算法设计及分析实验报告_Matlab实现
MATLAB实验报告
MATLAB实验报告一、实验目的本次 MATLAB 实验旨在深入了解和掌握 MATLAB 软件的基本操作和应用,通过实际编程和数据处理,提高解决问题的能力,培养编程思维和逻辑分析能力。
二、实验环境本次实验使用的是 MATLAB R2020a 版本,运行在 Windows 10 操作系统上。
计算机配置为英特尔酷睿 i5 处理器,8GB 内存。
三、实验内容(一)矩阵运算1、矩阵的创建使用直接输入、函数生成和从外部文件导入等方式创建矩阵。
例如,通过`1 2 3; 4 5 6; 7 8 9` 直接输入创建一个 3 行 3 列的矩阵;使用`ones(3,3)`函数创建一个 3 行 3 列元素全为 1 的矩阵。
2、矩阵的基本运算包括矩阵的加减乘除、求逆、转置等。
例如,对于两个相同维度的矩阵`A` 和`B` ,可以进行加法运算`C = A + B` 。
3、矩阵的特征值和特征向量计算通过`eig` 函数计算矩阵的特征值和特征向量,加深对线性代数知识的理解和应用。
(二)函数编写1、自定义函数使用`function` 关键字定义自己的函数,例如编写一个计算两个数之和的函数`function s = add(a,b) s = a + b; end` 。
2、函数的调用在主程序中调用自定义函数,并传递参数进行计算。
3、函数的参数传递了解值传递和引用传递的区别,以及如何根据实际需求选择合适的参数传递方式。
(三)绘图功能1、二维图形绘制使用`plot` 函数绘制简单的折线图、曲线等,如`x = 0:01:2pi; y = sin(x); plot(x,y)`绘制正弦曲线。
2、图形的修饰通过设置坐标轴范围、标题、标签、线条颜色和样式等属性,使图形更加清晰和美观。
3、三维图形绘制尝试使用`mesh` 、`surf` 等函数绘制三维图形,如绘制一个球面`x,y,z = sphere(50); surf(x,y,z)`。
(四)数据处理与分析1、数据的读取和写入使用`load` 和`save` 函数从外部文件读取数据和将数据保存到文件中。
现代控制系统分析与设计——基于matlab的仿真与实现
现代控制系统分析与设计——基于matlab的仿真与实现近年来,随着工业技术的飞速发展,控制系统逐渐成为工业自动化过程中不可缺少的重要组成部分,因此其分析与设计也会受到人们越来越多的关注。
本文从控制系统的分类出发,介绍了基于Matlab 的分析与仿真方法,并结合详细的实例,展示了最新的Matlab软件如何用来设计现代控制系统,及如何实现仿真结果。
一、控制系统分类控制系统是将完整的物理系统划分为几个部分,通过规定条件把这些部分组合起来,共同完成某一特定任务的一种技术。
控制系统可分为离散控制系统和连续控制系统,离散控制系统的尺度以脉冲的形式表现,而连续控制系统的尺度以连续变量的形式表现,常见的连续控制系统有PID、环路反馈控制等。
二、基于Matlab的分析与仿真Matlab是一款实用的高级计算和数学工具,具有智能语言功能和图形用户界面,可以进行复杂数据分析和可视化。
Matlab可以用来开发控制系统分析与仿真,包括:数学建模,系统建模,状态估计与观测,数据处理,控制算法研究,仿真实验及系统原型开发等。
此外,Matlab还可以利用其它技术,比如LabVIEW或者C程序,将仿真结果实现在实物系统上。
三、实现现代控制系统分析与设计基于Matlab的现代控制系统分析与设计,需要从以下几个方面进行考虑。
1.数学建模:Matlab支持多种数学计算,比如代数运算、矩阵运算、曲线拟合等,可以用来建立控制系统的数学模型。
2.系统建模:Matlab可以用于控制系统的建模和仿真,包括并行系统建模、混沌建模、非线性系统建模、时滞建模、系统设计建模等。
3.状态估计与观测:Matlab可以用来计算系统状态变量,并且可以根据测量信号估计系统状态,用于系统诊断和控制。
4.数据处理:Matlab可以用来处理控制系统中的大量数据,可以更好地研究控制系统的特性,以便进行更好的设计和控制。
5.算法研究:Matlab可以用来研究新的控制算法,以改进控制系统的性能。
数值分析实验报告1
p
得到m=(00)T
即M0=0 ;M1=;M2=;M3=;M4=0
则根据三次样条函数定义,可得:
S(x)=
接着,在Command Window里输入画图的程序代码,
下面是画牛顿插值以及三次样条插值图形的程序:
x=[ ];
y=[ ];
plot(x,y)
hold on
for i=1:1:5
y(i)= *(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)
Pn=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+ f[x0,x1,···xn](x-x0) ···(x-xn-1)
我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:
【实验原理】
《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日插值的相应算法和相关性质。
【实验环境】(使用的软硬件)
软件:
MATLAB 2012a
硬件:
电脑型号:联想 Lenovo 昭阳E46A笔记本电脑
操作系统:Windows 8 专业版
处理器:Intel(R)Core(TM)i3 CPU M 350 @
实验内容:
【实验方案设计】
第一步,将书上关于三种插值方法的内容转化成程序语言,用MATLAB实现;第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。
【实验过程】(实验步骤、记录、数据、分析)
实验的主要步骤是:首先分析问题,根据分析设计MATLAB程序,利用程序算出问题答案,分析所得答案结果,再得出最后结论。
Matlab实验报告
实验结果及分析实验1:程序如下x=1:10y=2*x;plot(x,y)仿真结果:实验结果分析:仿真结果是条很规则的直线,X轴和Y轴一一对应,清楚明了,而序又特别简单。
所以用Maltab 软件很方便地画出规则的直线,方便研究。
实验结果及分析1、A=2、A=1A=实验结果及分析实验三 Matlab在信号与系统中的应用实验名称实验1、掌握信号与系统课程中基本知识的Matlab编程、仿真方法目的实验原理实验1程序:b=[1];a=[1 1];p=;t=0:p:5;x=exp(-3*t);subplot(1,2,1);impulse(b,a,0:p:5);title('冲激响应');subplot(1,2,2);step(b,a,0:p:5);title('阶跃响应');实验内容<设计性实验>1、用MATLAB在时域中编程求解y′(t)+y(t)=f(t), f(t)= exp(-3t)ε(t)的冲激响应、阶跃响应。
在simulink仿真环境下,设计系统框图,分析系统的冲激响应、阶跃响应。
<设计性实验>(选做)2、用MATLAB在时域中编程求解y′(t)+y(t)=f(t), f(t)=(1+exp(-3t))ε(t)的冲激响应、阶跃响应,要求用conv编程实现系统响应。
在simulink仿真环境下,设计系统框图,分析系统的冲激响应、阶跃响应。
实验结果及分析实验1仿真结果:simulink仿真环境下冲激响应阶跃响应实验名称实验四 Matlab在数字信号处理中的应用实验结果及分析实验1仿真结果:6khz12kHZ。
基于MATLAB的神秘数算法设计与实现
YAN h n — ha . Se i GUI S a — h i h o u
( te t sa dC m ue c neD p r e tG n a oma U iesy , a zo inx 4 00,hn ) Mahmai n o p tr i c e at n , a nnN r l nvr t G nh uJag i 10 C ia c Se m i 3
妙地设计并实现 了计算包含指定括符种类 、 括符对数及指定 深度 时 s 表达 式个数 的算法 , s 从而解决 了相 应的神秘数 问题 。 最 后在 M T A 上实现时 , ALB 又借助存储表 , 了大量 的重复计算 , 避免 极大地提升 了程序的运行速度 。 解决 s 表达式问题的相 s 关思想与技术 , 可以运用到程序的编译中去 , 也可以在相类 似的问题求解 中得到广泛运用 。
( 赣南师范学 院数学与计算机系 , 江西 赣州 3 10 4 00) 摘要 : 在几种常用的算法设计策略中 , 递归策略是设计有效算法最常用 的策略之一 , 递归技术的应用往往使 得设计 出来 的算 法简 洁易懂且易于分析。 通过仔细分析 S s表达式的形式 定义 , 提取 出 s s表 达式的 内在特征 , 运用递归 的算 法设计思想 , 巧
3 )如 果 A是 s s表 达式 , A 中不含 字 符 ‘ ’ ‘ ’ 且 { , },
1 引言
“ 全国计算 机仿 真 大奖 赛 ”是 高 教 司与 中 国 自动 化协
维普资讯
第 4 第 6 2卷 0期
文章编号 :0 6—94 ( 07)6—0 3 10 3 8 20 0 37—0 4
计 算 机 仿 真
27 6 0 年O月 0
基 于 MAT A 的神 秘数 算 法 设计 与 实现 L B
(完整word)Matlab实验报告
实验一:Matlab操作环境熟悉一、实验目的1.初步了解Matlab操作环境.2.学习使用图形函数计算器命令funtool及其环境。
二、实验内容熟悉Matlab操作环境,认识命令窗口、内存工作区窗口、历史命令窗口;学会使用format 命令调整命令窗口的数据显示格式;学会使用变量和矩阵的输入,并进行简单的计算;学会使用who和whos命令查看内存变量信息;学会使用图形函数计算器funtool,并进行下列计算:1.单函数运算操作。
求下列函数的符号导数(1)y=sin(x);(2) y=(1+x)^3*(2-x);求下列函数的符号积分(1)y=cos(x);(2)y=1/(1+x^2);(3)y=1/sqrt(1—x^2);(4)y=(x1)/(x+1)/(x+2)求反函数(1)y=(x-1)/(2*x+3); (2) y=exp(x);(3) y=log(x+sqrt(1+x^2));代数式的化简(1)(x+1)*(x-1)*(x-2)/(x-3)/(x—4);(2)sin(x)^2+cos(x)^2;(3)x+sin(x)+2*x—3*cos(x)+4*x*sin(x);2.函数与参数的运算操作。
从y=x^2通过参数的选择去观察下列函数的图形变化(1)y1=(x+1)^2(2)y2=(x+2)^2(3) y3=2*x^2 (4) y4=x^2+2 (5) y5=x^4 (6) y6=x^2/2 3.两个函数之间的操作求和(1)sin(x)+cos(x) (2) 1+x+x^2+x^3+x^4+x^5乘积(1)exp(—x)*sin(x) (2) sin(x)*x商(1)sin(x)/cos(x); (2) x/(1+x^2); (3) 1/(x—1)/(x—2); 求复合函数(1)y=exp(u) u=sin(x) (2) y=sqrt(u) u=1+exp(x^2)(3) y=sin(u) u=asin(x) (4) y=sinh(u) u=-x实验二:MATLAB基本操作与用法一、实验目的1.掌握用MATLAB命令窗口进行简单数学运算。
计算电磁学之FDTD算法的MATLAB语言实现
South China Normal University课程设计实验报告课程名称:计算电磁学指导老师:专业班级: 2014级电路与系统姓名:学号:FDTD算法的MATLAB语言实现摘要:时域有限差分(FDTD)算法是K.S.Yee于1966年提出的直接对麦克斯韦方程作差分处理,用来解决电磁脉冲在电磁介质中传播和反射问题的算法。
其基本思想是:FDTD计算域空间节点采用Yee元胞的方法,同时电场和磁场节点空间与时间上都采用交错抽样;把整个计算域划分成包括散射体的总场区以及只有反射波的散射场区,这两个区域是以连接边界相连接,最外边是采用特殊的吸收边界,同时在这两个边界之间有个输出边界,用于近、远场转换;在连接边界上采用连接边界条件加入入射波,从而使得入射波限制在总场区域;在吸收边界上采用吸收边界条件,尽量消除反射波在吸收边界上的非物理性反射波。
本文主要结合FDTD算法边界条件特点,在特定的参数设置下,用MATLAB语言进行编程,在二维自由空间TEz网格中,实现脉冲平面波。
关键词:FDTD;MATLAB;算法1 绪论1.1 课程设计背景与意义20世纪60年代以来,随着计算机技术的发展,一些电磁场的数值计算方法逐步发展起来,并得到广泛应用,其中主要有:属于频域技术的有限元法(FEM)、矩量法(MM)和单矩法等;属于时域技术方面的时域有限差分法(FDTD)、传输线矩阵法(TLM)和时域积分方程法等。
其中FDTD是一种已经获得广泛应用并且有很大发展前景的时域数值计算方法。
时域有限差分(FDTD)方法于1966年由K.S.Y ee提出并迅速发展,且获得广泛应用。
K.S.Y ee用后来被称作Y ee氏网格的空间离散方式,把含时间变量的Maxwell旋度方程转化为差分方程,并成功地模拟了电磁脉冲与理想导体作用的时域响应。
但是由于当时理论的不成熟和计算机软硬件条件的限制,该方法并未得到相应的发展。
20世纪80年代中期以后,随着上述两个条件限制的逐步解除,FDTD便凭借其特有的优势得以迅速发展。
自己编写算法功率谱密度三种MATLAB实现方法
自己编写算法功率谱密度三种matlab实现方法功率谱密度的三种 tlab实现方法一:实验目的: (1)掌握三种算法的概念、应用及特点;(2)了解谱估计在分析中的作用;(3) 能够利用burg法对作谱估计,对的特点加以分析。
二;实验内容:(1)简单说明三种方法的原理。
(2)用三种方法编写程序,在 tlab中实现。
(3)将计算结果表示成图形的形式,给出三种情况的功率谱图。
(4)比拟三种方法的特性。
(5)写出自己的心得体会。
三:实验原理: 1.周期图法:周期图法又称直接法。
它是从随机 x(n)中截取N长的一段,把它视为能量有限x(n)真实功率谱的估计的抽样. 认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段来估计该随机序列的功率谱。
这当然必然带来误差。
由于对采用DFT,就默认在时域是周期的,以及在频域是周期的。
这种方法把随机序列样本x(n)看成是截得一段的周期延拓,这也就是周期图法这个名字的来历。
2. 相关法(间接法): 这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。
这种方法的具体步骤是:第一步:从无限长随机序列x(n)中截取长度N的有限长序列列第二步:由N长序列求(2M-1)点的自相关函数序列。
(2-1) 这里,m=-(M-1)…,-1,0,1…,M-1,MN,是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。
,M-1的傅里叶变换,另一半也就知道了。
第三步:由相关函数的傅式变换求功率谱。
即以上过程中经历了两次截断,一次是将x(n)截成N长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。
因此所得的功率谱仅是近似值,也叫谱估计,式中的代表估值。
一般取M<<N,因为只有当M较小时,序列傅式变换的点数才较小,功率谱的计算量才不至于大到难以实现,而且谱估计质量也较好。
因此,在FFT问世之前,相关法是最常用的谱估计方法。
三:Burg法: AR模型功率谱估计又称为自回归模型,它是一个全极点的模型,要利用AR模型进行功率谱估计须通过levinsondubin递推算法由 Yule-Walker方程求得AR的参数:σ2,α1α2…αp。
数值分析课程设计报告(MATLAB版)
(2)取右端向量 b 的三位有效数字得 b [1.83 1.08 0.783]T ,求方程组的准确 解 X ,并与 X 的数据 [1 1 1]T 作比较 。说明矩阵的病态性。
算法及相应结果: (1)在 MATLAB 命令窗口里输入如下命令: >> H=[1 1/2 1/3;1/2 1/3 1/4;1/3 1/4 1/5]; b=[11/6 13/12 47/60]'; >> x=H\b 回车得到结果为: x = 1.0000 1.0000 1.0000 (2)紧接着在上题基础上继续输入如下命令: >> c=[1.83 1.08 0.783]'; x1=H\c 回车得到如下结果: x1 = 1.0800 0.5400 1.4400
问题分析:考虑由直线段(2 个点)产生第一个图形(5 个点)的过程,设 P 1 和 P5 分别为原始直线段的两个端点。现在需要在直线段的中间依次插入三个点 。显然, P2 位于 P P2 , P3 , P4 产生第一次迭代的图形(图 1-4) 1 点右端直线段的三分 之一处, P4 点绕 P2 旋转 60 度(逆时针方向)而得到的,故可以处理为向量 P2 P4 经正交变换而得到向量 P2 P3 ,形成算法如下: (1) P2 P 1 (P 5 P 1) / 3 ; (2) P4 P 1 2( P 5 P 1) / 3 ; (3) P3 P2 ( P4 P2 ) AT ; 在算法的第三步中,A 为正交矩阵。
运行结果: 0.0884 0.0580 0.0431 0.0343 0.0285 0.0243 0.0212 0.0188 0.0169 0.0154 0.0141 0.0130 0.0120 0.0112 0.0105 0.0099 0.0094 0.0087 0.0092 0.0042 (2)从 I 30 较粗略的估计值出发,我们不妨取 0.01. 源程序:
区域生长算法原理及MATLAB实现
区域⽣长算法原理及MATLAB实现1. 基于区域⽣长算法的图像分割原理数字图像分割算法⼀般是基于灰度值的两个基本特性之⼀:不连续性和相似性。
前⼀种性质的应⽤途径是基于图像灰度的不连续变化分割图像,⽐如图像的边缘。
第⼆种性质的主要应⽤途径是依据实现指定的准则将图像分割为相似的区域。
区域⽣长算法就是基于图像的第⼆种性质,即图像灰度值的相似性。
1.1 基本公式令R表⽰整幅图像区域,那么分割可以看成将区域R划分为n个⼦区域R1,,R2,......Rn的过程,并需要满⾜以下条件:a: U(Ri) = R;b: Ri是⼀个连通区域,i=1,2,3,......n;c: Ri ∩ Rj = 空集,对于任何的i,j;都有i≠j;d: P(Ri) = Ture, 对i=1,2,......n;e: R(Pi U Rj) = False, i≠j;正如“区域⽣长”的名字所暗⽰的:区域⽣长是根据⼀种事先定义的准则将像素或者⼦区域聚合成更⼤区域的过程,并且要充分保证分割后的区域满⾜a~e的条件。
1.2 区域⽣长算法设计思路区域⽣长算法的设计主要由以下三点:⽣长种⼦点的确定,区域⽣长的条件,区域⽣长停⽌的条件。
种⼦点的个数根据具体的问题可以选择⼀个或者多个,并且根据具体的问题不同可以采⽤完全⾃动确定或者⼈机交互确定。
区域⽣长的条件实际上就是根据像素灰度间的连续性⽽定义的⼀些相似性准则,⽽区域⽣长停⽌的条件定义了⼀个终⽌规则,基本上,在没有像素满⾜加⼊某个区域的条件的时候,区域⽣长就会停⽌。
在算法⾥⾯,定义⼀个变量,最⼤像素灰度值距离reg_maxdist.当待加⼊像素点的灰度值和已经分割好的区域所有像素点的平均灰度值的差的绝对值⼩于或等于reg_maxdist时,该像素点加⼊到已经分割到的区域。
相反,则区域⽣长算法停⽌。
在种⼦店1的4邻域连通像素中,即2、3、4、5点,像素点5的灰度值与种⼦点的灰度值最接近,所以像素点5被加⼊到分割区域中,并且像素点5会作为新的种⼦点执⾏后⾯的过程。
人工智能典型例题MATLAB仿真实验报告
研究生(人工智能)报告题目:人工智能实验报告学号姓名专业电磁场与微波技术指导教师院(系、所)华中科技大学研究生院制1问题二利用一阶谓词逻辑求解猴子摘香蕉问题:房内有一个猴子,一个箱子,天花板上挂了一串香蕉,其位置如图所示,猴子为了拿到香蕉,它必须把箱子搬到香蕉下面,然后再爬到箱子上。
请定义必要的谓词,列出问题的初始化状态(即下图所示状态),目标状态(猴子拿到了香蕉,站在箱子上,箱子位于位置b)。
图1 猴子香蕉问题解:⏹定义描述环境状态的谓词。
AT(x,w):x在t处,个体域:xϵ{monkey},wϵ{a,b,c,box};HOLD(x,t):x手中拿着t,个体域:tϵ{box,banana};EMPTY(x):x手中是空的;ON(t,y):t在y处,个体域:yϵ{b,c,ceiling};CLEAR(y):y上是空的;BOX(u):u是箱子,个体域:uϵ{box};BANANA(v):v是香蕉,个体域:vϵ{banana};⏹使用谓词、连结词、量词来表示环境状态。
问题的初始状态可表示为:S o:A T(monkey,a)˄EMPTY(monkey)˄ON(box,c)˄ON(banana,ceiling)˄CLEAR(b)˄BOX(box)˄BANANA(banana)要达到的目标状态为:S g:AT(monkey,box)˄HOLD(monkey,banana)˄ON(box,b)˄CLEAR(ceiling)˄CLEAR(c)˄BOX(box)˄BANANA(banana)⏹从初始状态到目标状态的转化, 猴子需要完成一系列操作, 定义操作类谓词表示其动作。
WALK(m,n):猴子从m走到n处,个体域:m,nϵ{a,b,c};CARRY(s,r):猴子在r处拿到s,个体域:rϵ{c,ceiling},sϵ{box,banana};CLIMB(u,b):猴子在b处爬上u;这3个操作也可分别用条件和动作来表示。
数值计算方法实验指导(Matlab版)
《数值计算方法》实验指导(Matlab版)学院数学与统计学学院计算方法课程组《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之相近数相减、大数吃小数和简化计算步骤) 2. 实验题目(1) 取1610=z ,计算z z -+1和)1/(1z z ++,验证两个相近的数相减会造成有效数字的损失.(2) 按不同顺序求一个较大的数(123)与1000个较小的数(15310-⨯)的和,验证大数吃小数的现象.(3) 分别用直接法和九韶算法计算多项式n n n n a x a x a x a x P ++++=--1110)(在x =1.00037处的值.验证简化计算步骤能减少运算时间.对于第(3)题中的多项式P (x ),直接逐项计算需要2112)1(+=+++-+n n n 次乘法和n 次加法,使用九韶算法n n a x a x a x a x a x P ++++=-)))((()(1210则只需要n 次乘法和n 次加法. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免两个相近的数相减、防止大数吃小数、简化计算步骤减少运算次数以减少运算时间并降低舍入误差的积累.两相近的数相减会损失有效数字的个数,用一个大数依次加小数,小数会被大数吃掉,乘法运算次数太多会增加运算时间. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程(1) 直接计算并比较;(2) 法1:大数逐个加1000个小数,法2:先把1000个小数相加再与大数加; (3) 将由高次项到低次项的系数保存到数组A[n]中,其中n 为多项式次数.7. 结果与分析 (1) 计算的z z -+1= ,)1/(1z z ++.分析:(2) 123逐次加1000个6310-⨯的和是 ,先将1000个6310-⨯相加,再用这个和与123相加得.分析:(3) 计算次的多项式:直接计算的结果是,用时;用九韶算法计算的结果是,用时.分析:8. 附录:程序清单(1) 两个相近的数相减.%*************************************************************%* 程序名:ex1_1.m *%* 程序功能:验证两个相近的数相减会损失有效数字个数 *%*************************************************************z=1e16;x,y======================================================================(2) 大数吃小数%*************************************************************%* 程序名:ex1_2.m *%* 程序功能:验证大数吃小数的现象. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数z=123; % 大数t=3e-15; % 小数x=z; % 大数依次加小数% 重复1000次给x中加上ty=0; % 先累加小数% 重复1000次给y中加上ty=z + y; % 再加到大数x,y======================================================================(3) 九韶算法%*************************************************************%* 程序名:ex1_3.m *%* 程序功能:验证九韶算法可节省运行时间. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数A=[8,4,-1,-3,6,5,3,2,1,3,2,-1,4,3,1,-2,4,6,8,9,50,-80,12,35,7,-6,42,5,6,23,74,6 5,55,80,78,77,98,56];A(10001)=0; % 扩展到10001项,后面的都是分量0% A为多项式系数,从高次项到低次项x=1.00037;n=9000; % n为多项式次数% 直接计算begintime=clock; % 开始执行的时间 % 求x的i次幂% 累加多项式的i次项endtime=clock; % 完毕执行的时间time1=etime(endtime,begintime); % 运行时间disp('直接计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time1),'秒']);% 九韶算法计算begintime=clock; % 开始执行的时间% 累加九韶算法中的一项endtime=clock; % 完毕执行的时间time2=etime(endtime,begintime); % 运行时间disp(' ');disp('九韶算法计算');disp(['p(',num2str(x),')=',num2str(p)]);disp([' 运行时间: ',num2str(time2),'秒']);《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则验证(之数值稳定性) 2. 实验题目 计算定积分⎰==-1110,1,0,d n x e xI x nn ,分别用教材例1-7推导出的算法A 和B ,其中:算法A :⎩⎨⎧≈-=-6321.0101I nI I n n 算法B :⎪⎩⎪⎨⎧≈-=-0)1(1101I I nI n n 验证算法不稳定时误差会扩大.3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应采用数值稳定性好的算法.数值稳定的算法,误差不会放大,甚至会缩小;而数值不稳定的算法会放大误差. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程分别用数组IA[ ]和IB[ ]保存两种算法计算的结果. 7. 结果与分析 运行结果:(或拷屏)8. 附录:程序清单%*************************************************************%* 程序名:ex1_4.m *%* 程序功能:验证数值稳定性算法可控制误差. *%*************************************************************clc; % 清屏clear all; % 释放所有存变量format long; % 按双精度显示浮点数I=[0.856, 0.144, 0.712, 0.865, ...0.538, 0.308, 0.154, 0.938, ...0.492, 0.662, 0.843];% 保留14位小数的精确值, …是Matlab中的续行符% 算法AIA(1) = 0.6321; % Matlab下标从1开始,所以要用IA(n+1)表示原问题中的I(n)% 算法Bdisp('n 算法A 算法B 精确值');for n=1:11fprintf('%2d %14.6f %14.6f %14.6f\n',n-1,IA(n),IB(n),I(n));end% n显示为2位整数, 其它显示为14位其中小数点后显示6位的小数《数值计算方法》实验1报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验1 算法设计原则(除数绝对值不能太小) 2. 实验题目将线性方程组增广矩阵利用初等行变换可化为⎪⎪⎭⎫⎝⎛→-⎪⎪⎭⎫ ⎝⎛→-⎪⎪⎭⎫ ⎝⎛''0'0''02221112'12221121112222211121122121121b a b a r r b a b a a r r b a a b a a a a a a由此可解得'/',/'22221111a b x a b x ==.分别解增广矩阵为161011212-⎛⎫ ⎪⎝⎭和162121011-⎛⎫⎪⎝⎭的方程组,验证除数绝对值远小于被除数绝对值的除法会导致结果失真. 3. 实验目的验证数值算法需遵循的若干规则. 4. 基础理论设计数值算法时,应避免除数绝对值远小于被除数绝对值的除法,否则绝对误差会被放大,使结果失真. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab6. 实验过程用二维数组A 和B 存放方程组的增广矩阵,利用题目所给初等行变换求解方程组. 7. 结果与分析第1种顺序的方程组的解为x =,y =;第2种顺序的方程组的解为x =,y =. 分析:8. 附录:程序清单%************************************************************* %* 程 序 名:ex1_5.m * %* 程序功能:验证除数的绝对值太小可能会放大误差. * %*************************************************************clc;A=[1e-16, 1, 1; 2, 1, 2];B=[2, 1, 2; 1e-16, 1, 1]; % 增广矩阵% 方程组A% m = - a_{21}/a_{11} 是第2行加第1行的倍数% 消去a_{21}% m = - a_{12}/a_{22} 是第1行加第2行的倍数% 消去a_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组A的解: x1=',num2str(A(1,3)),', x2=',num2str(A(2,3))]); disp(' ');% 方程组B% m = - b_{21}/b_{11} 是第2行加第1行的倍数% 消去b_{21}% m = - b_{12}/b_{22} 是第1行加第2行的倍数% 消去b_{12}, 系数矩阵成对角线% 未知数x1的值% 未知数x2的值disp(['方程组B的解: x1=',num2str(B(1,3)),', x2=',num2str(B(2,3))]);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之简单迭代法) 2. 实验题目用简单迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握非线性方程的简单迭代法. 4. 基础理论简单迭代法:将方程0)(=x f 改写成等价形式)(x x ϕ=,从初值0x 开始,使用迭代公式)(1k k x x ϕ=+可以得到一个数列,若该数列收敛,则其极限即为原方程的解.取数列中适当的项可作为近似解. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 迭代法) 2. 实验题目用Newton 迭代法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的掌握求解非线性方程的Newton 迭代法. 4. 基础理论Newton 迭代法:解方程0)(=x f 的Newton 迭代公式为)(')(1k k k k x f x f x x -=+.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之对分区间法) 2. 实验题目用对分区间法求方程310x x --=在区间[1, 1.5]的一个实根,取绝对误差限为410-. 3. 实验目的掌握求解非线性方程的对分区间法. 4. 基础理论对分区间法:取[a ,b ]的中点p ,若f (p ) ≈ 0或b – a < ε,则p 为方程0)(=x f 的近似解;若f (a ) f (p ) < 0,则说明根在区间取[a ,p ]中;否则,根在区间取[p ,b ]中.将新的有根区间记为 [a 1,b 1],对该区间不断重复上述步骤,即可得到方程的近似根. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程用宏定义函数f (x );为了循环方便,得到的新的有根区间始终用[a ,b ]表示;由于新的有根区间可能仍以a 为左端点,这样会反复使用函数值f (a ),为减少运算次数,将这个函数值保存在一个变量fa 中;同样在判断新的有根区间时用到函数值f (p ),若新的有根区间以p 为左端点,则下一次用到的f (a )实际上就是现在的f (p ),为减少运算次数,将这个函数值保存在一个变量fp 中.算法的伪代码描述:Input :区间端点a ,b ;精度要求(即误差限)ε;函数f (x );最大对分次数N Output :近似解或失败信息7. 结果与分析8. 附录:程序清单说明: 源程序中带有数字的空行,对应着算法描述中的行号%**********************************************************%* 程序名:Bisection.m *%* 程序功能:使用二分法求解非线性方程. *%**********************************************************f=inline('x^3-x-1'); % 定义函数f(x)a=input('有根区间左端点: a=');b=input('右端点:b=');epsilon=input('误差限:epsilona=');N=input('最大对分次数: N=');1 % 对分次数计数器n置12 % 左端点的函数值给变量fafprintf('\n k p f(p) a(k) f(a(k))'); fprintf(' b(k) b-a\n');% 显示表头fprintf('%2d%36.6f%12.6f%12.6f%12.6f\n',0,a,fa,b,b-a);% 占2位其中0位小数显示步数0, 共12位其中小数6位显示各值3% while n≤ N 4 % 取区间中点p5% 求p 点函数值给变量fpfprintf('%2d%12.6f%12.6f',n,p,fp); % 输出迭代过程中的中点信息p 和f(p)6 % 如果f(p)=0或b-a 的一半小于误差限εfprintf('\n\n 近似解为:%f\n',p);% 则输出近似根p (7)return;% 并完毕程序 (7)89 % 计数器加110% 若f(a)与f(p)同号11% 则取右半区间为新的求根区间, 即a 取作p 12 % 保存新区间左端点的函数值 13% 否则14 % 左半区间为新的求根区间, 即b 取作p 15fprintf('%12.6f%12.6f%12.6f%12.6f\n',a,fa,b,b-a); %显示新区间端点与左端函数值、区间长度 16fprintf('\n\n 经过%d 次迭代后未达到精度要求.\n',N); % 输出错误信息(行17)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Aitken-Steffensen 加速法) 2. 实验题目用Aitken-Steffensen 加速法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉求解非线性方程的Aitken-Steffensen 加速法. 4. 基础理论将方程0)(=x f 改写成等价形式)(x x ϕ=,得到从初值0x 开始的迭代公式)(1k k x x ϕ=+后,基于迭代公式)(1k k x x ϕ=+的Aitken-Steffensen 加速法是通过“迭代-再迭代-加速”完成迭代的,具体过程为kk k k k k k k k k k x y z z y x x y z x y +---===+2)(),(),(21ϕϕ. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程为了验证Aitken-Steffensen 加速法可以把一些不收敛的迭代加速成迭代收敛,我们使用将方程组变形为31021x x -=,取迭代函数31021)(x x -=ϕ,并利用宏定义出迭代函数.由于不用保存迭代过程,所以用x0表示初值同时也存放前一步迭代的值,y 和z 是迭代过程中产生的y k 和z k ,x 存放新迭代的结果.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;迭代函数φ(x );最大迭代次数N7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Aitken_Steffensen.m * %* 程序功能:用Aitken-Steffensen 加速法求方程. * %************************************************************* clc;clear all;phi=inline('0.5 * sqrt( 10 - x^3)'); % 迭代函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon='); N=input('最大迭代次数: N=');disp(' n 迭代中间值y(n-1) 再迭代结构z(n-1) 加速后的近似值x(n)'); fprintf('%2d%54.6f\n',0,x0);% 占2位整数显示步数0, 为了对齐, 占54位小数6位显示x01 % n 是计数器2 % while n<=Ny= 3 ; % 迭代 z= 3 ; % 再迭代 x= 3 ; % 加速% x0初值与前一步的近似值, y 和z 是中间变量, x 是下一步的近似值fprintf('%2d%18.6f%18.6f%18.6f\n',n,y,z,x);%显示中间值和迭代近似值6 % 如果与上一步近似解差的绝对值不超过误差限 fprintf('\n\n 近似解 x≈x(%d)≈%f \n',n,x);% 则输出近似根 (7), 可简略为: fprintf('\n\n 近似解 x=%f',x); return; % 并完毕程序(7) 8 % 相当于endif9 % 计数器加110 % 新近似值x 作为下一次迭代的初值 11fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N); %输出错误信息(12)《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之Newton 下山法) 2. 实验题目用Newton 下山法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-.3. 实验目的熟悉非线性方程的Newton 下山法. 4. 基础理论Newton 下山法:Newton 下山法公式为)(')(1k k kk k x f x f x x λ-=+,使|)(||)(|1k k x f x f <+,其中10≤<k λ.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程定义函数f(x)和df(x),其中df(x)是f(x)的导函数.每步迭代时先取下山因子为1,尝试迭代,判断尝试结果是否满足下山因子,若满足则作为这步的迭代结果;否则将下山因子减半,然后再尝试.为防止当前的x k 是极小值点,附近不会有满足下述条件的其它点,使尝试陷入死循环,同时计算机中能表示出的浮点数也有下界,因此我们设置了最大尝试次数.当超过最大尝试次数时,不再进行下山尝试.由于反复尝试迭代且要判断下山条件,所以f (x 0)和f ‘(x 0)会反复使用,为避免重复计算浪费运行时间,将这两个值分别保存在变量fx0和dfx0.而尝试产生的节点,判断下山条件时要用到它的函数值,若尝试成功,这个点会作为下一步的初值再使用,所以把该点的函数值也保存在变量fx 中.算法的伪代码描述:Input :初值x 0;精度要求(即误差限)ε;函数与其导函数f (x )和f’(x);最大迭代次数N ;K 下山尝试最大次数Output :近似解或失败信息7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:NewtonDownhill.m *%* 程序功能:用Newton下山法求解非线性方程. *%*************************************************************clc;clear all;f=inline('x^3-x-1'); % 函数f(x)df=inline('3*x^2-1'); % 函数f(x)的导函数x0=input('初值: x0 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');K=input('最大下山尝试次数: K=');1 % 迭代次数计数器2 % 存x0点函数值fprintf('\n\n n x(n) f(x(n))\n'); % 显示表头fprintf('%2d%14.6f%14.6f\n',0,x0,fx0); % 2位整数显示0, 共14位小数6位显示x0和fx03 % while n≤ Ndisp(''); % 换行显示下山尝试过程的表头disp(' 下山因子尝试x(n) 对应f(x(n)) 满足下山条件');disp('');4 % 存x0点导数值, 每次下山尝试不用重新计算ifdfx0==0 % 导数为0不能迭代disp(‘无法进行Newton迭代’);return;endlambda=1.0; % 下山因子从1开始尝试k=1; % k下山尝试次数计数器while k<=K % 下山最多尝试K次% 下山公式fx=f(x); % 函数值fprintf('%22.6f%14.6f%14.6f',lambda,x,fx); % 显示尝试结果if (abs(fx)<abs(fx0)) % 判断是否满足下山条件fprintf(' 满足\n');break; % 是, 则退出下山尝试的循环elsefprintf(' 不满足\n');endlambda=lambda/2; % 不是, 则下山因子减半k=k+1; % 计数器加1endif k>Kfprintf('\n 下山条件无法满足, 迭代失败.\n\n');return;endfprintf('%2d%14.6f%14.6f\n',n,x,fx);% 2位整数显示步数n, 共14位小数6位显示下步迭代结果22 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n',x); % (23)return; % 达到, 则显示结果并完毕程序(23) end % (24)% 用x0,fx0存放前一步的近似值和它的函数值, 进行循环迭代25262728fprintf('\n 迭代%d次还不满足误差要求.\n\n',N);《数值计算方法》实验2报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验2 非线性方程的迭代解法(之弦截法) 2. 实验题目用弦截法求方程010423=-+x x 在区间[1,2]的一个实根,取绝对误差限为410-. 3. 实验目的熟悉非线性方程的弦截法. 4. 基础理论将Newton 迭代法中的导数用差商代替,得到弦截法(或叫正割法)公式)()()(111k k k k k k k x f x f x f x x x x --+---=.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程不保存迭代过程,所以始终以x 0和x 1分别存放x k -1和x k ,而x 存放新产生的迭代值x k +1,这样,下一次迭代时需要把上一步的x 1(即x k )赋值于x 0(做新的x k -1).这些点的函数值会重复用到,在迭代公式中也要用到,上一步的x 1作为下一步的x 0也会再一次用它的函数值,为减少重新计算该点函数值的运行时间,将x 1点的函数值保存在变量fx1中.算法的伪代码描述:Input :初值x 0,x 1;精度要求(即误差限)ε;函数f (x );最大迭代次数N7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:SecantMethod.m *%* 程序功能:用弦截法求解非线性方程. *%*************************************************************clc;clear all;f=inline('2*x^3-5*x-1'); % 函数f(x)x0=input('第一初值: x0 = ');x1=input('第二初值: x1 = ');epsilon=input('误差限: epsilon=');N=input('最大迭代次数: N=');fprintf('\n n x(n)\n'); % 显示表头fprintf('%2d%14.6f\n', 0, x0); % 占2位显示步数0, 共14位其中小数6位显示x0fprintf('%2d%14.6f\n', 1, x1); % 占2位显示步数1, 共14位其中小数6位显示x11 % 存x0点函数值2 % 存x1点函数值3 % 迭代计数器4 % while n≤ N% 弦截法公式fprintf('%2d%14.6f\n', n, x); %显示迭代过程6 % 达到精度要求否fprintf('\n\n 方程的近似解为: x≈%f\n\n', x);return; % 达到, 则显示结果并完毕程序89 % 原x1做x0为前两步的近似值10 % 现x做x1为一两步的近似值11 % x0点函数值12 % 计算x1点函数值, 为下一次循环13 % 计数器加1 14fprintf('\n 迭代%d 次还不满足误差要求.\n\n',N);《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 消去法) 2. 实验题目用Gauss 消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 消去法. 4. 基础理论Gauss 消去法是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 消去法的第k 步(1≤k≤n -1)消元:若0≠kk a ,则依次将增广矩阵第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0.5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Gauss 列主元消去法) 2. 实验题目用Gauss 列主元消去法求解线性方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--000.3000.2000.1643.5072.1000.2623.4712.3000.1000.3000.2001.0321x x x . 3. 实验目的掌握解线性方程组的Gauss 列主元消去法. 4. 基础理论Gauss 列主元消去法也是通过对增广矩阵的初等行变换,将方程组变成上三角方程组,然后通过回代,从后到前依次求出各未知数.Gauss 列主元消去法的第k 步(1≤k≤n -1)消元:先在nk k k kk a a a ,,,,1 +中找绝对值最大的,将它所在的行与第k 行交换,然后将第k 行的kk ik a a /-倍加到第i 行(k+1≤i≤n),将第k 列对角线下的元素都化成0. 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之Doolittle 分解) 2. 实验题目对矩阵A 进行Doolittle 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的掌握矩阵的Doolittle 分解. 4. 基础理论矩阵的Doolittle 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵和一个上三角矩阵的乘积.若设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n n n u u u u u u u u u u U l l ll l l L000000,1010010001333223221131211321323121则可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=+=-=∑∑-=-=1111,,2,1,/)(,,1,,k t kk tk it ik ik k r rj kr kj kj nk k i u u l a l nk k j u l a u其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)按计算公式依次计算一行u 同时计算一列l ;(2)因为计算完u ij (或l ij )后,a ij 就不再使用,为节省存储空间,将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(3)使用L 矩阵和U 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线上的元素为1,上三角部分为0,下三角部分为A 中对应的元素;U 的下三角部分为0,上三角部分为A 中对应的元素.算法的伪代码描述: Input :阶数n ;矩阵A7. 结果与分析8. 附录:程序清单%****************************************************% 程序名: Doolittle.m *% 程序功能: 矩阵LU分解中的Doolittle分解. *%****************************************************clc;clear all;n=4; % 矩阵阶数A=[6 2 1 -1;2 4 1 0; 1 1 4 -1; -1 0 -1 3]disp('A=');disp(A);% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L 在A 下三角, U 在上三角(对角线为1) enddisp('分解结果:'); disp('L='); for i=1:n for j=1:nif i>j % 在下三角部分, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));elseif i==j % 在对角线上, 则显示1 fprintf(' %8d',1);else % 在上三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 enddisp('U='); for i=1:n for j=1:nif i<=j % 在上三角部分或对角线上, 则取A 对于的元素显示 fprintf(' %8.4f',A(i,j));else % 在下三角部分, 则显示0 fprintf(' %8d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之LU 分解法) 2. 实验题目用LU 分解(Doolittle 分解)法求解线性方程组⎪⎩⎪⎨⎧=++=++=++104615631552162321321321x x x x x x x x x 3. 实验目的熟悉解线性方程组LU 分解法.4. 基础理论若将矩阵A 进行了Doolittle 分解,A = LU ,则解方程组b x A=可以分解求解两个三角方程组b y L=和y x U =.它们都可直接代入求解,其中b y L=的代入公式为∑-==-=11,,2,1,k j j kj k k n k y l b y而y x U=的代入公式为∑+=-=-=nk j kk j kjk k n n k u x uy x 11,,1,,/)( .5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程(1)Doolittle 分解过程依次计算一行u 同时计算一列l 完成,并将计算的u ij (和l ij )仍存放在矩阵A 中的相应位置;(2)求解方程组的代入公式中用到的u ij 和l ij 都直接在A 的相应位置取值即可. 算法的伪代码描述:Input :阶数n ;矩阵A ;常数项向量b7. 结果与分析8. 附录:程序清单%**************************************************** % 程序名: LinearSystemByLU.m *% 程序功能: 利用LU分解(Doolittle分解)解方程组. *%****************************************************clc;clear all;n=3; % 矩阵阶数A=[1 2 6; 2 5 15; 6 15 46];b=[1;3;10];% LU分解(Doolittle分解)for k=1:n% 计算矩阵U的元素u_{kj}% (可参照下面l_{ik}的公式填写)% 计算矩阵L的元素l_{ik}% L在A下三角, U在上三角(对角线为1) endfor k=1:n % 用代入法求解下三角方程组Ly=by(k)=b(k);3 %∑-==-=11,,2,1,kjj kjk knkylby33enddisp('方程组Ly=b的解:y=');disp(y');for k=n:-1:1 % 回代求解上三角方程组Ux=y x(k)=y(k);6 %∑+=-=-=nkjj kjk knnkxuyx11,,1,,666 enddisp('原方程组的解:x='); disp(x');《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之Cholesky 分解) 2. 实验题目对矩阵A 进行Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A . 3. 实验目的理解矩阵的Cholesky 分解. 4. 基础理论矩阵的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个下三角矩阵L 和L 转置的乘积,即A =LL T,其中L 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t kktk it ik ik k r kr kk kk nk k i l l l a l l a l其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算一列对角线上的元素l kk ,再计算这列其他元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完l ij 后,a ij 就不再使用,为节省存储空间,将计算的l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 上三角部分为0,对角线和下三角部分为A 中对应的元素.算法的伪代码描述:Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)行号 伪代码注释1 for k ← 1 to n2∑-=-=112k r krkk kk l a l3 for i ← k to n4 ∑-=-=11/)(k t kk tk it ik ik l l l a l计算结果存放在a ij5 endfor6 endfor7return L输出L7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:Cholesky.m * %* 程序功能:对称正定矩阵的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数 A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A ='); for i=1:n for j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n');% 一行完毕换行end% Cholesky 分解 for k=1:n % 计算对角线上的l _{kk}% 计算其他的l _{ik} % 和l _{ki}end % L 在A 下三角, L^T 在上三角disp('分解结果:'); disp('L='); for i=1:n for j=1:n if i>=j % 在下三角部分或对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 在上三角部分, 则显示0 fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X成绩:1. 实验名称实验3 解线性方程组的直接法(之改进的Cholesky 分解) 2. 实验题目对矩阵A 进行改进的Cholesky 分解,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛----=3101141101421126A .3. 实验目的理解矩阵改进的Cholesky 分解. 4. 基础理论矩阵的改进的Cholesky 分解是指将矩阵n n ij a A ⨯=)(可以分解为一个单位下三角矩阵L 和对角矩阵D 与L 转置的乘积,即A =LDL T,其中L 和D 各元素可依如下顺序公式计算⎪⎪⎩⎪⎪⎨⎧++=-=-=∑∑-=-=11112,,2,1,/)(k t k kt it t ik ik k r kr r kk k nk k i d l l d a l l d a d其中k = 1,2,…,n .5. 实验环境操作系统:Windows xp ; 程序设计语言:VC++ 6. 实验过程(1)按计算公式依次先计算D 的一个元素d k ,再计算L 中这列的元素l ik ,且对称位置的元素也取同一个值;(2)因为计算完d k 和l ij 后,a kk 或a ij 就不再使用,为节省存储空间,将计算的a kk 或l ij 仍存放在矩阵A 中的相应位置;(3)使用L 矩阵时需要根据元素所在位置取固定值或A 中相应位置的值.L 对角线和上三角部分为0,下三角部分为A 中对应的元素;D 对角线为A 中对应的元素,其余都是0.算法的伪代码描述: Input :阶数n ;矩阵AOutput :矩阵L (合并存储在数组A 中)7. 结果与分析8. 附录:程序清单%************************************************************* %* 程 序 名:ImprovedCholesky.m * %* 程序功能:对称正定矩阵的改进的Cholesky 分解. * %*************************************************************n=4; % 矩阵阶数A=[6,2,1,-1; 2,4,1,0; 1,1,4,-1; -1,0,-1,3];disp('A =');for i=1:nfor j=1:nfprintf('%10.4f',A(i,j)); % 共占14位endfprintf('\n'); % 一行完毕换行end% Cholesky分解for k=1:n% 计算D对角线上的u_{kk}% 计算L的元素l_{ik}% 和L转置的元素l_{ki} end % L在A下三角, D在对角线disp('分解结果:');disp('L=');for i=1:nfor j=1:nif i>j % 在下三角部分, 则取A对于的元素显示fprintf('%10.4f',A(i,j));elseif i==j % 在对角线上, 则显示1fprintf('%10d',1);else % 在上三角部分, 则显示0fprintf('%10d',0);endendfprintf('\n'); % 换行enddisp('D='); for i=1:n for j=1:n if i==j % 在对角线上, 则取A 对于的元素显示fprintf('%10.4f',A(i,j));else % 其余显示0fprintf('%10d',0); end endfprintf('\n'); % 换行 end《数值计算方法》实验3报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验3 解线性方程组的直接法(之追赶法) 2. 实验题目用追赶法求解线性方程组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----101053001210023100124321x x x x 3. 实验目的熟悉解线性方程组的追赶法. 4. 基础理论对于系数矩阵为三对角矩阵的方程组,其Crout 分解可分解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=------11111211122111122211n n nn n n nn n n t t t s a s a s a s b a c b a c b a c b A这样,解方程组可以由如下2步完成:“追”:,,,3,2,/)(,,/,/,1111111111n i s y a f y t a b s s c t s f y b s i i i i i i i i i i i i =-=-====-----其中:Tn f f ),,(1 为方程组的常数项,n t 没用;“赶”:.1,,2,1,,1 --=-==+n n i x t y x y x i i i i n n5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程在“追”的过程中,向量s 和y 都有n 个元素,t 只有n -1个元素,又1s 和1y 的计算公式与其它i s 和i y 不同,所以先单独计算1s 和1y ,然后在一个n -1次循环中,求其它i s 和i y 以与i t .由于在“追”的过程中,i b ,i c 和i f 在分别计算完对应的i s ,i t 和i y 后就不再使用,所以借用数组b ,c 和f 存储向量s ,t 和y ;同样在“赶”的过程中,i y 在计算完对应的i x 后就不再使用,所以再一次借用数组f 存储向量x .追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x改进的追赶法算法的伪代码描述:Input :阶数n ;三对角矩阵的三条对角线向量a ,b ,c ,常数项向量f Output :方程组的解x7. 结果与分析8. 附录:程序清单%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"s(1) = b(1);y(1) = f(1); % 先单独求s_1和y_1 for k = 1 : n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"x(n) = y(n); % 先单独求x_nfor k = n-1 : -1 : 1% 再求x_i(i=n-1,n-2, (1)endx=x' % 输出解向量-------------------------------------------------------------------------------------------------------------------改进的程序:%*************************************************************%* 程序名:ChaseAfter.m *%* 程序功能:用追赶法求解三对角线性方程组. *%*************************************************************clc;clear all;n=4;a=[0,-1,-1,-3];b=[2, 3, 2, 5];c=[-1, -2, -1, 0];f=[0, 1, 0, 1];% "追"% b(1)=b(1); % s_1仍在b_1中,不用重新计算y(1)=f(1)/b(1); % 先单独y_1for k=1:n-1% 再求t_i(i=1,2,…,n-1)% s_i(i=2,3,…,n)% y_i(i=2,3,…,n)end% "赶"% f(n)=f(n); % x_n等于y_n仍在f_n中for k=n-1:-1:1% 再求x_i(i=n-1,n-2, (1)endx=f' % 输出解向量《数值计算方法》实验4报告班级:20##级####x班学号:20##2409####:##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Jacobi迭代)2. 实验题目用Jacobi迭代法求解线性方程组1231231232251223x x x x x x x x x +-=⎧⎪++=⎪⎨++=⎪⎪⎩任取3. 实验目的掌握解线性方程组的Jacobi 迭代法. 4. 基础理论将第i (n i ≤≤1)个方程i n in i i b x a x a x a =+++ 2211移项后得到等价方程ii n in i i i i i i i i i a x a x a x a x a b x /)(11,11,11------=++--便可构造出Jacobi 迭代公式,1,0,/)()()(11,)(11,)(11)1(=------=++--+k a x a x a x a x a b x ii k n in k i i i k i i i k i i k i . 5. 实验环境操作系统:Windows xp ; 程序设计语言:Matlab 6. 实验过程7. 结果与分析8. 附录:程序清单《数值计算方法》实验4报告班级: 20##级####x 班 学号: 20##2409#### : ##X 成绩:1. 实验名称实验4 解线性方程组的迭代法(之Gauss-Seidel 迭代) 2. 实验题目用Gauss-Seidel 迭代法求解线性方程组。
计算方法实验报告
2019年计算方法(B)实验报告姓名:学号:专业:课程:计算方法(B)目录一、实验综述 (1)二、实验内容 (1)2.1 实验一 (1)2.2 实验二 (2)2.3 实验三 (3)2.4 实验四 (4)2.5 实验五 (6)三、思考总结 (7)附件A1 (8)附件A2 (9)附件A3 (10)附件A4 (12)附件A5 (14)一、实验综述计算方法在工程实践中得到了广泛的应用,是理工类研究生必备的知识技能。
按照2019年计算方法课程学习要求,本文对计算方法上机题目进行了算法设计、分析,利用matlab 2019b版本对算法进行实现,最终形成了实验报告。
以下为本次实验报告具体内容,包括五个实验部分和一个思考总结部分。
二、实验内容2.1 实验一2.1.1 实验题目用Jacobi迭代和Gauss-Seidel迭代解电流方程组,使各部分电流的误差均小于10-3。
2.1.2 算法分析a)首先列出方程组的系数矩阵A以及等式右端的矩阵b,A=[28,-3,0,0,0;-3,38,-10,0,-5;0,-10,25,-15,0;0,0,-15,45,0;0,-5,0,0,30 ];b=[10;0;0;0;0];为了验证A是否收敛,我们通过判断系数矩阵A是否为严格对角占优矩阵进行确定。
如果是,则可以进行Jacobi迭代和Gauss-Seidel迭代(利用matlab程序验证后,证明了矩阵A为严格对角占优矩阵);如果不是,则需要采用其他方法进行判断迭代是否收敛。
b)对矩阵A分裂成三部分,,其中D为A的对角矩阵,E为A的下三角矩阵的相反数,F为A的上三角矩阵的相反数。
c) Jacobi迭代。
取x得初始向量为x=[0;0;0;0;0],利用迭代公式进行循环计算,当的无穷范数小于10-3,即,停止循环。
d) Gauss-Seidel迭代。
取x得初始向量为x=[0;0;0;0;0],利用迭代公式进行循环计算,当的无穷范数小于10-3,即,停止循环。
MATLAB智能算法30个案例分析
MATLAB智能算法30个案例分析以下是MATLAB智能算法30个案例的分析:1.遗传算法优化问题:利用遗传算法求解最佳解的问题。
可以用于求解复杂的优化问题,如旅行商问题等。
2.神经网络拟合问题:利用神经网络模型拟合给定的数据。
可以用于预测未知的数据或者进行模式分类等。
3.支持向量机分类问题:利用支持向量机模型进行分类任务。
可以用于医学图像处理、信号处理等领域。
4.贝叶斯网络学习问题:利用贝叶斯网络对大量数据进行学习和分析。
可以用于推断潜在关系、预测未来事件等。
5.粒子群算法逆向问题:利用粒子群算法解决逆向问题,如数据恢复、逆向工程等。
可以用于重建丢失的数据或者还原未知的模型参数。
6.模拟退火算法优化问题:利用模拟退火算法寻找最优解。
可以用于参数优化、组合优化等问题。
7.K均值聚类问题:利用K均值算法对数据进行聚类。
可以用于数据分析、图像处理等。
8.线性回归问题:利用线性回归模型预测目标变量。
可以用于价格预测、趋势分析等。
9.主成分分析问题:利用主成分分析模型对高维数据进行降维。
可以用于数据可视化和预处理。
10.深度学习图像分类问题:利用深度学习算法对图像进行分类。
可以用于图像识别和物体检测等。
11.强化学习问题:利用强化学习算法让智能体自主学习和改进策略。
可以用于自动驾驶、博弈等。
12.偏微分方程求解问题:利用数值方法求解偏微分方程。
可以用于模拟物理过程和工程问题。
13.隐马尔可夫模型序列分类问题:利用隐马尔可夫模型对序列进行分类。
可以用于语音识别、自然语言处理等。
14.遗传编程问题:利用遗传编程算法自动发现和改进算法。
可以用于算法设计和优化等。
15.高斯混合模型聚类问题:利用高斯混合模型对数据进行聚类。
可以用于人群分析和异常检测等。
16.马尔可夫链蒙特卡洛采样问题:利用马尔可夫链蒙特卡洛方法采样复杂分布。
可以用于概率推断和统计模拟等。
17.基因表达式数据分析问题:利用统计方法分析基因表达数据。
MATLAB实验报告
MATLAB实践报告2016/2017学年第一学期专业:电气工程及其自动化班级:学号:姓名:2017年 2 月目录第1章绪论 (1)1.1 Matlab简介 (1)1.2 Matlab语言特点及优势 (1)1.2.1 语言特点 (1)1.2.2 优势 (2)1.3 Matlab的功能 (5)第2章Matlab实践任务 (6)2.1实验一Matlab环境语法、基本运算及绘图 (6)2.1.1实验目的 (6)2.1.2实验原理 (6)2.1.3实验内容 (6)2.2实验二Matlab数值运算 (10)2.2.1实验目的 (10)2.2.2实验原理 (10)2.2.3实验内容 (10)2.3实验三Matlab的符号计算 (19)2.3.1实验目的 (19)2.3.2实验内容 (19)2.4实验四Matlab基本编程方法 (23)2.4.1实验目的 (23)2.4.2实验内容 (23)第3章小结 (27)参考文献 (28)第1章绪论1.1 Matlab简介Matlab是“Matrix Laboratory”的缩写,意为“矩阵实验室”,是当今美国很流行的科学计算软件.信息技术、计算机技术发展到今天,科学计算在各个领域得到了广泛的应用.在许多诸如控制论、时间序列分析、系统仿真、图像信号处理等方面产生了大量的矩阵及其相应的计算问题.自己去编写大量的繁复的计算程序,不仅会消耗大量的时间和精力,减缓工作进程,而且往往质量不高.美国Mathwork软件公司推出的Matlab软件就是为了给人们提供一个方便的数值计算平台而设计的.Matlab是一个交互式的系统,它的基本运算单元是不需指定维数的矩阵,按照IEEE的数值计算标准(能正确处理无穷数Inf(Infinity)、无定义数NaN(not-a-number)及其运算)进行计算。
系统提供了大量的矩阵及其它运算函数,可以方便地进行一些很复杂的计算,而且运算效率极高。
Matlab命令和数学中的符号、公式非常接近,可读性强,容易掌握,还可利用它所提供的编程语言进行编程完成特定的工作。
算法设计与分析实验报告_Matlab实现
算法设计与分析实验报告说明:本实验报告的算法全部用Matlab实现
目录:
一、求最大公约数的欧几里得算法
二、验证给定数组中的所有元素是否唯一
三、计算两个N阶矩阵的乘积
四、递归算法(阶乘、Fibonacci数列)
五、KMP模式匹配算法
六、Huffman编码
七、图的遍历(深度优先搜索算法DFS、广度优先搜索算法BFS)
八、Dijkstra算法、Kruskal算法和Prim算法
九、排序算法(选择、冒泡、归并、快速、插入)
十、二叉树的三序遍历(前序、中序、后序)
一、求最大公约数的欧几里得算法
代码:
测试:
二、验证给定数组中的所有元素是否唯一代码:
测试:
三、计算两个N阶矩阵的乘积代码:
测试:
四、递归算法(阶乘、Fibonacci数列)代码:
测试:
五、KMP模式匹配算法代码:
测试:
六、Huffman编码代码:
测试:
七、图的遍历(深度优先搜索算法DFS、广度优先搜索算
法BFS)
代码:
测试:
DFS遍历:
BFS遍历:
八、Dijkstra算法、Kruskal算法和Prim算法代码:
测试:
九、排序算法(选择、冒泡、归并、快速、插入)代码:
测试:
十、二叉树的三序遍历(前序、中序、后序)代码:
测试:。
matlab实验四函数编写与程序设计
实验四:函数编写与程序设计一、实验目的1 . 掌握M文件的创建。
2.掌握函数的编写规则。
3.掌握函数的调用。
4 . 掌握基本的输入输出函数以及显示函数的用法。
5.会用Matlab程序设计实现一些工程算法问题。
二、实验内容1 . 设计程序,完成两位数的加、减、乘、除四则运算,即产生两个两位随机整数,再输入一个运算符号,做相应的运算,显示相应的结果,并要求结果显示类似于“a=x+y=34”。
a=input('请输入一个数:')b=input('请输入一个数:');fuhao=input('请输入一个运算符号(+-*/):','s');switch fuhaocase {'+'}he=a+b;disp(['和=',num2str(a),'+',num2str(b),'=',num2str(he)]);case {'-'}he=a-b;disp(['减=',num2str(a),'-',num2str(b),'=',num2str(he)]) case {'*'}he=a*b;disp(['乘=',num2str(a),'*',num2str(b),'=',num2str(he)]) case {'/'}he=a/b;disp(['除=',num2str(a),'/',num2str(b),'=',num2str(he)]) otherwise disp('请输入正确的符号');end2 . 求下列分段函数的值2 2 26,0 56,1,yχχχχχχχχχχχ⎧+-<≠⎪=-+≤≠≠⎨⎪--⎩且-30<10,2且3其他要求:用if语句实现,分别输出x = -5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y值。
基于MATLAB的直方图均衡算法研究与实现毕业设计论文
摘要毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
用MATLAB编写PSO算法及实例
用MATLAB 编写PSO 算法及实例1.1 粒子群算法PSO 从这种模型中得到启示并用于解决优化问题。
PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。
所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。
在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。
另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量,。
第个粒子的“飞行 ”速度也是一个维的向量,记为,。
第个粒子迄今为止搜索到的最优位置称为个体极值,记为,。
整个粒子群迄今为止搜索到的最优位置为全局极值,记为在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置:D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g(1.1) (1. 2)其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。
式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 / 37
if ((n ~= fix(n))||(n<0)) error('n 必须为非负整数! !'); end %计算阶乘 if n==0 x=1; else x = factorial(n-1)*n; end end function x=fibonacci(n) %%求斐波那契数列 %%输入:正整数 n %输出:斐波那契数列中第 n 个数 %例外处理 if ((n ~= fix(n))||(n<1)) !'); error('n 必须为正整数! end %计算 if n==1||n==2 x = 1; else x = fibonacci(n-1)+fibonacci(n-2); end end
3 / 37
error('A 和 B 必须同时为方阵! !'); end if (a_row ~= b_list) error('方阵 A 与 B 的维数必须相等! !'); end %矩阵相乘运算 n=a_row; X=zeros(n,n);%初始化 X for i=1:n for j=1:n for k=1:n X(i,j)=X(i,j)+A(i,k)*B(k,j); end end end end
测试:
x = gcd(123,234) x= 3
二、 验证给定数组中的所有元素是否唯一
代码:
function x=UniqueElements(A) %% 验证给定数组中的所有元素是否唯一 %输入:一个数组 1xN 矩阵 A
2 / 37
%输出:1--该数组所有元素唯一 % 0--该数组所有元素不唯一 x = 1; N = size(A,2); for i = 1:(N-1) for j=(i+1):N if A(i) == A(j) x = 0; break; end end end end
算法设计与分析实验报告
说明:本实验报告的算法全部用 Matlab 实现
目录: 一、求最大公约数的欧几里得算法 二、验证给定数组中的所有元素是否唯一 三、计算两个 N 阶矩阵的乘积 四、递归算法(阶乘、Fibonacci 数列) 五、KMP 模式匹配算法 六、Huffman 编码 七、图的遍历(深度优先搜索算法 DFS、广度优先搜索算法 BFS) 八、Dijkstra 算法、Kruskal 算法和 Prim 算法 九、排序算法(选择、冒泡、归并、快速、插入) 十、二叉树的三序遍历(前序、中序、后序)
测试:
>> t='this is a kmp string matching test string'; >> p='string';
1 / 37
一、 求最大公约数的欧几里得算法
代码:
function x = gcd(m,n) %% 求最大公约数的欧几里得算法 %输入:两个整数 m, n %输出:m,n 的最大公约数 x if (m ~= fix(m))||(n ~=fix(n)) error('两个输入变量必须为整数! !'); end if (m~=0)&&(n~=0) while n~=0 r = mod(m,n); m = n; n = r; end x = m; else error('两个输入变量均不能为零! !'); end end
测试:
A=[1 2 3 4]; B=[5 6 7 8]; X = MatrixMultiplication(A,B) X= 19 43 22 50
四、 递归算法(阶乘、Fibonacci 数列)
代码:
function x=factorial(n) %%求正整数 n 的阶乘 %%输入:正整数 n %输出:n 的阶乘 x=n*(n-1)*(n-2)*...*3*2*1 %例外处理
测试:
x=UniqueElements([2 0 1 1 0 5 1 5 2 7]) x= 0 >> x=UniqueElements([1 3 5 7 8 9 2 Fra bibliotek]) x= 1
三、 计算两个 N 阶矩阵的乘积
代码:
function X = MatrixMultiplication(A,B) %%计算两个 N 阶矩阵的乘积 %%输入:两个 N 阶矩阵 A,B %输出:矩阵 A 与 B 的乘积 X %例外处理 [a_row,a_list]=size(A); [b_row,b_list]=size(A); if (a_row ~= a_list||(b_row~=b_list))
测试:
x=factorial(5) x= 120 x=fibonacci(1) x=
5 / 37
1 >> x=fibonacci(2) x= 1 >> x=fibonacci(3) x= 2 >> x=fibonacci(4) x= 3 >> x=fibonacci(5) x= 5 >> x=fibonacci(10) x= 55
五、 KMP 模式匹配算法
代码:
function KMP(T, P) %%KMP:此算法是一种改进的字符串匹配算法 %输入: % T--原字符串 % P--模式
6 / 37
%输出: % 返回所有匹配字符串第一个字符的下标 n = length(T); m = length(P); pi= Compute_Prefix(P); q = 0; for i = 1:n while ( (q > 0) && (P(q+1) ~= T(i) )) q = pi(q); end if P(q+1)==T(i) q = q + 1; end if q == m temp = i - m ; fprintf('Pattern occurs with shift %u.\n' ,temp); q = pi(q); end end end function pi = Compute_Prefix(P) %%KMP 函数的子函数 m = length(P); pi(1)=0; k = 0; for q = 2:m while ( (k>0) && (P(k+1) ~= P(q) )) k = pi(k); end if P(k+1) == P(q) k=k+1; end pi(q)=k; end end