2014-2015学年上学期期 中 考试九年级数学试卷
2014-2015学年九年级上期中数学试卷及答案
九年级数学期中学业水平检测试卷(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分。
每题所给的四个选项,只有一个符合题意,请将正确答案的序号填入答题纸的相应表格中) 1.下列方程为一元二次方程的是A .20-+=ax bx c (a 、b 、c 为常数) B .()231x x x +=-C .(2)3x x -=D .10x x+= 2.用配方法解方程2250x x --=时,原方程应变形为 A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -=3.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是A .k >14-B .k >14-且0k ≠ C .k <14- D .k ≥14-且0k ≠4.一位卖“运动鞋”的经销商抽样调查了9位七年级学生的鞋号,号码分别为(单位:cm ):24,22,21,24,23,25,24,23,24,经销商最感兴趣的是这组数据的 A .中位数B .众数C .平均数D .方差5.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,那么该班40名同学一周体育锻炼时间的众数、中位数分别是A .16、10.5B .8、9C .16、8.5D .8、8.56.如图,⊙O 的半径为5,弦AB =8, M 是线段AB 上一个动点,则OM 的取值范围是 A .3≤OM ≤5 B .3≤OM <5 C .4≤OM ≤5 D .4≤OM <5 7. 如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠COD 的度数是A .40°B .45°C .50°D .60°(小时)(第5题图)(第5题)(第6题)(第7题)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接写在答题纸相应位置上)9.若关于x 的方程()2320k x x -+=是一元二次方程,则k 的取值范围是 ▲ . 11.若n (n ≠0)是关于x 的方程x 2+mx +2n =0的根,则m +n 的值为 ▲ .12.在一个不透明的口袋中,装有若干个颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为 ▲ . 13.小明等五位同学的年龄分别为:14、14、15、13、14,计算出这组数据的方差是0.4,则20年后小明等五位同学年龄的方差为 ▲ .14.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数为 ▲ . 15.如图,当半径为30cm 的传送带转动轮转过120︒角时,传送带上的物体A 平移的距离为 ▲ cm (结果保留π).16.如图,△ABC 内接于⊙O ,CB =a ,CA =b ,∠A -∠B =90°,则⊙O 的半径为 ▲ . 17.若圆锥的轴截面是一个边长为2的等边三角形,则这个圆锥的侧面积是 ▲. 18.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =70°, AO ∥DC,则∠B的度数为 ▲ .(第14题) (第15题)(第16题)(第8题)(第18题)三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明或演算步骤) 19.(本题满分8分) 解方程:(1)(2)20x x x -+-= (2)263910x x +-=20.(本题满分8分)如图,学校打算用16 m 的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠墙(如下图),面积是30 m 2.求生物园的长和宽.21.(本题满分8分)一只不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字1、-2、3、-4,搅匀后先从中摸出一个球(不放回),再从余下的3个球中摸出1个球.(1)用树状图列出所有可能出现的结果;(2)求2次摸出的乒乓球球面上数字的积为偶数的概率.22.(本题满分8分)操作题: 如图,⊙O 是△ABC 的外接圆,AB =AC ,P 是⊙O 上一点.(1)请你只用无刻度的直尺........,分别画出图①和图②中∠P 的平分线; (2)结合图②,说明你这样画的理由.生物园23.(本题满分10分)如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB、CD的上方,求AB和CD间的距离.24.(本题满分10分)如图,已知P A、PB切⊙O于A、B两点,PO=4cm,∠APB=60°,求阴影部分的周长.25.(本题满分10分)某农户在山上种脐橙果树44株,现进入第三年收获。
2014--2015年九年级上学期数学试卷(1)
2014--2015年九年级上学期数学试卷一、精心选一选,想信你一定能选对!(每题4分,共40分)1.三角形的两边长分别为2和6,第三边是方程x 2-10x+21=0的解,则第三边的长为( ) A .7 B .3, C .7或3 D .无法确定 2.方程x 2-3x=0的解为( )A .x=0B .x=3C .x 1=0,x 2=3D . x 1=0,x 2=-3 3.下列说法正确的是( )A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形 4.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为13,则袋中红球的个数为( )A 、2 B 、5 C 、10 D 、15 5.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长是( )A 。
20B . 24C .10D .56、如图,D 为ABC △的边BC 上的一点,连接AD ,要使ABD CBA △∽△,应具备下列条件中的( )A、AC ABCD BD = B、2AB BD BC = C、AB BCCD AD=D、2AC CD CB =7、已知135=a b ,则b a ba +-的值是( )A. 32B. 23C. 49D. 948、如图1所示,在河的一岸边选定一个目标A ,再在河的另一岸边选定B 和C ,使AB ⊥BC ,然后选定E ,使EC ⊥BC ,用视线确定BC 和AE 相交于D ,此时测得BD =120米,CD =60米,为了估计河的宽度AB ,还需要测量的线段是( )A.CEB.DEC.CE 或DED.无法确定9.平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是 ( )A . AB=BCB .AB ⊥BDC . AC ⊥BD D .AC=BD10. 如图5,已知AD 为△ABC 的角平分线,DE ∥AB 交AC 于E ,如果23AE EC =,那么AB AC=( )A.13 B. 23 C. 25D. 35二、填空题(每空4分,共24分)11.已知E 、F 、G 、H 是四边形ABCD 各边上的中点,则四边形EFGH 的形状是 .12.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊________ 只。
新人教版2014-2015年九年级上学期期中考试名校联考数学试题
新人教版2014-2015年度九年级上期中名校联考 数学试题(时间:120分钟 满分:120分)2015、2、24一、选择题(每小题3分,共42分)1.化简(-2)2的结果是( ).A. -2 B .2 C .±2D .4 2.若代数式3-m 是二次根式,则m 的取值范围是( ).A .3≤mB .3=mC .3≥mD .3≠m3.下列各式中是最简二次根式的是( )A .3aB .22a C .a 21 D .a 1 4.下列二次根式中,不能与2合并的是( ) A .21 B .8 C .12 D .18 5..已知1632+n 是整数,则n 的最小整数值是( )A .1B .2C .3D .46.下列计算错误的是( ) A •= += ÷=2 =27.用配方法解方程x 2-6x -7=0,下列配方正确的是( ).A .(x -3)2=16B .(x +3)2=16C .(x -3)2=7D .(x -3)2=2 8.一元二次方程x 2﹣x ﹣2=0的解是( )A .x 1=1,x 2=2B . x 1=1,x 2=﹣2C . x 1=﹣1,x 2=﹣2D . x 1=﹣1,x 2=29.若α、β是一元二次方程x 2+2x ﹣6=0的两根,则α2+β2=( )A .﹣8B . 32C . 16D . 4010.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )11.下列四条线段为成比例线段的是( )A .7,4,5,10====d c b aB .2,6,3,1====d c b aC .3,4,5,8====d c b aD .6,3,3,9====d c b a12.如图1,在□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF :FC 等于( )A .3:2B . 3:1C . 1:1D . 1:213.△ABC 与△A ′B ′C ′是相似图形,且△ABC 与△A ′B ′C ′的位似比是1:2,已知△ABC 的面积是3,则△A ′B ′C ′的面积是( )A .3B .6C .9D .1214.如图2,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AC :BE =3:5,AE =8,BD =4,则DC 的长等于( )A .412B .415C .320D .417二、填空题(每小题4分,共16分)15.若35=b a ,则__________=-bb a 16.一元二次方程x 2+ b x +3=0的一个根为 —1 ,则b 的值为 另一个根为 .17. 如图3,D 、E 分别在△ABC 的边AB 、AC 上,要使△AED ∽△ABC ,应添加的条件是 ;(只写出一种即可).18.如图4,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,则羊圈的边长AB 为_________米三、解答题(共62分)19. 计算 (每小题4分,共12分)(1)2432⨯ (2))227)(227(-+ (3)5251060+-20. (6分) 已知1<a<4, 化简:2)-.a--1(5a21.解下列方程(每小题4分,共12分)(1)(2x-1)2-25=0;(2)y2=2y+3;(3)x(x+3)=2-x . 22.(9分)将进货单价为40元的商品按50元售出时,能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个,商店为了获利8000元,同时又要让顾客得到实惠,售价应定为多少元?此时应进货多少个?23.(11分)如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AE,F 为AE上一点,且∠BFE=∠C求证:(1)(5分)△ABF∽△EAD;(2)(3分)若AB=4,BE=2AE,求AE的长;(3)(3分)在(1)(2)的条件下,若AD=3,求BF的长(计算结果可含根号)24.(12分)如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.求证:(1)(3分)△MND∽△CNB(2)(4分)求BD的长;(3)(5分)若△DCN的面积为2,求四边形ABCM的面积.。
2014-2015学年上学期期中考试
2014-2015学年上学期期中考试九年级数学试卷考试时间:120分钟 满分:150分一、选择题(4×10=40分)1.下列a ,b ,c ,d 四条线段中,不能成比例线段的是( )A .3,6,2,4a b c d ====B .3,6,1,2====d c b aC .4,6,5,10a b c d ====D .32,15,2,5====d c b a 2.已知方程x 2+2x-1=0的两根分别是x 1,x 2 , 则1211x x += ( ) A. 2 B. -2 C. -6 D. 6 3.方程0122=--x x 的解的情况是( )A .有两个不相等的实数根 B. 没有实数根 C .有两个相等的实数根 D. 有一个实数根4.学校小卖部货架上摆放着某品牌方便面,它们的三视图:主视图(从正面看)、 左视图(从左面看)、和俯视图(从上面看)如图,则货架上的方便面至少有( )A .6盒B .7盒C .8盒D .9盒5.下列四个三角形,与左图中的三角形相似的是( )6.用配方法解下列方程时,配方有错误的是( )(第5题) A . B . C . D .A. 1001099222=-=--)可化为(x x x ; B. 25409822=+=++)可化为(x x x C. 16812472(0472=-=--)可化为t t t D. 91023220243=-=--)可化为(y y y7.菱形具有而矩形不一定具有的性质是( )A .对角相等B .四角相等C .对角线互相平分D .四边相等8.若反比例函数y=的图象经过点(m ,﹣2),则m 的值是( )大致表示为( )A B C D 10.如图所示,周长为68的矩形ABCD被分成了7个全等的矩形,则矩形ABCD 的面积为( )A. 98B. 196C. 280D. 284二、填空题(4×6=24分)11.口袋中有3个红球和5个白球,每个球除颜色外完全相同,从口袋中随机摸出一个红球的概率是 _________ 。
北师大版2014-2015学年上学期九年级期中考试数 学 试 题
北师大版2014-2015学年上学期九年级期中考试数 学 试 题一、填空题(每题3分,共30分)1.2cos300-3tan300=_____________.2.一元二次方程3x2-23=-10x 的二次项系数为 ,一次项系数为 ____ ,常数项为 ___。
3.已知tanA=32,则cot(900-A)=____________。
4.某人沿坡度i=1:3的斜面前进了100米,则这个人在水平方向上前进了___________米。
5.一元二次方程x2-3x+k=0的一根为2,则k=___________。
6.从一副扑克牌里随机抽一张牌是A 的概率为___________。
7. 请写出一个以-2和-5为根的一元二次方程 。
8. 等腰三角形的顶角为400,则一腰上的高与底边的夹角为___________。
9. 反比例函数y=x k的图像经过A (3,-2),B (6,m ),则m=________。
10.已知菱形ABCD 的边长为6,∠A=600,如果点P 是菱形内一点,且PB=PD=23,那么AP 的长为 。
二、选择题(每题3分,共30分)11.下列各点与M (-3,2)在同一双曲线图像上的是 ( )A 、(3,2)B 、(-3,-2)C 、(-1,6)D 、(3,-2)12.已知tan α=54,则锐角α的范围是 ( )A 、00<α<300B 、300<α<450C 、450<α<600D 、600<α<90013.下列性质矩形具有但菱形不具有的是 ( )A 、对角线互相平分B 、对角线相等C 、对角线互相垂直D 、对角互相垂直且相等14.反比例函数y=x k(k <0)上有三个点(x1,y1)、(x2,y2)、(x3,y3),且x1>x2>0>x3,则下列式子正确的是 ( )A 、y1>y2>y3B 、y1<y2<y3C 、y2>y1>y3D 、y1<y3<y215.下列图形中,既是轴对称,又是中心对称的有 ( )①等边三角形 ②矩形 ③菱形 ④等腰梯形 ⑤平行四边形 ⑥双曲线A 、3个B 、4个C 、5个D 、6个16. 一个几何体的主视图和左视图都是相同的长方形,俯视图为圆,则这个几何体为( )A 、圆柱B 、圆锥C 、圆台D 、球17. 如图,A 为反比例函数x k y图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( )A 、6B 、3C 、23D 、不能确定18. 在△ABC 中,∠C =90°,下列式子一定能成立的是( )A .sin a cB =B .cos a b B =C .tan c a B =D .tan a b A =19. 某农场的粮食总产量为1500吨,设该农场人数为x 人,平均每人占有粮食数为y 吨,则y 与x 之间的函数图象大致是( )20.问2A 、10%B 、15%C 、20%D 、25%三、计算题21.解方程: 2x2-7x-4=022.已知cotA=31,求①A A A A cos 2sin cos sin 3-+ ②A A AA 22cos sin cos sin 31--A .B .C .D .23.sin210+ sin220+ sin230+……+ sin2880+ sin2890四、解答题24. 如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F求证:四边形AEDF是菱形。
河南省泌阳县2014-2015学年度九年级上期中考试数学试卷及答案【新课标人教版】
泌阳县2014-2015学年度上学期期中考试九年级数学试卷一、选择题.(每空3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的字母序号填入题后括号内.1. 已知a 为任意实数,下列式子一定有意义的是( ) A. a a 2+ B. 1a 2+ C. 1a 12- D. 2a 12. 下列各式计算正确的是( )A. y x y x 22+=+B. 4553532=⨯-=-)(C. m 39m = D. n 3m 5n 75m 25+=+3.若x=2是关于x 的方程0a ax 25x 22=+-的一个根,则a 的值为( )A.1或4B. -1或-4C. -1或4D. 1或-4 4. 如图L 1∥L 2∥L 3,AB=4,DE=3,EF=6,则BC 的长( ) A. 4 B. 6 C. 8 D. 10 5. 一元二次方程2(x+1)2=5x 的根的情况( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 以上答案都不对6. 如图,在ΔABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论( )⑴ BC=2DE , ⑵ ΔADE ∽ΔABC , ⑶AC ABAE AD =,⑷ BDAE CE AD =,其中正确的有: A.4个 B. 3个 C. 2个 D. 1个7.如图,P 是∠a 的边OA 上一点,点P 的坐标为(12,5),则tana 等于( )(第4题图)(第6题图)(第7题图)A.135B. 1312C. 125D. 512 8. 如图,在菱形ABCD 中,DE ⊥AB,cosA=53,BE=2,则tan ∠DBE 的值是( )A.1 B.2 C. 25 D. 55二、填空.(每小题3分,共21分)9.已知2<x <3 ,化简3x 2x 2-+-)(= . 10.计算:29328+-的结果是 . 11.如图,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点C 的坐标为 . 12.某时刻太阳光线与地面的夹角为58°,这个时刻某同学站在太阳光下,自己的影子长为1米,则这个同学的身高约为________米。
人教版九年级上册数学期中考试试卷带答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A .B .C .D .2.一元二次方程2810x x --=配方后可变形为()A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=3.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为A .1x 0=,2x 4=B .1x 2=-,2x 6=C .132x =,25x 2=D .1x 4=-,2x 0=4.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是()A .16B .-4C .4D .85.设M =-x 2+4x -4,则()A .M <0B .M≤0C .M≥0D .M >06.两个连续偶数之积为168,则这两个连续偶数之和为()A .26B .-26C .±26D .都不对7.如图,抛物线的顶点坐标为P (2,5),则函数y 随x 的增大而减小时x 的取值范围为A .x >2B .x <2C .x >6D .x <68.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解9.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A .20%B .25%C .50%D .62.5%10.有一拱桥呈抛物线形状,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图所示)放在坐标系中,则抛物线对应的函数表达式为()A .y =215258x x +B .y =251825x x --C .y =-215258x x +D .y =-215258x x ++1611.如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是()A .B .C .3D .12.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(52,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是()A .①②B .②③C .①②④D .②③④二、填空题13.若关于x 的方程(m-1)21x m+−3x+2=0是一元二次方程,则此一元二次方程为_____.14.如图是二次函数2(1)2y a x =++图像的一部分,该图在y 轴右侧与x 轴交点的坐标是______15.若关于x 的一元二次方程2210mx x -+=有实数根,则m 的取值范围是_________.16.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .17.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.三、解答题18.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE .若∠CAE=65°,∠E=70°,且AD ⊥BC ,垂足为F ,求∠BAC 的度数.19.解下列方程:(1)x2+3x+1=0;(2)5x2-2x-14=x2-2x+34.20.在下面的网格图中按要求画出图形,并回答问题:(1)先画出△ABC向下平移5格后的△A1B1C1,再画出△ABC以点O为旋转中心,沿逆时针方向旋转90°后得到的△A2B2C2;(2)如图,以点O为原点建立平面直角坐标系,试写出点A2,B1的坐标.21.二次函数y=ax2+bx+c的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)当x为何值时,y>0?当x为何值时,y<0?(3)写出y随x的增大而减小的自变量x的取值范围.22.始兴县太平镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.24.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元.则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?25.如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,若点P从点A沿AB边向B点以1cm/s的速度移动,点Q从B点沿BC边向点C以2cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为4cm?(3)△PBQ的面积能否为10cm2若能,求出时间;若不能,请说明理由.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过点A(-1,0),B(4,0),与y轴交于点C,直线y=x+2交y轴于点D,交抛物线于E,F两点,点P为线段EF上一个动点(与E,F不重合),PQ∥y轴与抛物线交于点Q.(1)求抛物线的解析式;(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.C 【分析】先移项,再方程两边同加上16,即可得到答案.【详解】2810x x --=,281x x -=,28+161+16x x -=,2(4)17x -=,故选C .【点睛】本题主要考查一元二次方程的配方,熟练掌握配方法是解题的关键.3.A 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-14,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0),∴4a+1=0,∴a=-14,∴方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A .【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.4.A 【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a =-82-=4,∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A 【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.5.B 【解析】【分析】利用配方法可将M 变形为-()22x -,再根据偶次方的非负性即可得出M≤0.【详解】M =−2x +4x −4=−()22x -.∵()22x -⩾0,∴−()22x -⩽0,即M ⩽0.故选:B.【点睛】本题主要考查配方法的应用,非负数的性质:偶次方.6.C 【解析】【分析】设两个偶数中较小的一个是x ,则较大的一个是x+2,根据两个连续偶数之积是168,根据偶数的定义列出方程即可求解.【详解】设一个偶数为x ,则另一个偶数为x +2,则有x (x +2)=168,解得1x =12,2 x =14.当1x =12时,x +2=14;当2x =−14时,x +2=−12.∴二者之和为12+14=26或−14−12=−26.故选:C.【点睛】本题考查了一元二次方程的应用,关键是偶数的概念要熟记,从而正确设出偶数,根据积作为等量关系列方程求解.7.A 【解析】【分析】根据抛物线的顶点坐标是P (2,5),可得抛物线的对称轴为x=2;依据图象分析对称轴的左,右两侧是上升还是下降,即可确定x 的取值范围.【详解】∵抛物线的顶点坐标是P (2,5),∴对称轴为x=2.∵图象在对称轴x=2的右侧,是下降的,即函数y 随自变量x 的增大而减小,∴x 的取值范围是x >2.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数的性质.8.C 【详解】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+,∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .9.C 【详解】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C .10.C 【解析】【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x=20,最高点坐标为(20,16),且经过原点.由此可设该抛物线解析式为y=-a(x-20)2+16,将原点坐标代入可得-400a+16=0,解得:a=125,故该抛物线解析式为y =-21x 201625-+()=-215x x 258+所以答案选C 【点睛】本题考查了二次函数解析式的求解,中等难度,找到顶点坐标设出顶点式是解题关键.11.D 【详解】试题分析:∵∠ACB =90°,∠ABC =30°,AC =2,∴∠A =90°﹣∠ABC =60°,AB =4,BC =,∵CA =CA 1,∴△ACA 1是等边三角形,AA 1=AC =BA 1=2,∴∠BCB 1=∠ACA 1=60°,∵CB =CB 1,∴△BCB 1是等边三角形,∴BB 1=BA 1=2,∠A 1BB 1=90°,∴BD =DB 1,∴A 1D .故选D .考点:旋转的性质;含30度角的直角三角形.12.C【详解】∵二次函数的图象的开口向上,∴a >0.∵二次函数的图象y 轴的交点在y 轴的负半轴上,∴c <0.∵二次函数图象的对称轴是直线x=﹣1,∴b 12a -=-.∴b=2a >0.∴abc <0,因此说法①正确.∵2a ﹣b=2a ﹣2a=0,因此说法②正确.∵二次函数2y ax bx c =++图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),∴图象与x 轴的另一个交点的坐标是(1,0).∴把x=2代入y=ax 2+bx+c 得:y=4a+2b+c >0,因此说法③错误.∵二次函数2y ax bx c =++图象的对称轴为x=﹣1,∴点(﹣5,y 1)关于对称轴的对称点的坐标是(3,y 1),∵当x >﹣1时,y 随x 的增大而增大,而52<3∴y 2<y 1,因此说法④正确.综上所述,说法正确的是①②④.故选C .13.-2x 2-3x +2=0.【解析】【分析】由题可知m 2+1=2,且m-1≠0,可以解得m=-1,所以此一元二次方程是-2x 2-3x +2=0.【详解】∵(m-1)21x m +−3x+2=0是一元二次方程,∴21012m m -≠⎧⎨+=⎩.由⑴得m≠1,由⑵得m =±1,∴m=-1,把m=-1代入(m-1)21x m +−3x+2=0,得一元二次方程-2x 2-3x +2=0.故答案为-2x 2-3x +2=0.【点睛】本题主要考察了一元二次方程的性质以及基本概念.14.(1,0)【解析】由y=a (x +1)2+2可知对称轴x =-1,根据对称性,图象在对称轴左侧与x 轴交点为(-3,0),所以该图在对称轴右侧与x 轴交点的坐标是(1,0).15. 1m ≤,但0m ≠【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程2210mx x -+=有实数根,∴2(2)40m ∆=--≥,解得: 1m ≤;∵2210mx x -+=是一元二次方程,∴0m ≠,∴m 的取值范围是 1m ≤,但0m ≠.故答案为: 1m ≤,但0m ≠.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16.42.【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD=60°,∴BD=BC=12cm ,∴△BCD 为等边三角形,∴CD=BC=BD=12cm ,在Rt △ACB 中,=13,△ACF 与△BDF 的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm ),故答案为42.考点:旋转的性质.17.,2).【解析】由题意得:441a a =⇒=2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.18.85°.【解析】试题分析:根据旋转的性质知,旋转角∠CAE=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF 中易求∠B=25°,所以利用△ABC 的内角和是180°来求∠BAC 的度数即可.解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD ⊥BC 于点F ,则∠AFB=90°,∴在Rt △ABF 中,∠B=90°﹣∠BAD=25°,∴在△ABC 中,∠BAC=180°﹣∠B ﹣∠C=180°﹣25°﹣70°=85°,即∠BAC 的度数为85°.考点:三角形内角和定理;三角形的外角性质.19.(1)x 1=352-,x 2=352--;(2)x 1=-12,x 2=12.【解析】【分析】由题可知,本题⑴可以直接利用一元二次方程的求根公式x 2b b ac a-±=求解即可.本题⑵可以通过移项后使用公式(a +b )⋅(a -b )=0求解.【详解】⑴∵由题可知a =1,b =3,c =1,∴x 2b a-±==32-±,即方程的两个根为x 1=352-+,x 2=352-.⑵由题可知,5x 2-2x -14=x 2-2x +34可化为4x 2−1=0,∴(2x +1)⋅(2x −1)=0,∴方程的两个根为x 1=12,x 2=-12.【点睛】本题主要考察了直接使用公式法求解一元二次方程.20.(1)见解析;(2)B 1的坐标为(-4,-4),A 2的坐标为(-5,-2).【解析】【分析】将A 、B 、C 按平移条件找出它的对应点A 1、B 1、C 1,顺次连接A 1B 1、B 1C 1、C 1A 1,即得到平移后的图形;利用①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角,分别作出A 、B 、C 旋转后的对应点即可得到旋转后的图形.【详解】解:(1)如图:.(2)A2(5,2);B1(−4,−5).【点睛】本题考查了作图的相关知识点,解题的关键是熟练的掌握作图中的平移变换与旋转变换的相关知识.21.(1)x1=1,x2=3;(2)当1<x<3时,y>0;当x<1或x>3时,y<0;(3)当x>2时,y随x的增大而减小.【分析】(1)根据图象与x轴交点的坐标即可得到方程ax2+bx+c=0的两个根;(2)根据图象与x轴交点的坐标即可得到不等式ax2+bx+c>0的解集;(3)由于抛物线是轴对称的图形,根据图象与x轴交点的坐标即可得到对称轴方程,由此再确定y随x的增大而减小的自变量x的取值范围.【详解】解:(1)图中可以看出抛物线与x轴交于(1,0)和(3,0),∴方程ax2+bx+c=0的两个根为x=1或x=3;(2)不等式ax2+bx+c>0时,通过图中可以看出:当1<x<3时,y的值>0,当x<1或x>3时,y<0.(3)图中可以看出对称轴为x=2,∴当x>2时,y随x的增大而减小;22.(1)20%;(2)不能.【解析】试题分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.考点:一元二次方程的应用.23.(1)FG⊥E D,理由详见解析;(2)详见解析【分析】(1)由旋转及平移的性质可得到∠DEB+∠GFE=90°,可得出结论;(2)由旋转和平移的性质可得BE=CB,CG∥BE,从而可证明四边形CBEG是矩形,再结合CB=BE可证明四边形CBEG是正方形.【详解】(1)FG⊥E D.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点睛】本题主要考查旋转和平移的性质,掌握旋转和平移的性质是解题的关键,即旋转或平移前后,对应角、对应边都相等.24.(1)y=-10x2+110x+2100(0<x≤15且x为整数);(2)每件55元或56元时,最大月利润为2400元;(3)见解析.【详解】试题分析:(1)由销售单价每涨1元,就会少售出10件,得2(21010)(5040)101102100y x x x x =-+-=-++(0<x≤15且x 为整数);(2)把2101102100y x x =-++进行配方即可求出最大值,即最大利润.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.当售价定为每件51或60元,每个月的利润为2200元.试题解析:(1)(且为整数);(2).∵a=-10<0,∴当x=5.5时,y 有最大值2402.5.∵0<x≤15且x 为整数,∴当x=5时,50+x=55,y=2400(元),当x=6时,50+6=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:11x =,210x =.∴当11x =时,5050151x +=+=,当210x =时,50501060x +=+=.∴当售价定为每件51或60元,每个月的利润为2200元.∴当售价不低于51或60元,每个月的利润为2200元.∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).考点:1.二次函数的应用;2.一元二次方程的应用.25.(1)2或4秒;(2)cm ;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)×2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8cm2;(2)设x秒后,PQ=cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为cm;(3)设经过y秒,△PBQ的面积等于10cm2,S△PBQ=12×(6-y)×2y=10,即y2-6y+10=0,∵Δ=b2-4ac=36-4×10=-4<0,∴△PBQ的面积不会等于10cm2.【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.26.(1)y=-x2+3x+4;(2)P点坐标为(2,4);(3)P点坐标为(2,4)或(-1,1).【解析】【分析】(1)把A与B的坐标代入抛物线的解析式中,得到关于a与b的二元一次方程组,求出方程组的解集即可得到a与b的值,然后把a与b的值代入抛物线的解析式即可确定出抛物线的解析式;(2)因为PQ与y轴平行,要使四边形PDCQ为平行四边形,即要保证PQ等于CD,所以令x=0,求出抛物线解析式中的y即为D的纵坐标,又根据抛物线的解析式求出C的坐标,即可求出CD的长,设出P点的横坐标为m即为Q的横坐标,表示出PQ的长,令其等于2列出关于m的方程,求出方程的解即可得到m的值,判断符合题意的m的值,即可求出P 的坐标;(3)存在.分两种情况考虑:当OB作底时,求出线段OB垂直平分线与直线EF的交点即为P的位置,求出此时P的坐标即可;当OB作为腰时,得到OB等于OP,根据等腰三角形的性质及OB的长,利用勾股定理及相似的知识即可求出此时P的坐标.【详解】解:(1)根据题意,得40 16440 a ba b-+=⎧⎨++=⎩解得13 ab=-⎧⎨=⎩∴所求抛物线的解析式为y=-x2+3x+4;(2)∵PQ∥y轴,∴当PQ=CD时,四边形PDCQ是平行四边形,∵当x=0时,y=-x2+3x+4=4,y=x+2=2,∴C(0,4),D(0,2),设点P的横坐标为m,∴PQ=(-m2+3m+4)-(m+2)=2,解得m1=0,m2=2.当m=0时,点P与点D重合,不能构成平行四边形,∴m=2,m+2=4,∴P点坐标为(2,4);(3)存在,P点坐标为(2,4)或(-1+,1+).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数的性质与应用.。
2014—2015学年第一学期初三年级数学期末考试试卷含答案
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
2014-2015学年上学期九年级数学期中测试模拟卷
BCADO2014-2015学年上学期九年级数学期中测试模拟卷(考试时间:120分钟 满分100分) 姓名 得分一、精心选一选,想信你一定能选对!(每题3分,共30分)1、下列方程中是一元二次方程的是( )(A )012=+x (B )12=+x y (C )012=+x (D )112=+x x2、(2011,日照中考)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) (A )163 (B )41 (C )43 (D )833.在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则AE ︰AC 的值为( ) (A )0.5 (B )2 (C )23 (D )324的一元二次方有两个不相等的实数根,则m 的值可以是( )A.4B.3C.2D.0 5、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC=4, 则四边形OCED 的周长为( )A .4B .6C .8D .106、连接菱形各边中点,可得到的“中点四边形”是矩形,主要是因为( )A 、 菱形的四条边都相等B 、 菱形的对角线互相垂直 C. 菱形的对角线互相平分 D 、以上答案都不对7.某城市2007年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2009年底增 加到363公顷。
设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( ) (A )363)1(300=+x (B )300)1(3632=+x (C )363)21(300=+x (D )363)1(3002=+x8.如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是( ).A.1B.2C.29、如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( ) A .B .C .D .10、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )A 、1,0B 、-1,0C 、1,-1D 、无法确定 二、细心填一填,相信你填得又快又准!(每题3分,共18分) 11、把a 2=bc 改写成比例形式,可以是 。
内蒙古呼和浩特市敬业学校2015届九年级数学上学期期中试题 新人教版
内蒙古呼和浩特市敬业学校2015届九年级数学上学期期中试题考试时间:120分试卷满分:120分一、选择题:(每小题3分,共30分)1. 下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A. B. C. D.2. 关于x的方程ax2-3x+2=0是一元二次方程,则( )A.a0B.a0C.a=1D.a03. 关于二次函数y=x2+4x-7的最大(小)值,叙述正确的是( ) .A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=-2时,函数有最小值D.当x=-1时,函数有最大值4. 已知二次函数y=ax2+2ax+c的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是( )A.(1,0)B.(-1,0)C.(-3,0)D.(3,0)5. 若(m2+n2)(m2+n2-2)=8,则 m2+n2 的值为( )A.4 B.2 C.4或-2 D.2或-46. 在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是( )A.(1,-6) B.(1,-4) C.(-3,-4) D.(-3,-6)7. 如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为( )A.8B.10C.16D.208. 如图,AB是⊙O的直径,C、D是⊙O上点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于( )A.70° B.60° C.50° D.40°9. 在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=10,BD=9.则下列结论错误的是( ) A .AE ∥BC B .△ADE 的周长是19 C .△BDE 是等边三角形D .∠ADE=∠BDC10.如图是二次函数y=ax 2+bx+c (a ≠0)的图像的一部分,给出下列命题:①a+b+c=0;②b ﹥2a ;③ ax 2+bx+c=0的两根分别为-3和1;④a-2b+c ﹥0,其中正确的命题是( )A. ①②③B. ①③C. ①④D. ①③④ 二、填空题(每空3分,共18分)11.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根,则这个三角形的周长为______________.12.若一个正六边形的边心距的长度为cm ,那么它的半径的长度为 cm.13.直线y =x+m 和抛物线y =x 2+bx+c 都经过点A(1,0),B(3,2).则不等式x 2+bx+c > x+m 的解集___________.14.如图,在⊙O 中,直径AB=2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C=45°,则图中阴影部分的面积是 .15.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是 . 16.已知是关于x 的一元二次方程x 2-(2m+3)x+=0的两个不相等的实数根,且满足=,则m 的值是 .三、解答题(共72分) 17.(每题4分,共8分)解方程:(1)2x 2-7x+6=0 (2))1(7)1(52+=+x x18.(6分)已知:关于x 的一元二次方程x 2+ax+a-2=0.(1)求证:无论a 取任何实数,此方程总有两个不相等的实数根. (2)当方程的一个根为-2时,求方程的另一个根.19.(6分)如图,在等腰△ABC 中,∠ACB=90°,AC=BC ,D 为△ABC 内一点,且DA=1,DC=2,DB=3.求∠ADC 的度数.20.(6分)如图,有一抛物线拱桥,已知水位在AB位置时,水面的宽为4米;水位上升4米,就达到警戒线CD,这时的水面宽为4米。
2014-2015学年度 上学期期中考试九年级数学试卷
A .B .C .D . 2014-2015学年度上学期期中考试九年级数学试卷一、 选择题:(共12小题,每小题3分,共36分。
下列各题的四个选项中只有一个正确)1x 的取值范围是 A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且2. 已知x =2是一元二次方程x 2+x +m =0的一个解,则m 的值是A .―6B .6C .0D .0或6 3.用配方法解方程3x 2+6x ―5=0时,原方程应变形为A .(3x +1)2=4B .3(x +1)2=8C .(3x ―1) 2=4D .3(x ―1)2=5 4. 在下列图形中,既是轴对称图形又是中心对称图形的是5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .182)1(502=+xB .182)1(50)1(50502=++++x x C .50(1+2x)=182D .182)21(50)1(5050=++++x x6.如图,在Rt △ABC 中,∠ABC=90°,∠BAC=30°,AB=,将△ABC 绕顶点C 顺时针旋转至△A ′B ′C ′的位置,且A 、C 、B ′三点在同一条直线上,则点A 经过的路线的长度是 A .4 B. C .323π D .43π7.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 A .14k >- B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 8.3最接近的整数是 A .0 B .1 C .2 D .39.如图所示,将正方形图案绕中心旋转后,得到的图案是A B C D10.已知两圆的半径分别为,且这两圆有公共点,则这两圆的圆心距为A .4B .10C .4或10D .104≤≤d 11.如图所示,已知扇形的半径为,圆心角的度数为,若将此扇形围成一个4=1+3 9=3+616=6+10 第17题图 …圆锥,则围成的圆锥的侧面积为 A .B .C .D .12.如图;用一把带有刻度的直角尺,①可以画出两条平行的直线a 与b ,如图(1);②可以画出∠AOB 的平分线OP ,如图(2);③可以检验工作的凹面是否成半圆,如图(3);•④可以量出一个圆的半径,如图(4).上述四个方法中,正确的个数是( )A .1个B .2个C .3个D .4个数 学 第Ⅱ卷一、填空题(共5小题,每小题3分,共15分)13.如图所示,ABC △为O ⊙的内接三角形,130AB C =∠=,°,则O ⊙的内接正方形的面积为 . 14.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD=30°,则∠BCD 的度数是 .第13题 第14题 第16题15.三角形的每条边的长都是方程的根,则三角形的周长是_______________.16.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________.17.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是___________(填序号) ①13 = 3+10 ②25 = 9+16 ③36 = 15+21 ④49 = 18+31B二、解答题(共4小题,每小题6分,共24分)18.计算:(1)⎛÷ ⎝ (2101|2|(2π)2-⎛⎫-+-+ ⎪⎝⎭19.用适当的方法解下列方程.2350x x --= (2)(1) 23(5)(5)x x -=-三、20.(本题共7分)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =四、班级 姓名 考号 考场号密 封 线 内 不 得 答 题D 第22题图21.(本小题8分)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)请直接写出点A 关于原点O 对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.五、22.(本小题8分)已知:如图所示,AB 是⊙O 的弦,∠OAB =45°,点C 是优弧»AB上的一点,OA BD //,交CA 延长线于点D ,连接BC (1)求证:BD 是O ⊙的切线六.23.(本小题10分)如图,AB是⊙O的直径,C是的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD ﹦6, AC ﹦8,求⊙O的半径为及CE的长.七、24.(本小题12分)要对一块长60m 、宽40m 的矩形荒地ABCD 进行绿化和硬化.(1)设计方案如图①所示,矩形P 、Q 为两块绿地,其余为硬化路面,P 、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的14,求P 、Q 两块绿地周围的硬化路面的宽. (2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O 1和O 2,且O 1到AB ,BC ,AD 的距离与O 2到CD ,BC ,AD 的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.第24题图①第24题图②。
2014-2015学年上学期期 中 考试九年级数学试卷
2014-2015学年上学期期中考试九年级数学试卷一、细心选一选(本题有10个小题,每小题3分,满分30分)下面每小题给出的四个选项中,只有一个是正确的.1有意义的x 的取值范围是( ).A. 2x ≤-B. 2x <C. 2x ≥-D. 2x <- 2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( ).A .1个B .2个C .3个D .4个 3.下列计算正确的是( ).A .224=- BC= D3=- 4.下列各式中是最简二次根式的是( ).ABCD5.方程()3(2)0x x +-=的根是( ).A .123,2x x =-= B .123,2x x == C .123,2x x ==- D .123,2x x =-=-6.是同类二次根式的是( )A.B.C.D.7.用配方法解方程2850x x --=,则配方正确的是( ).A.()2411x += B.()2421x -= C.()2816x -= D.()2869x +=8.某商品原价200元,连续两次降价%a 后售价为148元,下列所列方程正确的是( ). A .()22001%148a += B .()220012%148a -= C .()22001%148a += D .()22001%148a -=9. 现有如图所示的四张牌,若只将其中一张牌旋转180°后仍是本身,则旋转的牌是( )A 、B 、C 、D 、10.若方程260x x m -+=有两个同号不相等的实数根,则m 的取值范围是( ). A .9m < B .0m > C .09m << D .09m <≤二、填空题(本题有6个小题,每小题3分,共18分).11.计算:-= . 12.设一元二次方程2830x x -+=的两个实数根分别为1x 和2x ,则12_______x x +=.13.已知:52x y =,则+x y x y =- .14.点A (a ,3)与点B (-4,b )关于原点对称,则a+b=_________. 15.方程(x+2)(x-3)=0的根是 16.若0<x <5,则x -= .三、计算题.17.(本题满分8分)已知1a =, 1b =,求22a b -的值.18.(本题满分8分) 解方程:3(1)22x x x -=-.19.计算(8):-20.(本题满分8分)已知关于x 的一元二次方程0122=+-mx x 的一根为3x =-,求m 的值以及方程的另一根.21.(本题满分8分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90︒得△AB1C1,画出△AB1C1. (2)作出△ABC 关于坐标原点O 成中心对称的△A2B2C2.(3)作出点C 关于x 轴的对称点P . 若点P 向右平移xA2B2C2的内部,请直接写出x 的值.22. (本题满分12分)如图,利用一面长25m 的墙,用50m 长的篱笆,围成一个长方形的养鸡场.(1)怎样围成一个面积为2300m 的长方形养鸡场?(2)能否围成一个面积为2400m 如不能,请说明理由.第21题。
2014-2015学年上学期 期中考试九年级数学试卷
2014-2015学年上学期期中考试九年级数学试卷1、 的倒数是( )A、76B 、67 C 、6 D 、162、下列运算正确的是()A 、623a a a ÷= B 、22532a a a -= C 、235()a a a -⋅= D 、527a b ab += 3A 、24B 、32 CD 、34、已知一元二次议程2420x x -+=两根为12x x 、则12x x ⋅=( ) A 、-4 B 、 4 C 、-2 D 、25、已知相交两圆的半径分别4和7,则它们的圆心距可能是( ) A 、6 B 、3 C 、2 D 、126、函数y =中自变量的取值范围是( )A 、2x ≥B 、2x ≤C 、20x x ≤≠且D 、2x7、下列图形中,不是中心对称图形的是( )A 、平行四边形B 、正方形C 、线段D 、等边三角形21世纪教育网8、抛物线21(3)12y x =+-的顶点坐标为( )A 、(3,-1)B 、(3,1)C 、(-3、-1)D 、(-3,1)9、如图(1)△ABC 的内接于⊙O ,AD 是⊙O 的直径,25OABC ∠=,则CA D ∠的度数是( )A 、20°B 、60°C 、65°D 、70°10、已知二次出数2y ax bx c =++(a ≠0)的图象如图(2)所示,现有下列结论:①0a ②0b ③0c ④240b ac-⑤420a b c ++其中结论正确的有( )个A 、2个B 、3个C 、4个D 、5个二、填空题(每小题3分,共24分) 11、4的平方根是1612、分解因式:24a -=13、方程2540x x -=的解是 14、一组数据4,x , 5, 10, 11,共有5个数,其平均数是7,这组数据的众数是15、若关于x 的方程220x x m --=有两个相等实数根,则m 的值是 16、已知菱形的两条对角线长分别为2cm 、3cm ,则它的面积是 cm2 17、圆锥底面半径为3,高为4,该圆锥侧面积为18、如图(3),弦AB=6,半径为5,C 为弧AMB 上的一点(不与A 、B 重合)则△ACB 的最大面积为三、解答题(每小题6分,共12分)19、先化简,再求值:111()111a a a -÷+--,其中1a =20、解方程:2(3)3(3)x x x -=-四、解答题(每小题8分,共16分)21、如图(4),正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且45EDF ∠=︒,将DAE ∠绕点D 逆时针旋转90°,得到DCM ∆。
2014-2015学年吉林省扶余市九年级上期中教学质量检测数学试题及答案【新课标人教版】
2014—2015学年度上学期期中教学质量检测九年级数学试卷(满分:120分 答题时间:120分钟)一、选择题(每小题2分,共12分) 1.一元二次方程()()5252-=-x x 的根是 ( )A.7B.5C.5或3D.7或52.用配方法解下列方程时,配方有错误的是 ( ) A.09922=--x x化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--tt化为1681472=⎪⎭⎫ ⎝⎛-t D.02432=--y y 化为910322=⎪⎭⎫ ⎝⎛-y 3.某经济开发区2014年1月份的工业产值达50亿元,第一季度总产值为175亿元, 问:2,3月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程 ( ) A.()1751502=+x B.()175150502=++xC.()()1751501502=+++x x D.()()175150150502=++++x x4.在抛物线442--=x x y 上的一个点是 ( ) A.(4,4) B.(3,-1) C.(-2,-8) D.(21-,47-) 5.如图,在平面直角坐标系中,抛物线所表示的函数解析式为 ()k h x y +--=22,则下列结论正确的是 ( )A.h >0,k >0B.h <0,k >0C.h <0,k <0D.h >0,k <0密封线内不要答题密封线外不要写考号姓名第5题6.如图所示,某大学的校门是一抛物线形水泥建筑物,大门的地 面宽度为8m ,两侧距离地面4m 高各有一个挂校名横匾用的铁 环P.两铁环的水平距离为6m ,则校门的高为(精确到0.1m , 水泥建筑物的厚度忽略不计) ( ) A.9.2m B.9.1m C.9m D.5.1m二、填空题(每小题3分,共24分)7.若方程02=-x x 的两个根为1x ,2x (1x <2x ),则2x -1x = . 8.在平面直角坐标系中,点A(-1,2)关于原点对称的点为B(a ,-2),则a = .9.将抛物线232+=x y 先向右平移4个单位,再向下平移2个单位,所得抛物线的解析式 为 .10.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为 .11.如图,在等边△ABC 中,D 是边AC 上的一点,连接BD ,将△BCD 绕点B 逆时针旋转60°得到△BAE ,连接ED ,若BC=10,BD=9,则△AED 的周长是 .12.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 长为半 径画弧交x 轴正半轴于点C ,则点C 的坐标为 .13.如图,OB 是⊙O 的半径,弦AB=OB ,直径CD ⊥AB.若点P 是线段OD 上的动点,连接PA ,则∠PAB 的度数可以是 °(写出一个即可)14.如图,将半径为3的圆形纸片,按下列顺序折叠.若AB 和BC 都经过圆心O ,则阴影部分的面积是(结果保留π)第6题第11题B九年级数学试卷 第2页 (共8页)三、解答题(每小题5分,共20分) 15.解方程:(1)()()03232=-+-x x x (2)012=--x x16.“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有361人受到感染, 问每轮传染中平均一个人传染了几个人?17.已知二次函数c bx x y ++=2的图象经过点(-3,4),(-1,0).求其函数的解析式.18.如图,在半径为50mm 的⊙O 中,弦AB 长50mm ,求:(1)∠AOB 的度数;(2)点O 到AB 的距离.第18题四、解答题(每小题7分,共28分) 19.图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格 点.点A ,B ,C ,D 在格点上,光点P 从AD 的中点出发,按图②的程序移动.(1)请在图①中用圆规画出光点P 经过的路径;(2)在图①中,所画图形是 图形(填“轴对称”或“中心对称” ),所 画图形的周长是 (结果保留π).20.如图,⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分线交⊙O 于点D ,求BC ,AD ,BD 的长.第20题21.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出AE所在⊙O的半径r.22.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费为每平方米1000元,设矩形的一边长为x(m),面积为s(m2).(1)写出s与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.五、解答题(每小题8分,共16分)23.如图,四边形OABC 是平行四边形.以O 为圆心,OA 为半径的圆交AB 于点D ,延长AO 交⊙O 于点 E ,连接CD 、CE.若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线;(2)若BC=3,CD=4,求平行四边形OABC 的面积.24.如图,抛物线n x x y ++-=42经过点A(1,0),与y 轴交于点B. (1)求抛物线的解析式和顶点坐标;(2)若P 是x 轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.(直接写出答案)第24题六、解答题(每小题10分,共20分)25.如图所示,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为20cm ,AC 与MN 在同 一直线上,开始时点A 与点N 重合,让△ABC 以每秒2cm 的速度向左运动, 最终点A 与点M 重合.(1)求重叠部分面积(即图中阴影面积)y(cm 2)与时间t(s)之间的函数关系式. (2)经过几秒钟重叠部分面积等于8cm 2?第25题26.如图①,直线 :y=mx+n(m<0,n>0)与x,y轴分别交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD.过点A,B,D的抛物线P叫做 的关联抛物线, 叫做P的关联直线. (1)若 :y=-2x+2,则P表示的函数解析式为,若P:y=-x2-3x+4,则 表示的函数解析式为;(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若 :y=-2x+4,P的对称轴与CD相交于点E,点F在 上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若 :y=mx-4m,G为AB中点.H为CD中点,连接GH,M为GH中点,连接OM.若OM=10,直接写出 ,P表示的函数解析式.九年级数学答案一、1.D 2.B 3.D 4.D 5.A 6.B二、7.1 8.1 9.()243-=x y 10. 4 11. 19 12.(4,0) 13. 答案不唯60°~75°即可14. 3π15.解:(1)()()0133=--x x 31=x ,1=x (2)251±=x 16.解:设每轮传染中平均一个人传染了x 人,根据题意得:()36112=+x ∴191±=+x 181=x 202=x (舍去)答:每轮传染中平均一个人传染了18人 17.122++=x x y18.(1)∠AOB=60° (2)点O 到AB 的距离为325mm.19.解:(1) (2)轴对称 4π评分说明:(1)不用圆规,画图正确,可不扣分; (2)每答对一空得2分20.解:如图连接OD.∵AB 是直径,∴∠ACB=∠ADB=90°. 在Rt △ABC 中, ()cm AC AB BC 86102222=-=-=∵CD 平分∠ACB , ∴∠ACD=∠BCD , ∴∠AOD=∠BOD ∴AD=BD. 又 在Rt △ABD 中,222AB BD AD =+,∴()cm AB BD AD 25102222=⨯=== 21.解:∵弓形的跨度AB=3m ,EF 为弓形的高, ∴OE ⊥AB , ∴AF=21AB=23m. ∵设所在的⊙O 的半径为r ,弓形的高EF=1m , ∴AO=r ,OF=r-1,在Rt △AOF 中,222OF AF AO += 即()222123-+⎪⎭⎫ ⎝⎛=r r ,解得m r 813=.22.(1)设矩形一边长为x ,则另一边长为(6-x). ∴()x x x x S 662+-=-=, 其中0<x <6.(2)()93622+--=+-=x x x S 当矩形的一边长为3m 时,矩形面积最大,最大为9m 2. 眼时设计费为900010009=⨯(元). 因此,当该广告牌为边长为3m 的正方形时,设计费最多. 23. 解:(1)连接OD ,则OD=OA=OE ,∴∠ODA=∠A. ∵AB ∥OC , ∴∠A=∠EOC ,∠ODA=∠DOC. ∴∠DOC=∠EOC ,∵CO=CO.∴ △CEO ≌△CDO. ∵CE 是⊙O 的切线,∴∠CDO=∠CEO=90°. ∵CD 为⊙O 的切线.(2中,OA=BC=3,∵CE ⊥OA ,CE=CD=4, ∴·CE=3×4=12.评分说明:辅助线画成实线,可不扣分.24.解:(1)342-+-=x x y .顶点坐标为(2,1). (2)(-1,0) (110+,0) (101-,0) 25.(1)()222021t y -=(2)当y=8时,即()8220212=-t ,解得81=t ,122=t (舍去) = 2(t-10)226.(1)22+--=x x y 44+-=x y (2)如图①,∵直线 :y=mx+n , 当x=0时,y=n ,∴B(o,n). 当y=0时,mn x -= ∴A(m n-,o).由题意得D(-m,0).设抛物线对称轴与x 轴交点为N(x,o), ∵DN=AN ∴m n --x=x-(-n). ∴2x=-n-mn-. ∴P 的对称轴mnmn x 2+-=. (3)∵ :y=-2x+4, ∴2-=m ,4=n . 由(2)可知,P 的对称轴122482-=⨯-+--=+-=m n mn x . 如图②,当点Q 1在直线 下方时,∵直线42+-=x y 与x ,y 轴交点分别为A(2,0),B(0,4).由题意得C(0,2),D(-4,0).设直线CD:y=kx+2, 则-4k+2=0.解得k=21,∴221+=x y 过B 作BQ 1∥CE. ∴BQ 1的函数解析式为 421+=x y . 当x=-1时,()274121=+-⨯=y . ∴Q 1(-1,27)综上所述点Q 的坐标为(-1,217)或(-1,27).(4) :y=-2x+8. P:y=-8412+-x x . 评分说明:不画草图或画划图不正确,可不扣分.。
2014-2015学年度上学期期中考试九年级 数学试卷
2014-2015学年度上学期期中考试九年级数学试卷一、选择题(每小题3分,共30分)1.方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是( )A. ①和②B. ②和③C. ③和④D. ①和③2. 若x=2是关于x 的一元二次方程08mx x 2=+-的一个解,则m=( )A .6B .5C .2D .-63.下列命题中,不正确的是( )A .顺次连结菱形各边中点所得的四边形是矩形。
B .有一个角是直角的菱形是正方形。
C .对角线相等且垂直的四边形是正方形。
D .有一个角是60°的等腰三角形是等边三角形。
4.正方形具有而菱形不具有的性质是( )A .四个角都是直角B .两组对边分别相等C .内角和为0360D .对角线平分对角5.如图,在△ABC 中,点O 是∠ABC 与∠ACB 的角平分线,若∠BAC=80,则∠BOC=( )度A .130,B .100C .65D . 50 6.某超市一月份的营业额为30万元,三月份的营业额为56平均增长率为x ,则可列方程为()A .56(1+x)² =30B .56(1-x)²=30C .30(1+x)² =56D .30(1+x)³=567. 百位数字是a ,十位数字是b ,个位数字是c ,这个三位数是 ( )A .abc B. a+b+c C.100a+10b+c D. 100c+10b+a8.如图,空心圆柱的左视图是( )9. 如图,如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则△BCD 的周长是( )A .10B .24C .12D .1410.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图(2).下列关于图(2)的结论中,不一定成立的是 ( )A. DE ∥BCB. △DBA 是等腰三角形C. 点A 落在BC 边的中点D. ∠B+∠C+∠1=180°二、填空题(每小题4分,共32分).11.方程224x x =的根为 _________.12.若等腰三角形两边长分别是2和7,则它的三条中位线所围成三角形的周长是 .13.关于x 的方程01)1(212=-++-+a x x a a 是一元二次方程,则a =14.在上午的某一时刻身高1.7米的小刚在地面上的投影长为3.4米,小明测得校园中旗杆在地面上的影子长16米,还有2米影子落在墙上,根据这些条件可以知道旗杆的高度为_________________米.15.在平行四边形ABCD 中,若∠A+∠C=︒210,则∠A= , ∠B= .16. 关于x 的一元二次方程0122=++x kx 有两个不相等的实数根, 则k 的取值范围是_______。
2014-2015学年上学期期中九年级数学试卷(新人教版)
2014-2015学年上学期期中九年级数学试卷注意事项:本卷共三大题,计23小题,满分100分.一、选择题(本题共10小题,每小题3分,满分30分)1、函数y=-x 2-3的图象顶点是( )A 、()0,3B 、39,24-⎛⎫ ⎪⎝⎭C 、()0,3-D 、()1,3-- 2、二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A 、先向左平移2个单位,再向上平移1个单位B 、先向左平移2个单位,再向下平移1个单位C 、先向右平移2个单位,再向上平移1个单位D 、先向右平移2个单位,再向下平移1个单位3、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中正确的结论是( )A 、①②B 、①③④C 、①②③⑤D 、①②③④⑤4、如图所示,抛物线2(0)y ax x c a =-+>的对称轴是直线1=x ,且图像经过点P (3,0),则c a +的值为( )A 、0B 、 -1C 、 1D 、 25、反比例函数y =1k x-的图象,在每个象限内,y 的值随x 值的增大而增大,则k 可以为( )A 、0B 、1C 、2D 、311 1- Oxy 第3题y–1 33Ox第4题P1第8题第6题6、如图,两个反比例函数14y x =和1y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC x ⊥轴于点C ,交C 2于点A ,PD y ⊥轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A 、2B 、 3C 、4D 、57、若ABC DEF △∽△,相似比为2,且ABC △的面积为12,则DEF △的面积为 ( ) A 、3 B 、6 C 、24 D 、48 8、如图所示,给出下列条件:①B ACD ∠=∠;②ADC ACB ∠=∠;③AC ABCD BC=; ④2AC AD AB =∙.其中单独能够判定ABC ACD △∽△的个数为 ( )A 、1B 、2C 、3D 、49、根据下表中的二次函数2(0)y ax bx c a =++≠的自变量x 与函数y 的对应值,可判断二次函数的图象与x 轴( )x …… -1 0 1 2…… y……-1-74 -274- ……A 、只有一个交点B 、有两个交点,且它们分别在y 轴两侧C 、有两个交点,且它们均在y 轴同侧D 、无交点10、二次函数2y ax bx c =++的图象如下图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )二、填空题(本题共4小题,每小题5分,满分20分)11、3与4的比例中项是______ .12、已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数解析式为 . 13、如图,在□ABCD 中,EF ∥AB, :2:3DE EA =, 4EF =, 则CD 的长为 .14、报幕员在台上时,若站在黄金分割点处,会显得活泼而生动,已知舞台长10米,那么报幕员要至少走____ ____米报幕.三、解答题(满分50分,其中15、16、17、18、19每题8分,20每题10分)15、(本题8分)已知2==dc b a ,求a b a +和d c dc +-的值。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2014-2015年江苏省徐州市铜山区九年级上学期期中数学试卷及答案
2014-2015学年江苏省徐州市铜山区九年级(上)期中数学试卷一、选择题:本大题共8小题,每小题3分,共24分2014-2015学年度第一学期期中考试九年级数学试题1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)用配方法解方程x2+10x+20=0,则方程可变形为()A.(x+5)2B.(x﹣5)2=45 C.(x+5)2=5 D.(x﹣5)2=53.(3分)一元二次方程x2+3x﹣1=0的根的情况为()A.有两个相等的实数根B.只有一个实数根C.有两个不相等的实数根D.没有实数根4.(3分)抽样调查九年级30名女生所穿的鞋子的尺码,数据如下这组数据的中位数和众数分别是()A.6 15 B.15 15 C.34 35 D.35 355.(3分)已知关于x的一元二次方程x2﹣x+m2﹣2m﹣5=0的一个根是﹣2,则m=()A.﹣1 B.1 C.2 D.﹣26.(3分)如图,两个同心圆的直径分别为6cm和10cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm7.(3分)将函数y=﹣x2的图象如何平移得到y=﹣x2﹣8x﹣7的图象()A.向左平移4个单位,再向上平移9个单位B.向左平移4个单位,再向下平移9单位C.向右平移4个单位,再向上平移9单位D.向右平移4个单位,再向下平移9单位8.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值二、填空题:本大题共10小题,每小题3分,共30分9.(3分)二次函数y=(x﹣2)2+2的顶点坐标是.10.(3分)方程x2=4x﹣4的解是.11.(3分)已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为.12.(3分)已知一组数据6,x,10,8的众数与平均数相等,则x=.13.(3分)一道选择题有A、B、C、D四个答案,其中有且只有一个正确选项,在A、B、C、D中随意选择一个选项,所选选项恰好正确的概率是.14.(3分)若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2=.15.(3分)圆内接四边形ABCD中,∠A:∠B:∠C=3:4:6,则四边形ABCD 的最大内角是度.16.(3分)若一个一元二次方程的两个根分别是﹣3、2,请写出一个符合题意的一元二次方程.17.(3分)已知x2+2x﹣2=1,则代数式4x2+8x+1的值是.18.(3分)如图,AB是⊙O的直径,C是⊙O上的一点,AD垂直于过点C的切线,垂足为D,∠BAD=70°,则∠DAC=.三、解答题:本大题共10小题,共86分(19题10分,20题10分,21题6分,22题8分,23题8分,24题8分,25题8分,26题8分,27题8分,28题12分)19.(10分)计算:(1)|﹣3|+﹣()﹣1;(2)(﹣1)2014﹣|﹣5|++(﹣π)0.20.(10分)解方程:(1)x+3﹣x(x+3)=0;(2)x2﹣4x=1.21.(6分)已知一元二次方程x2+2x+2k﹣1=0,当k为何值时,此方程有两个相等的实数根?22.(8分)如图,△ABC是⊙O的内接三角形,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.23.(8分)写出二次函数y=x2﹣8x﹣8的图象顶点坐标和对称轴的位置并求出它的最值.24.(8分)一个不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字﹣3、2、5、﹣6,搅匀后,先从中摸出1个球(不放回),再从余下的三个球中摸出一个球.(1)用树状图列出所有可能出现的结果;(2)求两次摸出的乒乓球球面上的数字的积为偶数的概率.25.(8分)如图,半圆的直径AB=10,C、D是半圆的三等分点,P为AB上一点,求阴影部分的面积.26.(8分)如图,△ABC的周长为24,面积为24,求它的内切圆的半径.27.(8分)某商店的一种服装,每件成本为50元,经市场调研,售价为60元时,可销售800件,售价每提高2元,销量将减少40件,已知商店销售这批服装获利12000元,问这种服装每件售价是多少元?28.(12分)如图,在平面直角坐标系中,直线m:y=kx过原点,直线n:y=x+4与y轴交于点A,与直线m交于点B(8,8),x轴上一点P(t,0)从原点出发沿x轴向右运动,过点P作直线PM⊥x轴,分别交直线m,n与点M,N,连接ON.(1)求k的值;(2)当0≤t≤8时,用含t的代数式表示△OMN的面积S;(3)在整个运动过程中,△OMN的面积S等于12吗?如果能,请求出t的值;如果不能,请说明理由;(4)当t为何值时,以MN为直径的圆与y轴相切?2014-2015学年江苏省徐州市铜山区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分2014-2015学年度第一学期期中考试九年级数学试题1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(3分)用配方法解方程x2+10x+20=0,则方程可变形为()A.(x+5)2B.(x﹣5)2=45 C.(x+5)2=5 D.(x﹣5)2=5【解答】解:方程移项得:x2+10x=﹣20,配方得:x2+10x+25=5,即(x+5)2=5,故选:C.3.(3分)一元二次方程x2+3x﹣1=0的根的情况为()A.有两个相等的实数根B.只有一个实数根C.有两个不相等的实数根D.没有实数根【解答】解:∵△=b2﹣4ac=3 2﹣4×(﹣1)=9+4=13>0,∴方程有两个不相等的实数根,故选:C.4.(3分)抽样调查九年级30名女生所穿的鞋子的尺码,数据如下这组数据的中位数和众数分别是()A.6 15 B.15 15 C.34 35 D.35 35【解答】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是地15、16个数的平均数,∴这组数据的中位数是35;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:D.5.(3分)已知关于x的一元二次方程x2﹣x+m2﹣2m﹣5=0的一个根是﹣2,则m=()A.﹣1 B.1 C.2 D.﹣2【解答】解:把x=﹣2代入方程x2﹣x+m2﹣2m﹣5=0中,得4+2+m2﹣2m﹣5=0,即m2﹣2m+1=0,解得m=1,故选:B.6.(3分)如图,两个同心圆的直径分别为6cm和10cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A.4cm B.6cm C.8cm D.10cm【解答】解:作OC⊥AB于C,连结OA,如图,∵弦AB与小圆相切,∴OC=3cm,在Rt△OAC中,∵OA=5,OC=3,∴AC==4,∵OC⊥AB,∴AC=BC,∴AB=2AC=8cm.故选:C.7.(3分)将函数y=﹣x2的图象如何平移得到y=﹣x2﹣8x﹣7的图象()A.向左平移4个单位,再向上平移9个单位B.向左平移4个单位,再向下平移9单位C.向右平移4个单位,再向上平移9单位D.向右平移4个单位,再向下平移9单位【解答】解:函数y=﹣x2﹣8x﹣7=﹣(x﹣4)2+9,顶点的坐标为(4,9),函数y=﹣x2的顶点坐标为(0,0),∴点(0,0)向右平移4个单位,再向上平移9单位可得(4,9),∴函数y=﹣x2的图象向右平移4个单位,再向上平移9单位,得到函数y=﹣x2﹣8x﹣7的图象.故选:C.8.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=1,AD=.=O1D•AD=.由S四形形ADO1E=2S△ADO1=.∴S△ADO1∵由题意,∠DO1E=120°,得S扇形O1DE=,∴圆形纸片不能接触到的部分的面积为3(﹣)=3﹣π.故选:C.二、填空题:本大题共10小题,每小题3分,共30分9.(3分)二次函数y=(x﹣2)2+2的顶点坐标是(2,2).【解答】解:二次函数y=(x﹣2)2+2的图象的顶点坐标是(2,2).故答案为(2,2).10.(3分)方程x2=4x﹣4的解是x1=x2=2.【解答】解:∵x2=4x﹣4,∴x2﹣4x=﹣4,∴x2﹣4x+4=0,∴(x﹣2)2=0,∴x1=x2=2.11.(3分)已知⊙O的直径等于12cm,圆心O到直线l的距离为5cm,则直线l与⊙O的交点个数为2.【解答】解:根据题意,得该圆的半径是6 cm,即大于圆心到直线的距离5 cm,则直线和圆相交,故直线l与⊙O的交点个数为2.故答案为:212.(3分)已知一组数据6,x,10,8的众数与平均数相等,则x=8.【解答】解:当这组数的众数是6时,则平均数是:(6+x+10+8)=6,解得:x=0,当这组数的众数是10时,则平均数是:(6+x+10+8)=10,解得:x=16,当这组数的众数是8时,则平均数是:(6+x+10+8)=8,解得:x=8,则x=8时,数据6,x,10,8的众数与平均数相等;故答案为:8.13.(3分)一道选择题有A、B、C、D四个答案,其中有且只有一个正确选项,在A、B、C、D中随意选择一个选项,所选选项恰好正确的概率是.【解答】解:∵有A、B、C、D四个答案有且只有一个是正确的,∴选选项恰好正确的概率是;故答案为:.14.(3分)若x1=﹣1是关于x的方程x2+mx﹣5=0的一个根,则方程的另一个根x2=5.【解答】解:∵关于x的方程x2+mx﹣5=0的一个根为x1=﹣1,设另一个为x2,∴﹣x2=﹣5,解得:x2=5,则方程的另一根是x2=5.故答案为:5.15.(3分)圆内接四边形ABCD中,∠A:∠B:∠C=3:4:6,则四边形ABCD 的最大内角是120度.【解答】解:∵圆内接四边形的对角互补,∴∠A:∠B:∠C:∠D=3:4:6:5,设∠A=3x,则∠B=4x,∠C=6x,∠D=5x∴3x+4x+6x+5x=360°∴x=20°∴∠C=6x=120°,故答案为120.16.(3分)若一个一元二次方程的两个根分别是﹣3、2,请写出一个符合题意的一元二次方程x2+x﹣6=0.【解答】解:∵一个一元二次方程的两个根分别为﹣3,2,∴这个一元二次方程为:(x+3)(x﹣2)=0,即这个一元二次方程为:x2+x﹣6=0,故答案为:x2+x﹣6=0.17.(3分)已知x2+2x﹣2=1,则代数式4x2+8x+1的值是13.【解答】解:∵x2+2x﹣2=1,∴4(x2+2x)=4×3,∴4x2+8x+1=4×3+1=13.故答案为:13.18.(3分)如图,AB是⊙O的直径,C是⊙O上的一点,AD垂直于过点C的切线,垂足为D,∠BAD=70°,则∠DAC=35°.【解答】解:连接OC.∵OA=OC,∴∠ACO=∠CAO.∵CD切⊙O于C,∴OC⊥CD,又∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∴∠DAC=∠CAO,即AC平分∠BAD,∴∠DAC=∠BAD=35°.故答案为:35°.三、解答题:本大题共10小题,共86分(19题10分,20题10分,21题6分,22题8分,23题8分,24题8分,25题8分,26题8分,27题8分,28题12分)19.(10分)计算:(1)|﹣3|+﹣()﹣1;(2)(﹣1)2014﹣|﹣5|++(﹣π)0.【解答】解:(1)原式=3+2﹣2=3;(2)原式=1﹣5+2+1=﹣1.20.(10分)解方程:(1)x+3﹣x(x+3)=0;(2)x2﹣4x=1.【解答】解:(1)∵x+3﹣x(x+3)=0,∴(x+3)(1﹣x)=0,∴x+3=0,1﹣x=0,∴x1=﹣3,x2=1;(2)∵x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x1=2+,x2=2﹣.21.(6分)已知一元二次方程x2+2x+2k﹣1=0,当k为何值时,此方程有两个相等的实数根?【解答】解:根据题意得△=22﹣4(2k﹣1)=0,解得k=1.故当k为1时,此方程有两个相等的实数根.22.(8分)如图,△ABC是⊙O的内接三角形,∠CAD=∠ABC,判断直线AD与⊙O的位置关系,并说明理由.【解答】解:直线AD是⊙O的切线;理由:连接AO,并延长交⊙O于E,连接CE,∵∠CAD=∠ABC,∠E=∠ABC,∴∠E=∠CAD,∵AE是直径,∴∠ACE=90°,∴∠E+∠CAE=90°,∴∠CAE+∠CAD=90°,即EA⊥AD,∴直线AD与⊙O相切.23.(8分)写出二次函数y=x2﹣8x﹣8的图象顶点坐标和对称轴的位置并求出它的最值.【解答】解:y=x2﹣8x﹣8=(x﹣4)2﹣24,顶点坐标为(4,﹣24),对称轴为直线x=4,∵a=1>0,∴函数有最小值﹣24.24.(8分)一个不透明的袋子中装有4个大小、质地都相同的乒乓球,球面上分别标有数字﹣3、2、5、﹣6,搅匀后,先从中摸出1个球(不放回),再从余下的三个球中摸出一个球.(1)用树状图列出所有可能出现的结果;(2)求两次摸出的乒乓球球面上的数字的积为偶数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两次摸出的乒乓球球面上的数字的积为偶数的有10种情况,∴两次摸出的乒乓球球面上的数字的积为偶数的概率为:=.25.(8分)如图,半圆的直径AB=10,C、D是半圆的三等分点,P为AB上一点,求阴影部分的面积.【解答】解:连接CD、OC、OD,∵点C,D为半圆的三等分点,∴CD∥AB,∴△OCD,△PCD是等底等高的三角形,∴阴影部分的面积就等于扇形OCD的面积.∴S阴影=S扇形OCD==.26.(8分)如图,△ABC的周长为24,面积为24,求它的内切圆的半径.【解答】解:连结OA、OB、OC,作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F,设它的内切圆的半径为r,则OD=OE=OF=r,∵S△ABC=S△AOB+S△OBC+S△OAC,∴•r•AB+•r•BC+•r•AC=24,∴r(AB+BC+AC)=24,∴r•24=24,∴r=2.即它的内切圆的半径为2.27.(8分)某商店的一种服装,每件成本为50元,经市场调研,售价为60元时,可销售800件,售价每提高2元,销量将减少40件,已知商店销售这批服装获利12000元,问这种服装每件售价是多少元?【解答】解:设单价应定为x元,根据题意得:(x﹣50)[800﹣20(x﹣60)]=12000,(x﹣50)[800﹣20x+1200]=12000,x2﹣150x+5600=0,解得x1=70,x2=80.答:这种服装的单价应定为70元或80元.28.(12分)如图,在平面直角坐标系中,直线m:y=kx过原点,直线n:y=x+4与y轴交于点A,与直线m交于点B(8,8),x轴上一点P(t,0)从原点出发沿x轴向右运动,过点P作直线PM⊥x轴,分别交直线m,n与点M,N,连接ON.(1)求k的值;(2)当0≤t≤8时,用含t的代数式表示△OMN的面积S;(3)在整个运动过程中,△OMN的面积S等于12吗?如果能,请求出t的值;如果不能,请说明理由;(4)当t为何值时,以MN为直径的圆与y轴相切?【解答】解:(1)将B点(8,8)代入y=kx,得k==1;(2)当x=t时,y=t+4,即N(t,t+4);y=t,即M(t,t).NM=t+4﹣t=4﹣t,S△OMN=MN•OP=(4﹣)•t=2t﹣t2;(3)当0≤t≤8时,S=2t﹣t2=12,△OMN化简,得t2﹣8t+48=0,△=b2﹣4ac=64﹣4×48=﹣128,方程无解;当t>8时,S=t2﹣2t=12,△OMN解得t=12,t=﹣4(不符合题意舍),综上所述:t=12时,△OMN的面积S等于12;(4)以MN为直径的圆与y轴相切,得2OP=MN.当0≤t≤8时,2t=4﹣t,解得t=,即t=时,以MN为直径的圆与y轴相切;当t>8时,2t=t﹣4,解得t=﹣(不符合题意舍),综上所述:当t=时,以MN 为直径的圆与y 轴相切.。
人教版九年级上学期期中考试数学试卷及答案解析(共五套)
人教版九年级上学期期中考试数学试卷(一)一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=02.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):25.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形 B.菱形C.矩形D.正方形6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512C.800(1﹣x%)2=512 D.800﹣2x%=5127.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M 处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处 C.Q处 D.M处9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC= cm.15.如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A 作AF⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG 为等边三角形?若存在,请直接写出k的值以及DE的长度.参考答案与试题解析一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误.C、方程二次项系数可能为0,故错误;D、方程含有两个未知数,故错误;故选A.2.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用菱形的判定、矩形的判定及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且平分的四边形是菱形,故错误,是假命题;B、对角线相等的平行四边形是矩形,正确,是真命题;C、对角线互相平分且相等、垂直的四边形是正方形,故错误,是假命题;D、对角线相等的平行四边形是矩形,故错误,是假命题,故选B.3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%【考点】频数与频率.【分析】根据频率=频数÷数据总数,分别求出出现正面,反面的频率.【解答】解:∵某人抛硬币抛10次,其中正面朝上4次,反面朝上6次,∴出现正面的频率为=40%;出现反面的频率为60%.故选:D.4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):2【考点】黄金分割.【分析】根据黄金比是进行解答即可.【解答】解:∵点C是线段AB的黄金分割点,(AC>BC),∴AC=AB,∴AC:AB=(﹣1):2.故选:C.5.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形 B.菱形C.矩形D.正方形【考点】中点四边形.【分析】菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【解答】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=512【考点】由实际问题抽象出一元二次方程.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用800(1﹣x%)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:当商品第一次降价x%时,其售价为800﹣800x%=800(1﹣x%);当商品第二次降价x%后,其售价为800(1﹣x%)﹣800(1﹣x%)x%=800(1﹣x%)2.∴800(1﹣x%)2=512.故选C.7.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到∴=,则EC=2AE=8,然后计算AE+EC即可.【解答】解:∵DE∥BC,∴=,∴EC=2AE=8,∴AC=AE+EC=4+8=12(cm).故选D.8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M 处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处B.P处C.Q处D.M处【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是16 .【考点】相似多边形的性质.【分析】根据相似多边形的对应边的比相等可得.【解答】解:两个相似的六边形,一个最短边长是3,另一个最短边长为6,则相似比是3:6=1:2,根据相似六边形的对应边的比相等,设后一个六边形的最大边长为x,则8:x=1:2,解得:x=16.即后一个六边形的最大边长为16.故答案为16.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1 .【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为4cm .【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【解答】解:已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3cm,b=2cm,c=6cm,解得:d=4,则d=4cm.故答案为:4cm.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC= 6 cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD.【解答】解:∵BD是斜边AC上的中线,∴AC=2BD=2×3=6cm.故答案为:6.15.如图,要使△ABC∽△ACD,需补充的条件是∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB .(只要写出一种)【考点】相似三角形的判定.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【解答】解:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先分解因式,即得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即得出两个一元一次方程,求出方程的解即可;(3)先分解因式,即得出两个一元一次方程,求出方程的解即可;(4)移项后分解因式,即得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x 1=0,x2=2;(2)2(x+1)2﹣8=0,2(x+1+2)(x+1﹣2)=0,x+1+2=0,x+1﹣2=0,x 1=﹣3,x2=1;(3)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x 1=3,x2=1;(4)(2x+1)2=3(2x+1),(2x+1)2﹣3(2x+1)=0,(2x+1)(2x+1﹣3)=0,2x+1=0,2x+1﹣3=0,x 1=﹣,x2=1.18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【考点】游戏公平性;概率公式;列表法与树状图法.【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案;(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性.【解答】解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,∴从中任意抽取一张卡片,该卡片上数字是5的概率为:;故答案为:;(2)根据题意列表如下:2 5 52 (2,2)(4)(2,5)(7)(2,5)(7)5 (5,2)(7)(5,5)(10)(5,5)(10)5 (5,2)(7)(5,5)(10)(5,5)(10)∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种,∴P(数字和为7)=,P(数字和为10)=,∴P(数字和为7)=P(数字和为10),∴游戏对双方公平.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)先判定四边形ABDE为平行四边形,再判定四边形ADCE为平行四边形,即可得出AD=EC;(2)根据四边形ADCE为平行四边形,且AD=CD,即可得出平行四边形ADCE为菱形;(3)先判定OD为△ABC的中位线,得出,再根据AB=AO,得出即可.【解答】解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵在Rt△ABC中,AD是斜边BC上的中线,∴AD=CD=BD,∴AE=CD,又∵AE∥CD,∴四边形ADCE为平行四边形,∴AD=EC;(2)由(1)可知,四边形ADCE为平行四边形,且AD=CD,∴平行四边形ADCE为菱形;(3)∵四边形ADCE为平行四边形,∴AC与ED互相平分,∴点O为AC的中点,∵AD是边BC上的中线,∴点D为BC边中点,∴OD为△ABC的中位线,∴,∵AB=AO,∴,即的值为.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,由此即可列出方程(40﹣x)(20+2x)=1200,解方程就可以求出应降价多少元.【解答】解:设每件童装应降价x元,则(40﹣x)(20+2x)=1200,解得x1=10,x2=20,因为扩大销售量,增加盈利,减少库存,所以x只取20.答:每件童装应降价20元.22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【考点】正方形的性质;翻折变换(折叠问题).【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A 作AF⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG 为等边三角形?若存在,请直接写出k的值以及DE的长度.【考点】四边形综合题.【分析】(1)由AD:AB=1:1可以得出四边形ABCD是正方形,由其性质就可以得出△ABF≌△ADE,从而得出AF=AE,得出△AEF的形状;(2)根据条件可以得出△ABF∽△ADE,由相似三角形的性质就可以得出结论;(3)如图3,当△AEG是等边三角形时,由勾股定理就可以表示出AG、AE、FG,BG的值建立方程求出k值,就可以求出DE的长度.【解答】解:(1)△AEF为等腰直角三角形理由:如图1,∵AD:AB=1:1,∴AD=AB.∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°.∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴∠FAE﹣∠BAE=∠BAD﹣∠BAE,即∠BAF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△ADE,∴AF=AE,∴△AEF为等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴△ABF∽△ADE,∴.∵,∴,即AF=2AE;(3)∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°.∵△AEG是等边三角形,∴AE=AG,∠GAE=∠AEG=60°.∴∠FAG=∠DAE=∠AFE=30°,∴AG=FG.∵AB=3,AD:AB=k,∴AD=3k.在Rt△ADE中由勾股定理,得DE=k,AE=2k,∴AG=FG=2k,∴BG=k.∵AB=3,∴GB=3﹣2k,∴k=3﹣2k,解得:k=,∴DE=1.答:k=,DE=1.人教版九年级上学期期中考试数学试卷(二)一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是()A. B.C. D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C. D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= .13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.16.观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D,连接CD,求a的值及△PCD的面积.参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.C.3(x+1)2=2(x+1) D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<﹣1 C.m>1 D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年上学期期中考试九年级数学试卷
一、细心选一选(本题有10个小题,每小题3分,满分30分)下面每小题给出的四个选项中,只有一个是正确的.
1有意义的x 的取值范围是( ).
A. 2x ≤-
B. 2x <
C. 2x ≥-
D. 2x <-
2.观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有( ).
A .1个
B .2个
C .3个
D .4个
3.下列计算正确的是( ).
A .224=-
B
C =
D 3=- 4.下列各式中是最简二次根式的是( ).
A B C D
5.方程()3(2)0x x +-=的根是( ).
A .123,2x x =-=
B .123,2x x ==
C .123,2x x ==-
D .123,2x x =-=-
6. )
A. B. C. D.
7.用配方法解方程2850x x --=,则配方正确的是( ).
A. ()2
411x += B. ()2421x -= C. ()2816x -= D.
()
2
869x +=
8.某商品原价200元,连续两次降价%a 后售价为148元,下列所列
方程正确的是( ).
A .()22001%148a +=
B .()220012%148a -=
C .()22001%148a +=
D .()22001%148a -=
9. 现有如图所示的四张牌,若只将其中一张牌旋转180°后仍是本身,则旋转的牌是( )
A 、
B 、
C 、
D 、
10.若方程260x x m -+=有两个同号不相等的实数根,则m 的取值范围是( ).
A .9m <
B .0m >
C .09m <<
D .09m <≤
二、填空题(本题有6个小题,每小题3分,共18分).
11.计算:
-= . 12.设一元二次方程2830x x -+=的两个实数根分别为1x 和2x ,则
12_______x x +=.
13.已知:5
2
x
y =,则
+x y
x y
=- . 14.点A (a ,3)与点B (-4,b )关于原点对称,则a+b =_________. 15.方程(x+2)(x-3)=0的根是 16.若0<x <5,则x -= . 三、计算题. 17.(本题满分8分)
已知1a =+, 1b =-,求22a b -的值.
18.(本题满分8分) 解方程:3(1)22x x x -=-.
19.计算(8):
20.(本题满分8分)
已知关于x 的一元二次方程0122=+-mx x 的一根为3x =-,求m 的值以及方程的另一根.
21.(本题满分8分)
如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90︒得△AB 1C 1,画出△AB 1C 1.
(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.
(3)作出点C 关于x 轴的对称点P .
数)个单位长度后落在△A 2B 2C 2的内部..
22. (本题满分12分)
如图,利用一面长25m 的墙,用50m 长的篱笆,围成一个长方形的养鸡场.
(1)怎样围成一个面积为2300m 的长方形养鸡场?
(2)能否围成一个面积为2400m 场?如能,说明围法;如不能,请说明理由.
第21题。