,()22f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤. 故选:BC【点睛】此题考查根据分段函数的单调性求参数的取值范围,易错点在于忽略掉分段区间端点处的函数值辨析导致产生增根.13【解析】【分析】根据2()1,()f x x g x =+=(2)f ,再求((2))g f .【详解】因为(2)5f =,所以((2))(5)g f g ===【点睛】本题主要考查函数值的求法,属于基础题.14.-2或0【解析】【分析】由{}2M N =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去;当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意.综上,a 的值是-2或0.故答案为:-2或0.【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.15.1,04⎡⎤-⎢⎥⎣⎦. 【解析】【分析】【详解】由题意得,当0a =时,函数()23f x x =-,满足题意,当0a ≠时,则0242a a<⎧⎪⎨-≥⎪⎩,解得104a -≤<, 综合得所求实数a 的取值范围为1,04⎡⎤-⎢⎥⎣⎦. 故答案为:1,04⎡⎤-⎢⎥⎣⎦. 16.23 12【解析】【分析】分离常数,将()f x 变形为212x -+,观察可得其单调性,根据单调性得函数最值. 【详解】 222()1222x x f x x x x +-===-+++,在[2,4]上,若x 越大,则2x +越大,22x 越小,22x -+越大,212x -+越大, 故函数()f x 在[2,4]上是增函数,min 21()(2)222f x f ∴===+, max 42()(4)423f x f ===+, 故答案为23;12. 【点睛】本题考查分式函数的单调性及最值,是基础题. 17.(Ⅰ)332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥;(Ⅱ)()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【解析】【分析】(Ⅰ)由函数式有意义求得定义域A ,根据二次函数性质可求得值域B ;(Ⅱ)根据集合运算的定义计算.【详解】(Ⅰ)由()f x =230,30,x x +≥⎧⎨->⎩ 解得332x -≤<. ()()2222111g x x x x =-+=-+≥,所以332A x x ⎧⎫=-≤<⎨⎬⎩⎭,{}1B y y =≥.(Ⅱ){}1B y y =<R ,所以()R 312A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题.18.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭. 【解析】【分析】(1)先计算U A ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出AB B =时a 的取值范围,再求其补集即可.【详解】 (1)∵{}|02A x x =≤≤,∴{|0U A x x =<或}2x >,若()U A B R ⋃=,则320322a a a a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. (2)若A B B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭, 故AB B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题.19.(1)见解析(2)()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)[2)(1,5]-⋃【解析】【分析】(1)要利用描点法分别画出f(x)在区间[-1,2]和(2,5]内的图象.(2)再借助图象可求出其单调递增区间.并且求出值域.(3)由图象可观察出函数值大于1时对应的x 的取值集合.【详解】(1)(2)由图可知()f x 的单调递增区间[1,0],[2,5]-, 值域为[1,3]-;(3)令231x -=,解得2x =2-(舍去);令31x -=,解得2x =. 结合图象可知的解集为[2)(1,5]-⋃20.(1)()21x f x x =+;(2)证明见详解;(3)1|02t t ⎧⎫<<⎨⎬⎩⎭. 【解析】【分析】(1)由()f x 为奇函数且1225f ⎛⎫= ⎪⎝⎭求得参数值,即可得到()f x 的解析式; (2)根据定义法取-1<x 1<x 2<1,利用作差法12())0(f x f x -<即得证;(3)利用()f x 的增减性和奇偶性,列不等式求解即可【详解】(1)()f x 在(-1,1)上为奇函数,且1225f ⎛⎫= ⎪⎝⎭有(0)012()25f f =⎧⎪⎨=⎪⎩,解得10a b =⎧⎨=⎩,()f x =21x x +, 此时2()(),()1x f x f x f x x --==-∴+为奇函数, 故()f x =21x x+; (2)证明:任取-1<x 1<x 2<1, 则12122212()()11x x f x f x x x -=-++12122212()(1)(1)(1)x x x x x x --=++ 而122100,1x x x -<+>,且1211x x -<<,即1210x x ->,∴12())0(f x f x -<,()f x 在(-1,1)上是增函数.(3)(1)()()f t f t f t ,又()f x 在(-1,1)上是增函数∴-1<t -1<-t <1,解得0<t <12 ∴不等式的解集为1|02t t ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查了利用函数奇偶性求解析式,结合奇函数中(0)0f =的性质,要注意验证;应用定义法证明单调性,注意先假设自变量大小关系再确定函数值的大小关系:函数值随自变量的增大而增大为增函数,反之为减函数;最后利用函数的奇偶性和单调性求解集21.(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【解析】【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果;(2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型.【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得: 当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x . 当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x 所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+. 此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭ 12502001050=-=. 此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元 【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.22.(1)2()215f x x x =-++,(2)min2411,2()15,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩【解析】试题分析:(1)据二次函数的形式设出f (x )的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.(2)函数g (x )的图象是开口朝上,且以x=m 为对称轴的抛物线,分当m ≤0时,当0<m <2时,当m ≥2时三种情况分别求出函数的最小值,可得答案.试题解析:(1)设二次函数一般式()2f x ax bx c =++(0a ≠),代入条件化简,根据恒等条件得22a =-,1a b +=,解得1a =-,2b =,再根据()215f =,求c .(2)①根据二次函数对称轴必在定义区间外得实数m 的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法. 试题解析:(1)设二次函数()2f x ax bx c =++(0a ≠),则()()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++-++=++=-+∴22a =-,1a b +=,∴1a =-,2b = 又()215f =,∴15c =.∴()2215f x x x =-++(2)①∵()2215f x x x =-++∴()()()222215g x m x f x x mx =--=--.又()g x 在[]0,2x ∈上是单调函数,∴对称轴x m =在区间[]0,2的左侧或右侧,∴0m ≤或2m ≥ ②()2215g x x mx =--,[]0,2x ∈,对称轴x m =,当2m >时,()()min 24415411g x g m m ==--=--; 当0m <时,()()min 015g x g ==-;当02m ≤≤时,()()222min 21515g x g m m m m ==--=--综上所述,()min2411,215,015,02m m g x m m m -->⎧⎪=-<⎨⎪--≤≤⎩广东省深圳市高一上学期期中考试试卷数学试题时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合{1}A x x =<∣,{}31x B x =<∣,则( )A .{0}AB x x =<∣ B .A B R =C .{1}A B x x =>∣D .AB =∅2.已知函数22,3()21,3x x x f x x x ⎧-≥=⎨+<⎩,则[(1)]f f =( )A .3B .4C .5D .63.设()f x 是定义在R 上的奇函数,当0x ≥时,2()2f x x x =-,则()1f -=( )A .3-B .1-C .1D .34.已知幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()8f 的值为( )A .4B .8C .D .5.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减C .是偶函数,且在(0,)+∞单调递增D .是偶函数,且在(0,)+∞单调递减6.已知3log 21x ⋅=,则4x=( )A .4B .6C .3log 24D .97.已知2log 0.3a =,0.12b =, 1.30.2c =,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<8.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( )A .30a -≤<B .32a -≤≤-C .2a ≤-D .0a <二、选择题:本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列各选项给出的两个函数中,表示相同函数的有( )A .()f x x =与()g x =B .()|1|f t t =-与()|1|g x x =-C.()f x =与 ()g x =-D .21()1x f x x -=+与()1g x x =-10.下列函数中,在其定义域内既是奇函数,又是增函数的是( )A .1y x=-B .1y x x=-C .3y x =D .||y x x =11.若函数()1(0,1)xf x a b a a =+->≠的图象经过第一、三、四象限,则一定有( )A .1a >B .01a <<C .0b >D .0b <12.下列结论不正确的是( )A .当0x >2≥B .当0x >2的最小值是2C .当0x <时,22145x x -+-的最小值是52D .设0x >,0y >,且2x y +=,则14x y +的最小值是92三、填空题(本大题共4小题,每小题5分,共20分)13.函数3()1f x x =+的定义域为_______. 14.函数32x y a-=+(0a >且1a ≠)恒过定点_______.15.定义运算:,,b a b a b a a b≥⎧⊗=⎨<⎩,则函数()33x xf x -=⊗的值域为_______.16.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又()20f =,则不等式()0xf x <的解集为_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)计算:(1)1130121( 3.8)0.0022)27---⎛⎫+--+ ⎪⎝⎭;(2)2lg125lg 2lg500(lg 2)++.18.(本小题满分12分)已知函数1()2x f x x +=-,[3,7]x ∈. (1)判断函数()f x 的单调性,并用定义加以证明;(2)求函数()f x 的最大值和最小值. 19.(本小题满分12分)设集合{}2230A x x x =+-<∣,集合{1}B xx a =+<‖∣. (1)若3a =,求AB ;(2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要条件,求实数a 的取值范围. 20.(本小题满分12分)已知()f x 是R 上的奇函数,且当0x >时,2()243f x x x =-++.(1)求()f x 的表达式;(2)画出()f x 的图象,并指出()f x 的单调区间.21.(本小题满分12分)某制造商为拓展业务,计划引进一设备生产一种新型体育器材.通过市场分析,每月需投入固定成本3000元,生产x 台需另投入成本()C x 元,且210400,030()10008049000,30x x x C x x x x ⎧+<<⎪=⎨+-≥⎪⎩,若每台售价800元,且当月生产的体育器材该月内能全部售完.(1)求制造商由该设备所获的月利润()L x 关于月产量x 台的函数关系式;(利润=销售额-成本) (2)当月产量为多少台时,制造商由该设备所获的月利润最大?并求出最大月利润.22.(本小题满分12分)设函数()22xxf x k -=⋅-是定义R 上的奇函数. (1)求k 的值;(2)若不等式()21xf x a >⋅-有解,求实数a 的取值范围;(3)设()444()x xg x f x -=+-,求()g x 在[1,)+∞上的最小值,并指出取得最小值时的x 的值.高一上学期期中考试数学学科试题参考答案一二、选择题三、填空题 13.(,1)(1,2]-∞--14.()3,3 15.(]0,1 16.(2,0)(0,2)-四、解答题17.解:(1)原式12315002)42016=+-+=-=-;(2)原式3lg5lg 2(lg500lg 2)3lg53lg 23=++=+=.18.解:(1)函数()f x 在区间[]3,7内单调递减,证明如下:在[]3,7上任意取两个数1x 和2x ,且设12x x >,∵()11112x f x x +=-,()22212x f x x +=-, ∴()()()()()21121212123112222x x x x f x f x x x x x -++-=-=----. ∵12,[3,7]x x ∈,12x x >,∴120x ->,220x ->,210x x -<,∴()()()()()2112123022x x f x f x x x --=<--.即()()12f x f x <,由单调函数的定义可知,函数()f x 为[]3,7上的减函数.(2)由单调函数的定义可得max ()(3)4f x f ==,min 8()(7)5f x f ==. 19.解:(1)由2230x x +-<,解得31x -<<,可得:(3,1)A =-.3a =,可得:|3|1x +<,化为:131x -<+<,解得42x -<<-,∴(1,1)B =-. ∴(3,1)AB =-.(2)由||1x a +<,解得11a x a --<<-.∴{11}B xa x a =--<<-∣. ∵p 是q 成立的必要条件,∴1311a a --≥-⎧⎨-≤⎩,解得:02a ≤≤.∴实数a 的取值范围是[]0,2.20.解:(1)根据题意,()f x 是R 上的奇函数,则()00f =,设0x <,则0x ->,则()2243f x x x -=--+,又由()f x 为奇函数,则2()()243f x f x x x =--=+-,则22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩;(2)根据题意,22243,0()0,0243,0x x x f x x x x x ⎧+-<⎪==⎨⎪-+->⎩,其图象如图:()f x 的单调递增区间为()1,1-,()f x 的单调递增区间为(),1-∞-,(1,)+∞.21.解:(1)当030x <<时,22()800104003000104003000L x x x x x x =---=-+-;当30x ≥时,1000010000()8008049000300060004L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭. ∴2104003000,030()1000060004,30x x x L x x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩. (2)当030x <<时,2()10(20)1000L x x =--+,∴当20x =时,max ()(20)1000L x L ==.当30x ≥时,10000()6000460005600L x x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当100004x x=, 即50x =时,()(50)56001000L x L ==>.当50x =时,获得增加的利润最大,且增加的最大利润为5600元.22.解:(1)因为()22x xf x k -=⋅-是定义域为R 上的奇函数,所以()00f =,所以10k -=, 解得1k =,()22x xf x -=-, 当1k =时,()22()x x f x f x --=-=-,所以()f x 为奇函数,故1k =;(2)()21xf x a >⋅-有解, 所以211122x x a ⎛⎫⎛⎫<-++ ⎪ ⎪⎝⎭⎝⎭有解, 所以2max11122x x a ⎡⎤⎛⎫⎛⎫<-++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 因为221111*********x x x ⎛⎫⎛⎫⎛⎫-++=--+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1x =时,等号成立), 所以54a <; (3)()444()x x g x f x -=+-,即()()44422x x x x g x --=+--,可令22x x t -=-,可得函数t 在[)1,+∞递增,即32t >, 2442x x t -=+-,可得函数2()42h t t t =-+,32t >, 由()g t 的对称轴为322t =>,可得2t =时,()g t 取得最小值2-,此时222x x -=-,解得2log (1x =,则()g x 在[)1,+∞上的最小值为2-,此时2log (1x =.高一第一学期数学期中考试卷第I 卷(选择题)一、单选题(每小题5分)1.已知集合{}40M x x =-<,{}124x N x -=<,则M N =( )A .(),3-∞B .()0,3C .()0,4D .∅2.已知集合A ={}2|log 1x x <,B ={}|0x x c <<,若A ∪B =B ,则c 的取值范围是( )A .(0,1]B .[1,+∞)C .(0,2]D .[2,+∞)3.全集U =R ,集合{}|0A x x =<,{}|11B x x =-<<,则阴影部分表示的集合为( )A .{}|1x x <-B .{}|1x x <C .{}|10x x -<<D .{}|01x x <<4..函数的零点所在的区间为A .B .C .(D .5.如果二次函数()()2212f x x a x =+-+在区间(],4-∞上是减函数,则a 的取值范围是()A.5a ≤B.3a ≤-C.3a ≥D.3a ≥-6.设函数()2,x f x x R =∈的反函数是()g x ,则1()2g 的值为( )A .1-B .2-C .1D .27.设132()3a =,231()3b =,131()3c =,则()f x 的大小关系是( )A.b c a >>B.a b c >>C.c a b >>D.a c b >>8.函数()()215m f x m m x -=--是幂函数,且当()0 x ∈+∞,时,()f x 是增函数,则实数m 等于( ) A.3或2- B.2- C.3 D.3-或29.函数()2lg 45y x x =--的值域为( )A .(),-∞+∞B .()1,5-C .()5,+∞D .(),1-∞-10.已知x ,y 为正实数,则( )A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=C .lg lg lg lg 222x y x y =+D .lg()lg lg 222xy x y = 11.已知函数()x x f x a a -=-,若(1)0f <,则当[]2,3x ∈时,不等式()+(4)0f t x f x --<恒成立则实数t 的范围是( )A .[2,)+∞B .(2,)+∞C .(,0)-∞D .(,0]-∞12.已知奇函数x 14()(x 0)23F(x)f (x)(x 0)⎧->⎪=⎨⎪<⎩,则21F(f (log )3= ( ) A .56- B .56 C .1331()2D .1314()23- 第II 卷(非选择题)二、填空题(每小题5分)13.已知函数ln x y a e =+(0a >,且1a ≠,常数 2.71828...e =为自然对数的底数)的图象恒过定点(,)P m n ,则m n -=______.14.求值:2327( 3.1)()lg 4lg 25ln18--++++=__________ 15.若函数()()()21142x f x a x log =++++为偶函数,则a =_______.16.已知函数log 2,3()(5)3,3a x x f x a x x ->⎧=⎨--≤⎩()满足对任意的实数12x x ≠,都有()()12120f x f x x x ->-成立,则实数a 的取值范围为______________;三、解答题17.(本题满分10分)(1)求值:(log 83+log 169)(log 32+log 916);(2)若1122a a 2--=,求11122a a a a --++及的值.18.(本题满分12分)函数()log (1)a f x x =-+(3)(01)a log x a +<< (1)求方程()0f x =的解;(2)若函数()f x 的最小值为1-,求a 的值.19.(本题满分12分)已知()y f x =是定义在R 上的奇函数,当时0x ≥,()22f x x x =+. (1)求函数()f x 的解析式;(2)解不等式()2f x x ≥+.20.(本题满分12分)已知二次函数f (x )满足 (1)()21f x f x x +-=+且(0)1,f =函数()2(0)g x mx m =>(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()()()g x F x f x =,在()0,1上的单调性并加以证明.21.(本题满分12分)已知函数()142x x f x a a +=⋅--.(1)若0a =,解方程()24f x =-;(2)若函数()142x x f x a a +=⋅--在[]1,2上有零点,求实数a 的取值范围.22.(本题满分12分)函数()f x 的定义域为R ,且对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <,(Ⅰ)证明()f x 是奇函数;(Ⅱ)证明()f x 在R 上是减函数;(III)若()31f =-,()()321550f x f x ++--<,求x 的取值范围.第一学期高一期中考试卷参考答案学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知集合,,则( )A.B.C.D.【答案】A【解析】【分析】可以求出集合,,然后进行交集的运算即可.【详解】解:,,.故选:.【点睛】本题考查描述法、区间的定义,一元二次不等式的解法,指数函数的单调性,以及交集的运算。
南通中学2023-2024学年高一上学期期中数学试题(含答案)
江苏省南通中学2023-2024学年第一学期期中考试高一数学一、选择题:本题共8小题,每小题5分,共40分.1.设集合{}02A x x =≤≤,{}1B x x =≤,则A B = ()A.(],1-∞ B.(],2∞- C.[]0,1 D.[]1,22.函数()f x =)A .(,0]-∞ B.[0,)+∞ C.(0,)+∞ D.(,)∞∞-+3.已知0.5log 2a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为()A.a b c<< B.b c a<< C.a c b<< D.c b a <<4.已知,,R a b c ∈,则a b c ==是222a b c ab bc ac ++=++成立的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.德国天文学家,数学家开普勒(J.Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为()A.4329dB.30323dC.60150dD.90670d6.下列可能是函数2||1x x y e-=(e 是自然对数的底数)的图象的是()A.B.C.D.7.已知函数()2,75,63x x m f x x x m⎧≥⎪=⎨+<⎪⎩的值域为R ,则实数m 的取值范围为()A.[]0,1 B.[]0,2 C.[]1,1- D.[]1,2-8.已知0x >,0y >,且2x y xy +=,则211x yx y +++的最小值为()A.45B.1C.32D.2二、选择题:本题共4小题,每小题5分,共20分.9.已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是()A.函数y x α=的图象过原点B.函数y x α=是偶函数C.函数y x α=是单调减函数D.函数y x α=的值域为R 10.下列不等式中成立的是()A.若0a b >>,则22ac bc >B.若0a b >>,则22a b >C.若0a b <<,则22a ab b >> D.若0a b <<,则11a b>11.已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则满足不等式()()212f t f t +>-的所有整数t 的值为()A.2- B.1- C.0D.112.已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中一定正确的是()A.()00f = B.()10g =C.()y g f x =⎡⎤⎣⎦为奇函数D.()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称三、填空题:本题共4小题,每小题5分,共20分.13.式子1239log 27+的值是________14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21f x g x x x +=-+,则()3g 的值是______.15.已知a ,b 是非零实数,若关于x 的不等式20x ax b -+≥恒成立,则212ba +的最小值是______.16.已知函数()2f x x ax =+-,当1a =时,函数()f x 的值域为______;若函数()f x 的最小值为2,则正实数a 的取值范围为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合12644x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}5B x x =>.(1)求U A B ð:(2)若集合{}C x x a =>满足B C B = ,求实数a 的取值范围.18.已知函数()222f x x x a =-+-,()xg x a =(0a >且1a ≠).(1)若函数()f x 在(],21m -∞-上单调递减,求实数m 的取值范围;(2)若()()20f g =.①求实数a 的值;②设()1t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.19.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(03v ≤≤)的以下数据:v 0123Q0.71.63.3为描述该超级块艇每小时航行费用Q 与速度v 的关系,现有以下两种函数模型供选择:32Q av bv cv =++,0.5v Q a =+.(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出期少航行费用.20.已知()42135x f x a++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点;(2)若()235f x a>+,求x 的取值范围.21.已知二次函数()()2,f x x ax b a b =++∈R .(1)若()20f -=,且对于x ∈R ,()()11f x f x +=-恒成立,求a ,b 的值;(2)若函数()f x 的值域为[)1,+∞,关于x 的不等式()f x c <的解集为()(),8m m m +∈R ,求实数c 的值.22.设函数()()0,1xxf x a k aa a -=+⋅>≠是定义域为R 的奇函数.(1)求实数k 值;(2)若()10f <,试判断函数()f x 的单调性,并证明你的结论;(3)在(2)的条件下,不等式()()1192430x x f t f -+-+⋅++⋅<对任意实数x 均成立,求实数t 的取值范围.江苏省南通中学2023-2024学年第一学期期中考试高一数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}02A x x =≤≤,{}1B x x =≤,则A B = ()A.(],1-∞ B.(],2∞- C.[]0,1 D.[]1,2【答案】C 【解析】【分析】由交集定义计算.【详解】由已知{|01}A B x x = ≤≤.故选:C .2.函数()f x =)A.(,0]-∞ B.[0,)+∞ C.(0,)+∞ D.(,)∞∞-+【答案】A 【解析】【分析】根据函数的解析式有意义,列出不等式,结合指数函数的性质,即可求解.【详解】由题意,函数()f x =120x-≥,即21x ≤,解得0x ≤,所以函数()f x 的定义域为(,0]-∞.故选:A.3.已知0.5log 2a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为()A.a b c << B.b c a<< C.a cb << D.c b a<<【答案】C 【解析】详解】分析:利用对数函数与指数函数的性质,将a ,b ,c 与0和1比较即可.详解:0.5log 20a=<,0.521b =>;210.54c ==.故a c b <<.故选:C.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.4.已知,,R a b c ∈,则a b c ==是222a b c ab bc ac ++=++成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件和必要条件的定义分析判断即可.【详解】当a b c ==时,222223,3a b c a ab bc ac a ++=++=,所以222a b c ab bc ac ++=++,当222a b c ab bc ac ++=++时,2220a b c ab bc ac ++---=,所以2222222220a b c ab bc ac ++---=,所以()()()2222222220aab b a ac c b bc c -++-++-+=,所以()()()2220a b a c b c -+-+-=,因为()()()2220,0,0a b a c b c -≥-≥-≥,所以()()()2220a b a c b c -=-=-=,所以a b c ==,所以a b c ==是222a b c ab bc ac ++=++成立的充要条件,故选:C5.德国天文学家,数学家开普勒(J.Kepier ,1571—1630)发现了八大行星的运动规律:它们公转时间的平方与离太阳平均距离的立方成正比.已知天王星离太阳平均距离是土星离太阳平均距离的2倍,土星的公转时间约为10753d .则天王星的公转时间约为()A.4329dB.30323d C.60150d D.90670d【答案】B 【解析】【分析】设天王星和土星的公转时间为分别为T 和T ',距离太阳的平均距离为r 和r ',根据2323T r T r ='',2rr '=,结合已知条件即可求解.【详解】设天王星的公转时间为T ,距离太阳的平均距离为r ,土星的公转时间为T ',距离太阳的平均距离为r ',由题意知:2r r '=,10753T d '=,所以323238T r r T r r ⎛⎫=== ⎪'''⎝⎭,所以1075310753 2.82830409.484T d '==≈⨯=,故选:B.6.下列可能是函数2||1x x y e -=(e 是自然对数的底数)的图象的是()A. B.C.D.【答案】C 【解析】【分析】根据函数的定义域和部分区间的函数值确定正确选项.【详解】函数2||1x x y e -=的定义域为R ,所以AB 选项错误.当1x >时,2||10x x y e-=>,所以D 选项错误.故选:C 【点睛】本小题主要考查函数图象的识别,属于基础题.7.已知函数()2,75,63x x m f x x x m⎧≥⎪=⎨+<⎪⎩的值域为R ,则实数m 的取值范围为()A.[]0,1 B.[]0,2 C.[]1,1- D.[]1,2-【答案】D 【解析】【分析】由函数值域为R ,利用指数函数和一次函数函数单调性以及画出函数图像分析即可解决问题.【详解】当x m <时,()7563f x x =+单调递增,所以()7563f x m <+当x m ≥时,()2x f x =单调递增,所以()2m f x ≥,要使得函数值域为R ,则75263m m +≥恒成立,令1275,263m y m y =+=,如图所示:由图可知12,y y 有两个交点,且交点的横坐标分别为121,2m m =-=,所以若要75263m m +≥,则[]1,2m Î-,也即函数()f x 的值域为R 时,则实数m 的取值范围为:[]1,2m Î-,故选:D.8.已知0x>,0y >,且2x y xy +=,则211x yx y +++的最小值为()A.45B.1C.32D.2【答案】A 【解析】【分析】先根据题意得到112y x +=,从而得到1215y x y x+++=,再根据“1”的妙用及基本不等式即可求解.【详解】由0x>,0y >,2x y xy +=,则112y x +=,则11121125y x y x y x+++++=+=,所以12112112115x y x y y x x y x y y x ⎛⎫⎛⎫+++=+⨯+⨯ ⎪ ⎪++++⎝⎭⎝⎭1211112115x y y x x y y x ⎛⎫++=⨯+++⨯++⎝⎭12114221155x y y x x y y x ⎛⎫++≥+⨯⨯⨯⨯= ⎪ ⎪++⎝⎭.当且仅当121211x y y x x y y x ++⨯=⨯++,即2x =,23y =时,等号成立,所以211x y x y +++的最小值为45.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知幂函数()y x R αα=∈的图象过点(2,8),下列说法正确的是()A.函数y x α=的图象过原点B.函数y x α=是偶函数C.函数y x α=是单调减函数D.函数y x α=的值域为R 【答案】AD 【解析】【分析】根据幂函数所过点求得幂函数解析式,结合幂函数的图象与性质对选项逐一分析,由此确定正确选项.【详解】由于幂函数y x α=过点()2,8,所以28α=,解得3α=,所以3y x =.()0,0,满足3y x =,A 选项正确.3y x =是奇函数,所以B 选项错误.3y x =在R 上递增,所以C 选项错误.3y x =值域为R ,所以D 选项正确.故选:AD【点睛】本小题主要考查幂函数的图象与性质,属于基础题.10.下列不等式中成立的是()A.若0a b >>,则22ac bc > B.若0a b >>,则22a b >C.若0a b <<,则22a ab b >> D.若0a b <<,则11a b>【答案】BCD 解析】【分析】根据不等式的性质、差比较法判断出正确答案.【详解】A 选项,若0,0ab c >>=,则22ac bc =,所以A 选项错误.B 选项,若0a b >>,则()()22220,a b a b a b a b -=+->>,所以B 选项正确.C 选项,若0a b <<,0a b -<,则()220,a ab a a b a ab -=->>,()220,ab b b a b ab b -=->>,则22a ab b >>,所以C 选项正确.D 选项,若0a b <<,0b a ->,所以11110,b a a b ab a b--=>>,所以D 选项正确.故选:BCD 11.已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则满足不等式()()212f t f t +>-的所有整数t 的值为()A.2- B.1- C.0 D.1【答案】ABC 【解析】【分析】利用函数的奇偶性和单调性,不等式转化为21<2t t +-,求解即可.【详解】已知()f x 是R 上的偶函数,且在[)0,∞+上是单调减函数,则()f x 在(),0-∞上是单调增函数,由()()212f t f t +>-,得21<2t t +-,即23830t t +-<,解得133t -<<,范围内的整数有2,1,0--.故选:ABC12.已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中一定正确的是()A.()00f = B.()10g =C.()y g f x =⎡⎤⎣⎦为奇函数D.()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称【答案】AD 【解析】【分析】A.根据()f x 是定义在R 上的函数,且()f x 为奇函数判断;B.由()g x 的图像关于直线1x =对称,得到()()11g x g x -=+判断;C.利用奇偶性的定义判断;D.由()()11g x g x -=+,得到()()11f g x f g x 轾轾-=+臌臌判断.【详解】解:因为()f x 是定义在R 上的函数,且()f x 为奇函数,所以()00f =,故A 正确;因为()g x 是定义在R 上的函数,且()g x 的图像关于直线1x =对称,所以()()11g x g x -=+,()1g 不一定为0,故B 错误;因为()()()g f x g f x g f x 轾轾轾-=-¹-臌臌臌,故C 错误;因为()()11g x g x -=+,则()()11f g x f g x 轾轾-=+臌臌,所以()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称,故D 正确.故选:AD三、填空题:本题共4小题,每小题5分,共20分.13.式子1239log 27+的值是________【答案】6【解析】【分析】根据指数、对数运算,化简求得表达式的值.【详解】依题意,原式()123233log 3336=+=+=.故答案为:6【点睛】本小题主要考查指数、对数运算,属于基础题.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21f x g x x x +=-+,则()3g 的值是______.【答案】3-【解析】【分析】由()()21f xg x x x +=-+可得()()21f xg x x x -+-=++,从而结合奇偶性根据函数的奇偶性可得()()21f x g x x x -=++,于是解得()g x x =-,即可得所求.【详解】因为()()21f x g x x x +=-+①,所以()()21f xg x x x -+-=++由函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,则()(),()()f x f xg x g x =-=--所以()()21f x g x x x -=++②则①-②可得:()22g x x =-,所以()g x x =-则()33g =-.故答案为:3-.15.已知a ,b 是非零实数,若关于x 的不等式20x ax b -+≥恒成立,则212ba +的最小值是______.【答案】2解析】【分析】由题意得240a b -≤,再利用基本不等式求解即可【详解】因为a ,b 是非零实数,且不等式20x ax b -+≥恒成立,所以20x ax b -+=有两个相等的实数根或无实数根,即240a b ∆=-≤得24a b ≤,2112422b b a b +≥+≥=,当且仅当24142a bb b ⎧=⎪⎨=⎪⎩,解得22a b ⎧=⎪⎨=⎪⎩满足条件且同时取等号.故答案为:216.已知函数()2f x x ax =+-,当1a =时,函数()f x 的值域为______;若函数()f x 的最小值为2,则正实数a 的取值范围为______.【答案】①.[)2,+∞②.(]0,1【解析】【分析】(1)1a =代入函数解析式,利用零点分段讨论,去绝对值,根据单调性,求函数的值域.(2)a 为正实数时,利用零点分段讨论,去绝对值,分类讨论函数的单调性,求函数最小值,得到函数最小值为2时a 的取值范围.【详解】(1)当1a =,函数()22,02=2,0222,2x x f x x x x x x -<⎧⎪=+-≤<⎨⎪-≥⎩,0x <时,()22f x x =-单调递减,有()()02f x f >=;02x ≤<时,()2f x =;2x ≥时,()22f x x =-单调递增,有()()22f x f ≥=,所以当1a =,函数()f x 的值域为[)2,+∞.(2)a 为正实数时,()()()()21,022=12,0212,a x x f x x ax a x x a a x x a ⎧⎪-+<⎪⎪=+--+≤<⎨⎪⎪+-≥⎪⎩,0x <时,()()21f x a x =-+单调递减,有()()02f x f >=;2x a ≥时,()()12f x a x =+-单调递增,有()22f x f a a⎛⎫≥= ⎪⎝⎭,20x a ≤<时,()()12f x a x =-+,①若01a <<,函数()()12f x a x =-+单调递增,有a 22<,()22f x a ≤<,此时函数()2f x x ax =+-有最小值2,符合题意;②若1a =,()2f x =,22a=,此时函数()2f x x ax =+-有最小值2,符合题意;③若1a >,函数()()12f x a x =-+单调递减,有a 22>,()22f x a <≤,此时函数()2f x x ax =+-有最小值2a ,a22>,不合题意.综上可知,正实数a 的取值范围为(]0,1.故答案为:[)2,+∞;(]0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设全集U =R ,集合12644x A x ⎧⎫=≤≤⎨⎬⎩⎭,{}5B x x =>.(1)求U A B ð:(2)若集合{}Cx x a =>满足B C B = ,求实数a 的取值范围.【答案】(1){}|25U A B x x =-<≤ ð(2)5a ≤【解析】【分析】(1)求出集合A 、U B ð,再求交集可得答案;(2)根据B CB = 可得BC ⊆,求出a 的范围即可.【小问1详解】{}{}261264222264x x A x x x x -⎧⎫=≤≤=≤≤=-≤≤⎨⎬⎩⎭,{}|5U B x x =≤ð,所以{}|25U A B x x =-<≤ ð;【小问2详解】若B CB = ,则B ⊆,所以5a ≤,所以实数a 的取值范围为5a ≤.18.已知函数()222f x x x a =-+-,()x g x a =(0a >且1a ≠).(1)若函数()f x 在(],21m -∞-上单调递减,求实数m 的取值范围;(2)若()()20f g =.①求实数a 的值;②设()1t f x =,()2t g x =,当()0,1x ∈时,试比较1t ,2t 的大小.【答案】(1)(],1-∞(2)12t t <【解析】【分析】(1)根据二次函数的单调性求解即可;(2)根据两个函数在()0,1上的值域来比较较1t ,2t 的大小即可.【小问1详解】函数()222f x x x a =-+-,对称轴1x =,所以函数()f x 在(],1-∞上单调递减,在()1,+∞上单调递增,若函数()f x 在(],21m -∞-上单调递减,则211m -≤,1m £,故实数m 的取值范围为(],1-∞.【小问2详解】①()()20f g =,即20242=a a -+-,解得3a =;②当()0,1x ∈时,()()()212232=10,1x x t f x x =-+-∈=-,()()2=31,3x t g x =∈,所以121t t <<,即12t t <.19.已知某观光海域AB 段的长度为3百公里,一超级快艇在AB 段航行,经过多次试验得到其每小时航行费用Q (单位:万元)与速度v (单位:百公里/小时)(03v ≤≤)的以下数据:v0123Q 00.7 1.6 3.3为描述该超级块艇每小时航行费用Q 与速度v 的关系,现有以下两种函数模型供选择:32Q av bv cv =++,0.5v Q a =+.(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;(2)该超级快艇应以多大速度航行才能使AB 段的航行费用最少?并求出期少航行费用.【答案】(1)选择函数模型32Q av bv cv =++;()320.10.20.803Q v v v v =-+≤≤(2)该超级快艇应以1百公里/小时速度航行才能使AB 段的航行费用最少为2.1【解析】【分析】(1)对题中所给的函数解析式进行分析,对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式;(2)根据题意列出函数解析式,之后应用配方法求得最值,得到结果.【小问1详解】若选择函数模型0.5v Q a =+,则该函数在[]0,3v ∈上为单调减函数,这与实验数据相矛盾,所以不选择该函数模型.从而只能选择函数模型32Q av bv cv =++,由实验数据可得:0.7842 1.62793 3.3a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,得0.10.20.8a b c =⎧⎪=-⎨⎪=⎩,故所求函数解析式为()320.10.20.803Q v v v v =-+≤≤.【小问2详解】设超级快艇在AB 段的航行费为y (万元),则所需时间为3v(小时),其中03v ≤≤,结合(1)知()()23230.10.20.8v 0.317y v v v v ⎡⎤=-+=-+⎣⎦,所以当1v =时,y 取最小值为2.1所以当该超级快艇应以1百公里/小时速度航行才能使AB 段的航行费用最少为2.120.已知()42135x f x a ++=+(0a >且1a ≠).(1)求函数()y f x =的解析式,并写出函数()y f x =图象恒过的定点;(2)若()235f x a>+,求x 的取值范围.【答案】(1)()7235x f x a +=+,定点()7,8-;(2)见解析.【解析】【分析】(1)令21xt +=,可得出12t x -=,然后利用换元法可求出函数()y f x =的解析式,并利用指数等于零求出函数()y f x =图象所过定点的坐标;(2)由()235f x a>+,可得出722x a a +->,然后分01a <<和1a >两种情况讨论,利用函数x y a =的单调性可解出不等式722x a a +->.【详解】(1)令21x t +=,可得出12t x -=,()174223535t t f t a a -++∴=+=+,()7235x f x a +∴=+,令702x +=,得7x =-,且()07358f a -=+=,因此,函数()y f x =图象恒过的定点坐标为()7,8-;(2)由()235f x a >+,即7223355x a a++>+,可得722x a a +->.当01a <<时,函数x y a =是减函数,则有722x +<-,解得11x <-;当1a >时,函数x y a =是增函数,则有722x +>-,解得11x >-.【点睛】本题考查利用换元法求函数解析式,同时也考查了指数型函数图象过定点以及指数不等式的求解,一般在解指数不等式时,需要对底数的取值范围进行分类讨论,考查分析问题和解决问题的能力,属于中等题.21.已知二次函数()()2,f x x ax b a b =++∈R .(1)若()20f -=,且对于x ∈R ,()()11f x f x +=-恒成立,求a ,b 的值;(2)若函数()f x 的值域为[)1,+∞,关于x 的不等式()f x c <的解集为()(),8m m m +∈R ,求实数c 的值.【答案】(1)2a=-,8b =-(2)=17c 【解析】【分析】(1)根据条件得出关于,a b 的方程,解出即可;(2)先由顶点坐标得,a b 关系,则不等式化为2244a x ax c +++<,则,8m m +是对应方程的两根,结合韦达定理即可求.【小问1详解】由()()11f x f x +=-,得22(1)(1)1)1(()a b a bx x x x ++=+-+++-,解得2a =-由()20f -=,得()2420f a b -=-+=,则8b =-.【小问2详解】函数()f x 的值域为[)1,+∞,又其顶点坐标为24(,24a b a --,即2414b a -=,则244a b +=,不等式()f x c <可化为:2244a x ax c +++<,即22404a x ax c +++-<的解集为(),8m m +,即方程22404a x ax c +++-=的两根为12,8x m x m ==+,所以1221244x x a a x x c +=-⎧⎪⎨+⋅=-⎪⎩,可得22121212||()464x x x x x x -=+-⋅=,即224()4()644a a c +---=,解得=17c 22.设函数()()0,1x x f x a k a a a -=+⋅>≠是定义域为R 的奇函数.(1)求实数k 值;(2)若()10f <,试判断函数()f x 的单调性,并证明你的结论;(3)在(2)的条件下,不等式()()1192430x x f t f -+-+⋅++⋅<对任意实数x 均成立,求实数t 的取值范围.【答案】22.1k =-23.()f x 在R 上单调递减,证明见解析24.6t >-【解析】【分析】(1)由()00f =求得k 的值.(2)由()10f <求得a 的取值范围,利用函数单调性的定义证得()f x 在R 上单调递减.(3)根据函数的单调性、奇偶性化简不等式()()1192430x x f t f -+-+⋅++⋅<,利用分离常数法,结合二次函数的性质求得t 的取值范围.【小问1详解】由于()f x 是定义域为R 的奇函数,所以()010,1f k k =+==-,此时()x x f x a a -=-,()()x x f x a a f x --=-=-,满足()f x 是奇函数,所以1k =-.【小问2详解】由(1)得()()0,1x x f x a a a a -=->≠,若()()()2111110a a a f a a a a+--=-==<,则01a <<,所以()f x 是减函数,证明如下:任取12x x <,则()()()112212x x x x f x f x a a a a ---=---1221122111x x x x x x x x a a a a a a a a --=-+-=-+-()121212121211x x x x x x x x x x a a a a a a a a a a -⎛⎫=-+=-+ ⎪⎝⎭,由于12x x <,01a <<,所以1212,0x x x x a a a a >->,所以()()()()12120,f x f x f x f x ->>,所以()f x 在R 上单调递减.【小问3详解】由(1)得()()0,1x x f x a a a a -=->≠,()f x 是定义在R 上的奇函数,依题意,不等式()()1192430x x f t f -+-+⋅++⋅<恒成立,即()()119243x x f t f -+-+⋅+<-⋅恒成立,由(2)得()f x 在R 上单调递减,所以119243x x t -+-+⋅+>-⋅,1112143439322x x x x t -+-+-+-+-+=⋅--⋅>()211211122232333x x x x ++-+-+⎛⎫=-+=-+⋅ ⎪⎝⎭恒成立,令13,10,1x t x t +=+≥≥,则对于函数()221y t t t =+≥,函数在[)1,+∞上单调递增,最小值为21213+⨯=,所以()2113232x x ++-+⋅的最大值为236-´=-,所以6t >-.【点睛】根据奇函数的定义求参数,当奇函数在0x =处有定义时,必有()00f =,由这个方程求得参数后,要注意验证函数是否满足奇偶性的定义.求解二次项的函数的最值问题,可以考虑利用换元法,结合二次函数的性质来进行求解.。
浙江省金华市2023-2024学年高一上学期期中数学试题含解析
金华2023学年第一学期期中考试高一数学试题卷(答案在最后)一、单选题(本题共8小题,每小题5分,共40分)1.已知{}{}1,2,2,3P Q ==,若{},M x x P x Q =∈∉,则M =()A.{}1 B.{}2 C.{}3 D.{}1,2,3【答案】A 【解析】【分析】由集合M 中元素的特征,对元素进行判断.【详解】1P ∈且1Q ∉,则1M ∈;2P ∈且2Q ∈,则2M ∉,所以{}1M =.故选:A2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义即可求解.【详解】根据诗意,作者想表达的思想感情是“返回家乡”就一定要“攻破楼兰”,但是并没有表明“攻破楼兰”后就会“返回家乡”,所以“攻破楼兰”是“返回家乡”的必要不充分条件.故选:B.3.已知命题“R x ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是()A.}{1a a ≤-B.}{13a a -<<C.}{13a a -≤≤ D.}{31a a -<<【答案】B 【解析】【分析】由题意可得21Δ(1)4202a =--⨯⨯<,解不等式即可求出答案.【详解】因为命题“R x ∃∈,使212(1)02x a x +-+≤”是假命题,所以212(1)02x a x +-+>恒成立,所以21Δ(1)4202a =--⨯⨯<,解得13a -<<,故实数a 的取值范围是(1,3)-.故选:B .4.若函数()f x 和()g x 分别由下表给出,满足()()2g f x =的x 值是()x1234()f x 2341x1234()g x 2143A.1B.2C.3D.4【答案】D 【解析】【分析】从外到内逐步求值.【详解】由()()2g f x =,则()1f x =,则4x =.故选:D5.某同学到长城旅游,他租自行车由宾馆骑行前往长城,前进了a km ,觉得有点累,休息后沿原路返回b km (b a <).想起“不到长城非好汉”,便调转车头继续前进.则该同学离起点的距离s 与时间t 的图象大致为()A. B.C. D.【答案】C 【解析】【分析】根据该同学在行进过程中的前进方式的不同确定函数图象即可.【详解】第一段时间,该生骑车为直线方程形式,单调递增.第二段实际休息,此时距离起点的距离不变,此时休息期间为常数,然后原路返回,此时距离减小,为递减函数,然后调转车头继续前进,此时距离逐步增加,所以图象C 合适.故选:C .6.某食品加工厂生产某种食品,第一个月产量为100kg ,第二个月的增长率为a ,第三个月的增长率为b ,这两个月的平均增长率为x ,(a b x ,,均大于零),则()A.2a bx += B.2a b x +≤C.2a bx +>D.2a bx +≥【答案】B 【解析】【分析】计算出两种方式增长的第三年的产量,从而构建a b x ,,的等式,再利用基本不等式计算a b x ,,的不等关系.【详解】第二个月的增长率为a ,第三个月的增长率为b ,则第三个月的产量为()()1001+1kg a b +这两个月的平均增长率为x ,则第三个月的产量为()21001kg x +所以()()()21001+11001a b x +=+,计算可得1x +=11122a b a b++++≤=+所以2a bx +≤,当且仅当a b =时取得等号.故选:B.7.已知函数()f x 满足:()f x x ≥且()2,x f x x R ≥∈.A.若()f a b ≤,则a b≤ B.若()2b f a ≤,则a b≤C.若()f a b ≥,则a b ≥D.若()2b f a ≥,则a b≥【答案】B 【解析】【详解】可设2(0)(){2(0)x x x f x x -≥=<,则f (x )满足题意.易知(1)25=5,f =≤-但1>−5,排除A.(2)4|3|=3f ,=≥但2<3,排除C.(2)42=221,f -=≥-<,但排除D.故选B.8.用C (A )表示非空集合A 中的元素个数,定义A *B =()()()()()()()(),,C A C B C A C B C B C A C A C B ⎧-≥⎪⎨-<⎪⎩若A ={1,2},B ={x |(x 2+ax )·(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )等于()A.1B.3C.5D.7【答案】B 【解析】【分析】根据题意可得()1C B =或()3C B =,进而讨论a 的范围,确定出()C B ,最后得到答案.【详解】因为()2C A =,*1A B =,所以()1C B =或()3C B =,由20x ax +=,得120,x x a ==-,关于x 的方程220x ax ++=,当=0∆时,即a =±()3C B =,符合题意;当0>∆时,即a <-或a >0,-a 不是方程220x ax ++=的根,故()4C B =,不符合题意;当<0∆时,即a -<<时,方程220x ax ++=无实根,若a =0,则B ={0},()1C B =,符合题意,若0a -<<或0a <<,则()2C B =,不符合题意.所以{0,S =-,故()3C S =.故选:B .【点睛】对于新定义的问题,一定要读懂题意,一般理解起来不难,它一般和平常所学知识和方法有很大关联;另外当<0∆时,容易遗漏a =0时的情况,注意仔细分析题目.二、多选题(本题共4小题,每小题5分,共20分)9.下列结论正确的是()A.2log 42= B.lg101= C.3log 232= D.ln e 1-=【答案】ABC 【解析】【分析】根据对数的性质,逐项判断即可得出结果.【详解】根据对数的性质可知,2log 42=,lg101=,3log 232=,ln e 1-=-,故ABC 正确;D 错误.故选:ABC.10.下列命题中,正确的是()A.若22a bc c<,则a b <B.若ac bc >,则a b >C.若a b <,那么11a b>D .已知,a b c d <<,则a c b d+<+【答案】AD 【解析】【分析】根据不等式性质逐项判断,或取特值验证即可.【详解】A 选项:由22a b c c<可知0c ≠,所以20c >,故2222a b c c c c ⨯<⨯,即a b <,A 正确;B 选项:当0c <时,10c<,所以11ac bc c c ⨯<⨯,即a b <,B 错误;C 选项:取2,3a b =-=,满足a b <,但1123<-,即11a b <,C 错误;D 选项:由不等式可加性可知D 正确.故选:AD11.某食品的保鲜时间y (单位:小时)与储存温度x (单位:℃)满足函数关系e kx b y +=(e 2.718=⋅⋅⋅,k 、b 为常数).若该食品在0℃的保鲜时间是120小时,在20℃的保鲜时间是30小时,则()A.0k <B.储存温度越高保鲜时间越长C.在10℃的保鲜时间是60小时D.在30℃的保鲜时间是15小时【答案】ACD 【解析】【分析】由题意可知120e b =,202030e e e k b k b +==⨯,求得101e 2k=,进而可得0k <,可判断A ;利用单调性可判断B ;计算10e k b +可判断C ;计算30e k b +可判断D.【详解】对于A ,由题可知120e b =,202030e e e k b k b +==⨯,则201e 4k =,故101e 2k=,所以100k <,则0k <,A 正确;对于B ,由A 可知,y kx b =+在R 上是减函数,且e x y =在R 上是增函数,所以e kx b y +=在R 上是减函数,则储存温度越高保鲜时间越短,B 错误;对于C ,由A 可知,10101ee e 120602k bk b +=⨯=⨯=小时,C 正确;对于D ,由A 可知,330301e ee 120152k bkb+⎛⎫=⨯=⨯= ⎪⎝⎭小时,D 正确.故选:ACD.12.已知函数()f x 满足对任意,,()()2()2()x y f x y f x y f x f y ∈++-=+R 恒成立,则()A.(0)0f =B.(3)9(1)1f f =+C.64(1)(8)f f =- D.函数(3)f x -的图象关于直线3x =对称【答案】ACD 【解析】【分析】通过赋值法得到()()0,1f f 等的值,进而得到函数()f x 的性质,逐一判断即可【详解】对于A :令0x y ==,得(0)(0)2(0)2(0)f f f f +=+,则(0)0f =,所以A 正确;对于B :令1x y ==,则()()241f f =,令2,1x y ==,得()()()()312221f f f f +=+,即()()391f f =,所以B 错误;对于C :令0x =,得()()2()f y f y f y +-=,即()()f y f y =-,所以()f x 为偶函数,令2x y ==,得()()()()4042161f f f f +==,令4x y ==,得()()()()8044641f f f f +==,又()f x 为偶函数,所以()()()88641f f f -==,C 正确;对于D :由C 可知()f x 为偶函数,所以()3f x -为()f x 向右平移3个单位得到,此时关于直线3x =对称,D 正确,故选:ACD三、填空题(本题共4小题,每小题5分,共20分)13.若()2log 11x +=,则实数x 的值为________.【答案】1【解析】【分析】根据对数的运算可得解.【详解】由()2log 11x +=,可得()22log 1log 2x +=,12x ∴+=,解得1x =.故答案为:1.14.已知正实数x ,y 满足:11x y +=,则xy的最大值为______.【答案】14【解析】【分析】利用不等式()214ab a b ≤+,直接计算即可.【详解】2111144x x x y y y ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当112x y ==,即1,22x y ==时取得等号;故x y 的最大值为14;故答案为:14.15.若1a >,且不等式()40x a x a ⎛-⎫⎪⎝⎭-<的解集中有且仅有四个整数,则a 的取值范围是_______.【答案】(]4,5【解析】【分析】分类讨论求出含参一元二次不等式的解集,然后根据题意得到不等式组,进而求出结果.【详解】不等式()40x a x a ⎛-⎫ ⎪⎝⎭-<,当12a <<时,4a a <,不等式的解集为4,a a ⎛⎫ ⎪⎝⎭,若不等式解集中有且仅有四个整数,则这四个整数为2,3,4,5,则456a <≤,此时2435a ≤<,与12a <<矛盾;当2a =时,4a a=,不等式的解集为∅,不符合题意;当2a >时,42a a >>,不等式的解集为4,a a ⎛⎫ ⎪⎝⎭,若不等式解集中有且仅有四个整数,则这四个整数可能为2,3,4,5或1,2,3,4,当这四个整数为2,3,4,5时,则56a <≤且412a≤<,无解,当这四个整数为1,2,3,4时,则401a<<且45a <≤,解得45a <≤,综上可知,实数a 的取值范围是(]4,5.故答案为:(]4,5.16.已知∈a R ,函数()4f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是__________【答案】9-,2⎛⎤∞ ⎥⎝⎦【解析】【详解】[][]41,4,4,5x x x∈+∈,分类讨论:①当5a ≥时,()442f x a x a a x x x=--+=--,函数的最大值9245,2a a -=∴=,舍去;②当4a ≤时,()445f x x a a x x x=+-+=+≤,此时命题成立;③当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或4555a a a a a a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a <综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题利用基本不等式,由[]1,4x ∈,得[]44,5x x+∈,通过对解析式中绝对值符号的处理,进行有效的分类讨论:①5a ≥;②4a ≤;③45a <<,问题的难点在于对分界点的确认及讨论上,属于难题.解题时,应仔细对各种情况逐一进行讨论.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.设集合2{|320}A x x x =-+=,非空集合()22{|150}B x x a x a =+-+-=.(1)若{2}A B = ,求实数a 的值;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1)3a =-或1a =(2){}3a a =-【解析】【分析】(1)由2B ∈,代入后解方程并检验是否满足题意.(2)由A B A ⋃=得B A ⊆,再根据集合包含关系分类求解.【小问1详解】由题意得{}2320{1,2}A xx x =-+==∣,{2}A B ⋂= ,2B ∴∈222(1)250a a ∴+-⨯+-=即242250a a +-+-=化简得:2230a a +-=(3)(1)0a a +-=解得:3a =-或1a =,检验:当3a =-,{}{}24402B x x x =-+==,满足{2}A B = 当1a =,{}{}2402,2B x x =-==-,满足{2}A B = ,3a ∴=-或1a =【小问2详解】A B A ⋃=,故B A ⊆,①当B 为单元素集,则Δ0=,即()22(1)450a a ---=,得73a =或3a =-,当73a =,23B ⎧⎫=-⎨⎬⎩⎭不含题意,舍;当3a =-,{2}B A =⊆符合.②当B 为双元素集,则{,2}1B A ==,则有2121125aa +=-⎧⎨⨯=-⎩,无解,综上:实数a 的取值范围为{}3a a =-18.化简或计算下列各式:(1)411111336642263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)已知lg 2,lg 3a b ==,用a ,b 表示312log 5(3)已知11224a a-+=,求1a a --的值.【答案】(1)553124a b (2)311a b-+(3)±【解析】【分析】(1)由指数幂的运算性质直接求得答案;(2)利用对数的运算性质以及换底公式将312log 5化为lg 2和lg 3表示的形式,则答案可得;(3)先求114a a -+=,再求1122a a --=±,最后利用平方差公式求1a a --的结果.【小问1详解】()4111411111511533663264363421226263=43a b a b a b a b a b +-⎛⎫⎛⎫⎛⎫⨯--÷-= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭;【小问2详解】()3333333125345122512log log log log log log log 5=-=⨯-=+-10lglg lg 5lg lg 1lg 23lg 2lg 3lg 3lg 3lg 3lg 3lg 3lg 3222211212121-==-+-+-=+-=+,又lg 2,lg 3a b ==,所以31231log 15a b-=+;【小问3详解】211122242a a a a --⎛⎫== ++⎝⎭+⎪,所以114a a -+=,211122212a a a a --⎛⎫=+⎝-⎭-=⎪,所以1122a a --=±,111112222a a a a a a ---⎛⎫⎛⎫-=± ⎪+ ⎪⎝⎭=-⎭⎝.19.已知函数()()()12,2x f x g x x x a +=-=(1)解不等式()4xf x >;(2)求()f x 在区间[)1,-+∞上的值域;(3)对任意[)11,x ∈-+∞,总存在[)22,x ∈+∞,使得()()12f x g x =成立,求a 的取值范围【答案】(1)(,1)-∞(2)[1,)+∞(3)34a ≤【解析】【分析】(1)利用指数函数的单调性解不等式即可;(2)根据指数函数的单调性求值域;(3)由题意转化为()g x 的值域包含()f x 的值域,根据二次函数分类讨论求解即可.【小问1详解】由题意,()4xf x >,即可得124x x +>,即22x >,解得1x <,即不等式的解集为(,1)-∞.【小问2详解】因为()12x f x +=为增函数,所以[)1,x ∈-+∞时,110()221f x -+≥==,即函数的值域为[1,)+∞.【小问3详解】由(2)知,任意[)11,x ∈-+∞,总存在[)22,x ∈+∞,使得()()12f x g x =成立,即()g x 在[)2,+∞上的最小值min ()1g x ≤,对()()2g x x x a =-,①当20a =,即0a =时,2()g x x =在[)2,+∞上单调递增,故2min ()(2)241g x g ===≤不成立;②当20a <,即a<0时,()()2g x x x a =-在[)2,+∞上单调递增,故min ()(2)2(22)1g x g a ==-≤,解得34a ≥,又a<0,故无解;③当20a >,即0a >时,()()2g x x x a =-的对称轴2x a =≤时,()()2g x x x a =-在[)2,+∞上单调递增,故min ()(2)2(22)1g x g a ==-≤,解得34a ≥,故324a ≤≤,当对称轴2x a =>时,2min ()()(2)1g x g a a a a a ==-=-≤成立.综上,34a ≤.20.第19届亚运会2023年9月在杭州市举办,本届亚运会以“绿色、智能、节俭、文明”为办会理念,展示杭州生态之美、文化之韵,充分发挥国际重大赛事对城市发展的牵引作用,从而促进经济快速发展,筹备期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放当地市场,已知该种设备年固定研发成本为50万元,每生产一万台需另投入80万元,设该公司一年内生产该设备x 万台且全部售完.当020x <≤时,每万台的年销售收入(万元)与年产量x (万台)满足关系式:1802t x =-;当20x >时,每万台的年销售收入(万元)与年产量x (万台)满足关系式:2000900070. (1)t x x x =+-+(1)写出年利润y (万元)关于年产量x (万台)的函数解析式(利润=销售收入一成本);(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意,利用年销售收入减去固定成本及可变成本即可写出利润y (万元)关于年产量x (万台)的函数解析式.(2)利用二次函数的性质、基本不等式分别求出020x <≤、20x >上的最值,进而确定年利润最大时对应生产的台数及最大利润值.【小问1详解】由题意,当020x <≤时,年收入为(1802)x x -,当20x >时,年收入为2000900070(1)x x x x ⎛⎫+- ⎪+⎝⎭,故年利润为(1802)8050,0202000900070805020(1)x x x x y x x x x x x ---<≤⎧⎪=⎛⎫⎨+---> ⎪⎪+⎝⎭⎩,,即2210050,0209000101950201x x x y x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩,.【小问2详解】当020x <≤时,2210050y x x =-+-,由函数图象开口向下,对称轴方程为25x =可知函数单调递增,所以当20x =时,max 1150y =,当20x >时,9000900010195010(1)196021960136011y x x x x ⎡⎤=--+=-+++≤-=⎢++⎣⎦,当且仅当900010(1)1x x +=+时,即29x =时等号成立,因为13601150>,所以当年产量为29万台时,该公司获得年利润最大为1360万元.21.已知幂函数()()212m f x m m x +=-为偶函数.(1)求函数()f x 的解析式.(2)设函数()()()()211g x qf f x q f x ⎡⎤+-⎣⎦=-+,问是否存在实数()0q q <,使得()g x 在区间(],4-∞-上是减函数,且在区间()4,0-上是增函数?若存在,请求出q ;若不存在,请说明理由.【答案】(1)()2f x x=(2)存在,130q =-【解析】【分析】(1)直接根据幂函数的定义结合奇偶性即可得结果;(2)把()f x 作为一个整体,(],4x ∈-∞-时,()[)16,f x ∈+∞,()4,0x ∈-时,()()0,16f x ∈,结合二次函数的单调性可得q 的值.【小问1详解】因为()()212m f x m m x +=-为幂函数,所以221m m -=,解得1m =或12m =-,又因为()()212m f x m m x +=-为偶函数,所以1m =,所以函数()f x 的解析式为()2f x x =.【小问2详解】存在,理由如下:由(1)知()()()()()()()2211211g x qf f x q f x qfx q f x =-+-+=-+-⎡⎣⎦+⎤.由于()20f x x =≥,因而当(],4x ∈-∞-时,()[)216,f x x =∈+∞,此时,函数()g x 单调递减,而函数()t f x =在(],4-∞-上单调递减,则外层函数()2211y qt q t =-+-+在[)16,+∞上单调递增;当()4,0x ∈-时,()()20,16f x x =∈,此时,函数()g x 单调递增,而函数()t f x =在上()4,0-单调递减,则外层函数()2211y qt q t =-+-+在()0,16上单调递减.所以211620q q q -⎧-=⎪-⎨⎪->⎩,即130q =-.所以存在130q =-满足题设条件.22.已知函数()221f x x x ax =--+,(a ∈R ,a 为常数).(1)讨论函数()y f x =的奇偶性;(2)若函数()y f x =有3个零点,求实数a 的取值范围;(3)记()()f xg x x =,若()y g x =与2y =在()0,∞+有两个互异的交点12,x x ,且12x x >,求证:21432x x a -<-.【答案】(1)见解析(2)10a -<<或01a <<(3)见解析【解析】【分析】(1)利用奇偶函数的定义分析讨论即可;(2)分类讨论11x -<<,1x ≤-或1x ≥时,()f x 的大致图象,结合图象即可得解;(3)分类讨论01x <<与1x ≥时,()g x 的大致图象,从而得到2101,1x x <<>,22122x a x -+=,112a x -+=,从而利用分析法将问题一路转化为证()()22224110x x +-<,由此得解.【小问1详解】(1)()221f x x x ax =--+,定义域为R ,关于原点对称,又()()()22221()1f x x x a x x x ax -=----+-=---,故当0a =时,()()f x f x -=,函数()f x 为偶函数,当0a ≠时,()(),()()f x f x f x f x -≠-≠-,故函数为非奇非偶函数.【小问2详解】因为()221f x x x ax =--+,当210x -<,即11x -<<时,()221f x x ax =-++,此时()f x 开口向下,对称轴为4a x =,且()01f =,当210x -≥,即1x ≤-或1x ≥时,()1f x ax =-,所以当0a >时,()1f x ax =-在(],1-∞-,[)1,+∞上单调递增,且()11f a =-,()11f a -=--,则()f x 的图象如下:显然,当()110f a =-<,即01a <<时,()f x 有3个零点;当a<0时,()1f x ax =-在(],1-∞-,[)1,+∞上单调递减,且()11f a =-,()11f a -=--,则()f x的图象如下:显然,当()110f a -=--<,即10a -<<时,()f x 有3个零点;当0a =时,()221f x x x =--为偶函数,其零点个数必为偶数,不满足题意;综上:10a -<<或01a <<.【小问3详解】因为()221f x x x ax =--+,所以当01x <<时,()212f x x ax =-+,则()()12f x g x x a x x==-+,易知()g x 在()0,1上单调递减,当1x ≥时,()1f x ax =-+,则()()1f x g x a x x==-+,易知()g x 在[)1,+∞上单调递增,因为()y g x =与2y =在()0,∞+有两个互异的交点12,x x ,所以()y g x =与2y =在()0,1与[)1,+∞各有且只有一个交点,又12x x >,所以2101,1x x <<>,且22122x a x -+=,112a x -+=,则22122a x x -=-,112a x -=,故221112x x x -=,即2221211x x x -=,则212221x x x =-,要证21432x x a -<-,即证21221432x x x x -<-,即证2121230x x x +-<,只需证22222312021x x x x +-<-,即证()222222222212130x x x x -+--<,即证42224310x x --<,即证()()22224110x x +-<,因为201x <<,所以2201x <<,则2222410,10x x +>-<,所以()()22224110x x +-<显然成立,证毕.【点睛】关键点睛:本题第3小问解决的关键是熟练掌握基本初等函数的大致图象,结合图象得到22122x a x -+=,112a x -+=,从而利用分析法将问题转化为单变量不等式,由此得解.。
贵州省六盘水市纽绅中学2024-2025学年高一上学期11月期中考试数学试题(含解析)
六盘水市纽绅中学2024~2025学年度高一(上)期中考试数学试卷考生注意:1.满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色.墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本卷命题范围:人教A 版必修第一册第一章~第三章3.2。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合的真子集的个数为A.4B.6C.7D.82.命题“,”的否定是A.,B.,C.,D.,3.已知,下列不等式错误的是A. B. C. D.4.已知函数,则A.6B.1C.0D.-35.函数的图象为AB C D 6.下列各组函数是同一函数的是①与;②与;{}2,0,3-x ∀∈R 240x x -+=x ∀∈R 240x x -+≠x ∀∈R 240x x -+>x ∃∈R 240x x -+<x ∃∈R 240x x -+≠0a b <<11a b <a c b c +<+2a ab <22ac bc ≤()()21,02,0f x x f x x x x ⎧+≤=⎨-+>⎩()()3f f -=()21f x x x=+()1f x x =+()1,11,1x x g x x x +>-⎧=⎨--<-⎩()f x =()g x =③与;④与.A.①②B.②④C.③④D.①④7.已知函数是上的减函数,则实数的取值范围是A. B. C. D.8.已知,,且,则的最小值是A.18 B.16C.15D.10二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的四个选项中,有多项符合要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
2022-2023学年度高一数学上学期期中考试卷(含答案)
2022-2023学年度高一数学上学期期中考试卷(含答案)考试范围:第一章——第三章;考试时间:150分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、单选题(每题5分)1.设全集U={1,3,5,7,9},集合A={1,|a -5|,9},∁U A={5,7},则a 的值是( )A.2B.8C.-2或8D.2或82.设p :-1≤x<2,q :x<a ,若q 是p 的必要条件,则a 的取值范围是( )A.a ≤-1B.a ≤-1或a ≥2C.a ≥2D.-1≤a<23.已知函数f (x )={2-x 2,x ≤1,x 2+2x -2,x >1,则f (2f (2))的值为( ) A.7136 B.6 C.74 D.179 4.关于命题p :“∀x ∈R ,x 2+1≠0”的叙述正确的是( )A.p 的否定:∃x ∈R ,x 2+1≠0B.p 的否定:∀x ∈R ,x 2+1=0C.p 是真命题,p 的否定是假命题D.p 是假命题,p 的否定是真命题5.下列函数中,既是偶函数,又在区间(0,+∞)内单调递减的函数是( )A.y=x -2B.y=x -1C.y=x 2D.y=x 136.已知函数f (x -1)是定义在R 上的奇函数,若对于任意两个实数x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则不等式f (x+3)<0的解集为( )A.(-∞,-3)B.(4,+∞)C.(-∞,1)D.(-∞,-4)7.若对x >0,y >0有(x +2y )()≥m 恒成立,则m 的取值范围是( )A .m ≤8B .m >8C .m <0D .m ≤48.已知0<a <1,关于x 的不等式(x ﹣a )(x ﹣)>0的解集为( ) A .{x |x <a 或x >} B .{a |x >a } C .{x |x <或x >a } D .{x |x <} 二、多选题(每题5分)9.下列函数是偶函数,且在区间(0,1)内单调递增的是( )A.y=|x|B.y=1-x 2C.y=-1xD.y=2x 2+4 10.已知2<x<3,2<y<3,则( )A.6<2x+y<9B.2<2x -y<3C.-1<x -y<1D.4<xy<911.下列式子中,可以是x2<1的充分条件的为( )A.x<1B.0<x<1C.-1<x<1D.-1<x<012.已知f (x )为区间(-∞,+∞)上的减函数,且a ∈(0,+∞),则( )A.f (a )>f (2a )B.f (a 2)<f (a )C.f (a 2+1)<f (a )D.f (a 2+a )<f (a )三、填空题(共4题,每题5分)13.已知函数⎪⎩⎪⎨⎧<+-≥=2,522,)(2x x x x x x f ,则=))1((f f . 14.已知函数43)(2++-=x x x f )(x f y =的定义域为 .15.A ={x |x 2﹣2x ﹣3=0},B ={x |ax =1},若B ⊆A ,则实数a 的值构成的集合M =16.已知a ,b ∈R +,且a +b ++=5,则a +b 的取值范围是 .四、解答题(共70分,17题10分,其他每题12分)17. 已知集合A ={2,x ,y },B ={2x ,2,y 2},且A =B ,求x ,y 的值.18.已知非空集合P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}.(1)若a=3,求(∁R P)∩Q;(2)若“x∈P”是“x∈Q”的充分不必要条件,求实数a的取值范围.19.已知不等式ax2−3x+6>4的解集为{x|x<1或x>b}.(1)求a,b的值;(2)m为何值时,ax2+mx+3≥0的解集为R.(3)解不等式ax2−(ac+b)x+bc <0.20.某商城欲在国庆期间对某新上市商品开展促销活动,经测算该商品的销售量a万件与促销费用x万元满足ax+20a=40x+755,已知a万件该商品的进价成本为100+30a万元,商品的销元/件.售价定为50+300a(1)将该商品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?21.已知函数f(x)=x+2a.x(1)若a=2,证明:函数f(x)在[2,+∞)上单调递增;(2)在满足(1)的条件下,解不等式f(t2+2)+f(-2t2+4t-5)<0.22.李庄村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度每度0.5元,超过30度时,超过部分按每度0.6元.方案二:不收管理费,每度0.58元.L x元与用电量x(度)间的函数关系(1)求方案一收费()(2)李刚家月用电量在什么范围时,选择方案一比选择方案二更好参考答案一、单选题(每题5分)DCDCADAA二、多选题(每题5分)ADACDBCDACD三、填空题(共4题,每题5分)答案:2 [-1,4] {﹣1,0,} [1,4]四、解答题(共70分,17题10分,其他每题12分)17.x =0,y =1或x =14,y =12.18.(1)(∁R P )∩Q ={x |-2≤x <4}.(2)实数a 的取值范围为{a |0≤a ≤2}.19.{a =1,b =2.(2)R; (3)当c >2时,原不等式的解集为{x|2<x <c};当c <2时,原不等式的解集为{x|c <x <2};当c =2时,原不等式的解集为⌀.20(1)1000−900x+20−x,(x >0);(2)促销费用投入10万元时,商家的利润最大,最大利润为960万元.21.1.解:(1)证明:当a=2时,函数f (x )=x+4x .任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)(x 1x 2-4)x 1x 2.因为x 1,x 2∈[2,+∞),且x 1<x 2,所以x 1-x 2<0,x 1x 2-4>0,x 1x 2>0,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )在[2,+∞)上单调递增.(2)由(1)可知,f(x)=x+4x ,则其定义域为(-∞,0)∪(0,+∞),关于原点对称,又f(-x)=-x-4x=-f(x),所以函数f(x)为奇函数,则不等式f(t2+2)+f(-2t2+4t-5)<0可变形为f(t2+2)<-f(-2t2+4t-5)=f(2t2-4t+5).因为t2+2≥2,2t2-4t+5=2(t-1)2+3≥3,且函数f(x)在[2,+∞)上单调递增,所以t2+2<2t2-4t+5,即t2-4t+3>0,解得t<1或t>3,故不等式的解集为(-∞,1)∪(3,+∞).22.。
江西省南昌市进贤县第二中学2024-2025学年高一上学期期中考试数学试题(含答案)
2024-2025学年高一上学期数学期中考试一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合,若,则( )A .1B .2C .1或4D .42.已知函数的值域为( )A .B .C .D .3.“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数的定义域为,则函数)A .B .C .D .5.你见过古人眼中的烟花吗?那是朱淑真元宵夜的“火树银花触目红”,是隋炀帝眼中的“灯树千光照,花焰七枝开”.烟花,虽然是没有根的花,是虚幻的花,却在达到最高点时爆裂用其灿烂的一秒换来人们真心的喝彩.已知某种烟花距地面的高度(单位:米)与时间(单位:秒)之间的关系式为,则烟花在冲击后爆裂的时刻是( )A .第4秒B .第5秒C .第6秒D .第7秒6.设,则的大小顺序是()A .B .C .D .7.已知函数,则( )A .-2B.-1C .0D .18.已知函数的定义域为,且,当时,,则不等式的解集为( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得部分分,有选错的得0分。
{}22,1,24A a a a =--+3A ∈a =()2f x x =+()f x (),8-∞-(],8-∞[)4,+∞[)6,+∞0a b +=22a b =()1f x +[]0,4()g x =[]1,3[)1,2()0,2[]1,7-h 2330h t t =-+P Q R ===,,P Q R Q R P>>Q P R >>P R Q >>P Q R >>()()()21,012,0x x f x f x f x x +≤⎧=⎨--->⎩()2f =()f x ()()()R,33,63f x f x f -=+=(]12,,3x x ∀∈-∞12x x ≠()()12120f x f x x x ->-()263f x x x +->{}17x x x <->或{}17x x -<<{}06x x x <>或{}06x x <<9.下列说法正确的有( )A .若是幂函数,则或3B .与C .已知函数,则D .函数的值域为10.若函数满足关系式,则下列结论正确的是( )A .B .C .D .11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:,其中表示不超过x 的最大整数,例如:.令函数,则下列说法正确的是( )A .B .是奇函数C .的最小值为0,没有最大值D .三、填空题12.已知函数是偶函数,则实数_________.13.命题“”为假命题,则实数的取值范围为_________.14.已知函数是定义在的单调函数,且对于任意的,都有,则_________.四、解答题:本题共5小题,共77分。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y
f
x 的图象与直线 y
3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x
4 3
有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M
1 3
t,
N
1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y
x
1 2
p
2
p
3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p
.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f
x
11x1x1
, ,
0 x1
. x 1
(1)当 0
a
log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
高一(上)期中数学试卷(含答案)
一、单选题。
(本大题共8小题,共40高一(上)期中数学试卷分。
在每小题列出的选项中,选出符合题目的一项) 1.(5分)已知集合2{|230A x x x =−−<,}x Z ∈,则A 的真子集共有个( ) A .3B .4C .7D .82.(5分)已知条件:|4|6p x − ,条件:1q x m + ,若p 是q 的充分不必要条件,则m 的取值范围是( ) A .(−∞,1]−B .(−∞,9]C .[1,9]D .[9,)+∞3.(5分)已知a ,b ,c R ∈,那么下列命题中正确的是( ) A .若a b >,则ac bc > B .若a bc c>,则a b > C .若a b >且0ab <,则11a b> D .若22a b >且0ab >,则11a b> 4.(5分)下列式子成立的是( ) A.=B.=C.D.=5.(5分)命题“存在x R ∈,使220x x m ++ ”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是( ) A .0B .1C .2D .36.(5分)若()f x 是幂函数,且满足(4)3(2)f f =,则1()4f 等于( ) A .9B .9−C .19D .19−7.(5分)若关于x 的不等式0ax b −>的解集为{|1}x x <,则关于x 的不等式02ax bx +>−的解集为( )A .{|2x x <−或1}x >B .{|12}x x <<C .{|1x x <−或2}x >D .{|12}x x −<<8.(5分)已知函数3()f x x x =+,对任意的[2m ∈−,2],(2)()0f mx f x −+<恒成立,则x 的取值范围为( )A .(1,3)−B .(2,1)−C .2(0,)3D .2(2,)3−二、多选题。
安徽省六安2023-2024学年高一上学期期中考试数学试题含解析
六安2023年秋学期高一年级期中考试数学试卷(答案在最后)满分:150分时间:120分钟一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.命题“1x ∀>,20x x ->”的否定是()A.1x ∃≤,20x x ->B.1x ∀>,20x x -≤C.1x ∃>,20x x -≤D.1x ∀≤,20x x ->【答案】C 【解析】【分析】根据全称量词命题的否定为存在量词命题即可得解.【详解】因为全称量词命题的否定为存在量词命题,所以命题“1x ∀>,20x x ->”的否定是1x ∃>,20x x -≤.故选:C.2.若12162x A x ⎧⎫=≤≤⎨⎬⎩⎭,501x B x x ⎧⎫-=≥⎨⎬-⎩⎭,则()R A B =I ð()A.{}14x x <≤ B.{}14x x ≤< C.{}14x x << D.{}14x x ≤≤【答案】D 【解析】【分析】分别解指数不等式和分式不等式求出集合A 与集合B ,再由补集和交集知识进行求解即可.【详解】由12162x ≤≤,得14222x -≤≤,∵2x y =在R 上单调递增,∴解得14x -≤≤,∴{}1216142x A xx x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,又∵501x x -≥-()()51010x x x ⎧--≥⇔⎨-≠⎩,解得1x <或5x ≥,∴501x B x x ⎧⎫-=≥⎨⎬-⎩⎭{1x x =<或}5x ≥,∴{}15B x x =≤<R ð,又∵{}14A x x =-≤≤,∴(){}14A B x x ⋂=≤≤R ð.故选:D.3.已知p :12a >,q :指数函数()()32xf x a =-是增函数,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件【答案】C 【解析】【分析】求出命题q 中a 的范围,判断两个命题间的充分性与必要性即可.【详解】因为指数函数()()32xf x a =-是增函数,所以3211a a ->⇒>,又p :12a >,所以p 是q 的必要不充分条件,故选:C4.若0.62a =,30.6b =,0.63c =,则它们的大小关系是()A.c a b >>B.c b a>> C.a c b>> D.b a c>>【答案】A 【解析】【分析】利用函数0.6y x =和0.6x y =的单调性即可比较.【详解】因为0.6y x =在()0,∞+上单调递增,所以0.60.60.6123<<,即1c a >>又0.6x y =在R 上单调递减,所以300.60.6<,即1b <,综上,c a b >>.故选:A5.若,x y 满足0,0,3x y xy x y >>=+,则3x y +的最小值为()A.10+B.10+C.12D.16【答案】D 【解析】【分析】利用乘“1”法即可得到答案.【详解】因为3xy x y =+,0,0x y >>,两边同除xy 得131x y+=,所以()133********y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+⎪ ⎪⎝⎭⎝⎭.当且仅当4x y ==时等号成立,故选:D .6.已知函数()x f x a b =+的图象如图所示,则函数()()()g x x a x b =--的大致图象为()A. B.C. D.【答案】A 【解析】【分析】根据指数函数的图象与性质结合函数()x f x a b =+的图象可求得,a b 的范围,再根据二次函数的图象即可得解.【详解】函数()x f x a b =+的图象是由函数x y a =的图象向下或向上平移b 个单位得到的,由函数()x f x a b =+的图象可得函数为单调递减函数,则01a <<,令0x =得()11,0b +∈-,则()2,1b ∈--,则函数()()()g x x a x b =--的大致图象为A 选项.故选:A .7.设定义在()2,2-上的函数()2112x f x x +=-,则使得()()121f x f x +>-成立的实数x 的取值范围是()A.1,02⎛⎫-⎪⎝⎭B.1,12⎛⎫-⎪⎝⎭C.()0,1 D.()0,2【答案】C 【解析】【分析】利用函数的单调性和奇偶性解不等式即可.【详解】()()()211=2x f x x x f -+=---,且定义域是()2,2-,所以()f x 为偶函数,且2112,x y x y +=-=在()0,2均为增函数,所以()f x 在()0,2为增函数,且()f x 为偶函数,所以()()121f x f x +>-,即1212122212x x x x ⎧+>-⎪-<+<⎨⎪-<-<⎩,解得01x <<.故选:C8.已知函数()f x 满足()()()1f x y f x f y +=++(,R x y ∈),当0x >时,()10f x +>且()12f =,若当[]1,3x ∈时,()()221f ax x f x ++<有解,则实数a 的取值范围为()A.9,4⎛⎫-∞- ⎪⎝⎭B.8,9⎛⎫-∞- ⎪⎝⎭C.(),2-∞- D.82,9⎛⎫--⎪⎝⎭【答案】B 【解析】【分析】证明函数单调递增,变换得到()()231f ax x f +<,根据单调性得到231ax x +<,计算函数最值得到答案.【详解】设12x x <,故()2110f x x -+>,则()()()()()2121112110f x f x f x x x f x f x x -=-+-=-+>,函数单调递增,()()221f ax x f x ++<,即()222f ax x x ++<,即()()231f ax x f +<,即231ax x +<在[]1,3x ∈有解,即221313924a x x x ⎛⎫<-=-- ⎪⎝⎭,2max1398249x ⎧⎫⎪⎪⎛⎫--=-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,故8,9a ⎛⎫∈-∞- ⎪⎝⎭.故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤-或}4x ≥,则下列说法正确的是()A.0a >B.不等式0bx c +>的解集为{}4x x <-C.不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭D.0a b c ++>【答案】AC 【解析】【分析】由题意可得3,4-是方程20ax bx c ++=的两个根,且0a >,然后利用根与系数的关系表示出,b c ,再逐个分析判断即可.【详解】关于x 的不等式20ax bx c ++≥的解集为(][),34,-∞-⋃+∞,所以二次函数2y ax bx c =++的开口方向向上,即0a >,故A 正确;且方程20ax bx c ++=的两根为-3、4,由韦达定理得3434bac a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得12b a c a =-⎧⎨=-⎩.对于B ,0120bx c ax a +>⇔-->,由于0a >,所以12x <-,所以不等式0bx c +>的解集为{}12x x <-,故B 不正确;对于C ,因为12b ac a=-⎧⎨=-⎩,所以20cx bx a -+<,即2120ax ax a -++<,所以21210x x -->,解得14x <-或13x >,所以不等式20cx bx a -+<的解集为{14x x <-或13x ⎫>⎬⎭,故C 正确;对于D ,12120a b c a a a a ++=--=-<,故D 不正确.故选:AC .10.以下从M 到N 的对应关系表示函数的是()A.R M =,R N =,1:f x y x→=B.R M =,{}0N y y =≥,:f x y x →=C.{}0M x x =>,R N =,:f x y →=D.*{|2,N }M x x x =≥∈*{|0,N },N y y y =≥∈2:22f x y x x →=-+【答案】BD 【解析】【分析】判断从M 到N 的对应关系是否表示函数,主要是判断集合M 中的每一个元素在集合N 中是否都有唯一的元素与之对应即可.【详解】对于A 选项,因0,M ∈而0没有倒数,故A 项错误;对于B 选项,因任意实数的绝对值都是非负数,即集合M 中的每一个元素在集合N 中都有唯一的元素与之对应,故B 项正确;对于C 选项,因每个正数的平方根都有两个,即集合M 中的每个元素在集合N 中都有两个元素与之对应,故C 项错误;对于D 选项,因2222(1)1,y x x x =-+=-+当*2,N x x ≥∈时,即有*,2,N y y ∈≥且每个x 对应唯一的y 值,故必有y N ∈成立,故D 项正确.故选:BD.11.已知函数()33f x x =--,下列说法正确的是()A.()f x 定义域为[)(]3,00,3-B.()f x 在(]0,3上单调递增C.()f x 为奇函数D.()f x 值城为()3,3-【答案】ABC 【解析】【分析】根据函数的性质逐个判定即可.【详解】对于A :函数定义域需满足290330x x ⎧-≥⎪⎨--≠⎪⎩,解得[)(]3,00,3x -∈ ,A 正确;对于B :当(]0,3x ∈时()f x ====,在(]0,3单调递减,所以()f x 在(]0,3内单调递增,B 正确;对于C :由A 知函数定义域为[)(]3,00,3- ,所以()f x ==,所以()()f x f x x-==-,所以()f x 为奇函数,C 正确;对于D :由B 知()f x 在(]0,3内单调递增,所以(]0,3x ∈时()(],0f x ∈-∞,又由C 知()f x 为奇函数,所以[)3,0x ∈-时()[)0,f x ∈+∞,所以()f x 得值域为(),-∞+∞,D 错误,故选:ABC12.一般地,若函数()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若函数()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.下列结论正确的是()A.函数()922f x x=-不存在跟随区间B.若[]1,a 为()222f x x x =-+的跟随区间,则2a =C.二次函数()22f x x x =-+存在“3倍跟随区间”D.若函数()f x m =-存在跟随区间,则1,04m ⎡⎤∈-⎢⎥⎣⎦【答案】BC 【解析】【分析】根据“跟随区间”的定义对选项逐一分析,根据函数的单调性、值域等知识确定正确答案.【详解】对于A 选项,由题,因为函数()922f x x=-在区间(),0∞-与()0,∞+上均为增函数,若()922f x x =-存在跟随区间[],a b 则有922922a ab b ⎧=-⎪⎪⎨⎪=-⎪⎩,即,a b 为922x x =-的两根.即22940x x -+=的根,故1,42a b ==,故A 错误.对于B 选项,若[]1,a 为()222f x x x =-+的跟随区间,因为()222f x x x =-+在区间[]1,a 为增函数,故其值域为21,22a a ⎡⎤-+⎣⎦,根据题意有222a a a -+=,解得1a =或2a =,因为1a >故2a =,故B 正确.对于C 选项,若()22f x x x =-+存在“3倍跟随区间”,则可设定义域为[],a b ,值域为[]3,3a b ,当1a b <≤时,易得()22f x x x =-+在区间上单调递增,此时易得,a b 为方程232x x x =-+的两根,求解得=1x -或0x =.故定义域[]1,0-,则值域为[]3,0-.故C 正确.对于D 选项,若函数()f x m =-存在跟随区间[],a b ,因为()f x m =-为减函数,故由跟随区间的定义可知b m a b a m ⎧=-⎪⇒-=⎨=-⎪⎩即()()11a b a b a b -=+-+=-(,因为a b <1=.易得01≤<.所以(1a m m ==--,令t =[]()0,1t ∈代入化简可得20t t m --=,同理t =也满足20t t m --=,即20t t m --=在区间[]0,1上有两不相等的实数根.故1400m m +>⎧⎨-≥⎩,解得1,04m ⎛⎤∈- ⎥⎝⎦,故D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.)2232711644-⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭________.【答案】13【解析】【分析】根据题意,由指数幂的运算,即可得到结果.【详解】原式2332345194134⨯⎛⎫=⨯+-=+= ⎪⎝⎭.故答案为:1314.已知函数()f x 的定义域为()1,3,则函数()3g x -=的定义域为________.【答案】()5,6【解析】【分析】根据复合函数的定义域的性质求解即可.【详解】因为()f x 的定义域为()1,3,所以()3f x -满足13346x x <-<⇒<<,又函数()3g x -=有意义,所以505x x ->⇒>,所以函数()3g x -=的定义域为()5,6,故答案为:()5,615.已知)132fx +=++,则()f x 的解析式为________.【答案】()2354f x x x =-+,1x ≥【解析】【分析】换元法求解表达式,第一步令括号内的表达式为t ,第二步将表达式中的x 换成t 即可.【详解】)132f x +=++的定义域为[)0,∞+.令1,1t t =≥,则2(1)x t =-,所以,由)132fx +=++得()23(1)2,1f t t t =-++≥,即()2354,1f t t t t =-+≥.于是()2354,1f x x x x =-+≥.故答案为:()2354,1f x x x x =-+≥.16.已知函数()f x x x a =-,当[]0,1x ∈时()f x 的最大值为3,则实数a 的值为________.【答案】2-或4【解析】【分析】化简()f x x x a =-解析式为分段函数形式,讨论0a ≤时,结合最大值求得a 的值;0a >时,数形结合,讨论12a ≥和1122a a +<£以及112a <,确定函数在何处取得最值,求得a 的值,综合可得答案.【详解】由题意知函数的定义域为R ,()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a ≤时,由[]0,1x ∈得()()2224a a f x x x a x ⎛⎫=-=--⎪⎝⎭,所以当1x =时,()max 13,2f x a a =-=∴=-,当0a >时,()f x 的图象如图所示,当12a≥,即2a ≥时,()f x 在[0,1]上单调递增,所以()f x 函数在[0,1]上的最大值为(1)13,4f a a =-=∴=,当1122a a <£,即22a ≤<时,()f x 在[0,1]上的图象在2a x =处达到最高点,所以()f x 在[0,1]上的最大值为2(324a a f ==,不符合题意;当112a <,即02a <<-时,()f x 在[0,1]上的图象在1x =处达到最高点,所以()f x 在[0,1]上的最大值为(1)13,2f a a =-==-,不符合题意,故a 的值为2-或4,故答案为:2-或4四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设集合U =R ,{}03A x x =≤≤,{}21,R B x m x m m =≤≤+∈.(1)2m =,求A B ⋃;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.【答案】(1){}05A B x x ⋃=≤≤(2)()[],10,1-∞-⋃【解析】【分析】(1)根据集合的并集运算求解即可.(2)根据命题间的充分不必要关系转化为集合间的包含关系,进而求出参数取值范围.【小问1详解】当2m =时,{}25B x x =≤≤,因为{}03A x x =≤≤,所以{}05A B x x ⋃=≤≤【小问2详解】由题意“x B ∈”是“x A ∈”的充分不必要条件得B AÜ①若B =∅,则21m m >+,解得1m <-;②若B ≠∅,则21m m ≤+,解得1m ≥-;B A Ü,∴0213m m ≥⎧⎨+<⎩或0213m m >⎧⎨+≤⎩,∴01m ≤≤综合①②得:m 的取值范围是()[],10,1-∞-⋃.18.已知幂函数()()233af a a x x =-+为偶函数,a ∈R .(1)求()f x 的解析式;(2)若函数()g x 是定义在R 上的奇函数,当0x >时,()()1g x f x x =++,求函数()g x 的解析式.【答案】(1)()2f x x=(2)()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩【解析】【分析】(1)根据题意,由幂函数的定义,列出方程,即可得到结果;(2)根据题意,由函数的奇偶性求解函数解析式,即可得到结果.【小问1详解】()f x 为幂函数,∴2331a a -+=,解得1a =或2a =,又()f x 为偶函数,∴2a =,∴()2f x x =.【小问2详解】由(1)得,当0x >时,()21g x x x =++①当0x =时,()0g x =;②当0x <时,0x ->;∴()()()2211g x x x x x -=-+-+=-+,∴()()21g x g x x x =--=-+-综上得()221,00,01,0x x x g x x x x x ⎧++>⎪==⎨⎪-+-<⎩19.已知二次函数()f x 是R 上的偶函数,且()04f =,()15f =.(1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[)2,+∞上单调递增;(2)当0a >时,解关于x 的不等式()()()21212f x a x a x <-+++.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)待定系数法求的()f x ,应用定义法证明函数的单调性;(2)分类讨论两根的大小关系即可求解.【小问1详解】设()2f x ax bx c =++,(0a ≠)()f x 为偶函数,∴0b =.()04f =,∴4c =,∴()24f x ax =+又()15f =,∴1a =,∴()24f x x =+,∴()244x g x x x x+==+.证明:[)12,2,x x ∀∈+∞,且12x x <,()()12121244g x g x x x x x ⎛⎫-=+-+ ⎪⎝⎭()()1212124x x x x x x --=[)12,2,x x ∈+∞,且12x x <,∴120x x -<,1240x x ->,120x x >∴()()120g x g x -<,∴()()12g x g x <∴()g x 在[)2,+∞上单调递增.【小问2详解】()()2241212x a x a x +<-+++整理得:()22120ax a x -++<,因式分解得()()120ax x --<当0a >,方程()()120ax x --=的两根为1a 和2,且1122aaa--=.①当102a <<时,12a >,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭②当12a =时,12a =,原不等式的解集为∅③12a >时,12a <,原不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭综上:当102a <<时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭当12a =时,不等式的解集为∅当12a >时,不等式的解集为12x x a ⎧⎫<<⎨⎬⎩⎭.20.天气转冷,宁波某暖手宝厂商为扩大销量,拟进行促销活动.根据前期调研,获得该产品的销售量a 万件与投入的促销费用x 万元(0x ≥)满足关系式91ka x =-+(k 为常数),而如果不搞促销活动,该产品的销售量为6万件.已知该产品每一万件需要投入成本20万元,厂家将每件产品的销售价格定为432a ⎛⎫+ ⎪⎝⎭元,设该产品的利润为y 万元.(注:利润=销售收入-投入成本-促销费用)(1)求出k 的值,并将y 表示为x 的函数;(2)促销费用为多少万元时,该产品的利润最大?此时最大利润为多少?【答案】(1)3k =,361121y x x =--+,0x ≥(2)当促销费用为5万元时,该产品的利润最大,最大利润为101万元【解析】【分析】(1)由题意求得k ,再利用利润公式即可求得y 关于x 的函数;(2)利用基本不等式即可得解.【小问1详解】依题意,当0x =时,96a k =-=,∴3k =,∴391a x =-+,所以43632201241121y a a x a x x a x ⎛⎫=+--=+-=-- ⎪+⎝⎭,∴361121y x x =--+,0x ≥.【小问2详解】因为3636112113111y x x x x ⎛⎫=--=-++ ⎪++⎝⎭113101≤-=,当且仅当3611x x =++,即5x =时,等号成立.∴当促销费用为5万元时,该产品的利润最大,最大利润为101万元.21.已知函数()133x x bf x a++=+是定义在R 上的奇函数.(1)求实数a ,b 的值;(2)若对任意()1,2x ∈,不等式()()222210f x x f x k +-+->恒成立,求实数k 的取值范围.【答案】(1)3a =,1b =-.(2)4k ≤【解析】【分析】(1)利用()00f =,()()11f f -=-,求得a ,b 的值,再检验即可;(2)先证明()f x 为R 上单调递增,再结合奇偶性可得2321k x x <+-恒成立,利用二次函数的性质求得()2321g x x x =+-,()1,2x ∈的最小值,进而可解.【小问1详解】由()f x 是R 上的奇函数得()1003b f a +==+,∴1b =-,∴()1313xx f x a+-=+,又()()11f f -=-,解得3a =,∴()()1313133331x x x x f x +--==++,则()()()()()311331331313331x xx xxxf x f x ------===-=-+++∴()f x 为R 上的奇函数,∴3a =,1b =-.【小问2详解】()()()31312121331331331x x x x x f x -+-⎛⎫===- ⎪+++⎝⎭任取12,R x x ∈,且12x x <,则()()()()()212121122332231313131x x x x x x f x f x --=-=++++,因为3x y =在R 上单调递增,所以当12x x <时,1233x x <,即12330x x -<,又2110,1033x x +>+>,所以()()120f x f x -<,即()()12f x f x <,∴()f x 在R 上单调递增.()1,2x ∀∈,()()22221f x x f x k +->--由()f x 为奇函数,上式可变形为()()22221f x x f k x+->-由()f x 为R 上增函数得22221x x k x +->-即2321k x x <+-恒成立,令()2321,12g x x x x =+-<<,而()2214321333g x x x x ⎛⎫=+-=+- ⎪⎝⎭,所以()g x 在()1,2单调递增,所以()()14g x g >=,∴4k ≤.22.已知定义在R 上的函数()142xx f x m m +=⋅--(m ∈R ).(1)当1m =时,求()f x 的值域;(2)若函数()f x 在()1,+∞上单调递增,求实数m 的取值范围;(3)若函数()y g x =的定义域内存在0x ,使得()()002g a x g a x b ++-=成立,则称()g x 为局部对称函数,其中(),a b 为函数()g x 的局部对称点,若()1,0是()f x 的局部对称点,求实数m 的取值范围.【答案】(1)[)2,-+∞(2)1,2⎡⎫+∞⎪⎢⎣⎭(3)40,3⎛⎤ ⎥⎝⎦【解析】【分析】(1)根据题意,由换元法,结合二次函数值域,即可得到结果;(2)根据题意,分0,0,0m m m =<>讨论,结合条件,代入计算,即可得到结果;(3)根据题意,由局部对称点的定义,结合函数的单调性,代入计算,即可得到结果.【小问1详解】当1m =时,()1421xx f x +=--令20x t =>,()2221122y t t t =--=--≥-,∴()f x 的值域为[)2,-+∞.【小问2详解】令22x t =>,22y mt t m=-- 2x t =在()1,+∞上单调递增,∴要使()f x 在()1,+∞上单调递增,只需22y mt t m =--在()2,+∞上单调递增①当0m =时,2y t m =--在()2,+∞上单减不符合题意;②当0m <时,22y mt t m =--开口向下不符合题意;③当0m >时,012m m>⎧⎪⎨≤⎪⎩,解得12m ≥,∴实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.【小问3详解】由()1,0是()f x 的局部对称点得x ∃∈R ,()()110f x f x ++-=代入整理得()()2442220x xxx m m --+-+-=①令222x x t -=+≥,则()22442222x x x xt --+=+-=-代入①式得22250mt t m --=,2225252tm t t t==--当2t ≥时,函数2y t =和5y t=-均为增函数∴52t t -在[)2,+∞上单调递增,∴5322t t -≥,∴240,32t t t⎛⎤∈ ⎥⎝⎦-,∴实数m 的取值范围为40,3⎛⎤ ⎥⎝⎦.。
2024-2025学年酒泉市高一数学上学期期中考试卷及答案解析
2024—2025学年高一上学期期中考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合3{|5}A x x =<,{3,1,0,2,3}B =--,则A B = ( )A. {1,0}- B. {2,3} C. {1,0,2}- D. {3,1,0}--【答案】D 【解析】【分析】求出集合{A x x =,再利用交集运算即可求解.【详解】由题意可得集合{A x x =,因为12<<,且{3,1,0,2,3}B =--,则{}3,1,0A B ⋂=--,故D 正确.故选:D.2. 下列命题中正确的是( )A. 若0a b >>,则22a b > B. 若a b <,则22ac bc <C. 若a b <,则11a b> D. 若a b >,则ac bc>【答案】A 【解析】【分析】根据不等式的性质判断A ;举反例判断BCD.【详解】对于选项A :若0a b >>,由不等式性质可得22a b >,故A 正确;的对于选项BD :例如0c =,可得220ac bc ==,0ac bc ==,故BD 错误;对于选项C :利用1,1a b =-=,可得111,1a b =-=,即11a b<,故C 错误;故选:A.3. 已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是( )A. 1|02a a ⎧⎫<≤⎨⎬⎩⎭ B. 1|03a a ⎧⎫<<⎨⎬⎩⎭ C. 1|3a a ⎧⎫≥⎨⎬⎩⎭ D. 1|3a a ⎧⎫>⎨⎬⎩⎭【答案】D 【解析】【分析】问题转化为不等式2230ax x ++>的解集为R ,根据一元二次不等式解集的形式求参数的值.【详解】因为命题2:,230p x ax x ∀∈++>R 为真命题,所以不等式2230ax x ++>的解集为R .所以:若0a =,则不等式2230ax x ++>可化为230x +>⇒32x >-,不等式解集不是R ;若0a ≠,则根据一元二次不等式解集的形式可知:20Δ2120a a >⎧⎨=-<⎩⇒13a >.综上可知:13a >故选:D4. 已知函数()235,1,28,1,x x f x x x +≤⎧=⎨-+>⎩则()()2f f 的值为( )A. 4 B. 5 C. 8 D. 0【答案】B 【解析】【分析】根据分段函数的解析式求得正确答案.【详解】因为f (x )=3x +5,x ≤1,−2x 2+8,x >1,所以()222280f =-⨯+=,所以()()()203055ff f ==⨯+=.故选:B5. 下列函数中,既是奇函数又在区间()0,∞+上单调递增的是( )A. ()1f x x=B. ()exf x =C. ()2f x x = D. ()1f x x x=-【答案】D 【解析】【分析】由常见函数的函数图像即可判断奇偶性和在区间()0,∞+上的单调性,即可得出结论.【详解】函数()1f x x=是奇函数,在区间()0,∞+上单调递减,故A 不符合题意;函数()e xf x =是非奇非偶函数,在区间()0,∞+上单调递增,故B 不符合题意;函数()2f x x =是偶函数,在区间()0,∞+上单调递增,故C 不符合题意;函数()1f x x x=-的定义域为()(),00,-∞+∞ ,且满足()()1f x x f x x -=-+=-,又函数y x =和1y x =-均在区间()0,∞+上单调递增,所以函数()1f x x x =-在区间()0,∞+上单调递增,即函数()1f x x x=-既是奇函数,又在区间()0,∞+上单调递增,符合题意.故选:D.6. 已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x af x =+,则()1f =( )A. 2 B. 4C. 2-D. 4-【答案】A 【解析】【分析】利用题意结合奇函数的定义判断()f x 是奇函数,再利用奇函数的性质求解即可.【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=,所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-,故当0x ≤时,()222x f x =-+,由奇函数性质得()()11f f =--,而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A7. 已知2345a ⎛⎫= ⎪⎝⎭,3423b ⎛⎫= ⎪⎝⎭,5349c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A. a b c >>B. b a c >>C. a c b >>D. c a b>>【答案】A 【解析】【分析】根据幂函数、指数函数的单调性判定大小即可.【详解】易知3362555422933c ⎡⎤⎛⎫⎛⎫⎛⎫===⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,又23xy ⎛⎫= ⎪⎝⎭定义域上单调递减,36145<<,所以23b c >>,易知()230y xx =>单调递增,432543>>,则223334422533a b ⎛⎫⎛⎫⎛⎫=>>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,综上a b c >>.故选:A8. 函数()1,4,11x x f x x x x ⎧+≤⎪=⎨+>⎪-⎩的值域为( )A. [)5,5,4⎛⎤-∞+∞ ⎥⎝⎦B. 5,54⎡⎤⎢⎥⎣⎦C. [)3,4,4⎛⎤-∞+∞ ⎥⎝⎦ D. 3,44⎡⎤⎢⎥⎣⎦【答案】A 【解析】【分析】由分段函数解析式,利用换元法可求得1x ≤时函数()f x 的值域为5,4⎛⎤-∞ ⎥⎝⎦,再由基本不等式可求得当1x >时,函数()f x 的值域为[)5,+∞,即可得出结论.【详解】根据题意当1x ≤时,()f x x =t =,可得[)0,t ∈+∞,所以21x t =-,因此可得()2215124f t t t t ⎛⎫=-++=--+ ⎪⎝⎭;由二次函数性质可得当12t =,即34x =时,()1f x x x =≤取得最大值54,此时()1f x x x =+≤的值域为5,4⎛⎤-∞ ⎥⎝⎦;当1x >时,()44111511f x x x x x =+=-++≥+=--,当且仅当411x x -=-,即3x =时,等号成立;此时()4,11f x x x x =+≥-的最小值为5,因此()4,11f x x x x =+≥-的值域为[)5,+∞;综上可得,函数()f x 的值域为[)5,5,4⎛⎤-∞+∞ ⎥⎝⎦.故选:A【点睛】关键点点睛:本题关键在于利用分段函数()f x 的解析式,由各段的函数性质利用换元法和基本不等式即可求得函数值域.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法正确的有( )A. “1a >”是“11a<”的充分不必要条件B. 命题“21,1x x ∀<<”的否定是“1x ∃≥,21x ≥”C. 若a b >,则22a b c c >D. 若0a >,0b >,且41a b +=,则11a b+的最小值为9【答案】ACD 【解析】【分析】根据充分和必要条件,全称量词命题的否定、不等式、基本不等式等知识对选项进行分析,从而确定正确答案.【详解】选项A ,若1a >,则11a <;若11a<,则a 有可能是负数,此时1a >不成立,故“1a >”是“11a<”的充分不必要条件,正确,符合题意;选项B ,命题“1x ∀<,21x <”的否定是“21,1x x ∃<≥”,错误,不符合题意;选项C ,若a b >,则22a b c c>,正确,符合题意;选项D ,若0a >,0b >,且41a b +=,则()1111441459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当4b a a b =,即13a =,16b =时,取等号,故11a b+的最小值为9,正确,符合题意.故选:ACD10. 已知()f x 是定义在R 上的奇函数,且当0x ≥时,()22f x x x =-,则下列结论正确的是( )A. ()f x 的单调递增区间为(),1∞--和()1,+∞B. ()0f x =有3个根C. ()0xf x <的解集为()()2,00,2-⋃D. 当0x <时,()22f x x x=-+【答案】ABC 【解析】【分析】先求得0x <时()f x 的解析式判断选项D ;求得()f x 的单调递增区间判断选项A ;求得()0f x =的根的个数判断选项B ;求得()0xf x <的解集判断选项C.【详解】由()f x 是定义在R 上的奇函数知,对任意x ∈R ,()()f x f x -=-.当0x <时,0x ->,又当0x ≥时,()22f x x x =-,所以()()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦,故D 错误.由上可知()222,0,2,0,x x x f x x x x ⎧-≥=⎨--<⎩又抛物线22y x x =-的对称轴为直线1x =,开口向上,抛物线22yx x =--的对称轴为直线1x =-,开口向下,结合二次函数的性质知()f x 的单调递增区间为(),1∞--和()1,+∞,故A 正确.由()0f x =可得2020x x x ≥⎧⎨-=⎩或220x x x <⎧⎨--=⎩解之得,0x =或2x =或2x =-,故B 正确.由()0xf x <,可得2020x x x <⎧⎨-->⎩或220x x x >⎧⎨-<⎩解得20x -<<或02x <<,故C 正确.故选:ABC11. 已知函数2,0()2,0x x x f x x ⎧≥=⎨<⎩,则下列判断错误的是( )A. ()f x 是奇函数B. ()f x 的图像与直线1y =有两个交点C. ()f x 的值域是[0,)+∞D. ()f x 在区间(,0)-∞上是减函数【答案】AB 【解析】【分析】根据分段函数的解析式及基本初等函数的图象与性质逐一分析即可.【详解】如图所示,作出函数图象,显然图象不关于原点中心对称,故A 不正确;函数图象与直线1y =有一个交点,故B 错误;函数的值域为[0,)+∞,且在区间(,0)-∞上是减函数,即C 、D 正确;故选:AB三、填空题:本题共3小题,每小题5分,共15分.12. 能说明“关于x 的不等式220x ax a -+>在R 上恒成立”为假命题的实数a 的一个取值为_________.【答案】0(答案不唯一)【解析】【分析】将关于x 的不等式220x ax a -+>在R 上恒成立问题转化为0∆<,从而得到a 的取值范围,命题为假命题时a 的取值范围是真命题时的补集,即可得a 的取值.【详解】若不等式220x ax a -+>在R 上恒成立,则()2420a a ∆=--⨯<,解得08a <<,所以该命题为假命题时实数a 的取值范围是08a a ≤≥或,.所以实数a 一个取值为0.故答案为:0(答案不唯一,只要满足“0a ≤或8a ≥”即可).13. 已知函数()21,02,6,2,x x f x x x ⎧-≤<=⎨-≥⎩则不等式()12f x x >的解集为______.【答案】()1,4【解析】【分析】在同一直角坐标系中,作出函数y =f (x )及12y x =的图象,即可求得不等式()12f x x >的解集.【详解】在同一直角坐标系中,作出函数y =f (x )及12y x =的图象如下:由图可知不等式()12f x x >的解集为(1,4).故答案为:(1,4)14. 已知正数,x y 满足328x y -=,则3x y+的最小值为______.【答案】9【解析】【分析】先根据指数运算求出33x y =+,代入3x y+中,再利用基本不等式可得最小值.【详解】33282x y y -==,可得33x y =+,又0,0x y >>,所以3333239x y y y +=++≥⨯+=,的当且仅当1y y=,即1y =时取得最小值.故答案为:9四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 设全集R U =,集合{}15A x x =≤≤,集合{}122B x a x a =--≤≤-.(1)若4a =,求A B ,()U A B ⋂ð;(2)若B A ⊆,求实数a 的取值范围.【答案】(1)A ∪B ={x |−9≤x ≤5},(){}U 25A B x x ⋂=<≤ð; (2)13a a ⎧⎫<⎨⎬⎩⎭.【解析】【分析】(1)根据并集与交集,补集的概念直接计算.(2)根据集合间的包含关系,列不等式,解不等式即可.【小问1详解】因为4a =,所以{}92B x x =-≤≤.因为{}15A x x =≤≤,所以{}95A B x x ⋃=-≤≤.因为R U =,所以{9U B x x =<-ð或}2x >,所以(){}25U A B x x ⋂=<≤ð.【小问2详解】因为B A ⊆.①当B =∅时,满足B A ⊆,此时122a a -->-,解得13a <;②当B ≠∅时,要满足B A ⊆,则121,25,122,a a a a --≥⎧⎪-≤⎨⎪--≤-⎩解得a ∈∅综上所述,实数a 的取值范围是13a a ⎧⎫<⎨⎬⎩⎭.16. 已知()y f x =在()0,∞+上有意义,单调递增且满足()()()()21,f f xy f x f y ==+.(1)求证:()()22f xf x =;(2)求不等式的()()32f x f x ++≤的解集..【答案】(1)证明见解析 (2){}|01x x <≤【解析】【分析】(1)根据条件,通过令y x =,即可证明结果;(2)根据条件得到()()()34f x x f +≤,再利用()f x 在区间()0,∞+上的单调性,即可求出结果.【小问1详解】因为()()()f xy f x f y =+,令y x =,得到()()()()22f x f x f x f x =+=,所以()()22f xf x =.【小问2详解】()()()()()()332224f x f x f x x f f ++=+≤== ,又函数()f x 在区间()0,∞+上单调递增,所以()03034x x x x ⎧>⎪+>⎨⎪+≤⎩,解得01x <≤,所以不等式的()()32f x f x ++≤的解集为{}|01x x <≤.17. 已知函数()21x bf x ax +=+,点()1,5A ,()2,4B 是()f x 图象上的两点.(1)求a ,b 的值;(2)求函数()f x 在[]1,3上的最大值和最小值.【答案】(1)18a b =⎧⎨=⎩(2)max ()5f x =,min 7()2f x =【解析】【分析】(1)把图象上的两点代入函数解析式,由方程组求a ,b 的值;(2)定义法求函数单调性,由单调性求最值.小问1详解】因为点()1,5A ,()2,4B 是()f x 图象上的两点,【所以2514421b a b a +⎧=⎪⎪+⎨+⎪=⎪+⎩,解得18a b =⎧⎨=⎩.【小问2详解】设1213x x ≤<≤,则()()()()()2112121212628281111x x x x f x f x x x x x -++-=-=++++,因为1213x x ≤<≤,所以210x x ->,()()12110x x ++>,则()()120f x f x ->,即()()12f x f x >,所以函数()281x f x x +=+在[]1,3上单调递减.故()max ()15f x f ==,()min 7()32f x f ==.18. 已知函数()122x f x =+.(1)求()0f 与()2f ,()1f -与()3f 的值;(2)由(1)中求得的结果,猜想f(x)与()2f x -的关系并证明你的猜想;(3)求()()()()()()()2020201901220212022f f f f f f f -+-+⋅⋅⋅++++⋅⋅⋅++的值.【答案】(1))()103f =,()126f =,()215f -=,()1310f = (2)()()122f x f x +-=,证明见解析 (3)40434【解析】【分析】(1)根据题意代入0,2,-1,3求值即可;(2)根据(1)的结果猜想()()122f x f x +-=,计算()()2f x f x +-的值即可证明;(3)根据(2)的结果可得1(2020)(2022)2f f -+=,根据规律计算即可求解.【小问1详解】解:因为()122x f x =+,故11(0)123f ==+,211(2)226f ==+,112(1)225f --==+,311(3)2210f ==+.【小问2详解】解:猜想:()()122f x f x +-=,证明:∵对于任意的x R ∈,都有2221122(2)2222222(22)22x x x x x x f x --====++⨯++∴221()(2)2(22)2x x f x f x ++-==+.故()()122f x f x +-=.【小问3详解】解:由(2)得()()122f x f x +-=,故(2020)(22022)f f -=-,1(2020)(2022)2f f -+=,1(2019)(2021)2f f -+=,所以()()()()()()()2020201901220212022f f f f f f f -+-+⋅⋅⋅++++⋅⋅⋅++()()()()()()()2020202220192021(1)(3)021f f f f f f f f f =-++-+⋅⋅⋅+-++++1140432021244=⨯+=.19. 已知()f x 满足 ()()()(),f x f y f x y x y +=+∈R ,且0x >时,()0f x < .(1)判断()f x 的单调性并证明;(2)证明:()()f x f x -=-;(3)若()12f =-,解不等式()2260f x x -->.【答案】(1)减函数,证明见解析(2)证明见解析 (3){|1x x <-或}3x >.【解析】【分析】(1)利用函数的单调性定义证明;(2)采用赋值法探索()f x -与()f x 之间的关系;(3)利用单调性及特殊点的函数值解不等式即可.【小问1详解】()f x 是R 上的减函数,证明如下:对任意12,x x ∈R 且12x x <,则210x x ->,所以()210f x x -<;又()()()1212f x f x x f x +-=即()()()21210f x f x f x x -=-<,所以()()21f x f x <.所以()f x 是R 上的减函数.【小问2详解】由()()()f x f y f x y +=+,令y x =-,得()()()0f x f x f +-=;再令0x =可得()()()000f f f +=⇒()00f =;()()0f x f x ∴-+=即()()f x f x -=-.【小问3详解】()()()()122114f f f f =-⇒=+=-,()()()3216f f f =+=-,()2260f x x ∴-->,即()()()2233f x x f f ->-=-,又()f x 是R 上的减函数,所以223x x -<-⇒2230x x -->,解得:1x <-或3x >,所以不等式的解集为{|1x x <-或}3x >.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省哈尔滨市第三十二中学-高一数学上学期期中试题新人教A
版
考试范围:必修一)
一、选择题(每小题只有1个选项符合题意,每小题5分,共60分)
1.已知集合,若,则的值是( ) A .0 B .1 C .2 D .4
2.下列各组函数表示同一函数的是( )
A .与
B . 与
C .与
D . 与
3.函数的定义域为M ,函数的定义域为N ,则( )
A .
B .
C .
D .
4.下列函数,在区间(0,2)上是增函数的是( )
A .
B .
C .
D . 5.二次函数的图像是开口向上的抛物线,对称轴是,则下列式子中错误的是
( )
A .
B .
C .
D . 6.已知函数,则的最小值是( ) A .0 B .
C .1
D .不存在
7.若在上是奇函数,且则下列各式中一定成立的是( ). A . B . C . D .
8.若函数,对任意实数x ,都有,那么下列关系式成立的是( ).
A .
B .
C .
D .
9.设,则( )
A .
B .
C .
D .
10.若函数则( ). A .2 B .3
C .4
D .1
{}{}
2
,1,,2,0a B a A =={}16,4,2,1,0=B A a 39
2--=x x y 3+=x y 12-=x y 1-=x y )0(0
≠=x x y )0(1≠=x y Z x x y ∈+=,12Z x x y ∈-=,1232)(-=x x f 1
2)(2-=x x
x g N M ⊆M N ⊆N C M R ⊆M C N R ⊆x
y 1
=12-=x y x y 21-=2
)12(-=x y )(x f y =3=x )4()5(f f >)15()2(f f <)4()2(f f =)1()0(-<f f 1)(-=
x x f )(x f 1-)(x f []5,5-)1()3(f f <)3()1(-<-f f )1()0(f f >)3()2(f f >-)5()3(f f <-c bx x x f ++=2
)()2()2(x f x f -=+)4()1()2(f f f <<)4()2()1(f f f <<)1()4()2(f f f <<)1()2()4(f f f <<9
.01.17.01.1,9.0log ,8.0log ===c b a c b a <<a c b <<c a b <<b a c <<⎩⎨
⎧≥<+=6,log 6),3()(2
x x x x f x f =-)1(f
11. 函数在上的最大值与最小值之和为a ,
则a 的值是( ) A .
B .
C .2
D .4 12.若的图像恒过点P ,则点P 的坐标为( ) A . B . C . D .
二.填空题:(每空5分,共20分)
13. 设集合,则=_____________
14. 函数的定义域是_____________
15. _____________
16. _____________
哈32中2013~2014学年度上学期期中考试
数学答题卡
一. 选择题:(每小题5分,共60分)
13.________________ 14.________________
15.________________ 16.________________
三..解答题:(每题10分,共20分)
)1(log )(++=x a x f a x
[]1,0412
1)1,0(31
≠>+=-a a a
y x )3,1()3,2(a +)4,2()4,1({}{}x x x B x x A 2873/,42/-≥-=<≤=B A ⋂131)(-++-=x x x f =23
)49
36
(=2log 5log 3log 532
17.(10分)计算下列各式:
⑴
⑵
18.(10分)⑴已知函数 ,若函数经过点点,
求a 的值;
3
22
1
3
14
1416)3(4---
--y
x
y x x 64log 325log 225-)1,0()(1
≠>=-a a a x f x 且)(x f y =)4,3(P
⑵已知,求证
)1,1(,,11lg )(-∈+-=b a x x x f )1()()(ab
b
a f
b f a f ++=+
哈32中2013~2014学年度上学期学期期中考试
数学试题参考答案及评分标准
(考试范围:数学必修一 适用班级:高一学年 出题人:白景哲 审题人:穆丽俐) 一、选择题(每小题只有1个选项符合题意,每小题5分,共60分)
13. ; 14. ;
15.
; 16.
三、解答题(共20分)
17.⑴
=
=
⑵
18. ⑴
⑵证明: 左式=右式
[)4,3[]1,3-343
216
13
22
13141416)3(4----y
x y x x 3
22
1312
1612-
-
-
--y
x y x 3
12xy 141842log 3464log 325log 26
225-=-=-=-2=a ab
b a ab
b a b b a a b f a f ++++--=+-++-=+=11lg 11lg 11lg
)()(左式b a ab b a ab ab
b a ab ab b
a a
b ab b a ab b a ab b a f +++--+=+++++--+=+++
++-
=++=11lg
1111lg 1111lg )1(右式∴。