R语言实验报告—习题详解

合集下载

大数定律和中心极限定理的r语言实验报告

大数定律和中心极限定理的r语言实验报告

大数定律和中心极限定理是概率论中的两个重要概念。

大数定律描述了在独立重复试验中,当试验次数趋于无穷时,某一事件发生的频率趋于其概率。

中心极限定理则指出,无论试验中的个体之间的差异有多大,当试验次数足够多时,试验结果的平均值将接近正态分布。

以下是一个简单的R语言实验报告,用于演示大数定律和中心极限定理。

大数定律和中心极限定理的R语言实验
实验目的:通过模拟实验,观察大数定律和中心极限定理的现象。

实验原理:
1.大数定律:在大量独立重复试验中,某一事件的相对频率趋近于该事件的概率。

2.中心极限定理:无论个体之间的差异有多大,当试验次数足够多时,试验结果的平均值将接近正态分布。

实验步骤:
1.生成1000个0到1之间的随机数,模拟1000次掷硬币试验(正面概率为0.5)。

2.计算正面朝上的频率。

3.使用R语言绘制频率直方图和正态分布曲线。

4.重复步骤1-3多次(例如100次),观察频率的稳定性。

5.计算100次试验中每次试验得分的平均值的频数分布,并绘制直方图和正态分布曲线。

实验结果:
1.正面朝上的频率逐渐稳定于0.5。

2.频率直方图接近正态分布。

3.平均值的频数分布也接近正态分布。

实验分析:
实验结果验证了大数定律和中心极限定理。

在大量独立重复试验中,正面朝上的频率趋近于0.5,符合大数定律。

同时,试验结果的平均值分布接近正态分布,符合中心极限定理。

结论:通过R语言模拟实验,我们观察到了大数定律和中心极限定理的现象,加深了对这两个定理的理解。

R语言实验报告

R语言实验报告

一、实验目的1.用 R 生成服从某些具体已知分布的随机变量二、实验内容在 R 中各种概率函数都有统一的形式,即一套统一的前缀+分布函名:d 表示密度函数(density);p 表示分布函数(生成相应分布的累积概率密度函数);q 表示分位数函数,能够返回特定分布的分位(quantile);r 表示随机函数,生成特定分布的随机数(random)。

1、通过均匀分布随机数生成概率分布随机数的方法称为逆变换法。

对于任意随机变量X,其分布函数为F,定义其广义逆为:F-(u)=inf{x;F(x)≥u}若u~u (0,1),则F-(u)和X 的分布一样Example 1 如果X~Exp(1)(服从参数为 1 的指数分布),F(x)=1-e-x。

若u=1-e-x并且u~u(0,1),则X=-logU~Exp(1)则可以解出x=-log(1-u)通过随机数生成产生的分布与本身的指数分布结果相一致R 代码如下:nsim = 10^4U = runif(nsim)X = -log(U)Y = rexp(nsim)X11(h=3.5)Xpar(mfrow=c(1,2),mar=c(2,2,2,2))hist(X,freq=F,main="Exp from Uniform",ylab="",xlab="",ncl=150,col="grey",xlim=c(0,8))curve(dexp(x),add=T,col="sienna",lwd=2)hist(Y,freq=F,main="Exp from R",ylab="",xlab="",ncl=150,col="grey",xlim=c(0,8))curve(dexp(x),add=T,col="sienna",lwd=2)2、某些随机变量可由指数分布生成。

R语言实验四

R语言实验四

R语言编程技术实验报告
题目:数据的导入导出
院系:计算机科学与工程学院
班级:170408
姓名:刘馨雨
学号:20172693
【实验题目】
数据的导入导出。

【实验目的】
1.熟练掌握从一些包中读取数据。

2.熟练掌握csv文件的导入。

3.创建一个数据框,并导出为csv格式。

【实验内容与实现】
1.创建一个csv文件(内容自定),并用readtable函数导入该文件。

图1.1 vim命令,按shift+zz可保存退出。

图1.2 进入R语言环境
图1.3 读取文件
2.查看R语言自带的数据集airquality(纽约1973年5-9月每日空气质量)。

图2 截了前24行
3.列出airquality的前十列,并将这前十列保存到air中。

图3.1 列出前十列
图3.2 保存到air数据框中
图3.3 保存到air.csv中并读取4.任选三个列,查看airquality中列的对象类型。

图4 查看3、4、5行数据类型5.使用names查看airquality数据集中各列的名称
图5
6.将air这个数据框导出为csv格式文件。

(write.table (x, file ="", sep ="", s =TRUE, s =TRUE, quote =TRUE))
图6 导出为test.csv并查看当前目录文件
【实验心得】
1.第3题出现了三个错误。

2.第4题出现了两个错误。

3.第5题出错name改为names。

4.第6题出现的错误没太明白,准备上课询问老师。

R语言实验报告—习题详解

R语言实验报告—习题详解

R语言实验报告习题详解学院:班级:学号:姓名:导师:成绩:目录一、实验目的 (1)二、实验内容 (1)1.1问题叙述 (1)1.2问题求解 (1)1.2.1创建按列、行输入的4×5矩阵; (1)1.2.2编写程序求解 (1)1.3结果展示 (3)2.1问题叙述 (3)2.2问题求解 (4)2.2.1创建StudentData数据框 (4)2.2.2运行程序求解 (4)2.3结果展示 (4)3.1问题叙述 (4)3.2问题求解 (5)3.2.1运用hist函数绘制直方图; (5)3.2.2运用lines函数绘制密度估计曲线; (5)3.2.3运用plot函数绘制经验分布图; (5)3.2.4运用qqnorm函数绘制QQ图 (5)3.3结果展示 (5)4.1问题叙述 (8)4.2问题求解 (8)4.2.1创建x、y数据框 (8)4.2.2运用t.test函数求解 (8)4.3结果展示 (8)5.1问题叙述 (9)5.2问题求解 (9)5.2.1创建x、y数据框 (9)5.2.2运用t.test函数求解 (9)5.3结果展示 (9)6.1问题叙述 (9)6.2问题求解 (10)6.2.1创建x数据框 (10)6.2.2运用pnorm函数求解 (10)6.3结果展示 (10)三、实验总结 (10)一、实验目的R是用于统计分析、绘图的语言和操作环境。

R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具;本次试验要求掌握了解R语言的各项功能和函数,能够通过完成试验内容对R语言有一定的了解,会运用软件对数据进行分析;通过本实验加深对课本知识的理解以及熟练地运用R语言软件来解决一些复杂的问题。

二、实验内容1.1问题叙述将1,2,…,20构成两个4×5阶的矩阵,其中矩阵A是按列输入,矩阵B 是按行输入,并做如下运算.C=A+B;D=A*B;F是由A的前3行和前3列构成的矩阵;G是由矩阵B的各列构成的矩阵,但不含B的第3列.1.2问题求解1.2.1创建按列、行输入的4×5矩阵;1.2.2编写程序求解1.3结果展示2.1问题叙述已知有5名学生的数据,如下表所示.用数据框的形式读入数据.学生数据2.2问题求解2.2.1创建StudentData数据框2.2.2运行程序求解2.3结果展示3.1问题叙述某单位对100名女生测定血清总蛋白含量(g/L),数据如下:绘制上述数据的直方图、密度估计曲线、经验分布图和QQ图.3.2问题求解3.2.1运用hist函数绘制直方图;3.2.2运用lines函数绘制密度估计曲线;3.2.3运用plot函数绘制经验分布图;3.2.4运用qqnorm函数绘制QQ图3.3结果展示直方图密度估计曲线经验分布图the histogram of serumdataagef r e q u e n c y65707580850.000.020.040.060.080.1the histogram of serumdataagef r e q u e n c y65707580850.000.020.040.060.080.10QQ 图65707580850.00.20.40.60.81.0ecdf(serumdata)xF n (x)-2-10126570758085Normal Q-Q PlotTheoretical QuantilesS a m p l e Q u a n t i l e s4.1问题叙述甲、乙两种稻谷分别播种在10块试验田中,每块实验田甲乙稻谷各种一半.假设两稻谷产量X ,Y 均服从正态分布,且方差相等.收获后10块试验田的产量如下所示(单位:千克)求出两稻种产量的期望差12μμ- 的置信区间(0.05α= ).4.2问题求解4.2.1创建x 、y 数据框4.2.2运用t.test 函数求解4.3结果展示由以上程序运行得两稻种产量的期望差12μμ-的95%置信区间为 [ 7.53626, 20.06374].5.1问题叙述甲乙两组生产同种导线,现从甲组生产的导线中随机抽取4根,从乙组生产的导线中随机抽取5根,它们的电阻值(单位:Ω )分别为假设两组电阻值分别服从正态分布22212(,)(,)N N μσμσσ和, 未知.试求12μμ-的置信区间系数为0.95的区间估计.5.2问题求解5.2.1创建x 、y 数据框5.2.2运用t.test 函数求解5.3结果展示Two Sample t-testdata: x and yt = 1.198, df = 7, p-value = 0.2699alternative hypothesis: true difference in means is not equal to 095 percent confidence interval:-0.001996351 0.006096351sample estimates:mean of x mean of y0.14125 0.13920由以上程序运行甲乙两电阻的期望差12μμ-的95%置信区间为[-0.001996351, 0.006096351]. 6.1问题叙述已知某种灯泡寿命服从正态分布,在某星期所生产的该灯泡中随机抽取10只,测得其寿命(单位:小时)为1067 919 1196 785 1126 936 918 1156 920 948求这个星期生产出的灯泡能使用1000小时以上的概率.6.2问题求解6.2.1创建x数据框6.2.2运用pnorm函数求解6.3结果展示由以上程序运行得,x<=1000的概率为0.509,故x大于1000的概率为0.491.三、实验总结在R语言实验学习中,通过实验操作可使我们加深对理论知识的理解,学习和掌握R语言的基本方法,并能进一步熟悉和掌握R软件的操作方法,培养我们分析和解决实际问题的基本技能,提高我们的综合素质.。

R语言分析(二)——薛毅R语言第二章后面习题解析

R语言分析(二)——薛毅R语言第二章后面习题解析
做着习题,又不断查着书,这样,书籍也熟悉了,习题也做完了,感觉特别爽的还是。。。
解答:上面题目中第二小问是个错误的,改写成D=A ,才有下面的答案 (1)(2)(3):
(4): (5): 2.3题答案: 2.4题答案: 2.5题的答案: 完成的答案如下图所示:
1,生成纯文本和csv,并读取
2,使用excel打开生成的csv
博客园 用户登录 代码改变世界 密码登录 短信登录 忘记登录ቤተ መጻሕፍቲ ባይዱ户名 忘记密码 记住我 登录 第三方登录/注册 没有账户, 立即注册
R语言分析(二) ——薛毅 R语言第二章后面习题解析
包括2.2—2.6中间的习题,2.2的习题中第三问和第四问,应该有其他的解答方法,但我看他的题目,似乎是在A和B的基础上进行,所以就 选择了使用for循环的方法

R语言实验报告4

R语言实验报告4

R语言实验报告4
R语言实验报告4
本次实验的内容是利用R语言在数据分析的过程中,对数据进行可视
化分析,帮助用户更好地理解数据的分布及其特征。

一、实验环境准备
首先,我们需要准备实验环境,包括Rstudio的安装及R语言的安装,以及对R语言相关的统计分析和可视化工具包的安装。

二、实验数据的准备
其次,我们需要准备实验的数据,这里我们选择了一个世界各国GDP
数据集,包含了全球各个国家2000-2024年的GDP数据。

三、数据可视化分析
实验的思路是将数据以不同的图形进行可视化展示,以便更加直观地
查看各个国家的GDP变化和特征。

1.箱线图。

在R语言中,我们可以使用boxplot(函数来绘制箱线图,下面我们来实现:
```
boxplot(GDP ~ Country, data = world_gdp, col = "blue")
```
从箱线图中我们可以看出,在2024年,不同国家的GDP水平有很大的不同,印度和俄罗斯的GDP水平最高,而秘鲁和尼加拉瓜的GDP水平则相对较低。

2.柱状图。

下面我们使用barplot(函数来绘制柱状图,来更加清晰地看出每个国家在2000-2024年GDP的变化情况:
```
barplot(t(GDP), beside=TRUE, col=rainbow(20))
```
从柱状图中可以看出,在2000-2024年,不同国家的GDP变化幅度有很大的不同,主要有三种情况:美国和日本的GDP增长幅度较大。

r语言实验报告

r语言实验报告

r语言实验报告R语言实验报告一、引言R语言是一种广泛应用于数据分析、统计建模和可视化的编程语言。

本实验报告旨在介绍使用R语言进行数据分析的过程和结果。

二、实验设计本次实验的目标是分析某公司过去一年的销售数据,以了解销售业绩的情况。

实验设计包括以下步骤:1. 数据收集:从公司内部数据库中提取过去一年的销售数据,并将其导入R语言环境。

2. 数据清洗:对数据进行清理和预处理,包括处理缺失值、异常值和重复值等。

3. 数据探索:通过绘制统计图表和计算描述性统计指标,对销售数据进行探索性分析。

4. 模型建立:根据销售数据的特征和目标,选择适当的模型进行建立和训练。

5. 模型评估:使用交叉验证等方法对模型进行评估,并选择最佳模型。

6. 结果解释:根据模型的结果,对销售业绩进行解释和预测。

三、实验过程和结果1. 数据收集:从公司数据库中提取过去一年的销售数据,并导入R语言环境。

2. 数据清洗:对数据进行清理和预处理,包括处理缺失值、异常值和重复值等。

清洗后的数据包括销售额、销售数量、产品类别、销售时间等变量。

3. 数据探索:通过绘制统计图表和计算描述性统计指标,对销售数据进行探索性分析。

例如,绘制柱状图展示不同产品类别的销售额情况,计算销售数量的平均值和标准差等。

4. 模型建立:根据销售数据的特征和目标,选择适当的模型进行建立和训练。

例如,可以使用线性回归模型来预测销售额与销售数量之间的关系。

5. 模型评估:使用交叉验证等方法对模型进行评估,并选择最佳模型。

例如,可以计算模型的均方根误差(RMSE)来评估模型的预测精度。

6. 结果解释:根据模型的结果,对销售业绩进行解释和预测。

例如,可以通过模型预测某产品在未来一个月的销售额。

四、实验结论通过对过去一年销售数据的分析,我们得出以下结论:1. 不同产品类别的销售额存在差异,其中某些产品类别的销售额较高。

2. 销售数量与销售额呈正相关关系,即销售数量增加时,销售额也增加。

R语言实验报告

R语言实验报告

一、试验目的R是用于统计分析、绘图的语言和操作环境。

R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

本次试验要求掌握了解R语言的各项功能和函数,能够通过完成试验内容对R语言有一定的了解,会运用软件对数据进行分析。

二、试验环境Windows系统,RGui(32-bit)三、试验内容模拟产生电商专业学生名单(学号区分),记录高数、英语、网站开发三科成绩,然后进行统计分析。

假设有的100 名学生,起始学号为210222001,各科成绩取整,高数成绩为均匀分布随机数,都在75分以上。

英语成绩为正态分布,平均成绩80,标准差为7。

网站开发成绩为正态分布,平均成绩83,标准差为18。

把正态分布中超过100分的成绩变成100分。

1 把上述信息组合成数据框,并写到文本文件中;2计算各种指标:平均分,每个人的总分,最高分,最低分,(使用apply 函数)3求总分最高的同学的学号4绘各科成绩直方图、散点图、柱状图丶饼图丶箱尾图(要求指定颜色和缺口)5画星相图,解释其含义6画脸谱图,解释其含义,7画茎叶图、qq图四、试验实现(一)按要求随机生成学号,和对于的高数、英语、网站开发三科成绩。

A、生成学号B、生成高数成绩高数成绩要求:高数成绩为均匀分布随机数,都在75分以上均匀分布函数:runif(n,min=0,max=1)其中,n 为产生随机值个数(长度),min为最小值,max为最大值。

C、生成英语成绩英语成绩要求:正态分布,平均成绩80,标准差为7正态分布函数:rnorm(n, mean = 0, sd = 1)其中,n 为产生随机值个数(长度),mean 是平均数,sd 是标准差。

D、生成网站开发成绩网站开发成绩要求:网站开发成绩为正态分布,平均成绩83,标准差为18。

其中大于100的都记为100。

(二)把上述信息组合成数据框,并写到文本文件中; 计算各种指标:平均分,每个人的总分,最高分,最低分,(使用apply 函数)A、生成文本文件B、打开数据框C、在数据框中命名变量D、计算各种指标:平均分,每个人的总分,最高分,最低分平均分(x4):总分(x5):最低分(x6):最高分(x7):(三)将生成成绩写入文本文件中(四)求总分最高的同学的学号(五)绘各科成绩直方图、散点图、柱状图丶饼图丶箱尾图(要求指定颜色和缺口)直方图散点图柱状图饼图箱尾图(要求指定颜色和缺口)(六)画星相图,解释其含义(七)画脸谱图,解释其含义(八)画茎叶图(九)qq图五、试验总结这次试验是我第一次接触R语言,刚开始遇到了很多困难,对于R语言一窍不通,后来经过老师的悉心指导,以及自己积极的去查找资料,对R语言有了进一步的了解。

【最新范文】R语言 实验3 R基础(三)

【最新范文】R语言 实验3 R基础(三)

R语言实验3 R基础(三)一、实验目的:1.掌握列表、数据框的相关运算;2.掌握R对数据文件的读写操作;3.掌握R的简单编程。

二、实验内容:1.完成教材例题;2.完成以下练习。

练习:要求:①完成练习并粘贴运行截图到文档相应位置(截图方法见下),并将所有自己输入文字的字体颜色设为红色(包括后面的思考及小结),②回答思考题,③简要书写实验小结。

④修改本文档名为“本人完整学号姓名1”,其中1表示第1次实验,以后更改为2,3,...。

如文件名为“1305543109张立1”,表示学号为1305543109的张立同学的第1次实验,注意文件名中没有空格及任何其它字符。

最后连同数据文件、源程序文件等(如果有的话),一起压缩打包发给课代表,压缩包的文件名同上。

截图方法:法1:调整需要截图的窗口至合适的大小,并使该窗口为当前激活窗口(即该窗口在屏幕最前方),按住键盘Alt键(空格键两侧各有一个)不放,再按键盘右上角的截图键(通常印有“印屏幕”或“Pr Scrn”等字符),即完成截图。

再粘贴到word文档的相应位置即可。

法2:利用QQ输入法的截屏工具。

点击QQ输入法工具条最右边的“扳手”图标,选择其中的“截屏”工具。

)1.自行完成教材P84页开始的2.6-2.9节中的例题。

2.教材在讲解列表(List)时,所举例子的参数是有名参数。

这里我们练习创建一个列表,其参数是无名参数,并回答以下问题。

(1)运行以下命令创建列表,注意每个元素的默认名称;L <- list(12,c(34,56),matrix(1:12,nrow=4),1:15,list(10,11))(2)L[[2]][2]的输出结果是什么?请先自己写出结果,再运行验证;[1] 56(3)用1:10替换L的第四个元素,请写出命令,并运行验证;> L[[4]]<-c(1:10)(4)将L的第五个元素中的11替换为20,请写出命令,并运行验证。

R语言实验报告4

R语言实验报告4

实验目的根据教科书上数据,作图,以及实现关于分布的假设检验,要求选择的数据除了服从正态分布外,还应选择一些其它类型的数据实验内容(一)根据教科书上数据,作图基本图形:直方图、条形图、点图和箱线图(参考书本例题mtcars)、饼图和扇形图(书本例题:国别数据)attach(mtcars)opar <- par(no.readonly=TRUE)par(mfrow=c(3,1))hist(wt)hist(mpg)hist(disp)par(opar)detach(mtcars)attach(mtcars)layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))hist(wt)hist(mpg)hist(disp)detach(mtcars)attach(mtcars)plot(wt, mpg)abline(lm(mpg~wt))title("Regression of MPG on Weight")detach(mtcars)pdf("mygraph.pdf")attach(mtcars)plot(wt, mpg)abline(lm(mpg~wt))title("Regression of MPG on Weight")detach(mtcars)attach(mtcars)opar <- par(no.readonly=TRUE)par(mfrow=c(2,2))plot(wt,mpg, main="Scatterplot of wt vs. mpg") plot(wt,disp, main="Scatterplot of wt vs. disp") hist(wt, main="Histogram of wt")boxplot(wt, main="Boxplot of wt")par(opar)detach(mtcars)饼图和扇形图(书本例题:国别数据)par(mfrow=c(2,2))slices <- c(10, 12,4, 16, 8)lbls <- c("US", "UK", "Australia", "Germany", "France")pie(slices, labels = lbls,main="Simple Pie Chart")pct <- round(slices/sum(slices)*100)lbls <- paste(lbls, pct)lbls <- paste(lbls,"%",sep="")pie(slices,labels = lbls, col=rainbow(length(lbls)), main="Pie Chart with Percentages")library(plotrix)slices <- c(10, 12,4, 16, 8)lbls <- c("US", "UK", "Australia", "Germany", "France") fan.plot(slices, labels = lbls, main="Fan Plot")核密度图d <- density(mtcars$mpg) # returns the density dataplot(d) # plots the resultsd <- density(mtcars$mpg)plot(d, main="Kernel Density of Miles Per Gallon")polygon(d, col="red", border="blue")rug(mtcars$mpg, col="brown")(二)关于分布的假设检验(来自书本数据男女老少体重)> fit <- lm(weight ~ height, data=women)> summary(fit)Call:lm(formula = weight ~ height, data = women)Residuals:Min 1Q Median 3Q Max-1.7333 -1.1333 -0.3833 0.7417 3.1167Coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***height 3.45000 0.09114 37.85 1.09e-14 ***---Signif. codes: 0 ‘***’0.001 ‘**’0.01 ‘*’0.05 ‘.’0.1 ‘’1Residual standard error: 1.525 on 13 degrees of freedomMultiple R-squared: 0.991, Adjusted R-squared: 0.9903F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14> women$weight[1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164> fitted(fit)1 2 3 4 5 6 7 8 112.5833 116.0333 119.4833 122.9333 126.3833 129.8333 133.2833 136.73339 10 11 12 13 14 15140.1833 143.6333 147.0833 150.5333 153.9833 157.4333 160.8833> residuals(fit)1 2 3 4 5 62.41666667 0.96666667 0.51666667 0.06666667 -0.38333333 -0.833333337 8 9 10 11 12 -1.28333333 -1.73333333 -1.18333333 -1.63333333 -1.08333333 -0.5333333313 14 150.01666667 1.56666667 3.11666667> plot(women$height,women$weight,+ main="Women Age 30-39",+ xlab="Height (in inches)",+ ylab="Weight (in pounds)")通过结果可知^y=-87.52+3.45x(^y为体重的估计量,x为身高)fit <- lm(weight ~ height, data=women)> par(mfrow=c(2,2))> plot(fit)> newfit <- lm(weight ~ height + I(height^2), data=women) > par(opar)> par(mfrow=c(2,2))> plot(newfit)线性模型的假设检验:由于global statp=0.0023251,因此不通过假设检验,从而我们考虑多项式线性模型:新的回归模型是^y=261.87818-7.35*x+0.083*x^2,且通过了ols回归模型所有的统计假设。

r语言实操例题

r语言实操例题

r语言实操例题以下是一个简单的R语言实操例题,通过这个例题可以了解R 语言的基本操作和数据处理方法:题目:使用R语言对一组销售数据进行处理和分析1. 数据导入和清洗首先,我们需要将销售数据导入到R语言中。

假设销售数据存储在一个名为"sales.csv"的CSV文件中,可以使用以下代码将其导入到R 语言中:```r# 导入数据sales <- read.csv("sales.csv")# 查看数据head(sales)```接下来,我们需要对数据进行清洗。

假设销售数据中存在一些缺失值,我们可以使用以下代码对缺失值进行处理:```r# 处理缺失值sales$sales_amount[is.na(sales$sales_amount)] <- 0```2. 数据探索和分析在数据清洗完成后,我们可以开始对数据进行探索和分析。

首先,我们可以使用以下代码绘制销售数据的条形图:```r# 绘制条形图barplot(sales$sales_amount, main="Sales Amount", xlab="Product", ylab="Sales Amount")```接下来,我们可以使用以下代码计算每个产品的销售占比:```r# 计算销售占比sales$sales_percentage <-round((sales$sales_amount / sum(sales$sales_amount)) * 100, 2)```最后,我们可以使用以下代码绘制每个产品的销售占比饼图:```r# 绘制饼图pie(sales$sales_percentage, main="Sales Percentage", labels=sales$product)```通过以上实操例题,我们可以了解到R语言在数据处理和分析方面的强大功能。

R语言实验一

R语言实验一

R语⾔实验⼀实验1 R基础(⼀)⼀、实验⽬的:1.熟悉实验报告书的书写要求;2.熟悉R的界⾯及基本操作。

⼆、实验内容:1.熟悉R官⽅⽹站及下载安装⽅法;2.熟悉R的界⾯及菜单功能;3.掌握R的简单操作;4.利⽤R 软件进⾏⼀些简单的数学运算。

练习:要求:①完成练习并粘贴运⾏截图到⽂档相应位置(截图⽅法见下),并将所有⾃⼰输⼊⽂字的字体颜⾊设为红⾊(包括后⾯的思考及⼩结),②回答思考题,③简要书写实验⼩结。

④修改本⽂档名为“本⼈完整学号姓名1”,其中1表⽰第1次实验,以后更改为2,3,...。

如⽂件名为“1305543109张⽴1”,表⽰学号为1305543109的张⽴同学的第1次实验,注意⽂件名中没有空格及任何其它字符。

最后连同数据⽂件、源程序⽂件等(如果有的话,本次实验没有),⼀起压缩打包发给课代表,压缩包的⽂件名同上。

截图⽅法:法1:调整需要截图的窗⼝⾄合适的⼤⼩,并使该窗⼝为当前激活窗⼝(即该窗⼝在屏幕最前⽅),按住键盘Alt键(空格键两侧各有⼀个)不放,再按键盘右上⾓的截图键(通常印有“印屏幕”或“Pr Scrn”等字符),即完成截图。

再粘贴到word⽂档的相应位置即可。

法2:利⽤QQ输⼊法的截屏⼯具。

点击QQ输⼊法⼯具条最右边的“扳⼿”图标,选择其中的“截屏”⼯具。

)1.访问R的官⽅⽹站,了解⽹站基本框架和内容:/doc/2e8bae9627fff705cc1755270722192e453658a1.html /。

2.在镜像⽹站CRAN下载最新版R安装程序。

选择离⾃⼰最近的国内的镜像⽹站,点击进⼊其中⼀个镜像⽹站后,下载最新版的Windows下的安装程序。

3. 安装R 程序(如果实验电脑已经安装,则可跳过此步骤)。

双击R-3.2.3-win.exe (⽬前最新版)开始安装。

⼀直点击下⼀步,各选项默认。

4. 在R 中进⾏简单的计算。

实验基本原理与⽅法:(1) R 的基本界⾯是⼀个交互式命令窗⼝,命令提⽰符是⼀个⼤于号“>”,命令的结果马上显⽰在命令下⾯。

R语言实验报告—回归分析在女性身高与体重的应用

R语言实验报告—回归分析在女性身高与体重的应用

R语言实验报告—回归分析在女性身高与体重的应用【引言】身高和体重是人体健康状况的重要指标之一,身高一般与体重成正比,但具体的关系因个体差异而异。

为了探究女性身高与体重之间的关系,并通过回归分析建立二者之间的数学模型,本实验使用R语言进行实验。

【数据获取与处理】从网上收集了100名女性的身高和体重数据作为样本。

数据处理阶段,首先对数据进行了基本统计分析,包括计算身高和体重的平均值、标准差等;然后,进行了数据可视化,使用散点图展示了身高和体重之间的关系。

【回归建模】接下来,使用R语言进行回归分析建模。

假设身高为自变量x,体重为因变量y,建立线性回归模型y=β0+β1x+ε,其中ε为误差项。

使用最小二乘法对样本数据进行拟合,估计模型参数β0和β1【模型评估】为了评估模型的拟合程度,使用R方值和均方根误差(RMSE)进行评估。

R方值越接近1表示模型拟合效果越好,RMSE值越小表示模型预测结果与实际数据越接近。

【结果讨论】根据回归分析得到的模型参数估计值,可以判断女性身高和体重之间存在正相关关系。

同时,R方值为0.8,表明模型拟合效果较好。

但是,RMSE为3.2,表示模型的预测误差较大,可能存在其他影响体重的因素未考虑。

【结论】回归分析可以帮助我们了解女性身高和体重之间的关系,并建立数学模型预测体重。

本实验结果显示女性的身高与体重存在正相关关系。

但是,模型的预测效果可能还可以改进,需要进一步考虑其他可能的影响因素,例如年龄、饮食习惯等。

[2] Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. Am J Clin Nutr, 1999, 70(1):145S-148S.【附录】实验中使用的R代码如下:```R#数据处理与可视化data <- read.csv("data.csv") # 读取数据文件summary(data) # 统计数据plot(data$height, data$weight, xlab="身高", ylab="体重",main="身高与体重关系散点图") # 绘制散点图#回归分析model <- lm(weight ~ height, data=data) # 建立回归模型summary(model) # 查看模型摘要信息plot(data$height, data$weight, xlab="身高", ylab="体重",main="身高与体重关系散点图") # 绘制散点图abline(model, col="red") # 绘制回归线#模型评估Rsquared <- summary(model)$r.squared # 计算R方值RMSE <- sqrt(mean((data$weight-predict(model))^2)) # 计算RMSE值```【Acknowledgement】感谢所有参与实验的被试者,以及提供数据的相关组织或个人。

R语言实验报告—习题详解

R语言实验报告—习题详解

R语言实验报告习题详解学院:班级:学号:姓名:导师:成绩:目录一、实验目的..................................................................二、实验内容..................................................................1.1问题叙述..............................................................1.2问题求解..........................................................................................................................................................................................................1.3结果展示..............................................................2.1问题叙述..............................................................2.2问题求解..........................................................................................................................................................................................................2.3结果展示..............................................................3.1问题叙述..............................................................3.2问题求解......................................................................................................................................................................................................................................................................................................................................................3.3结果展示..............................................................4.1问题叙述..............................................................4.2问题求解..........................................................................................................................................................................................................4.3结果展示..............................................................5.1问题叙述..............................................................5.2问题求解..........................................................................................................................................................................................................5.3结果展示..............................................................6.1问题叙述..............................................................6.2问题求解..........................................................................................................................................................................................................6.3结果展示..............................................................三、实验总结..................................................................一、实验目的R是用于统计分析、绘图的语言和操作环境。

R语言实验三

R语言实验三

实验三数组的运算、求解方程(组)和函数极值、数值积分【实验类型】验证性【实验学时】2 学时【实验目的】1、掌握向量的四则运算和内积运算、矩阵的行列式和逆等相关运算;2、掌握线性和非线性方程(组)的求解方法,函数极值的求解方法;3、了解 R 中数值积分的求解方法。

【实验内容】1、向量与矩阵的常见运算;2、求解线性和非线性方程(组);3、求函数的极值,计算函数的积分。

【实验方法或步骤】第一部分、课件例题:1.向量的运算x<-c(-1,0,2)y<-c(3,8,2)v<-2*x+y+1vx*yx/yy^xexp(x)sqrt(y)x1<-c(100,200); x2<-1:6; x1+x22.x<-1:5y<-2*1:5x%*%ycrossprod(x,y)x%o%ytcrossprod(x,y)outer(x,y)3.矩阵的运算A<-matrix(1:9,nrow=3,byrow=T);AA+1 #A的每个元素都加上1B<-matrix(1:9,nrow=3); BC<-matrix(c(1,2,2,3,3,4,4,6,8),nrow=3); C D<-2*C+A/B; D #对应元素进行四则运算x<-1:9A+x #矩阵按列与向量相加E<-A%*%B; E #矩阵的乘法y<-1:3A%*%y #矩阵与向量相乘crossprod(A,B) #A的转置乘以Btcrossprod(A,B) #A乘以B的转置4.矩阵的运算A<-matrix(c(1:8,0),nrow=3);At(A) #转置det(A) #求矩阵行列式的值diag(A) #提取对角线上的元素A[lower.tri(A)==T]<-0;A #构造A对应的上三角矩阵qr.A<-qr(A);qr.A #将矩阵A分解成正交阵Q与上三角阵R的乘积,该结果为一列表Q<-qr.Q(qr.A);Q;R<-qr.R(qr.A);R #显示分解后对应的正交阵Q与上三角阵Rdet(Q);det(R);Q%*%R #A=Q*Rqr.X(qr.A) #显示分解前的矩阵5.解线性方程组A<-matrix(c(1:8,0),nrow=3,byrow=TRUE)b<-c(1,1,1)x<-solve(A,b); x #解线性方程组Ax=bB<-solve(A); B #求矩阵A的逆矩阵BA%*%B #结果为单位阵6.非线性方程求根f<-function(x) x^3-x-1 #建立函数uniroot(f,c(1,2)) #输出列表中f.root为近似解处的函数值,iter为迭代次数,estim.prec为精度的估计值uniroot(f,lower=1,upper=2) #与上述结果相同polyroot(c(-1,-1,0,1)) #专门用来求多项式的根,其中c(-1,-1,0,1)表示对应多项式从零次幂项到高次幂项的系数7.求解非线性方程组(1)自编函数: (Newtons.R)Newtons<-function (funs, x, ep=1e-5, it_max=100){index<-0; k<-1while (k<=it_max){ #it_max 表示最大迭代次数x1 <- x; obj <- funs(x);x <- x - solve(obj$J, obj$f); #Newton 法的迭代公式norm <- sqrt((x-x1) %*% (x-x1))if (norm<ep){ index<-1; break #index=1 表示求解成功}; k<-k+1 }obj <- funs(x);list(root=x, it=k, index=index, FunVal= obj$f)} # 输出列表(2)调用求解非线性方程组的自编函数funs<-function(x){ f<-c(x[1]^2+x[2]^2-5, (x[1]+1)*x[2]-(3*x[1]+1)) # 定义函数组J<-matrix(c(2*x[1], 2*x[2], x[2]-3, x[1]+1), nrow=2,byrow=T) # 函数组的 Jacobi 矩阵list(f=f, J=J)} # 返回值为列表 : 函数值 f 和 Jacobi 矩阵 Jsource("F:/wenjian_daima/Newtons.R") # 调用求解非线性方程组的自编函数Newtons(funs, x=c(0,1))8.一元函数极值f<-function(x) x^3-2*x-5 # 定义函数optimize(f,lower=0,upper=2) # 返回值 : 极小值点和目标函数f<-function(x,a) (x-a)^2 # 定义含有参数的函数optimize(f,interval=c(0,1),a=1/3) # 在函数中输入附加参数9.多元函数极值(1)obj <-function (x){ # 定义函数F<-c(10*(x[2]-x[1]^2),1-x[1]) # 视为向量sum (F^2) } # 向量对应分量平方后求和nlm(obj,c(-1.2,1))(2)fn<-function(x){ # 定义目标函数F<-c(10*(x[2]-x[1]^2), 1-x[1])t(F)%*%F } # 向量的内积gr <- function(x){ # 定义梯度函数F<-c(10*(x[2]-x[1]^2), 1-x[1])J<-matrix(c(-20*x[1],10,-1,0),2,2,byrow=T) #Jacobi 矩阵2*t(J)%*%F } # 梯度optim(c(-1.2,1), fn, gr, method="BFGS")最优点 (par) 、最优函数值 (value)10.梯形求积分公式(1)求积分程序: (trape.R)trape<-function(fun, a, b, tol=1e-6){ # 精度为 10 -6N <- 1; h <- b-a ; T <- h/2 * (fun(a) + fun(b)) # 梯形面积 repeat{h <- h/2; x<-a+(2*1:N-1)*h; I <-T/2 + h*sum(fun(x)) if(abs(I-T) < tol) break; N <- 2 * N; T = I }; I}(2)source("F:/wenjian_daima/trape.R") # 调用函数f<-function(x) exp(-x^2)trape(f,-1,1)(3)常用求积分函数f<-function(x)exp(-x^2) # 定义函数integrate(f,0,1)integrate(f,0,10)integrate(f,0,100)integrate(f,0,10000) # 当积分上限很大时,结果出现问题integrate(f,0,Inf) # 积分上限为无穷大ft<-function(t) exp(-(t/(1-t))^2)/(1-t)^2 # 对上述积分的被积函数 e 2 作变量代换 t=x/(1+x) 后的函数integrate(ft,0,1) # 与上述计算结果相同,且精度较高第二部分、教材例题:1.随机抽样(1)等可能的不放回的随机抽样:> sample(x, n) 其中x为要抽取的向量, n为样本容量(2)等可能的有放回的随机抽样:> sample(x, n, replace=TRUE)其中选项replace=TRUE表示有放回的, 此选项省略或replace=FALSE表示抽样是不放回的sample(c("H", "T"), 10, replace=T)sample(1:6, 10, replace=T)(3)不等可能的随机抽样:> sample(x, n, replace=TRUE, prob=y)其中选项prob=y用于指定x中元素出现的概率, 向量y与x等长度sample(c("成功", "失败"), 10, replace=T, prob=c(0.9,0.1))sample(c(1,0), 10, replace=T, prob=c(0.9,0.1))2.排列组合与概率的计算1/prod(52:49)1/choose(52,4)3.概率分布qnorm(0.025) #显著性水平为5%的正态分布的双侧临界值qnorm(0.975)1 - pchisq(3.84, 1) #计算假设检验的p值2*pt(-2.43, df = 13) #容量为14的双边t检验的p值4.limite.central( )的定义limite.central <- function (r=runif, distpar=c(0,1), m=.5,s=1/sqrt(12),n=c(1,3,10,30), N=1000) {for (i in n) {if (length(distpar)==2){x <- matrix(r(i*N, distpar[1],distpar[2]),nc=i)}else {x <- matrix(r(i*N, distpar), nc=i)}x <- (apply(x, 1, sum) - i*m )/(sqrt(i)*s)hist(x,col="light blue",probability=T,main=paste("n=",i), ylim=c(0,max(.4, density(x)$y)))lines(density(x), col="red", lwd=3)curve(dnorm(x), col="blue", lwd=3, lty=3, add=T)if( N>100 ) {rug(sample(x,100))}else {rug(x)}}}5.直方图x=runif(100,min=0,max=1)hist(x)6.二项分布B(10,0.1)op <- par(mfrow=c(2,2))limite.central(rbinom,distpar=c(10,0.1),m=1,s=0.9)par(op)7.泊松分布: pios(1)op <- par(mfrow=c(2,2))limite.central(rpois, distpar=1, m=1, s=1, n=c(3, 10, 30 ,50)) par(op)8.均匀分布:unif(0,1)op <- par(mfrow=c(2,2))limite.central( )par(op)9.指数分布:exp(1)op <- par(mfrow=c(2,2))limite.central(rexp, distpar=1, m=1, s=1)par(op)10.混合正态分布的渐近正态性mixn <- function (n, a=-1, b=1){rnorm(n, sample(c(a,b),n,replace=T))}limite.central(r=mixn, distpar=c(-3,3),m=0, s=sqrt(10), n=c(1,2,3,10)) par(op)11.混合正态分布的渐近正态性op <- par(mfrow=c(2,2))mixn <- function (n, a=-1, b=1){rnorm(n, sample(c(a,b),n,replace=T))}limite.central(r=mixn, distpar=c(-3,3),m=0,s=sqrt(10),n=c(1,2,3,10)) par(op)第三部分、课后习题:3.1a=sample(1:100,5)asum(a)3.2(1)抽到10、J、Q、K、A的事件记为A,概率为P(A)=1(5220)其中在R中计算得:> 1/choose(52,20)[1] 7.936846e-15(2)抽到的是同花顺P(B)=(41)(91) (525)在R中计算得:> (choose(4,1)*choose(9,1))/choose(52,5) [1] 1.385e-053.3#(1)x<-rnorm(1000,mean=100,sd=100)hist(x)#(2)y<-sample(x,500)hist(y)#(3)mean(x)mean(y)var(x)var(y)3.4x<-rnorm(1000,mean=0,sd=1) y=cumsum(x)plot(y,type = "l")plot(y,type = "p")3.5x<-rnorm(100,mean=0,sd=1) qnorm(.025)qnorm(.975)t.test(x)由R结果知:理论值为[-1.96,1.96],实际值为:[-0.07929,0.33001]3.6op <- par(mfrow=c(2,2))limite.central(rbeta, distpar=c(0.5 ,0.5),n=c(30,200,500,1000))par(op)3.7N=seq(-4,4,length=1000)f<-function(x){dnorm(x)/sum(dnorm(x))}n=f(N)result=sample(n,replace=T,size = 1000)standdata=rnorm(1000)op<-par(mfrow=c(1,2)) #1行2列数组按列(mfcol)或行(mfrow)各自绘图hist(result,probability = T)lines(density(result),col="red",lwd=3)hist(standdata,probability = T)lines(density(standdata),col="red",lwd=3) par(op)。

R语言上机实验三

R语言上机实验三

R语⾔上机实验三理学院实验报告班级:学号:姓名:实验编号:实验三:概率和分布的R实现⼀、实验⽬的与要求:1、会⽤R给出常见分布的概率密度、概率、分位数和随机数。

2、会利⽤sample命令进⾏随机抽样,prod,choose命令计算概率。

3、会利⽤R绘制各类分布的图形。

4、会利⽤choose,prod命令计算古典概率。

⼆、实验内容:1.从⼀副扑克牌(52张)中随机抽5张,求下列概率(1) 抽到的是10,J,Q,K,A;> 4/choose(52,5)[1] 1.539077e-06(2) 抽到的是同花顺。

> 9*choose(4,1)/choose(52,5)[1] 1.385169e-05注:同花顺是指5张同⼀⾊牌能按从⼩到⼤连续排序,如2<3<4<5<6,3<4<5<6<7,…,10 2.模拟随机游动:(1)从两点分布中产⽣1000个随机数;> x<-rbinom(1000,1,0.5)> x(2)⽤函数ifelse( )将上⾯随机数中的0替换成-1;> ifelse(x==0,-1,1 )(3)⽤函数cumsum( )作出累积和; > y<-ifelse(x==0,-1,1 )> cumsum(y)(4)使⽤命令plot( ) 作出随机游动的⽰意图. > plot(cumsum(y))3.在同⼀个图形中画出统计的四⼤分布密度曲线(dnorm, dchisq, dt, df),注意不同分布有不同的线型、颜⾊和宽度,还有图形都要在同⼀⽅框中,最后⽤图例说明(legend)。

> curve(dnorm(x,0,1),xlim=c(-1,5),ylim=c(0,0.5),col=1,lwd=1,lty=1)> curve(dchisq(x,1),xlim=c(-1,5),ylim=c(0,0.5),lwd=2,lty=2,col=2,add=T)> curve(dt(x,1),xlim=c(0,8),ylim=c(0,0.5),lwd=3,lty=3,col=3,add=T)> curve(dt(x,1,1),xlim=c(0,8),ylim=c(0,0.5),lwd=4,lty=4,col=4,add=T)> legend('topright',c("dnorm","dchisp","dt","df"),lty=c(1,2,3,4),col=c(1,2,3,4),lwd=c(1,2,3,4))> curve(dnorm(x,0,1),xlim=c(-1,5),ylim=c(0,0.5),col=1,lwd=1,lty=1)> curve(dchisq(x,1),xlim=c(-1,5),ylim=c(0,0.5),lwd=2,lty=8,col=2,add=T)> curve(dt(x,1),xlim=c(0,8),ylim=c(0,0.5),lwd=5,lty=3,col=7,add=T)> curve(dt(x,1,1),xlim=c(0,8),ylim=c(0,0.5),lwd=4,lty=4,col=4,add=T)> legend('topright',c("dnorm","dchisp","dt","df"),lty=c(1,8,3,4),col=c(1,2,7,4),lwd=c(1,2,5,4))>4. 除本章给出的标准分布外, ⾮标准的随机变量X的抽样可通过格式点离散化⽅法实现.设p (x )为X 的密度函数, 其抽样步骤如下(1) 在X 的取值范围内等间隔地选取N 个点x 1, x 2,…, x N , 例如取N =1000; (2) 计算p (x i ); i = 1, 2, …, N ;(3) 正则化p (x i ); i =1, 2,…,N , 使其成为离散的分布律, 即每⼀项除以∑=Ni ix p 1)(;(4) 按离散分布抽样⽅法使⽤命令sample( )从x i , i = 1, 2, … ,N 有放回地抽取n 个数, 例如 n =1000.注:前⾯4⼩步是⽤来编⼀个函数,功能是对给定的概率密度产⽣随机数,形式应与rnorm差不多。

R语言总和性试验

R语言总和性试验

中北大学理学院实验报告实验课程名称:R语言与统计分析实验类别:验证型专业:应用统计学班级: 13080441学号: 1308044142姓名:吴庚雷中北大学理学院R语言与统计分析综合实验【实验类型】验证性【实验目的】(1)掌握利用R语言实现数据处理并进行严格的统计分析;(2)学会运用R语言进行程序的编写;(3)熟练掌握R语言绘图功能;(4)掌握R语言统计分析中的“参数估计”,“假设检验”,“方差分析”,“回归分析”,等基本分析函数。

【实验要求】(1)实验过程要求用R软件完成;(2)实验结果逐个导入Word文档,并按问题作出解释;(3)实验报告按照既定格式书写。

【实验仪器与软件平台】计算机 R软件【实验前的预备知识】1、实验室电脑要求安装有R软件;2、上实验课程的学生要对涉及到的统计概念有所了解;3、要求学生事先查阅并熟悉R的相关命令。

【实验内容】第二章:1、用rep()构造一个向量x,它由3个3,4个2,5个1构成。

x<-rep(c(3,2,1),c(3,4,5))2、由1.2...16构成两个方阵,其中矩阵A按列输入,矩阵B按行输入,并计算以下:A<-matrix(1:16,4,4)B<-matrix(1:16,4,4,byrow=TRUE)1、C=A+B2、> D=A*B3、> E=A%*%B4、F<-A[-3,][,1] [,2] [,3] [,4][1,] 1 5 9 13 [2,] 2 6 10 14 [3,] 4 8 12 16> G<-B[,-3][,1] [,2] [,3][1,] 1 2 4[2,] 5 6 8[3,] 9 10 12[4,] 13 14 16> H=F%*%G3、函数solve()有两个作用;solve(A,b)可用于求解线性方程组Ax=b,solve(A)可用于求解矩阵A的逆,用两种方法编程求解方程组Ax=b的解。

报告R语言实验五..docx

报告R语言实验五..docx

实验五常见分布的相关计算、随机抽样与模拟【实验类型】验证性【实验学时】2 学时【实验目的】1、掌握常见分布的分布函数、密度函数(或分布列)及分位数的计算方法;2、掌握样本统计量的计算方法及所表达的意义;3、了解随机模拟的基本思想及其应用。

【实验内容】1、组合数与组合方案的生成、概率的计算,2、常见分布的分布函数、密度函数(或分布列)以及分位数的计算;3、随机数的生成与随机模拟(蒙特卡洛仿真) 。

【实验方法或步骤】第一部分、课件例题:1.#从1~5 个数中,随机取3个的全部组合combn(1:5,3) # 共10 种组合方案combn(1:5,3,FUN=mean) # 对每种组合方案求均值choose(5,3) # 从5 个数里面选3个的组合数目choose(50,3)factorial(10) # 计算10!3.#3. 从一副完全打乱的52张扑克中任取 4 张,计算下列事件的概率#(1) 抽取 4 张依次为红心A,方块A,黑桃A和梅花A的概率1/prod(49:52) #prod() 表示连乘积#(2) 抽取 4 张为红心A,方块A,黑桃A和梅花A的概率.1/choose(52,4)4.设在15 只同类型的零件中有2只是次品,一次任取3只,以X表示次品的只数,求X的分布律.x<-c(1,1,rep(0,13));x # 样本空间( 用1 表示次品, 0 为正品) X<-combn(x,3,FUN=sum) #从样本空间中任取 3 个元素的方案,并对每个方案求和,共455 个数(取值0,1,2 )p<-numeric(3) # 定义p 为数值型的 3 维向量,且初值为0for (i in 1:3)p[i]<-sum(X==i-1)/length(X) #sum(X==i-1) 表示对X 取值为i-1 的个数求和,X 的长度为455# 例5.3 :计算3σ 原则对应的概率x <- 1:3; p <- pnorm(x) - pnorm(-x); p# 例5.4 :令α=0.025 ,计算上α 分位点z α alpha <- 0.025; z <- qnorm(1-alpha); z6.#例5.5 :计算P{X≤160} ,其中X~U[150,200] 。

r语言上级实验一

r语言上级实验一

r语言上级实验一理学院实验报告班级:学号:姓名:实验编号:01实验一:初识R软件一、实验目的与要求:1、了解R软件的安装、启动和退出。

2、掌握软件包的安装和载入。

3、掌握R软件帮助功能。

4、会使用R的集成开发环境Tinn-R或Rstudio。

5、掌握用R进行基本的代数运算。

6、掌握用R生成向量、矩阵、数据框和列表的方法。

7、掌握提取数据子集的方法。

二、实验内容:1.按N的不同取值,计算∑=-Nii12)12(1,并求其与log(N)+1.0的距离,其中N=100,500,1000,1500.#计算其值> N<-c(100,500,1000,1500)> for(k in 1:length(N))+ {+ s=0+ for(i in 1:N[k]){+ s=s+1/(2*i-1)^2+ }+ print(s)+ }[1] 1.231201[1] 1.233201[1] 1.233451[1] 1.233534#求距离> y<-abs(s-(log(N)+1.0))> y[1] 4.371636 5.981074 6.674221 7.0796872.联合命令rep()和seq()生成(1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8,5,6,7,8,9). #用rep生成> rep(1:5,5)+rep(0:4,rep(5,5))[1] 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 #用seq 生成> rep(seq(1,5),5)+rep(seq(0,4),rep(5,5))[1] 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 93. 利用命令matrix()将矩阵=4912011411435A 输入变量A ,并求A 的行列式、逆矩阵,T AA (转置命令为t())、A A T .#输入变量A> A<-matrix(c(35,14,1,4,11,0,12,9,4),nrow=3,ncol=3,byrow=T) > A [,1] [,2] [,3][1,] 35 14 1 [2,] 4 11 0 [3,] 12 9 4#计算A 值 > det(A) [1] 1220#计算A 逆> solve (A) %*%A[,1] [,2] [,3] [1,] 1.000000e+00 -5.551115e-17 0.000000e+00 [2,] -1.387779e-17 1.000000e+00 -1.734723e-18 [3,] -4.440892e-16 -4.440892e-16 1.000000e+00#计算AA T > A%*%t(A)[,1] [,2] [,3] [1,] 1422 294 550 [2,] 294 137 147 [3,] 550 147 241#计算A T A> t(A)%*%A[,1] [,2] [,3] [1,] 1385 642 83 [2,] 642 398 50[3,] 83 50 174. (1)利用命令data.frame()将下表数据读入变量sea,Season Salinity(盐度) Temperature winter 29.19 4 winter 27.37 6 spring24.997.3spring 28.79 8.2 spring 33.28 9.1 summer 32.69 18.1 summer31.9 17 summer NA 21 autumn 32.53 15.1 autumn32.53 13.8>Season<-c("winter","winter","spring","spring","spring","summer","summer ","summer","autu mn","autumn")> Salinity<-c(29.19,27.37,24.99,28.79,33.28,32.69,31.9,NA,32.53,32.53) > Temperature<-c(4,6,7.3,8.2,9.1,18.1,17,21,15.1,13.8) > sea<-data.frame(Season,Salinity,Temperature) > seaSeason Salinity Temperature 1 winter 29.19 4.0 2 winter 27.37 6.0 3 spring 24.99 7.3 4 spring 28.79 8.2 5 spring 33.28 9.1 6summer 32.69 18.1 7 summer 31.90 17.0 8 summer NA 21.0 9 autumn 32.53 15.1 10 autumn 32.53 13.8 > class(sea)[1] "data.frame"(2)将盐度的标准化变量加到这个数据框中;(标准化公式:ni s x x ,x 是样本均值,n s 是样本方差);#将标准化变量加入> sea<-data.frame(Season,Salinity,Temperature,scale(Salinity)) > seaSeason Salinity Temperature scale.Salinity.1 winter 29.19 4.0 -0.40437122 winter 27.37 6.0 -1.03160603 spring 24.99 7.3 -1.85183624 spring 28.79 8.2 -0.54222505 spring 33.28 9.1 1.00518406 summer 32.69 18.1 0.80184977 summer 31.90 17.0 0.52958848 summer NA 21.0 NA9 autumn 32.53 15.1 0.746708110 autumn 32.53 13.8 0.7467081(3)从数据框sea提取包含season和temperature变量的子数据框存入变量sea1,并计算温度的平均值和标准差;> sea1<-data.frame(sea$Season,sea$Temperature)> sea1Season Temperature1 winter 4.02 winter 6.03 spring 7.34 spring 8.25 spring 9.16 summer 18.17 summer 17.08 summer 21.09 autumn 15.110 autumn 13.8> mean(Temperature)[1] 11.96> sd(Temperature)[1] 5.782963(4) 从数据框sea提取包含season和salinity变量的子数据框存入变量sea2,并计算盐度的平均值和标准差(结果不能为NA);> sea2<-data.frame(sea$Season,sea$Salinity)> sea2sea.Season sea.Salinity1 winter 29.192 winter 27.373 spring 24.994 spring 28.795 spring 33.286 summer 32.697 summer 31.908 summer NA9 autumn 32.5310 autumn 32.53> mean(Salinity,na.rm=T)[1] 30.36333> sd(Salinity,na.rm=T)[1] 2.901625(5)利用命令list() 将上表读入变量sea.list, 再将盐度的标准化变量加入到这个列表中,并比较该方法与数据框方法的区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R语言实验报告习题详解学院:班级:学号:姓名:导师:成绩:目录一、实验目的.................................................................................................................................二、实验内容.................................................................................................................................1.1问题叙述 ...................................................................................................................................1.2问题求解 ................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................1.3结果展示 ...................................................................................................................................2.1问题叙述 ...................................................................................................................................2.2问题求解 ................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................2.3结果展示 ...................................................................................................................................3.1问题叙述 ...................................................................................................................................3.2问题求解 ................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................ ............................................................................................................................................................ ............................................................................................................................................................3.3结果展示 ...................................................................................................................................4.1问题叙述 ...................................................................................................................................4.2问题求解 ................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................4.3结果展示 ...................................................................................................................................5.1问题叙述 ...................................................................................................................................5.2问题求解 ................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................5.3结果展示 ...................................................................................................................................6.1问题叙述 ...................................................................................................................................6.2问题求解 ................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................6.3结果展示 ...................................................................................................................................三、实验总结.................................................................................................................................一、实验目的R是用于统计分析、绘图的语言和操作环境。

相关文档
最新文档