山东省泰安市2018-2019年肥城市2018-2019年中考数学二模试卷(含答案)

合集下载

2019版山东省泰安中考数学模拟检测卷(二)含答案

2019版山东省泰安中考数学模拟检测卷(二)含答案

中考模拟测试卷二(120分钟,120分)一、选择题(每小题3分,共36分)1.下列四个数中,最大的一个数是( )A.23C.0D.-22.下列计算正确的是( )A.x2+x2=x4B.x8÷x2=x4C.x2·x3=x6D.(-x)2-x2=03.某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是( )4.(2018辽宁沈阳)下列事件中,是必然事件的是( )A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨5.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2 000 000平方千米,数据2 000 000用科学记数法表示为2×10n ,则n 的值为( )A.5B.6C.7D.86.如图1,在边长为4 cm 的正方形ABCD 中,点P 以每秒2 cm 的速度从点A 出发,沿AB→BC 的路径运动,到点C 停止.过点P 作PQ∥BD,PQ 与边AD(或边CD)交于点Q,PQ 的长度y(cm)与点P 的运动时间x(秒)的函数图象如图2所示.当点P 运动2.5秒时,PQ 的长是( )A.2 cm B.3 cm22C.4 cm D.5 cm227.解不等式组该不等式组的最大整数解是( ){12(x -1)≤1,1-x <2,A.3 B.4 C.2D.-38.如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针方向旋转60°,点O,B 的对应点分别为O',B',连接BB',则图中阴影部分的面积是( )A. B.2-2π33π3C.2-D.4-32π332π39.如图,☉O 的直径AB=4,BC 切☉O 于点B,OC 平行于弦AD,OC=5,则AD 的长为( )A. B. C. D.65857523510.某班45名同学某天每人的生活费用统计如表:生活费(元)1015202530学生人数41015106对于这45名同学这天每人的生活费用,下列说法错误的是( )A.平均数是20B.众数是20C.中位数是20D.极差是2011.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE 的面积等于( )A.10B.7C.5D.412.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,其对称轴是直线x=-1,下列结论:①abc<0;②2a+b=0;③a-b+c>0;④4a-2b+c<0.其中正确的是( )A.①②B.只有①C.③④D.①④二、填空题(每小题3分,共18分)13.若一元二次方程x 2-2x+k=0有两个不相等的实数根,则k 的取值范围是 .14.已知四个点的坐标分别是(-1,1),(2,2),,,从中随机选取一(23,32)(-5,-15)个点,其在反比例函数y=的图象上的概率是 .1x15.(2018黑龙江齐齐哈尔)爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟迎面驶来一辆103路公交车.假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的 倍.16.如图,从直径为4 cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是 cm.17.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2 km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为 km(精确到0.1).18.如图,在平面直角坐标系中,直线l:y=x-与x 轴交于点B 1,与y 轴交于点D,以3333OB 1为边长作等边三角形A 1OB 1,过点A 1作A 1B 2平行于x 轴,交直线l 于点B 2,以A 1B 2为边长作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于x 轴,交直线l 于点B 3,以A 2B 3为边长作等边三角形A 3A 2B 3,……,则点A 2 018的横坐标是 .三、解答题(共7小题,共66分)19.(7分)先化简,再求值:÷,其中x 的值从不等式组(x -1+3-3x x +1)x 2-x x +1的整数解中选取.{2-x ≤3,2x -4<120.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角= ;(4)已知该校共有1 200名学生,请你估计该校约有 名学生最喜爱足球活动.21.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x 轴于点C,点,1)在反比3例函数y=的图象上.kx (1)求反比例函数y=的表达式;kx(2)在x 轴的负半轴上存在一点P,使得S △AOP =S △AOB ,求点P 的坐标;12(3)若将△BOA 绕点B 按逆时针方向旋转60°得到△BDE.直接写出点E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.22.(8分)(2018云南)如图,已知AC 平分∠BAD,AB=AD.求证:△ABC≌△ADC.23.(11分)某地大力发展经济作物,其中果树种植已初具规模,今年受气温、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克;(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(12分)如图1所示:在等边△ABC中,线段AD为其内角角平分线,过D点的直线B1C1⊥AC于C1,交AB的延长线于B1.(1)请你探究:=,=是否都成立?AC AB CD DB AC 1AB 1C 1D DB 1(2)请你继续探究:若△ABC 为任意三角形,线段AD为其内角角平分线,请问=AC AB 一定成立吗?并证明你的判断;CD DB (3)如图2所示:在Rt△ABC中,∠ACB=90°,AC=8,BC=,DE∥AC 交AB 于点323E,AD,CE 相交于点F,试求的值.DFFA 25.(12分)如图,抛物线y=ax 2+bx+与直线AB 交于点A(-1,0),B ,点D 是抛52(4,52)物线A 、B 两点间的一个动点(不与点A 、B 重合),直线CD 与y 轴平行,交直线AB 于点C,连接AD,BD.(1)求抛物线的表达式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标.中考模拟测试卷二一、选择题1.A2.D3.D4.B5.B6.B7.A 8.C9.B 连接BD.∵AB 是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC 切☉O 于点B,∴OB⊥BC,∴cos∠BOC==,OB OC 25∴cos∠A=cos∠BOC=.25又∵cos∠A=,AB=4,AD AB ∴AD=.85故选B.10.A 这组数据的中位数是20,众数是20,平均数是20.4,极差是30-10=20.故选A.11.C 过点E 作EF⊥BC 于F,∵BE 平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S △BCE =BC·EF=×5×2=5,1212故选C.12.D ∵抛物线的开口向上,∴a>0,∵抛物线的对称轴是直线x=-1,∴-<0,b2a ∴b>0,∵抛物线与y 轴交于y 轴的负半轴,∴c<0,∴abc<0,①正确;∵抛物线对称轴为直线x=-1,∴-=-1,即2a-b=0,②错误;b2a 当x=-1时,y<0,∴a-b+c<0,③错误;当x=-2时,y<0,∴4a-2b+c<0,④正确,故选D.二、填空题13.答案 k<1解析 ∵一元二次方程x 2-2x+k=0有两个不相等的实数根,∴Δ=b 2-4ac=4-4k>0,解得k<1,则k 的取值范围是k<1.14.答案 12解析 ∵-1×1=-1,2×2=4,×=1,(-5)×=1,2332(-15)∴有2个点的坐标在反比例函数y=的图象上,∴在反比例函数y=图象上的概率1x 1x 是=.241215.答案 616.答案 22解析 设圆锥的底面圆的半径为r cm,连接AB,如图,∵扇形OAB 的圆心角为90°,∴∠AOB=90°,∴AB 为圆形纸片的直径,∴AB=4 cm,∴OB=AB=2 cm,222∴扇形OAB 的弧AB 的长==π cm,∴2πr=πcm,90π·2218022∴r=.2217.答案 3.4解析 在CD 上取一点E,使BD=DE,设BD=DE=x.∴∠EBD=45°,由题意可得∠CAD=45°,∴AD=DC,∵从B 测得船C 在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC,∵AB=AD-BD=2 km,∴EC=BE=DC-DE=2 km,∵BD=DE=x,x,2x+x,解得x=,22∴DC=2+≈3.4 km.218.答案 22 018-12解析 由直线l:y=x-x 轴交于点B 1,与y 轴交于点D,可得B 1(1,0),D 3333,(0,-33)∴OB 1=1,∠OB 1D=30°,如图所示,过A 1作A 1A⊥OB 1于A,则OA=OB 1=,1212即A 1的横坐标为=,1221-12由题可得∠A 1B 2B 1=∠OB 1D=30°,∠B 2A 1B 1=∠A 1B 1O=60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B⊥A 1B 2于B,则A 1B=A 1B 2=1,12即A 2的横坐标为+1==,123222-12过A 3作A 3C⊥A 2B 3于C,同理可得,A 2B 3=2A 2B 2=4,A 2C=A 2B 3=2,12即A 3的横坐标为+1+2==,127223-12同理可得,A 4的横坐标为+1+2+4==,1215224-12由此可得,A n 的横坐标为,2n -12∴点A 2 018的横坐标是.22 018-12三、解答题19.解析 原式=÷(x 2-1x +1+3-3xx +1)x (x -1)x +1=·=·=,x 2-3x +2x +1x +1x (x -1)(x -1)(x -2)x +1x +1x (x -1)x -2x 解不等式组得-1≤x<,{2-x ≤3,2x -4<152∴不等式组的整数解有-1、0、1、2,∵分式有意义时x≠±1、0,∴x=2,∴原式=0.20.解析 (1)m=21÷14%=150.(2)“足球”的人数=150×20%=30,补全条形统计图如图所示.(3)“乒乓球”所对应扇形的圆心角=360°×=36°.15150(4)1 200×20%=240名,答:估计该校约有240名学生最喜爱足球活动.21.解析 (1)∵点A(,1)在反比例函数y=的图象上,∴k=×1=,3k x 33∴反比例函数的表达式为y=.3x (2)∵A(,1),3AB⊥x 轴于点C,∴OC=,AC=1,3由射影定理得OC 2=AC·BC,可得BC=3,,-3),AB=4,3∴S △AOB =××4=2,1233∴S △AOP =S △AOB =,123设点P 的坐标为(m,0),且m<0∴×|m|×1=,123∴|m|=2,3∵P 是x 轴的负半轴上的点,,3∴点P 的坐标为(-2,0).3(3)点E 在该反比例函数的图象上.理由如下:∵OA⊥OB,OA=2,,AB=4,3∴sin∠ABO===,OA AB 2412∴∠ABO=30°,∵将△BOA 绕点B 按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=2,3OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD-OC=,BC-DE=1,3∴E(-,-1),3∵-×(-1)=,33∴点E在该反比例函数的图象上.22.证明 ∵AC平分∠BAD,∴∠BAC=∠DAC.在△ABC和△ADC中,∵{AB=AD,∠BAC=∠DAC, AC=AC,∴△ABC≌△ADC(SAS).23.解析 (1)设该果农今年收获樱桃x千克,根据题意得400-x≤7x,解得x≥50,答:该果农今年收获樱桃至少50千克.(2)由题意可得100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为3 000(1-y)+4 000(1+2y)(1-y)=7 000,整理可得8y 2-y=0,解得y 1=0,y 2=0.125,∴m 1=0(舍去),m 2=12.5,答:m 的值为12.5.24.解析 (1)在等边△ABC 中,线段AD 为其内角角平分线,所以==1;AC AB CD DB 因为B 1C 1⊥AC 于C 1,交AB 的延长线于B 1且∠CAB=60°,所以∠B 1=∠CAD=∠BAD=30°,所以AD=B 1D,所以==.AC 1AB 112C 1D DB 1这两个等式都成立.(2)=一定成立.证明如下:AC AB CD DB如图所示,△ABC 为任意三角形,过B 点作BE∥AC 交AD 的延长线于E 点,∵∠E=∠CAD=∠BAD,∴BE=AB,易知△EBD∽△ACD∴=,∴=,即对任意三角形结论仍然成立.AC BE CD DB AC AB CD DB (3)在Rt△ABC中,∠ACB=90°,AC=8,BC=,所以AB=,323403∵AD 为△ABC 的内角角平分线,∴===,CD DB AC AB 840335∵DE∥AC,∴△DEF∽△ACF,∴===.DF FA DE AC BE AB 5825.解析 (1)由题意得解得{a -b +52=0,16a +4b +52=52,{a =-12,b =2,∴y=-x 2+2x+.1252(2)设直线AB 为y=kx+b(k≠0),则解得{-k +b =0,4k +b =52,{k =12,b =12,直线AB 的解析式为y=x+.1212如图所示,记DC 延长线与x 轴的交点为E.过点B 作BF⊥DC,垂足为F.设D,(m ,-12m 2+2m +52)则C ,(m ,12m +12)∵CD=-m+=- m 2+m+2,(-12m 2+2m +52)12121232∴S=AE·CD+CD·BF=CD(AE+BF)=CD=-m 2+m+5,1212125254154∴S=-m 2+m+5,54154∵-<0,∴当m=时,S 有最大值,5432∴当m=时,m+=×+=,32121212321254∴点C .(32,54)。

山东省泰安市肥城市2019年中考数学二模考试试卷

山东省泰安市肥城市2019年中考数学二模考试试卷

山东省泰安市肥城市2019年中考数学二模考试试卷一、选择题(共12题;共24分)1.2019的相反数的倒数是()A. 12019 B. −12019C. -2019D. 20192.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A. 2.1×109B. 0.21×109C. 2.1×108D. 21×1073.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.4.下列运算正确的是()A. 22019−22018=22018B. 2a2⋅3a3=6a6C. (−2a)3=6a3D. a2+a3=a55.某校四个环保小组一天收集废纸的数量分别为:10,x,9,8,(单位千克)已知这组数据的众数与平均数相等,则这组数据的中位数是()A. 8.5B. 9C. 9.5D. 86.下图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A. 4cmB. 5cmC. 154cm D. 254cm7.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A. 勾股定理B. 直径所对的圆周角是直角C. 勾股定理的逆定理D. 90°的圆周角所对的弦是直径8.关于x 的不等式组 {2x <3(x −3)+13x+24>x +a 有四个整数解,则a 的取值范围是( ) A. ﹣ 114 <a≤﹣ 52 B. ﹣ 114 ≤a <﹣ 52 C. ﹣ 114 ≤a≤﹣ 52 D. ﹣ 114 <a <﹣ 52 9.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S (km )与慢车行驶时间t (h )之间的函数图象如图所示,下列说法: ①甲、乙两地之间的距离为560km ;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km ;④相遇时,快车距甲地320km ;其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个10.如图,一次函数y=k 1x+b 的图象与反比例函数y=k 2x 的图象相交于A (2,3),B (6,1)两点,当k 1x+b < k 2x 时,x 的取值范围为( )A. x <2B. 2<x <6C. x >6D. 0<x <2或x >611.如图, AB =4 ,射线 BM 和 AB 互相垂直,点 D 是 AB 上的一个动点,点 E 在射线 BM 上, BE =12DB ,作 EF ⊥DE 并截取 EF =DE ,连结 AF 并延长交射线 BM 于点 C .设 BE =x(0<x ≤2),BC =y ,则 y 关于 x 的函数解析式是( )A. y =−12x x−4B. y =−2x x−1C. y =−3x x−1D. y =−8xx−412.如图所示为二次函数 y =ax 2+bx +c =0(a ≠0) 的图象,在下列结论① ac<0;② x>1时,y随x的增大而增大;③ a+b+c>0;④方程ax2+bx+c=0的根是x=−1,x2=3;中正确的个数有()个.A. 1B. 2C. 3D. 4二、填空题(共6题;共8分)=________.13.√24−√18×√1314.己知如图,∠ABC=∠ADC,AB//CD,AE平分∠BAD,当∠ADC:∠CDE=3:2,且∠AED=60°时,∠BED的度数为________.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若ΔCEF的周长为18,则OF的长为________.16.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45∘和30∘.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为________米(结果保留根号).17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为________.18.如图,动点P在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),...按这样的运动规律,经过2019次运动后,动点P的坐标为________.三、计算题(共1题;共5分)19.先化简,再求值:(x+8x2−4x+4−12−x)÷x+3x2−2x,其中x=2+√2.四、综合题(共6题;共85分)20.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=x+4与反比例函数y2=kx(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出ΔAON的面积.21.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了多少名学生?在扇形统计图中,表示" QQ "的扇形圆心角的度数是多少;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生大约有多少名?(4)某天甲、乙两名同学都想从“微信"、" QQ"、“电话"三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.22.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.23.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?24.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使ΔBDQ中BD边上的高为2√2?若存在求出点Q的坐标;若不存在请说明理由.25.等腰直角ΔABC和等腰直角ΔACD,M、N分别在直线BC、CD上.(1)如图所示,M、N分别在线段BC、CD上,若AM⊥MN,求证:AM=MN.(2)若M、N分别在线段BC、CD外(还在直线BC、CD上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图,若AM=MN,求证:AM⊥MN.答案解析部分一、选择题1.【答案】B【考点】相反数及有理数的相反数,有理数的倒数【解析】【解答】解:2019的相反数的倒数是−12019故答案为:B.【分析】根据相反数的定义和倒数的定义即可得出结论.2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数。

山东省泰安市泰山区2019年中考数学二模试卷 含解析

山东省泰安市泰山区2019年中考数学二模试卷  含解析

2019年中考数学二模试卷一.选择题(共12小题)1.咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃2.下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=D.(3a2﹣6a+3)÷3=a2﹣2a3.一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm24.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说法正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9 6.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×10147.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤8.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是()A.=B.=C.=D.=9.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.510.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0 11.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D 点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二.填空题(共6小题)13.已知|sin A﹣|+=0,那么∠A+∠B=.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE 平分△ABC的周长,则DE的长是.17.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.18.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是.三.解答题(共7小题)19.先化简,再求值:(+)÷,其中x=﹣.20.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.22.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD 中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.24.在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=4,CD=2,求线段CP的长.25.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.咸宁冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A.1℃B.﹣1℃C.5℃D.﹣5℃【分析】根据题意列出算式,再利用减法法则计算可得.【解答】解:这一天的温差是2﹣(﹣3)=2+3=5(℃),故选:C.2.下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=D.(3a2﹣6a+3)÷3=a2﹣2a【分析】根据合并同类项法则、单项式乘多项式、负整数指数幂及多项式除以单项式法则逐一计算可得.【解答】解:A、a2、a3不是同类项,不能合并,错误;B、a(b﹣1)=ab﹣a,正确;C、3a﹣1=,错误;D、(3a2﹣6a+3)÷3=a2﹣2a+1,错误;故选:B.3.一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.4.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说法正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是9【分析】根据中位数、平均数、众数、极差的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:87,87,91,93,96,97,则中位数是(91+93)÷2=92,平均数是(87+87+91+93+96+97)÷6=91,众数是87,极差是97﹣87=10.故选:C.6.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二.82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当x=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.8.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是()A.=B.=C.=D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.9.如图,CD是⊙O的切线,点C在直径的延长线上,若BD=AD,AC=3,CD=()A.1 B.1.5 C.2 D.2.5【分析】根据切线的性质得到∠CDB=∠CAD,证明△CDB∽△CAD,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵CD是⊙O的切线,∴∠CDB=∠CAD,又∠C=∠C,∴△CDB∽△CAD,∴==,即=,解得,CD=2,故选:C.10.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0 【分析】A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1、x2异号,结论D错误.综上即可得出结论.【解答】解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1、x2异号,结论D错误.故选:A.11.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D 点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.【解答】解:当0≤t<2时,S=×2t××(4﹣t)=﹣t2+2t;当2≤t<4时,S=×4××(4﹣t)=﹣t+4;只有选项D的图形符合.故选:D.二.填空题(共6小题)13.已知|sin A﹣|+=0,那么∠A+∠B=90°.【分析】根据特殊角锐角三角函数值即可求出答案.【解答】解:由题意可知:sin A=,tan B=,∴∠A=30°,∠B=60°,∴∠A+∠B=90°故答案为:90°14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2 .【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y =﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE 平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.17.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.18.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是.【分析】连接OD,根据切线的性质得到∠ADO=90°,根据平行线分线段成比例定理列出比例式,代入计算即可.【解答】解:连接OD,∵⊙O与AC相切于点D,∴∠ADO=90°,∵∠A=30°,∴OD=AD•tan A=2,OA==4,∵OB=OD,∴∠OBD=∠ODB,∵∠OBD=∠CBD,∴∠CBD=∠ODB,∴OD∥BC,∴=,即=,解得,CD=,故答案为:.三.解答题(共7小题)19.先化简,再求值:(+)÷,其中x=﹣.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣时,原式=2.20.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?【分析】(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据总价=单价×数量结合B型车单价是A型车单价的6倍少60元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据总价=单价×数量结合投入购车的资金不超过5.86万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设A型自行车的单价为x元/辆,B型自行车的单价为y元/辆,根据题意得:,解得:.答:A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆.(2)设购进B型自行车m辆,则购进A型自行车(130﹣m)辆,根据题意得:260(130﹣m)+1500m≤58600,解得:m≤20.答:至多能购进B型车20辆.21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30% ;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.22.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.【分析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.【解答】解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).23.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD 中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)24.在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD=∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=4,CD=2,求线段CP的长.【分析】(1)证出∠BAC=∠DAF=90°,得出∠BAD=∠CAF;可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=45°,得出∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证△GAD≌△CAF(SAS),得出∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3)分两种情况去解答.①点D在线段BC上运动,求出AQ=CQ=4.即DQ=4﹣2=2,易证△AQD∽△DCP,得出对应边成比例,即可得出CP=1;②点D在线段BC延长线上运动时,同理得出CP=3.【解答】(1)①解:∠BAD=∠CAF,理由如下:∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∵AB=AC,∠BAC=90°,∴∠BAD+∠DAC=∠CAF+∠DAC=90°,∴∠BAD=∠CAF;故答案为:=;②证明:在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴∠B=∠ACF,∴∠B+∠BCA=90°,∴∠BCA+∠ACF=90°,∴∠BCF=90°,∴CF⊥BD;(2)解:如图2所示:AB≠AC时,CF⊥BD的结论成立.理由如下:过点A作GA⊥AC交BC于点G,则∠GAD=∠CAF=90°+∠CAD,∵∠ACB=45°,∴∠AGD=45°,∴AC=AG,在△GAD和△CAF中,,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BD.(3)解:过点A作AQ⊥BC交CB的延长线于点Q,①点D在线段BC上运动时,如图3所示:∵∠BCA=45°,∴△ACQ是等腰直角三角形,∴AQ=CQ=AC=4.∴DQ=CQ﹣CD=4﹣2=2,∵AQ⊥BC,∠ADE=90°,∴∠DAQ+∠ADQ=∠ADQ+∠PDC=90°,∴∠DAQ=∠PDC,∵∠AQD=∠DCP=90°,∴△DCP∽△AQD,∴=,即=,解得:CP=1;②点D在线段BC延长线上运动时,如图4所示:∵∠BCA=45°,∴AQ=CQ=4,∴DQ=AQ+CD=4+2=6.∵AQ⊥BC于Q,∴∠Q=∠FAD=90°,∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,∴∠ADQ=∠AFC′,则△AQD∽△AC′F.∴CF⊥BD,∴△AQD∽△DCP,∴=,即=,解得:CP=3;综上所述,线段CP的长为1或3.25.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E (x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).。

山东省泰安市高新区2018-2019学年中考数学二模考试试卷

山东省泰安市高新区2018-2019学年中考数学二模考试试卷

第1页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………山东省泰安市高新区2018-2019学年中考数学二模考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共11题)1. 如图,四边形ABCD 为平行四边形,E 、F 为CD 边的两个三等分点,连接AF 、BE 交于点G ,则S △EFG :S △ABG =()A . 1:3B . 3:1C . 1:9D . 9:12. -5的相反数是( ) A . -5 B . 5 C . 0 D .3. 计算:(a 2)3-5a 4·a 2的结果是( )A . a 5-5a 6B . a 6-5a 8C . -4a 6D . 4a 64. 从下列4个图形中任选一个,得到的图形既是轴对称图形又是中心对称图形的概率是( )答案第2页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D . 15. “2014年至2016年,中国同一带一路沿线国家贸易总额超过32.1万亿美元”,将数据32.1万亿美元用科学记数法表示( )A . 3.21×1014美元B . 32.1×1012美元C . 3.21×1013美元D . 3.21×1011美元6. 将一副三角板按如图的方式进行摆放,则△ 的度数是( )A . 45°B . 60°C . 75°D . 105°成绩/个 35 40 45 60 70 人数/人 1 2 4 2 1则这组数据的中位数、平均数分别是( )A . 45,49B . 45,48.5C . 55,50D . 60,518. 如图,将边长为4的正△ABC 沿EF 折叠,使A 点落在边BC 上G 点,且BG=1,CF=( )A .B .C .D .9. 如图,AB 为△O 的直径,CD 是△O 的弦,△ADC=35°,则△CAB 的度数为( )第3页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 35°B . 45°C . 55°D . 65°10. 抛物线y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y= 在同一平面直角坐标系内的图象大致为( )A .B .C .D .11. 抛物线y=ax 2+bxtc 的对称轴为直线x=1,与y 轴的交点为C ,与x 轴交于点A ,点B (-2,0),则①2a+b=0②c -4b>0③当m≠1,a+b>am 2+bm④点D 为抛物线上的点,当△ABD 为等腰直角三角形时a=- ⑤b 2-4ac >0其中正确答案的序号是( )A . ④②③④B . ①③④⑤C . ②③④⑤D . ①②④⑤答案第4页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 分解因式:2x 4-2= .2. 为测量某物体AB 的高度,在点D 测得A 的仰角为45°,朝物体AB 方向前进40m ,到达C ,再次测得点A 的仰角为60°,则物体AB 的高度为 m .3. 如图,AC 是△O 的直径,弦BD△AO 于E ,连接BC ,过点O 作OF△BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是 cm .4. 如图,单位网格中,将线段AB 先向右平移2个单位,再向上平移2个单位,然后再绕P 点按顺时针方向旋转90°得到A'B',则A 的坐标是5. 如图,在△ABC 中,点D 是边AB 上的一点,△ADC=△ACB ,AD=4,BD=5,则边AC 的长为 .第5页,总23页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 如图,直线y=x ,点A 1坐标为(1,0),过点Aa 作x 轴的垂线交直线于点B 1 , 以原点0为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2 , 以原点0为圆心,OB 2长为半径画弧交x 轴于点A 3…,按照此做法进行下去,则OA 2019的长为 .评卷人 得分二、计算题(共1题)7. 先化简,再求值:其中x= ,y=2cos45°-评卷人 得分三、综合题(共5题)“小说”“散文”“诗类别 频数(人数) 频率 小说 0.4诗歌 5散文其他 80.16 总计1答案第6页,总23页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)补全频数分布表,并求出扇形统计图的百分比.(2)若全校九年学生有500名,则估测全校九年级学生喜爱读小说的有几人?(3)现有ABCD 四名学生,在其选出2名学生参加诗歌演讲,请用画树状图或列表法的方法,求恰好抽中A 和B 的概率。

_山东省泰安市泰山区2018-2019学年中考数学二模考试试卷

_山东省泰安市泰山区2018-2019学年中考数学二模考试试卷
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
评卷人
得分
二、计算题(共 1 题)
7. 先化简,再求值:
,其中 a=2+ .
评卷人
得分
三、综合题(共 6 题)
8. 民俗村的开发和建设,带动了旅游业的发展,某市有 A、B、C、D、E 五个民俗旅游村及“其它”景点, 该市旅游部门绘制了 2018 年“五·一”长假期间民俗村旅游情况统计图如下:
(1)求抛物线的函数表达式; (2)如图 2,CE∥x 轴与抛物线相交于点 E,点 H 是直线 CE 下方抛物线上的动点,过点 H 且与 y 轴平行 的直线与 BC、CE 分别相交于点 F、G,试探究当点日运动到何处时,四边形 CHEF 的面积最大,求点 H 的坐标及最大面积; (3)若点 K 为抛物线的顶点,点 M(4,m)是该抛物线上的一点,在 x 轴、y 轴上分别找点 P、Q,使四 边形 PQKM 的周长最小,请直接写出符合条件的点 P、Q 的坐标. 13. 如图,在△ABC 中,∠BAC=90°,AB=AC,点 E 在 AC 上(且不与点 A、C 重合).在△ABC 的外部作△CED, 使∠CED=90°,DE=CE,连接 AD,分别以 AB、AD 为邻边作平行四边形 ABFD,连接 AF.
答案第 6页,总 26页
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 姓名:____________班级:____________学号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
………○…………外…………○…………装…………○…………订…………○…………线…………○…………

2019年泰安市泰山区中考数学二模试卷

2019年泰安市泰山区中考数学二模试卷

2019年泰安市泰山区中考数学二模试卷一、选择题(本大题共12小题)1.﹣2的绝对值是()A.2 B.﹣2 C.D.2.tan30°的值等于()A.B. C. D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a35.某生态示范园,计划种植一批核桃,原计划总产量达36千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各为多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x万千克.根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=206.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,287.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°8.已知反比例函数(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2<0,则下列不等式恒成立的是()A.y1•y2<0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<09.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C落在斜边上的点C处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,若折痕DE的长是cm,则BC的长是()A.3cm B.4cm C.5cm D.6cm10.已知6是关于x的方程x2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD两条对角线的长,则菱形ABCD的周长为()A.20 B.24 C.32 D.5611.如图,在圆心角为90°的扇形OAB中,半径OA=4cm,C为弧AB的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为()cm2.A.4π﹣2﹣2 B.4π﹣2 C.2π+2﹣2 D.2π+212.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,共18分)13.如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB=______.14.分解因式:3x3﹣12x2﹣15x=______.15.一个几何体的三视图如图,很据图示的数据计算该几何体的表面积为______(结果保留π).16.已知关于x的一元二次方程x2﹣4x+m=0.方程两实数根分别为x1,x2,且满足5x1+2x2=2,则m﹣2的最后结果是______.17.在平面直角坐标系中,点A、B坐标分别是(m,5)、(3m﹣1,5).若直线y=2x+1不经过点A和点B但与线段AB相交,则m的取值范围是______.18.如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x 轴,点A的坐标为(2,3),求△OAC的面积是______.三、解答题(本大题共6小题,共66分)19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)求出被调查的学生人数;(2)把折线统计图补充完整;(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?20.某商场门前的台阶截面如图中阴影部分所示,已知台阶有四级小台阶且每一级小台阶高度相等,台阶高度EF为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为1米的不锈钢架杆AD和BC(杆子的低端分别为D,C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度(即AD+AB+BC的长)21.如图,AC是⊙O的直径,PA切⊙O于点A,点B在⊙O上,PA=PB,PB 的延长线与AC的延长线交于点M.(1)求证;PB是⊙O的切线;(2)当AC=6,PA=8时,求MB的长.22.某文具专卖店专销某种品牌的钢笔,进价12元/支,售价20元/支,为了促销,专卖店决定:凡是一次性购买超过10支的,每超过一支,所购钢笔每支售价就降低0.20元,但是每支售价不能低于16元,如图线段AB和BC是购买钢笔的单价y(元/支)与购买数量x(支)的函数图象的一部分.(1)顾客要想以最低价购买,需要一次至少购买______支(填最后结果);(2)当顾客一次购买x支时,求专卖店的利润w(元)与购买数量x(支)之间的函数关系式;(3)求顾客一次购买多少支时,专卖店的利润是123.2元?23.如图,已知锐角△ABC中,边BC长为6,高AD长为8,两动点M,N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN.设正方形的边长为x.(1)若正方形MPQN的顶点P、Q在边BC上,求MN的长;(2)设正方形MPQN与△ABC公共部分的面积为y(y>0),当x是多少时,公共部分的面积y最大?最大值是多少?24.已知:抛物线y=﹣x2+bx+c交y轴于点C(0,3),交x轴于点A,B,(点A在点B的左侧),其对称轴为x=1,顶点为D.(1)求抛物线的解析式及A,B两点的坐标;(2)若⊙P经过A,B,C三点,求圆心P的坐标;(3)求△BDC的面积S△DCB;并探究抛物线上是否存在点M,使S△MCB=S△DCB?若存在,求出M点的坐标;若不存在,说明理由.2019年泰安市泰山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题)1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.tan30°的值等于()A.B. C. D.【考点】特殊角的三角函数值.【分析】根据各特殊角的三角函数值求解即可.【解答】解:tan30°=.故选B.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形又是中心对称图形,故此选项正确.故选:D.4.下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3【考点】同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂.【分析】运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.【解答】解:A、3﹣1=≠﹣3,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6,故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.5.某生态示范园,计划种植一批核桃,原计划总产量达36千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各为多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x万千克.根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D. +=20【考点】由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:=20,故选:C6.某小组7位学生的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30.则这组数据的众数与中位数分别是()A.30,27 B.30,29 C.29,30 D.30,28【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中30出现了3次,次数最多,故众数是30;将这组数据从小到大的顺序排列为:27,27,28,29,30,30,30,处于中间位置的那个数是29,那么由中位数的定义可知,这组数据的中位数是29.故选B.7.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【考点】旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.8.已知反比例函数(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2<0,则下列不等式恒成立的是()A.y1•y2<0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0【考点】反比例函数图象上点的坐标特征.【分析】由于反比例函数(k<0)的k<0,可见函数位于二、四象限,由于x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,于是根据二次函数的增减性判断出y1<y2的,从而求得y1﹣y2<0.【解答】解:∵反比例函数(k<0)的k<0,可见函数位于二、四象限,∵x1<x2<0,可见A(x1,y1)、B(x2,y2)位于第二象限,由于在二四象限内,y随x的增大而增大,∴y1<y2.∴y1﹣y2<0.故选D.9.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C落在斜边上的点C处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,若折痕DE的长是cm,则BC的长是()A.3cm B.4cm C.5cm D.6cm【考点】翻折变换(折叠问题).【分析】首先求出AE、EB,根据cos30°==,即可解决问题.【解答】解:由题意可知△BDC≌△BDC′≌△ADC′,∴∠A=∠ABD=∠DBC=30°,∠A=∠EDA=30°,∠EDB=90°,∴DE=AE=,EB=2ED=,由cos30°==,∴==,∴BD=,BC=4.故选B.10.已知6是关于x的方程x2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD两条对角线的长,则菱形ABCD的周长为()A.20 B.24 C.32 D.56【考点】菱形的性质;一元二次方程的解.【分析】首先利用一元二次方程的解得出m的值,再求得两根,再结合菱形的对角线求出边长,即可得出答案.【解答】解:∵6是关于x的方程x2﹣7mx+24m=0的一个根,∴62﹣42m+24m=0,解得:m=2,∴原方程为:x2﹣14x+48=0,∴方程的两根分别为:6和8,∴菱形ABCD的两条对角线的长为6和8,∴菱形的边长为5,即周长为5×4=20.故选(A)11.如图,在圆心角为90°的扇形OAB中,半径OA=4cm,C为弧AB的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为()cm2.A.4π﹣2﹣2 B.4π﹣2 C.2π+2﹣2 D.2π+2【考点】扇形面积的计算;三角形中位线定理.【分析】连接OC、EC,由△OCD≌△OCE、OC⊥DE可得DE==2,分别求出S扇形OBC 、S△OCD、S△ODE面积,根据S扇形OBC+S△OCD﹣S△ODE=S阴影部分可得.【解答】解:连结OC,过C点作CF⊥OA于F,∵半径OA=4,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=2,OC=4,∠AOC=45°,∴CF=2,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×2×2=2π﹣2,三角形ODE的面积=OD×OE=2,∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE 的面积=﹣(2π﹣2)﹣2=2π+2﹣2.故选C.12.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线对称轴在y轴的左侧得a、b同号,即b<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;根据抛物线对称轴的位置得到﹣1<﹣<0,则根据不等式性质即可得到2a﹣b<0;由于x=﹣2时,对应的函数值小于0,则4a﹣2b+c<0;同样当x=﹣1时,a﹣b+c>0,x=1时,a+b+c<0,则(a﹣b+c)(a+b+c)<0,利用平方差公式展开得到(a+c)2﹣b2<0,即(a+c)2<b2.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的左侧,∴x=﹣<0,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,(故①正确);∵﹣1<﹣<0,∴2a﹣b<0,(故②正确);∵当x=﹣2时,y<0,∴4a﹣2b+c<0,(故③正确);∵当x=﹣1时,y>0,∴a﹣b+c>0,∵当x=1时,y<0,∴a+b+c<0,∴(a﹣b+c)(a+b+c)<0,即(a+c﹣b)(a+c+b)<0,∴(a+c)2﹣b2<0,(故④正确).综上所述,正确的个数有4个;故选:D.二、填空题(本大题共6小题,共18分)13.如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB=5.【考点】梯形.【分析】过点D作DE∥AB交BC于E,根据平行线的性质,得∠DEC=∠B=30°,根据三角形的内角和定理,得∠EDC=75°,再根据等角对等边,得DE=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则AB=DE=CE=7﹣2=5,从而求解.【解答】解:过点D作DE∥AB交BC于E,∴∠DEC=∠B=30°.又∵∠C=75°,∴∠CDE=75°.∴DE=CE.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE=2.∴AB=DE=CE=BC﹣BE=BC﹣AD=7﹣2=5.故答案为:5.14.分解因式:3x3﹣12x2﹣15x=3x(x+1)(x﹣5).【考点】因式分解-十字相乘法等;因式分解-提公因式法.【分析】首先提取公因式3x,进而利用十字相乘法分解因式得出答案.【解答】解:原式=3x(x2﹣4x+5)=3x(x+1)(x﹣5).故答案为:3x(x+1)(x﹣5).15.一个几何体的三视图如图,很据图示的数据计算该几何体的表面积为24π(结果保留π).【考点】圆锥的计算;由三视图判断几何体.【分析】先根据三视图确定此几何体为圆锥,且圆锥的高为4,底面圆的半径为3,再根据勾股定理计算出母线长,然后计算侧面积与底面积的和.【解答】解:根据三视图可得此几何体为圆锥,圆锥的高为4,底面圆的半径为3,所以圆锥的母线长==5,所以该几何体的表面积=π•32+•2π•3•5=24π.故答案为24π.16.已知关于x的一元二次方程x2﹣4x+m=0.方程两实数根分别为x1,x2,且满足5x1+2x2=2,则m﹣2的最后结果是.【考点】根与系数的关系;负整数指数幂.【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】解:∵x1+x2=4,∴5x1+2x2=2(x1+x2)+3x1=2×4+3x1=2,∴x1=﹣2,把x1=﹣2代入x2﹣4x+m=0得:(﹣2)2﹣4×(﹣2)+m=0,解得:m=﹣12,∴m﹣2=,故答案为:.17.在平面直角坐标系中,点A、B坐标分别是(m,5)、(3m﹣1,5).若直线y=2x+1不经过点A和点B但与线段AB相交,则m的取值范围是<m<2.【考点】两条直线相交或平行问题.【分析】先求出直线y=5与直线y=2x+1的交点,再分点A在点B的左边与点A 在点B的右边两种情况进行讨论.【解答】解:∵当y=5时,2x+1=5,即x=2,∴直线y=5与直线y=2x+1的交点坐标为(2,5).当点A在点B的左边时,m<2<3m﹣1,解得<m<2;当点A在点B的右边时,3m﹣1<2<m,无解.故答案为:<m<2.18.如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x 轴,点A的坐标为(2,3),求△OAC的面积是.【考点】反比例函数系数k的几何意义.【分析】将A坐标代入反比例解析式求出k的值即可;过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,得到CN与BM平行,进而确定出三角形OCN与三角形OBM相似,根据C为OB的中点,得到相似比为1:2,确定出三角形OCN与三角形OBM面积比为1:4,利用反比例函数k的意义确定出三角形OCN与三角形AOM面积,根据相似三角形面积之比为1:4,求出三角形AOB面积即可.【解答】解:∵点A(2,3)在双曲线y=(x>0)上,∴k=2×3=6.过点C作CN⊥y轴,垂足为N,延长BA,交y轴于点M,∵AB∥x轴,∴BM⊥y轴,∴MB∥CN,∴△OCN∽△OBM,∵C为OB的中点,即=,∴=()2,∵A,C都在双曲线y=上,∴S△OCN=S△AOM=3,由=,得:S△AOB=9,则△AOC面积=S△AOB=.故答案是:.三、解答题(本大题共6小题,共66分)19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)求出被调查的学生人数;(2)把折线统计图补充完整;(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?【考点】列表法与树状图法;扇形统计图;折线统计图.【分析】(1)根据乒乓球人数和所占的百分比即可求出总人数;(2)用总人数乘以足球所占的百分比求出足球的人数,再用总人数减去篮球、足球、乒乓球和其他的人数,求出羽毛球的人数,从而补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与大刚获胜的情况数,再利用概率公式即可求得答案.【解答】解:(1)被调查的学生数为:40÷20%=200(人);(2)医生的人数是:200×15%=30(人);教师的人数是:200﹣30﹣40﹣20﹣70=40(人),补图如下:(3)如图:由树状图可知:三人伸手的情况有(手心、手心、手心),(手心,手心,手背),(手心,手背,手心),(手心,手背,手背)4种,每种情况出现的可能性都是相同的,其中大刚伸手心与其他两人不同的情况有1种,所以P,大刚=所以大刚获胜的概率为.20.某商场门前的台阶截面如图中阴影部分所示,已知台阶有四级小台阶且每一级小台阶高度相等,台阶高度EF为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为1米的不锈钢架杆AD和BC(杆子的低端分别为D,C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度(即AD+AB+BC的长)【考点】解直角三角形的应用.【分析】(1)根据题意,可以得到DH是EF 的四分之三,从而可以求得DH的长度;(2)根据题意,连接DC,然后根据平行四边形的性质和锐角三角函数可以求得AB的长度,从而可以求得所用不锈钢材料的总长度.【解答】解:(1)由题意可得,DH=1.6×=1.2(米),即点D与点C的高度差DH是1.2米;(2)连接CD,如右图所示,∵AD∥BC,AD=BC,∠DAB=66.5°,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠HDC=∠DAB=66.5°,∵在Rt△HDC中,cos∠HDC=,AD=BC=1米,∴CD=(米),∴AD+AB+BC=1+3+1=5(米),即所用不锈钢材料的总长度是5米.21.如图,AC是⊙O的直径,PA切⊙O于点A,点B在⊙O上,PA=PB,PB 的延长线与AC的延长线交于点M.(1)求证;PB是⊙O的切线;(2)当AC=6,PA=8时,求MB的长.【考点】切线的判定与性质.【分析】(1)由△POA≌△POB,得∠PBO=∠PAO即可证明.(2)设BM=x,OM=y,由△MOB∽△MPA,得==,列出方程组即可解决问题.【解答】(1)证明:连接PO,∵PA是⊙O切线,∴OA⊥PA,∴∠OAP=90°,在△POA和△POB中,,∴△POA≌△POB,∴∠PBO=∠PAO=90°,∴OB⊥PB,∴PB是⊙O切线.(2)解:设BM=x,OM=y,∵∠M=∠M,∠OBM=∠MAP=90°,∴△MOB∽△MPA,∴==,∴==,解得x=,y=,∴BM=.22.某文具专卖店专销某种品牌的钢笔,进价12元/支,售价20元/支,为了促销,专卖店决定:凡是一次性购买超过10支的,每超过一支,所购钢笔每支售价就降低0.20元,但是每支售价不能低于16元,如图线段AB和BC是购买钢笔的单价y(元/支)与购买数量x(支)的函数图象的一部分.(1)顾客要想以最低价购买,需要一次至少购买30支(填最后结果);(2)当顾客一次购买x支时,求专卖店的利润w(元)与购买数量x(支)之间的函数关系式;(3)求顾客一次购买多少支时,专卖店的利润是123.2元?【考点】二次函数的应用.【分析】(1)根据“凡是一次性购买超过10支的,每超过一支,所购钢笔每支售价就降低0.20元,但是每支售价不能低于16元”即可算出最少购买多少支时,价格为最低价;(2)分0<x≤10、10<x≤30以及x>30三种情况考虑,根据“利润=(售价﹣进价)×购买数量”即可得出w关于x的函数关系式;(3)分别算出(2)中①的最大值以及③的最小值,即可得知专卖店的利润是123.2元时,只能是(2)中第②种情况,代入数据得出关于x的一元二次方程,解方程即可得出结论.【解答】解:(1)(20﹣16)÷0.2+10=30(支),故答案为:30.(2)购买数量x决定利润w(元)与购买数量x(支)的函数关系式,有3种情况:①当0<x≤10时,w=(20﹣12)x=8x;②当10<x≤30时,w=[20﹣0.2(x﹣10)﹣12]x=﹣0.2x2+10x;③当x>30时,w=(16﹣12)x=4x.综上所述:w=.(3)∵当x=31时,w=124,124>123.2;当x=10时,w=80,80<123.2,∴专卖店的利润是123.2元时,只能是(2)中第②种情况.故﹣0.2x2+10x=123.2,即x2﹣50x+616=0,解得:x1=22,x2=28.答:顾客一次购买22支或28支时,专卖店的利润是123.2元.23.如图,已知锐角△ABC中,边BC长为6,高AD长为8,两动点M,N分别在边AB、AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN.设正方形的边长为x.(1)若正方形MPQN的顶点P、Q在边BC上,求MN的长;(2)设正方形MPQN与△ABC公共部分的面积为y(y>0),当x是多少时,公共部分的面积y最大?最大值是多少?【考点】相似形综合题.【分析】(1)根据相似三角形的判定定理得到△AMN∽△ABC,根据相似三角形的性质列出比例式,计算即可;(2)根据相似三角形的性质分别计算出三种情况下公共部分的面积,比较即可.【解答】解:(1)如图1,∵MN∥BC,∴△AMN∽△ABC,∴=,即=,解得,x=,即MN的长为;(2)公共部分分三种情况,在三角形内部、一边在BC上,正方形一部分在三角形的外部,显然在内部的面积比刚好在边上时要小,所以比较后两种情形时的面积大小,当PQ在BC边上时,正方形MPQN与△ABC公共部分的面积y=()2=,当PQ在△ABC的外部时,正方形的边长x的范围是<x<6,∵MN∥BC,∴△AMN∽△ABC,∴=,即=,解得,KD=8﹣x,∴公共部分的面积y=x×(8﹣x)=﹣x2+8x=﹣(x﹣3)2+12,当x>3时,y随x的增大而减小,∴当x=时,公共部分的面积最大,最大值是,则当x是时,公共部分的面积y最大,最大值是.24.已知:抛物线y=﹣x2+bx+c交y轴于点C(0,3),交x轴于点A,B,(点A在点B的左侧),其对称轴为x=1,顶点为D.(1)求抛物线的解析式及A,B两点的坐标;(2)若⊙P经过A,B,C三点,求圆心P的坐标;(3)求△BDC的面积S△DCB;并探究抛物线上是否存在点M,使S△MCB=S△DCB?若存在,求出M点的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)先确定出b,c再用待定系数法求出抛物线解析式;(2)根据圆上的点到圆心的距离相等建立方程求解即可;(3)①先求出点D的坐标,再求出DE最后用面积公式求解即可,②求平行于直线BC的解析式和抛物线解析式联立方程组求解即可.【解答】解:(1)∵抛物线的对称轴为x=1,∴,∴b=2,∵抛物线过点C(0,3),∴c=3,∴抛物线解析式为y=﹣x2+2x+3,令y=0,得,0=﹣x2+2x+3,∴x=﹣1或x=3,∴点A(﹣1,0),B(3,0),(2)∵⊙P经过A,B,C三点,∴点P到A,B,C的距离相等,∴点P一定在直线x=1上,∴PC2=1+(y﹣3)2=y2﹣6y+10,PB2=4+y2=y2+4,∴y2﹣6y+10=y2+4,∴y=1,∴P(1,1),(3)①当x=1时,y=4,∴D(1,4),∵B(3,0),C(0,3),∴直线BC解析式为y=﹣x+3,设直线BC与对称轴x=1的交点为E(1,2),∴DE=2,∴S△DCB=DE×OF+DE×FB=DE×OB=3,②存在,如图,过点D作直线m∥BC,∴直线m的解析式为y=﹣x+5,∴,∴或,∴M(2,3),∵DE=EF,∴过点F作直线n∥BC,∴直线n解析式为y=﹣x+1,∴,第21页(共22页)∴或,∴M(,)或(,).即:满足条件的M坐标为(2,3)或(,)或(,).第22页(共22页)。

泰安市中考数学二模试卷

泰安市中考数学二模试卷

泰安市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2019八上·十堰期中) 下列计算错误的是()A . a3a2=a5B . (-a2)3=-a6C . (3a)2=9a2D . (a+1)(a-2)=a2-3a-22. (2分)下列说法正确的是()A . 经验、观察或实验完全可以判断一个数学结论的正确与否B . 推理是科学家的事,与我们没有多大的关系C . 对于自然数n,n2+n+37一定是质数D . 有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个3. (2分) (2019八下·句容期中) 如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C′,M是BC的中点,P是A'B’的中点,连接PM,若BC=4,AC=3,则在旋转的过程中,线段PM的长度不可能是()A . 5B . 4.5C . 2.5D . 0.54. (2分) (2017八下·广东期中) 下列二次根式是最简二次根式的是()A .B .C .D .5. (2分)某航空公司规定,旅客乘机所携带行李的运费y(元)与其质量x(kg)由(如图所示)一次函数确定,那么旅客可携带的免费行李的最大质量为()A . 15kgB . 20kgC . 23kgD . 25kg6. (2分) (2018八下·扬州期中) 定义:[a,b]为反比例函数(ab≠0,a,b为实数)的“关联数”.反比例函数的“关联数”为[m,m+2],反比例函数的“关联数”为[m+1,m+3],若m>0,则()A . k1=k2B . k1>k2C . k1<k2D . 无法比较7. (2分)函数的自变量x的取值范围是()A .B .C .D . 且8. (2分) (2018七上·兰州期中) 正方体的截面中,边数最多的多边形是()A . 四边形B . 五边形C . 六边形D . 七边形9. (2分) (2017八下·宜兴期中) 如图,在方格纸上建立的平面直角坐标系中,将OA绕原点O按顺时针方向旋转180°得到OA′,则点A′的坐标为()A . ( -3, 1)B . (1, -3)C . (1, 3)D . (3, -1)10. (2分)(2017·淄川模拟) 如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是()A . 3B . 4C . 5D . 611. (2分) (2020七下·东台月考) 下列三条线段能构成三角形的是()A . 1,2,3B . 20,20,30C . 30,10,15D . 4,15,712. (2分)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A .B . 3C .D .13. (2分)下面性质中,菱形不一定具备的是()A . 四条边都相等B . 每一条对角线平分一组对角C . 邻角互补D . 对角线相等14. (2分) (2020八下·哈尔滨月考) 如图所示,正方形中,E为边上一点,连接,作的垂直平分线交于G ,交于F ,若,,则的长为()A .B .C . 10D . 1215. (2分)(2017·威海) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x 与反比例函数y= 在同一坐标系中的大致图象是()A .B .C .D .二、解答题 (共9题;共77分)16. (5分)计算:( +1)(﹣1)﹣(﹣)﹣2+ ﹣ +(π﹣3)0 .17. (5分)设的整数部分是x,小数部分为y,求的值.18. (10分)(2017九上·姜堰开学考) 计算题(1)计算:(2)解方程: =1.19. (15分) (2018九上·前郭期末) 如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,若△CMN是以MN为腰的等腰直角三角形时,求m的值;(3)当以C、O、M、N为顶点的四边形是以OC为一边的平行四边形时,求m的值.20. (10分) (2017八下·罗平期末) 如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.(1)求证:AD=AE;(2)若AD=8,DC=4,求AB的长.21. (5分)如图是小明作的一周的零用钱开支的统计图(单位:元),分析下图,试回答以下问题:(1)周几小明花的零用钱最少,是多少?他零用钱花得最多的一天用了多少?(2)哪几天他花的零用钱是一样的分别为多少?(3)你能帮小明算一算他一周平均每天花的零用钱吗?(4)你能够画出小明一周的零用钱开支的折线统计图吗?试一试.22. (10分) (2018九上·翁牛特旗期末) 如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.23. (10分)如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B 的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.24. (7分)(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D。

泰安肥城二模2018年中考数学(二).doc

泰安肥城二模2018年中考数学(二).doc

试卷类型:A二0一八年初中学生学业考试数学模拟试题本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,满分120分。

考试时间120分钟。

注意事项:1.答题前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.2.考试结束后,监考人员将本试卷和答题卡一并收回.第I 卷 (选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合题目要求的.) 1.|-5|的倒数是A.-5B. 15-C. 5D.152.下列四个立体图形中,俯视图为中心对称图形的有A. 1个B.2个C.3个D.4个 3.下列运算中,正确的是A.3a+2b=5abB.(ab 2)3=ab 6C.2= D.(x-2)2=x 2-44.PM 2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学计数法表示为 A.2.5×10-7 B.2.5×10-6 C. 25×10-7 D.0. 25×10-55.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是A. 19, 20, 14B.19, 20, 20C.18.4, 20, 20D.18.4, 25, 206.如图,在△ABC 中,M 是BC 的中点,AD 平分∠BAC ,BD ⊥AD ,AB=12,AC=22,则MD 的长为A. 5B.6C.11D.5.57.如图,AB 为⊙O 的直径,AB=6,AB ⊥弦CD ,垂足为G ,EF 切⊙O 于点B ,∠A=30°,连接AD 、OC 、BC ,下列结论不正确的是A. EF ∥CDB. △COB 是等边三角形C. CG=DGD. 弧BC 的长为32π8.在同一直角坐标系中,函数y=mx+m 和y=-mx 2+2x+2(m 是常数,且m ≠0)的图象可能是9.如图,如果从半径为9cm 的圆形纸片减去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A. 6cmB.cm C.8cm D.cm10.关于x 的一元二次方程(m-2)x 2+20+1=0有实根,则m 的取值范围是 A.m ≤3 B. m <3 C. m <3且m ≠2 D. m ≤3且m ≠211.如图,在矩形ABCD 中,点E 、F 分别在BC 、CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B ’处,又将△CEF 沿EF 折叠,使点C 落在射线EB ’与AD 的交点C ’处,则BCAB的值A.2B. 3C.D. 112.如图:Rt △ABE 、Rt △DCE 与矩形MNPQ 的边BE 、EC 、NP 都在直线m 上,BC=NP=6,直角边AB=DE=MN=2,∠ECD=45°,Rt △ABE 与Rt △DCE 组合成图形ABCDE ,图形ABCDE 向右运动至点C 和P 重合为止,设运动距离是x ,图形ABCDE 与与矩形MNPQ 重合面积是y ,则y 关于x 的函数图象应当是二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果)13.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩,则a+b 的算术平方根的值为__________14.化简211211x x x x ⎛⎫÷- ⎪+++⎝⎭的结果为________________15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____________16.若关于x 的一元一次不等式组011x a x x -⎧⎨--⎩无解,则a 的取值范围是______________17.如图,正方形ABCD 的边长为1,分别以顶点A 、B 、C 、D 为圆心,1为半径画弧,四条弧交于点E 、F 、G 、H ,则图中阴影部分的外围周长为_______________18.如图,已知直线l 的解析式是,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1;过点B 1作直线l 的垂线交y 轴于点A 2………,按此作法继续下去,则点A 2018的纵坐标为__________三、解答题(共7小题,满分66分.解答应写出必要的文字说明、证明过程或推演步骤.)19.(本小题满分8分)央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》和《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了____名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是_________,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?20. (本小题满分8分)如图,某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离CB的长.(结果保留根号)21. (本小题满分8分)某果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完。

山东省泰安市新泰市2018-2019学年中考数学二模考试试卷

山东省泰安市新泰市2018-2019学年中考数学二模考试试卷

第1页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………山东省泰安市新泰市2018-2019学年中考数学二模考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 在- 、- 、-|-2|、- 这四个数中,最大的数是( )A . -B . -C . -|-2|D . -2. 下列运算正确的是( )A . x 2+x 3=x 5B . (x -2)2=x 2-4C . (3x 3)2=6x 6D . x -2÷x -3=x3. 下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )A .B .C .D .4. 王老师乘公共汽车从新秦到相距60千米的莱芜办事,然后乘出租车返回,出租车的平均速度比公共汽车快20千米/时,回来时路上所花时间比去时节省了 小时,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .B .C .D .5. 已知关于x 的一元二次方程(2-a )x 2-2x+1=0有两个不相等的实数根,则整数a 的最小值是( )答案第2页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 1B . 2C . 3D . 46. 如图,Rt△ABC 中,AB=9,BC=6,△B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .B .C . 5D . 47. 如图,BD 为△O 的直径,点A 为弧BDC 的中点,△ABD=35°,则△DBC=( )A . 20°B . 35°C . 15°D . 45°8. 已知直线m△n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若△1=35°,则△2的度数是( )A . 35°B . 30°C . 25°D . 55°第3页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9. 如果关于x 的分式方程的解为负数,且关于y 的不等式组 无解,则符合条件的所有整数a 的和为( ) A . -2 B . 0 C . 1 D . 310. 在同一平面直角坐标系中,一次函数y=kx -2k 和二次函数y=-kx 2+2x -4(k 是常数且k≠0)的图象可能是( )A .B .C .D .11. 如图,正方形ANCD 和正方形CEFG 中,点D 在CG 上,BC=2,C6,H 是AF 的中点,那么CH 的长是( )A . 2.5B . 2C .D . 412. 如图,A (8,0)、B (0,6)分别是平面直解坐标系xOy 坐标轴上的点,经过点O 且与AB 相切的动圆与x 轴、y 轴分别相交与点P 、Q ,则线段PQ 长度的最小值是( )答案第4页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 4B . 5C . 4.6D . 4.8第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共6题)1. 把代数式3x 3-12x 2+12x 分解因式,结果是 。

精品山东省泰安市岱岳区2018-2019年精品中考数学二模试卷(含答案)

精品山东省泰安市岱岳区2018-2019年精品中考数学二模试卷(含答案)

2019届山东省泰安市岱岳区中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.计算﹣的结果是()A.6的倒数B.6的相反数C.﹣6的绝对值D.﹣6的倒数2.某种细菌直径约为0.00000067mm,若将0.000 000 67mm用科学记数法表示为6.7×10n mm(n为负整数),则n的值为()A.﹣5 B.﹣6 C.﹣7 D.﹣83.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.2a+3b=5ab B.﹣=C.(a+b)2=a2+b2D.a6÷a3=a25.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=α度,∠2=β度,则()A.α+β=150 B.α+β=90 C.α+β=60 D.β﹣α=306.化简分式:(1﹣)÷的结果为()A. B. C. D.7.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π8.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A.4 B.3 C.2 D.19.把八个完全相同的小球平分为两组,每组中每个分别协商1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.10.如图,在⊙O中,AC∥OB,∠BAC=25°,则∠ADB的度数为()A.55° B.60° C.65° D.70°11.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣112.反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,则它们的解析式可能分别是()A.y=,y=kx2﹣x B.y=,y=kx2+xC.y=﹣,y=kx2+x D.y=﹣,y=﹣kx2﹣x13.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时14.若a,b(a<b)是关于x的一元二次方程(x﹣m)(x﹣n)+1=0的两个根,且m<n,则m,n,b,a的大小关系是()A.a<b<m<n B.b<a<n<m C.a<m<n<b D.m<a<b<n15.如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=()A.B.C.D.16.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.若CE=4,DE=2,则AD的长是()A.2 B.6 C.3 D.617.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=4,BC=3,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.18.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AB,交AC于E.若AB=2,AC=2,线段DE的长为()A.2.5 B.2.4 C.D.19.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④∠DFE=2∠DAC;⑤若连接CH,则CH∥EF,其中正确的个数为()A.2个B.3个C.4个D.5个二、填空题(本小题共4小题,每小题3分,共12分)21.已知是二元一次方程组的解,则m+3n的立方根为.22.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.23.我区大力推进义务教育均衡发展,加强学习标准化建设,计划用三年时间对全区学校的设施和设备进行全面改造.2015年区政府已投资5亿元人民币,若每年投资的增长率相同,2019届政府投资7.2亿元人民币,那么预计2018年应投资亿元.24.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系式是.三、解答题(本题共5小题,48分)25.(10分)随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:(1)每个茶壶的批发价比茶杯多110元;(2)一套茶具包括一个茶壶与四个茶杯;(3)600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.26.(8分)如图,反比例函数y=的图象与过两点A(0,﹣2),B(﹣1,0)的一次函数的图象在第二象限内相交于点M(m,4).(1)求反比例函数与一次函数的表达式;(2)在双曲线(x<0)上是否存在点N,使MN⊥MB,若存在,请求出N点坐标,若不存在,说明理由.27.(10分)在菱形ABCD中,P是直线BD上一点,点E在射线AD上,连接PC.(1)如图1,当∠BAD=90°时,连接PE,交CD与点F,若∠CPE=90°,求证:PC=PE;(2)如图2,当∠BAD=60°时,连接PE,交CD与点F,若∠CPE=60°,设AC=CE=4,求BP的长.28.(10分)如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.(1)求证:AC•DF=BF•BD;(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;(3)当点C运动到什么位置时,CE∥BF?并说明理由.29.(10分)如图,平面直角坐标系中,二次函数y=﹣x2+bx+c的图线与坐标轴分别交于点A、B、C,其中点A(0,8),OB=OA.(1)求二次函数的表达式;(2)若OD=OB,点F为该二次函数在第二象限内图象上的动点,E为DF的中点,当△CEF的面积最大时,求出点E的坐标;(3)将三角形CEF绕E旋转180°,C点落在M处,若M恰好在该抛物线上,求出此时△CEF的面积.2019届山东省泰安市岱岳区中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.计算﹣的结果是()A.6的倒数B.6的相反数C.﹣6的绝对值D.﹣6的倒数【考点】1A:有理数的减法;14:相反数;15:绝对值;17:倒数.【分析】将减法转化为加法,然后依据加法法则计算,最后依据倒数的定义解答即可.【解答】解:原式=+(﹣)=﹣(﹣)=﹣.﹣6的倒数是﹣故选:D.【点评】本题主要考查的是有理数的减法、倒数的定义,掌握有理数的加减法则是解题的关键.2.某种细菌直径约为0.00000067mm,若将0.000 000 67mm用科学记数法表示为6.7×10n mm(n为负整数),则n的值为()A.﹣5 B.﹣6 C.﹣7 D.﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵0.000 000 67mm=6.7×10﹣7mm=6.7×10n mm,∴n=﹣7.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.下列计算正确的是()A.2a+3b=5ab B.﹣=C.(a+b)2=a2+b2D.a6÷a3=a2【考点】78:二次根式的加减法;35:合并同类项;48:同底数幂的除法;4C:完全平方公式.【分析】直接利用合并同类项法则以及二次根式加减运算法则和同底数幂的除法运算法则分别化简求出答案.【解答】解:A、2a+3b,无法计算,故此选项错误;B、﹣=2﹣=,正确;C、(a+b)2=a2+2ab+b2,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及二次根式加减运算和同底数幂的除法运算等知识,正确掌握运算法则是解题关键.5.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=α度,∠2=β度,则()A.α+β=150 B.α+β=90 C.α+β=60 D.β﹣α=30【考点】JA:平行线的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:由三角形的外角性质,∠3=30°+∠1,∵矩形的对边平行,∴∠2=∠3=30°+∠1.∴β﹣α=30,故选:D.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.6.化简分式:(1﹣)÷的结果为()A. B. C. D.【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=,故选B【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60π B.70π C.90π D.160π【考点】U3:由三视图判断几何体.【分析】易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选:B.【点评】本题考查了由三视图判断几何体的知识,解决本题的关键是得到此几何体的形状,易错点是得到计算此几何体所需要的相关数据.8.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()【考点】VC:条形统计图;VB:扇形统计图;X4:概率公式.【分析】(1)根据表示赞同的人数是50,所占的百分比是25%即可求得总人数;(2)利用360°乘以对应的百分比即可求得圆心角的度数;(3)利用总人数乘以对应的百分比即可求解;(4)求得表示很赞同的人数,然后利用概率公式求解.【解答】解:(1)接受这次调查的家长人数为:50÷25%=200(人),故命题正确;(2)“不赞同”的家长部分所对应的扇形圆心角大小是:360×=162°,故命题正确;(3)表示“无所谓”的家长人数为200×20%=40(人),故命题正确;(4)表示很赞同的人数是:200﹣50﹣40﹣90=20(人),则随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是=,故命题正确.故选A.【点评】本题考查的是条形统计图和扇形统计图的综合运用,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.用到的知识点为:概率=所求情况数与总情况数之比.总体数目=部分数目÷相应百分比.9.把八个完全相同的小球平分为两组,每组中每个分别协商1,2,3,4四个数字,然后分别装入不透明的口袋内搅匀,从第一个口袋内取出一个数记下数字后作为点P的横坐标x,然后再从第二个口袋中取出一个球记下数字后作为点P的纵坐标,则点P(x,y)落在直线y=﹣x+5上的概率是()A.B.C.D.【考点】X6:列表法与树状图法;F8:一次函数图象上点的坐标特征.【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案.【解答】解:列表得:∵共有16种等可能的结果,数字x、y满足y=﹣x+5的有(1,4),(2,3),(3,2),(4,1),∴数字x、y满足y=﹣x+5的概率为:.故选B.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.10.如图,在⊙O中,AC∥OB,∠BAC=25°,则∠ADB的度数为()A.55° B.60° C.65° D.70°【考点】M5:圆周角定理.【分析】根据圆周角定理得到∠COB=50°,根据平行线的性质得到∠C=∠COB=50°,由等腰三角形的性质得到∠CAO=∠C=50°,根据圆周角定理即可得到结论.【解答】解:∵∠BAC=25°,∴∠COB=50°,∵AC∥OB,∴∠C=∠COB=50°,∵OC=OA,∴∠CAO=∠C=50°,∴∠AOC=80°,∴∠AOB=130°,∴∠ADB=AOB=65°,故选C.【点评】本题考查了圆周角定理,平行线的性质,等腰三角形的性质,熟练掌握圆周角定理是解题的关键.11.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1【考点】CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.【解答】解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得:a≤﹣1.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,则它们的解析式可能分别是()A.y=,y=kx2﹣x B.y=,y=kx2+xC.y=﹣,y=kx2+x D.y=﹣,y=﹣kx2﹣x【考点】H2:二次函数的图象;G2:反比例函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:双曲线的两支分别位于二、四象限,即k<0;A、当k<0时,物线开口方向向下,对称轴x=﹣=<0,不符合题意,错误;B、当k<0时,物线开口方向向下,对称轴x=﹣=﹣>0,符合题意,正确;C、当﹣k<0时,即k>0,物线开口方向向上,不符合题意,错误;D、当﹣k<0时,物线开口方向向下,但对称轴x=﹣=﹣<0,不符合题意,错误.故选B.【点评】解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其对称轴是否符合要求.13.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时【考点】TB:解直角三角形的应用﹣方向角问题.【分析】易得△ABC是直角三角形,利用三角函数的知识即可求得答案.【解答】解:∵∠CAB=10°+20°=30°,∠CBA=80°﹣20°=60°,∴∠C=90°,∵AB=20海里,∴AC=AB•cos30°=10(海里),∴救援船航行的速度为:10÷=30(海里/小时).故选D.【点评】本题考查了解直角三角形的应用﹣方向角问题,根据方位角的定义得到图中方位角的度数是前提条件.14.若a,b(a<b)是关于x的一元二次方程(x﹣m)(x﹣n)+1=0的两个根,且m<n,则m,n,b,a的大小关系是()A.a<b<m<n B.b<a<n<m C.a<m<n<b D.m<a<b<n【考点】AB:根与系数的关系;AA:根的判别式.【分析】先把方程化为一般式,再利用根与系数的关系得到a+b=m+n,然后利用a<b,m<n和有理数加法可判断m、n、a、b的关系.【解答】解:方程(x﹣m)(x﹣n)+1=0化为x2﹣(m+n)x+mn+1=0,根据题意得a+b=m+n,而a<b,m<n,所以m<a<b<n.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=()A.B.C.D.【考点】PB:翻折变换(折叠问题);T7:解直角三角形.【分析】设正方形的边长为2a,DH=x,表示出CH,再根据翻折变换的性质表示出DE、EH,然后利用勾股定理列出方程求出x,再根据同角的余角相等求出∠ANE=∠DEH,然后根据锐角的正切值等于对边比邻边列式计算即可得解.【解答】解:设正方形的边长为2a,DH=x,则CH=2a﹣x,由翻折的性质,DE=AD=×2a=a,EH=CH=2a﹣x,在Rt△DEH中,DE2+DH2=EH2,即a2+x2=(2a﹣x)2,解得x=a,∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°,∵∠ANE+∠AEN=90°,∴∠ANE=∠DEH,∴tan∠ANE=tan∠DEH===.故选C.【点评】本题考查了翻折变换的性质,勾股定理的应用,锐角三角函数,设出正方形的边长,然后利用勾股定理列出方程是解题的关键,也是本题的难点.16.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.若CE=4,DE=2,则AD的长是()A.2 B.6 C.3 D.6【考点】MC:切线的性质.【分析】连接O,只要证明△ECD∽△EAC,可得EC2=ED•EA,由此求出ED即可解决问题.【解答】解:连接OD.∵CD是切线,∴OD⊥CD,∴∠ODC=90°,∴∠ADO+∠EDC=90°,∵∠EDC+∠DCE=90°,∴∠ADO=∠DCE,∵OA=OD,∴∠A=∠ADO,∴△ECD∽△EAC,∴EC2=ED•EA,∴42=2EA,∴EA=8,∴AD=AE﹣DE=8﹣2=6.故选B.【点评】本题考查切线的性质、相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考常考题型.17.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=4,BC=3,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△PAB∽△ADE,即可判断出y=(3<x≤6),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=4(0≤x≤3),即点D到PA的距离为AD的长度,是定值4;(2)当点P在BC上移动时,∵AB=3,BC=3,∴AC===6,∴∠APB=∠DAE,∵∠ABP=∠AED=90°,∴△PAB∽△ADE,∴=,∴=,∴y=(3<x≤6),综上,纵观各选项,只有D选项图形符合.故选:D.【点评】本题考查了动点问题函数图象,关键是利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.18.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AB,交AC于E.若AB=2,AC=2,线段DE的长为()A.2.5 B.2.4 C.D.【考点】KJ:等腰三角形的判定与性质;JA:平行线的性质.【分析】过D作DF∥AC,根据已知条件得到四边形AFDE是菱形,得到DF=AF,推出DF=BF,根据直角三角形的性质即可得到结论.【解答】解:过D作DF∥AC,∵DE∥AB,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠EAD=∠FAD,∵∠EAD=∠ADF,∴∠DAF=∠ADF,∴四边形AFDE是菱形,∴DF=AF,∵AD⊥BD,∴∠ADB=90°,∴∠DAB+∠ABD=∠ADF+∠BDF=90°,∴∠FDB=∠ABD,∴DF=BF,∴DF=AB=,∴DE=AF=.【点评】本题考查了等腰三角形的判定和性质,直角三角形的性质,菱形的判定和性质,正确的作出辅助线是解题的关键.19.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④【考点】H6:二次函数图象与几何变换;H4:二次函数图象与系数的关系.【分析】根据开口方向得出a<0,抛物线与y轴的交点得出c>0,对称轴x=﹣=﹣1,得出b=2a,当x=2时,y=0,得出4a+2b+c=0,根据抛物线的增减性得出y1<y2;根据上加下减左加右减的原则得出平移后的解析式.【解答】解:∵开口向下,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵对称轴x=﹣=﹣1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=﹣8a,∴a﹣b+c=﹣9a,故②正确;∵对称轴为x=﹣1,当x=﹣1时,抛物线有最大值,﹣3距离﹣1有2个单位长度,距离﹣1有个单位长度,∴y1>y2,故③正确;∵抛物线过(﹣4,0)(2,0),对称轴为x=﹣1,∴设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=﹣8a,∴k=﹣9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9),故④正确;正确结论有①②③④;故选D.【点评】本题考查了二次函数的图象与几何变换以及二次函数的图象与系数的关系,掌握二次函数的性质是解题的关键.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④∠DFE=2∠DAC;⑤若连接CH,则CH∥EF,其中正确的个数为()A.2个B.3个C.4个D.5个【考点】KD:全等三角形的判定与性质;KP:直角三角形斜边上的中线;KW:等腰直角三角形;S9:相似三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE= AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2,③正确;根据△ABE是等腰直角三角形,AB=AC,AD⊥BC,求得∠BAD=∠CAD=22.5°,再根据三角形外角性质求得∠BFD=45°,即可得出∠DFE=45°,进而得到∠DFE=2∠DAC,故④正确;根据AB=AC,∠BAH=∠CAH,AH=AH,判定△ABH≌△ACH,进而得到∠ACH=∠ABH=45°,再根据Rt△AEF中,∠AEF=45°,即可得到CH∥EF,故⑤正确.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,故②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2,故③正确;∵△ABE是等腰直角三角形,∴∠BAE=45°,又∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠CAD=22.5°,∵AF=DF,∴∠FAD=∠FDA=22.5°,∴∠BFD=45°,∴∠DFE=90°﹣45°=45°,∴∠DFE=2∠DAC,故④正确;∵AB=AC,∠BAH=∠CAH,AH=AH,∴△ABH≌△ACH,∴∠ACH=∠ABH=45°,又∵Rt△AEF中,∠AEF=45°,∴CH∥EF,故⑤正确.故选:D.【点评】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线性质、等腰三角形的判定与性质以及等腰直角三角形的性质的综合应用,证明三角形相似和三角形全等是解决问题的关键.解题时注意,根据面积法也可以得出BC•AD=AE2成立.二、填空题(本小题共4小题,每小题3分,共12分)21.已知是二元一次方程组的解,则m+3n的立方根为 2 .【考点】97:二元一次方程组的解;24:立方根.【分析】将代入方程组,可得关于m、n的二元一次方程组,得出代数式即可得出m+3n的值,再根据立方根的定义即可求解.【解答】解:把代入方程组,得:,则两式相加得:m+3n=8,所以==2.故答案为2.【点评】本题考查了二元一次方程组的解,解二元一次方程组及立方根的定义等知识,属于基础题,注意“消元法”的运用.22.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∵∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.【点评】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.23.我区大力推进义务教育均衡发展,加强学习标准化建设,计划用三年时间对全区学校的设施和设备进行全面改造.2015年区政府已投资5亿元人民币,若每年投资的增长率相同,2019届政府投资7.2亿元人民币,那么预计2018年应投资8.64 亿元.【考点】AD:一元二次方程的应用.【分析】先设每年投资的增长率为x.根据2015年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2019届投资7.2亿元人民币,列方程求解;再由2018年投资额=2019届投资额×(1+x).【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(舍去),即:每年投资的增长率为20%.则7.2×(1+20%)=8.64(亿元).故答案是:8.64.【点评】此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.24.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系式是y=2n+n .【考点】37:规律型:数字的变化类.【分析】由题意可得各三角形中下边第三个数是上边两个数字的和,而上边第一个数的数字规律为:1,2,…,n,第二个数的数字规律为:2,22,…,2n,由此得出下边第三个数的数字规律为:n+2n,继而求得答案.【解答】解:∵观察可知:各三角形中左边第一个数的数字规律为:1,2,…,n,右边第二个数的数字规律为:2,22,…,2n,下边第三个数的数字规律为:1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系式是y=2n+n.故答案为y=2n+n.【点评】此题考查了规律型:数字的变化类.注意根据题意找到规律y=2n+n是关键.三、解答题(本题共5小题,48分)25.(10分)(2018•岱岳区二模)随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:(1)每个茶壶的批发价比茶杯多110元;(2)一套茶具包括一个茶壶与四个茶杯;(3)600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;。

2019年初三中考数学第二次模拟考试试卷试题及答案

2019年初三中考数学第二次模拟考试试卷试题及答案

2018-2019学年度第二学期第二次模拟测试数学试卷一、选择题(本大题10小题,每小题3分,共30分),在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1. 31-的倒数是( ) A .31- B .3 C .-3 D .-0.32.如图1,所示的几何体是由六个小正方体组合而成的,它的俯视图是( )A .B .C .D . (图1)3.生活中,有时也用“千千万”来形容数量多,“千千万”就是100亿,“千千万”用科学记数法可表示为( )A .0.1×1011B .10×109C .1×1010D .1×1011 4.下列各式运算正确的是( )A .235a a a +=B .235a a a ⋅=C .236()ab ab =D .1025a a a ÷=5.如图2,已知直线 ∥ ,一块含30º角的直角三角板如图放置, ∠1=25º,则∠2=( )A .30ºB .35ºC .40ºD .45º6.一元二次方程x 2﹣4x+2=0的根的情况是( ) (图2) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如图3,AB 是⊙O 的直径,∠AOC =130°,则∠D 的度数是( ) A .15° B .25° C .35° D .65°8.下列所述图形中,是中心对称图形的是( )A .直角三角形B .正三角形C .平行四边形D .正五边形9.东莞市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是( )A .150, 150B .150, 152.5C .150, 155D .155, 15010.如图4,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为x (s ), △AMN 的面积为y (cm 2),则y 关于x 的函数图象是( )(图4)A .B .C.D .二、填空题(本大题6小题,每小题4分,共24分),请将下列各题的正确答案填写在答题卡相应的位置上。

山东省肥城市2018-2019年八年级下学期期中教学质量监测数学试题 含解析

山东省肥城市2018-2019年八年级下学期期中教学质量监测数学试题  含解析

肥城2018-2019学年八年级下学期期中教学质量监测数学试题一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.下列说法正确的是()A.若|a|=a,则a>0 B.若a2=b2,则a=bC.若0<a<1,则a3<a2<a D.若a>b,则2.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=()A.90°B.45°C.30°D.22.5°3.在下列各数0.33…,,,,2π,3.14,2.0101010…(相邻两个1之间有1个0)中是无理数的有()A.2个B.3个C.4个D.6个4.下列说法正确的是()A.﹣b是(﹣b)2的算术平方根B.±6是36的算术平方根C.5是25的算术平方根D.﹣5是25的算术平方根5.如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在直线折叠得到△AGE,延长AG交CD于点F,已知CF=2,FD=1,则BC的长是()A.3B.2C.2D.26.不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1 B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4 D.2(x﹣1)﹣x+2>47.实数a、b在数轴上对应点的位置如图所示,化简|a|﹣的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b8.已知:≈44.91,=14.0,则的值约为()A.32.41 B.1.40 C.3.241 D.4.4919.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC 相交于点O,连接DE.若∠AOD=120°,AC=4,则CD的大小为()A.8 B.4C.8D.610.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD =DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④11.若关于x的不等式组无解,则a的取值范围为()A.a<4 B.a=4 C.a≤4 D.a≥412.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.二、填空题(只要求填写最后结果.每小题4分,共24分)13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是cm.14.若一正数a的两个平方根分别是2m﹣3和5﹣m,则a=.15.若+1的值在两个整数a与a+1之间,则a的相反数的立方根等于.16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为cm.17.若关于x的分式方程﹣=1的解是非负数,则m的取值范围是.18.如图,正方形ABCD和正方形CEFG中,点D在CG上,已知:BC=1,CE=7,H是AF的中点,则AF=,CH=.三.解答题(共8小题共78分)19.解下列不等式组,并把解集在数轴上表示出来:(1)<﹣1(2)20.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.21.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.22.已知:如图,正方形ABCD中,P是对角线BD上的一个动点,PE⊥CD与E,PF⊥BC与F,连接EF.求证:AP=EF.23.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.25.2016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?25.如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.(1)求证:△PCE是等腰直角三角形;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.附加题:(10分)26.编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?参考答案与试题解析一.选择题(共12小题)1.下列说法正确的是()A.若|a|=a,则a>0 B.若a2=b2,则a=bC.若0<a<1,则a3<a2<a D.若a>b,则【分析】原式各项利用绝对值的代数意义及有理数的乘法法则判断即可得到结果.【解答】解:A、若|a|=a,则a≥0,故这个说法错误;B、若a2=b2,则a=b或a=﹣b,故这个说法错误;C、若0<a<1,则a3<a2<a,故这个说法正确;D、若a>b,则<或>,故这个说法错误,故选:C.2.如图,E是正方形ABCD的边BC延长线上一点,且CE=AC,则∠E=()A.90°B.45°C.30°D.22.5°【分析】根据正方形的性质得∠ACB=45°,再根据等腰三角形的性质得∠E=∠CAE,再根据三角形的外角等于不相邻的两个内角的和即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠BCA=∠ACD=45°,∵CE=CA,∴∠CAE=∠E,∵∠BCA=∠E+∠CAE,∴∠E=∠CAE=22.5°,故选:D.3.在下列各数0.33…,,,,2π,3.14,2.0101010…(相邻两个1之间有1个0)中是无理数的有()A.2个B.3个C.4个D.6个【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0.33…,,,3.14,2.0101010…(相邻两个1之间有1个0)是有理数,,2π是无理数,故选:A.4.下列说法正确的是()A.﹣b是(﹣b)2的算术平方根B.±6是36的算术平方根C.5是25的算术平方根D.﹣5是25的算术平方根【分析】根据算术平方根,即可解答.【解答】解:A、﹣b是(﹣b)2的算术平方根,错误;﹣2是(﹣2)2的算术平方根;B、6是36的算术平方根,故错误;C、5是25的算术平方根,正确;D、5是25的算术平方根,故错误;故选:C.5.如图,在矩形ABCD中,E是BC边的中点,将△ABE沿AE所在直线折叠得到△AGE,延长AG交CD于点F,已知CF=2,FD=1,则BC的长是()A.3B.2C.2D.2【分析】首先连接EF,由折叠的性质可得BE=EG,又由E是BC边的中点,可得EG=EC,然后证得Rt△EFG≌Rt△EFC(HL),继而求得线段AF的长,再利用勾股定理求解,即可求得答案.【解答】解:连接EF,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EG,∴EG=EC,∵在矩形ABCD中,∴∠C=90°,∴∠EGF=∠B=90°,∵在Rt△EFG和Rt△EFC中,,∴Rt△EFG≌Rt△EFC(HL),∴FG=CF=2,∵在矩形ABCD中,AB=CD=CF+DF=2+1=3,∴AG=AB=3,∴AF=AG+FG=3+2=5,∴BC=AD===2.故选:B.6.不等式>1去分母后得()A.2(x﹣1)﹣x﹣2>1 B.2(x﹣1)﹣x+2>1C.2(x﹣1)﹣x﹣2>4 D.2(x﹣1)﹣x+2>4【分析】根据不等式性质2,两边都乘以分母最小公倍数4可得.【解答】解:不等式两边都乘以分母的最小公倍数4,得:2(x﹣1)﹣(x﹣2)>4,即:2(x﹣1)﹣x+2>4,故选:D.7.实数a、b在数轴上对应点的位置如图所示,化简|a|﹣的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴得出a<0,a﹣b<0,进而化简得出答案.【解答】解:由数轴可得:a<0,a﹣b<0,则|a|﹣=﹣a+(a﹣b)=﹣b.故选:C.8.已知:≈44.91,=14.0,则的值约为()A.32.41 B.1.40 C.3.241 D.4.491【分析】根据题意,利用平方根的性质:被开方数小数点向左(右)移动两位,结果向左(右)移动一位,即可确定出所求.【解答】解:∵≈44.91,∴≈4.491.故选:D.9.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC 相交于点O,连接DE.若∠AOD=120°,AC=4,则CD的大小为()A.8 B.4C.8D.6【分析】根据平行四边形的性质得出AD∥BC,AD=BC,AB=DC,求出AD=CE,AD∥CE,AE=DC,根据矩形的判定得出四边形ACED是矩形,由矩形的性质得出OA=AE,OC=CD,AE=CD,求出OA=OC,求出△AOC是等边三角形,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC,∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AB=DC,AE=AB,∴AE=DC,∴四边形ACED是矩形;∴OA=AE,OC=CD,AE=CD,∴OA=OC,∵∠AOC=180°﹣∠AOD=180°﹣120°=60°,∴△AOC是等边三角形,∴OC=AC=4,∴CD=2OC=8;故选:A.10.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD =DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.其中正确的是()A.①④B.①③④C.①②③D.②③④【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG =CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.11.若关于x的不等式组无解,则a的取值范围为()A.a<4 B.a=4 C.a≤4 D.a≥4【分析】求出第一个不等式的解集,再根据不等式组无解的条件解答即可.【解答】解:,由①得,x>4,∵不等式组无解,∴a≤4.故选:C.12.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.二.填空题(共6小题)13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是48 cm.【分析】利用FE垂直平分AC可得到AE=CE,那么△CDE的周长就可以表示为AD+CD,也就求出了矩形的周长.【解答】解:∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.14.若一正数a的两个平方根分别是2m﹣3和5﹣m,则a=49 .【分析】根据一个正数的两个平方根互为相反数,可得平方根的关系,可得答案.【解答】解:一正数a的两个平方根分别是2m﹣3和5﹣m,(2m﹣3)+(5﹣m)=0,m=﹣2,2m﹣3=﹣7(﹣7)2=49,故答案为:49.15.若+1的值在两个整数a与a+1之间,则a的相反数的立方根等于﹣.【分析】利用的取值范围,进而得出的取值范围进而得出答案.【解答】解:∵+1的值在两个整数a与a+1之间,,∴5<,∴a=5.∴a的相反数为﹣5,∴a的相反数的立方根等于.故答案为:16.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为 4 cm.【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故答案为:4.17.若关于x的分式方程﹣=1的解是非负数,则m的取值范围是m≥﹣4且m ≠﹣3 .【分析】分式方程去分母转化为整式方程,由分式的解是非负数确定出m的范围即可.【解答】解:去分母得:m+3=x﹣1,解得:x=m+4,由分式方程的解为非负数,得到m+4≥0,且m+4≠1,解得:m≥﹣4且m≠﹣3.故答案为:m≥﹣4且m≠﹣318.如图,正方形ABCD和正方形CEFG中,点D在CG上,已知:BC=1,CE=7,H是AF的中点,则AF=10 ,CH= 5 .【分析】根据正方形的性质求出AB=BC=1,CE=EF=7,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=8,FM=6,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CH=AF,根据勾股定理求出AF即可.【解答】解:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=7,∴AB=BC=1,CE=EF=7,∠E=90°,延长AD交EF于M,连接AC、CF,则AM=BC+CE=1+7=8,FM=EF﹣AB=7﹣1=6,∠AMF=90°,∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°,∵H为AF的中点,∴CH=AF,在Rt△AMF中,由勾股定理得:AF===10,∴CH=5,故答案为:10,5.三解答题(共8小题)19解下列不等式组,并把解集在数轴上表示出来:(1)<﹣1(2)【分析】(1)根据不等式的性质,先去分母,然后去括号,移项合并同类项,系数化为1即可;(2)先求出不等式的解集,再求出不等式组的解集即可.【解答】解:(1)去分母得:4(x+1)<5(x﹣1)﹣6,4x+4<5x﹣5﹣6,4x﹣5x<﹣5﹣6﹣4,﹣x<﹣15,x>15;在数轴上表示为:;(2)解不等式①得:x>15,解不等式②得:x<1,∴不等式组无解,在数轴上表示为:.20如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.21关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.22已知:如图,正方形ABCD中,P是对角线BD上的一个动点,PE⊥CD与E,PF⊥BC与F,连接EF.求证:AP=EF.【分析】连接CP,证矩形EPFC,求出EF=PC,证△ABP≌△CBP,推出AP=CP即可.【解答】证明:如图连接PC,∵四边形ABCD是正方形,∴∠C=90°,∵PE⊥CD,PF⊥BC,∴四边形PFCE是矩形,∴EF=PC,在△ABP和△CBP中∴△ABP≌△CBP,∴AP=CP,∵EF=CP,∴AP=EF.23如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【分析】(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;(2)当∠ABE=30°时,四边形BEDF是菱形,由角平分线知∠ABD=2∠ABE=60°、∠EBD=∠ABE=30°,结合∠A=90°可得∠EDB=∠EBD=30°,即EB=ED,即可得证.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.242016年是中国工农红军长征胜利80周年,某商家用1200元购进了一批长征胜利主题纪念衫,上市后果然供不应求,商家又用2800元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于640元(不考虑其它因素),那么每件纪念衫的标价至少是多少元?【分析】(1)设未知量为x,根据所购数量是第一批购进量的2倍得出方程式,解出方程即可得出结论,此题得以解决.(2)设未知量为y,根据题意列出一元一次不等式,解不等式可得出结论.【解答】(1)设该商家购进第一批纪念衫单价是x元,则第二批纪念衫单价是(x+5)元,由题意,可得:,解得:x=30,检验:当x=30时,x(x+5)≠0,∴原方程的解是x=30答:该商家购进第一批纪念衫单价是30元;(2)由(1)得购进第一批纪念衫的数量为1200÷30=40(件),则第二批的纪念衫的数量为80(件)设每件纪念衫标价至少是a元,由题意,可得:40×(a﹣30)+(80﹣20)×(a﹣35)+20×(0.8a﹣35)≥640,化简,得:116a≥4640解得:a≥40,答:每件纪念衫的标价至少是40元.25如图1,在正方形ABCD中,P为对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.(1)求证:△PCE是等腰直角三角形;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,判断△PCE的形状,并说明理由.【分析】(1)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC,推出∠FPC=EDF=90°,推出△PEC是等腰直角三角形;(2)由△PDA≌△PDC,推出PA=PC,∠3=∠1,由PA=PE,推出∠2=∠3,PA═PE=PC,推出∠1=∠2,由∠DFE=∠PFC,推出∠EPC=∠EDC,由∠ADC=120°,推出∠EDC =60°,推出∠EPC=60°,由PE=PC,即可证明△PEC是等边三角形;【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA和△PDC中,,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC,∴∠FPC=EDF=90°,∴△PEC是等腰直角三角形.(2)解:如图2中,结论:△PCE是等边三角形.理由:∵四边形ABCD是菱形,∴AD=DC,∠ADB=∠CDB,∠ADC=∠ABC=120°,在△PDA和△PDC中,,∴△PDA≌△PDC,∴PA=PC,∠3=∠1,∵PA=PE,∴∠2=∠3,PA═PE=PC,∴∠1=∠2,∵∠DFE=∠PFC,∴∠EPC=∠EDC,∵∠ADC=120°,∴∠EDC=60°,∴∠EPC=60°,∵PE=PC,∴△PEC是等边三角形.26编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?【分析】解析本题涉及A中原有弹珠,A、B中号码数的平均数,故引入三个未知数.根据题意说明列出方程组,求的x的值即为所求.【解答】解:设原来篮子A中有弹珠x个,则篮子B中有弹珠(25﹣x)个.又记原来A 中弹珠号码数的平均数为a,B中弹珠号码数的平均数为b.则由题意得,由②得a=由③得b=将a、b代入①解得x=9,答:原来篮子A中有9个弹珠.。

山东泰安肥城市2019年中考模拟考试数学试题(含解析)

山东泰安肥城市2019年中考模拟考试数学试题(含解析)

2019届山东泰安肥城市中考模拟考试:数学试题一.选择题(每题3分,满分36分)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图是一个几何体的三视图,则该几何体的展开图是()A.B.C.D.3.下列运算中,正确的是()A.2a2﹣a2=2 B.(a3)2=a5C.a2•a4=a6D.a﹣3÷a﹣2=a 4.数据21780精确到千位表示约为()A.2.2×104B.22000 C.2.1×104D.225.已知且0<y﹣x<1,则k的取值范围是()A.﹣1B.0C.0<k<1 D.<k<16.如图,在平面直角坐标系中,已知⊙O的半径为1,动直线AB与x轴交于点P(x,0),直线AB与x轴正方向夹角为45°,若直线AB与⊙O有公共点,则x的取值范围是()A.﹣1≤x≤1B.C.D.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD 翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1 B.C.D.9.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为()A.(0,5)B.(0,5)C.(0,)D.(0,)10.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①4a+2b+c>0;②abc <0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的实数);其中正确结论的个数为()A.2个B.3个C.4个D.5个11.已知关于x、y的方程组,其中﹣3≤a≤1,给出下列说法:①当a=1时,方程组的解也是方程x+y=2﹣a的解;②当a=﹣2时,x、y的值互为相反数;③若x≤1,则1≤y≤4;④是方程组的解.其中说法错误的是()A.①②③④B.①②③C.②④D.②③12.由佛山市航运有限公司和香港珠江内河货运码头有限公司联合投资兴建的佛山新港,位于广东省佛山市城南国家高新技术开发区南端的东平河畔.码头水域宽阔,航道条件优良,千吨级货轮可直达珠江口,港澳班轮可当天到达,水路、公路可与京广、三茂铁路衔接,高速公路四通八达;主要经营集装箱及其它货物的装卸、仓储、装拆箱,以及承接代理佛山新港至港澳线船舶运输和陆上货物的接送等业务,为佛山的经济发展作出了重要的贡献.现新中源集团一艘货轮从佛山新港顺流航行到距离为60千米的珠江口某港口,停留了3小时后又逆流返回到佛山新港,共用去12小时,已知水流速度为每小时4千米,若设该货轮在静水中的速度为每小时x千米,则可以列方程()A.B.C.D.二.填空题(满分18分,每小题3分)13.计算:﹣25+()﹣1﹣|﹣8|+2cos60°=.14.将10cm长的线段分成两部分,一部分作为正方形的一边,另一部分作为一个等腰直角三角形的斜边,求这个正方形和等腰直角三角形面积之和的最小值为.15.如图,等边三角形ABC中,DE分别是AB,BC边上的点,AD=BE,AE与CD相交于F,AG⊥CD,垂足为G,则sin∠AFG=.16.九年级某班开展数学活动,活动内容为测量如图所示的电杆AB的高度.在太阳光的照射下,电杆影子的一部分(BE)落在地面上,另一部分(EF)落在斜坡上,站在水平面上的小明的影子为DG,已知斜坡的倾角∠FEH=30°,CD=1.6m,DG=0.8m,BE=2.1m,EF=1.7m,则电杆的高约为m.(精确到0.1,参考数据:,)17.如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.18.如图是一组有规律的图案,第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.(用含n的代数式表示)三.解答题(共7小题,满分66分)19.(6分)先化简再求值:(+b)÷,其中a=1+,b=1﹣.20.(8分)我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)李老师采取的调查方式是(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共件,其中B班征集到作品,请把图2补充完整.(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)21.(10分)如图,一次函数y=ax+b与反比例函数y=的图象交于A、B两点,点A坐标为(m,2),点B坐标为(﹣4,n),OA与x轴正半轴夹角的正切值为,直线AB交y轴于点C,过C作y轴的垂线,交反比例函数图象于点D,连接OD、BD.(1)求一次函数与反比例函数的解析式;(2)求四边形OCBD的面积.22.(8分)在△ABC中,AB=AC=6,点D为BC的中点,点E为AC的中点,连接DE,求DE的长.23.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?24.(12分)(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG =BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.25.(12分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD 的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.参考答案一.选择题1.解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.2.解:主视图和左视图均为等腰三角形,底面为圆,所以该几何体为圆锥,∵圆锥的侧面展开图是扇形,底面是圆,∴B符合,故选:B.3.解:A、2a2﹣a2=a2,此选项错误;B、(a3)2=a6,此选项错误;C、a2•a4=a6,此选项正确;D、a﹣3÷a﹣2=a﹣3﹣(﹣2)=a﹣1,此选项错误;故选:C.4.解:21780精确到千位表示约为2.2×104.故选:A.5.解:将两个方程相减得到y﹣x=2k﹣1,∵0<y﹣x<1,∴0<2k﹣1<1,解得<k<1.故选:D.6.解:∵直线AB与x轴正方向夹角为45°,∴当直线AB与⊙O相切时,切点为C,连接OC,∴△POC是等腰直角三角形,∵⊙O的半径为1,∴OC=PC=1,∴OP==,∴P(,0),同理可得,当直线与x轴负半轴相交时,P(﹣,0),∴﹣≤x≤.故选:D.7.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC ∥DE ,∴∠CBF =∠BED =30°,在Rt △BCF 中,CF ==,BF =2CF =,∴EF =2﹣,在Rt △DEF 中,FD =EF =1﹣,ED =FD =﹣1, ∴S △ABE =S △ABD +S △BED +S △ADE=2S △ABD +S △ADE=2×BC •AD +AD •ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选:A . 9.解:设⊙A 与x 轴另一个的交点为点D ,连接CD ,∵∠COD =90°,∴CD 是⊙A 的直径,即CD =10,∵∠OBC =30°,∴∠ODC =30°,∴OC =CD =5,∴点C 的坐标为:(0, 5).故选:A .10.解:①由对称知,当x =2时,函数值大于0,即y =4a +2b +c >0,故①正确; ②由图象可知:a <0,b >0,c >0,abc <0,故②正确;③当x =1时,y =a +b +c >0,即b >﹣a ﹣c ,当x =﹣1时,y =a ﹣b +c <0,即b >a +c ,故③错误;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤错误.综上所述,①②④正确.故选:B.11.解:当a=1时,,解得,,∴x+y=0≠2﹣1,故①错误,当a=﹣2时,,解得,,则x+y=6,此时x与y不是互为相反数,故②错误,∵,解得,,∵x≤1,则≤1,得a≥0,∴0≤a≤1,则1≤≤,即1≤y≤,故③错误,∵∵,解得,,当x==4时,得a=,y=,故④错误,故选:A.12.解:由题意,水流速度为每小时4千米,设该货轮在静水中的速度为每小时x千米,则:+=12﹣3;故选D.二.填空题(共6小题,满分18分,每小题3分)13.解:原式=﹣32+2﹣4+2×=﹣32+2﹣4+1=﹣33.故答案为:﹣33.14.解:设等腰直角三角形的斜边为xcm,则正方形的边长为(10﹣x)cm.若等腰直角三角形的面积为S1,正方形面积为S2,则S1=•x•x=x2,S2=(10﹣x)2,面积之和S=x2+(10﹣x)2=x2﹣20x+100.∵>0,∴函数有最小值.==20(cm2).即S最小值故答案为20平方厘米.15.解:∵△ABC为等边三角形,∴AB=BC,∠ACB=∠B=60°,∵AD=BE,∴CE=BD,在△ACE和△CBD中,,∴△ACE≌△CBD(SAS),∴∠AEC=∠CDB,∵∠BCD+∠AEC+∠CFE=180°,∠BCD+∠CDB+∠B=180°,∴∠CFE=∠B=60°,∴∠AFG=∠CFE=60°,∴sin∠AFG=.故答案为:.16.解:延长AF交BH于点N,过点F作FM⊥BH于点M,∵∠FEH=30°,EF=1.7m,∴FM=0.85m,∴EM=×1.7≈1.47,由题意可得出:AB∥FM,∴=,∵CD=1.6m,DG=0.8m,∴MN=0.425m,∵BE=2.1m,∴BN=2.1+1.47+0.425≈4.0(m),∵=,∴=,解得:AB=8(m).答:电杆的高约8m.故答案为:8.17.解:如图1,过A作AD⊥BC于D∵∠BAC=120°,AB=AC=4,∴AD=2,BD=CD=2∴BC=4∵根据旋转的性质知∠BCB'=∠ACA'=60°,△ABC≌△A'B'C,∴S△ABC =S△A'B'C,∴S阴影=S扇形CB'B+S△A'B'C﹣S△ABC﹣S扇形CA'A=﹣=.故答案是:π.18.解:第1个图案由6个基础图形组成,第2个图案由11个基础图形组成,11=5×2+1,第3个图案由16个基础图形组成,16=5×3+1,…,第n个图案由5n+1个基础图形组成.故答案为:5n+1.三.解答题(共7小题,满分66分)19.解:原式=(+)÷=•=,当a=1+,b=1﹣时,原式===.20.【解答】解:(1)此次调查为抽样调查;根据题意得调查的总件数为:5÷=12(件),B的件数为12﹣(2+5+2)=3(件);补全图2,如图所示:故答案为:抽样调查;12;3;(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==.21.解:(1)如图:,tan∠AOE=,得OE=6,∴A(6,2),y=的图象过A(6,2),∴,即k=12,反比例函数的解析式为y=,B(﹣4,n)在y=的图象上,解得n==﹣3,∴B(﹣4,﹣3),一次函数y=ax+b过A、B点,,解得,一次函数解析式为y =﹣1;(2)当x =0时,y =﹣1,∴C (0,﹣1),当y =﹣1时,﹣1=,x =﹣12,∴D (﹣12,﹣1),s OCBD =S △ODC +S △BDC=+|﹣12|×|﹣2| =6+12=18.22.解:∵点D 为BC 的中点,点E 为AC 的中点,∴DE 是△ABC 的中位线,∴DE =AB .又AB =AC =6,∴DE =3.23.解:(1)设y =kx +b ,根据题意可得,解得:, 则y =﹣10x +800;(2)根据题意,得:(x ﹣20)(﹣10x +800)=8000,整理,得:x 2﹣100x +2400=0,解得:x 1=40,x 2=60,∵销售单价最高不能超过45元/件,∴x =40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元. 24.(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠F AD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.25.解:(1)由题意得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)令﹣x2+2x+3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴,解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a , ∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM ,∴4NQ 2=CM 2,∵NQ 2=(1﹣)2+(n ﹣)2,∴4[=(1﹣)2+(n ﹣)2]=m 2+9,整理得,m =n 2﹣3n +1,即m =(n ﹣)2﹣, ∵0≤n ≤4,当n =上,m 最小值=﹣,n =4时,m =5,综上,m 的取值范围为:﹣≤m ≤5.。

精编2019级山东省泰安市肥城市中考数学二模试卷(有标准答案)

精编2019级山东省泰安市肥城市中考数学二模试卷(有标准答案)

山东省泰安市肥城市中考数学二模试卷一、选择题(本大题共20小题,每小题3分,满分60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.|﹣2017|的相反数是()A.2017 B.C.﹣2017 D.﹣2.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a3D.a6+a3=a93.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.4.据国家统计局公布,2015年我国国内生产总值约为676700亿元(人民币),用科学记数法表示数据“676700亿”,结果是()A.6.767×105B.6.767×1012C.6.767×1013D.6.767×10145.以下图形中对称轴的数量小于3的是()A.B.C.D.6.化简(﹣)的结果是()A.x B.C. D.7.如图,将矩形纸片ABCD中折叠,使顶点B落在边AD的E点上折痕FG交BC于G,交AB于F,若∠AEF=20°,则∠FGB的度数为()A.25° B.30° C.35° D.40°8.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分9.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.10.将某抛物线图象向右平移2个单位,再向下平移3个单位所得的抛物线是y=﹣2x2+4x+1的图象,则将该抛物线沿y轴翻折后所得的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=2(x+1)2﹣611.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线12.若关于x的一元二次方程kx2﹣(2k+1)x+k+2=0,有两个不相等的实数根,则k的取值范围是()A.k≤B.k≤且k≠0 C.k>D.k<且k≠013.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44° B.66° C.96° D.92°14.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.15.如图所示,在扇形BAD中,点C在上,且∠BDC=30°,AB=2,∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A.π﹣2 B.π﹣1 C.2π﹣2 D.2π+116.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣117.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A.B.2 C.3 D.418.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.19.对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大.②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是()A.0个B.1个C.2个D.3个20.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共4个小题,每小题3分,共12分,把答案填在题中的横线上)21.分解因式:﹣3x3+12x2﹣12x= .22.如图,在矩形ABCD中,AB=8,AD=12,过点A、D两点的⊙O与BC边相切于点E,则⊙O的半径为.23.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为海里/小时?24.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE 到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016,到BC的距离记为h2017;若h1=1,则h2017的值为.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤)25.(8分)当前正值樱桃销售季节,小李用20000元在樱桃基地购进樱桃若干进行销售,由于销售状况良好,他又立即拿出60000元资金购进该种樱桃,但这次的进货价比第一次的进货价提高了20%,购进樱桃数量是第一次的2倍还多200千克.(1)该种樱桃的第一次进价是每千克多少元?(2)如果小李按每千克90元的价格出售,当大部分樱桃售出后,余下500千克按售价的7折出售完,小李销售这种樱桃共盈利多少元.26.(8分)如图,正方形AOCB的边长为4,反比例函数y=(k≠0,且k为常数)的图象过点E,且S△=3S△OBE.AOE(1)求k的值;(2)反比例函数图象与线段BC交于点D,直线y=x+b过点D与线段AB交于点F,延长OF交反比例函数y=(x<0)的图象于点N,求N点坐标.27.(10分)如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:AD=AF;(2)求证:BD=EF;(3)试判断四边形ABNE的形状,并说明理由.28.(10分)如图,△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD、AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;(3)当AB=BC,∠DBC=30°时,求的值.29.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.山东省泰安市肥城市中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,满分60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.|﹣2017|的相反数是()A.2017 B.C.﹣2017 D.﹣【考点】15:绝对值;14:相反数.【分析】先求出|﹣2017|=2017,再根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:|﹣2017|=2017,2017的相反数是﹣2017,∴|﹣2017|的相反数是﹣2017.故选:C.【点评】本题考查了绝对值,解决本题的关键是熟记负数的绝对值是它的相反数.2.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5C.(2a)3=6a3D.a6+a3=a9【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据合并同类项、同底数幂相乘、积的乘方法则计算后判断即可.【解答】解:A、2a 与5b不是同类项不能合并,故本项错误;B、a2•a3=a5,正确;C、(2a)3=8a3,故本项错误;D、a6与a3不是同类项不能合并,故本项错误.故选:B.【点评】本题考查了合并同类项、同底数幂相乘、积的乘方,熟练掌握运算法则是解题的关键.3.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】从左面看会看到该几何体的两个侧面.【解答】解:从左边看去,应该是两个并列并且大小相同的矩形,故选B.【点评】本题考查了几何体的三视图及空间想象能力.4.据国家统计局公布,2015年我国国内生产总值约为676700亿元(人民币),用科学记数法表示数据“676700亿”,结果是()A.6.767×105B.6.767×1012C.6.767×1013D.6.767×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于676700亿有14位,所以可以确定n=14﹣1=13.【解答】解:676700亿=6.767×1013.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.以下图形中对称轴的数量小于3的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.6.化简(﹣)的结果是()A.x B.C. D.【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=x,故选A【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.7.如图,将矩形纸片ABCD中折叠,使顶点B落在边AD的E点上折痕FG交BC于G,交AB于F,若∠AEF=20°,则∠FGB的度数为()A.25° B.30° C.35° D.40°【考点】PB:翻折变换(折叠问题).【分析】根据直角三角形两锐角互余求出∠AFE,再根据翻折变换的性质求出∠BFG,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵∠AEF=20°,∴∠AFE=90°﹣∠AEF=90°﹣20°=70°,由翻折的性质得,∠BFG=∠EFG,∴∠BFG=(180°﹣∠AFE)=(180°﹣70°)=55°,在Rt△BFG中,∠FGB=90°﹣∠BFG=90°﹣55°=35°.故选C.【点评】本题考查了翻折变换的性质,直角三角形两锐角互余的性质,熟练掌握翻折前后的两个图形能够完全重合是解题的关键.8.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分【考点】W4:中位数;VB:扇形统计图;VC:条形统计图;W1:算术平均数.【分析】首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些职工成绩的中位数,利用加权平均数公式求出这些职工成绩的平均数.【解答】解:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60﹣6﹣12﹣15﹣9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选:D.【点评】本题考查了统计图及中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解题的关键是从统计图中获取正确的信息并求出各个小组的人数.同时考查了平均数的计算.9.甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A.B.C.D.【考点】9A:二元一次方程组的应用.【分析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨,甲仓库、乙仓库共存粮450吨.【解答】解:设甲仓库原来存粮x吨,乙仓库原来存粮y吨.根据题意得:.故选C.【点评】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题干找出合适的等量关系.本题的等量关系是:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食30吨,甲仓库和乙仓库共存粮450吨.列出方程组,再求解.10.将某抛物线图象向右平移2个单位,再向下平移3个单位所得的抛物线是y=﹣2x2+4x+1的图象,则将该抛物线沿y轴翻折后所得的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=2(x+1)2﹣6【考点】H6:二次函数图象与几何变换.【分析】首先利用配方法得出函数顶点式,再利用平移规律得出平移前关系式,再利用关于y轴对称的性质得出答案.【解答】解:y=﹣2x2+4x+1=﹣2(x﹣1)2+3,∵将某抛物线图象向右平移2个单位,再向下平移3个单位所得的抛物线是y=﹣2x2+4x+1的图象,∴此函数解析式为:y=﹣2(x+1)2+6,其顶点为:(﹣1,6)∴将该抛物线沿y轴翻折后所得的函数关系式的顶点坐标为:(1,6),故其函数关系式为:y=﹣2(x﹣1)2+6.故选:B.【点评】此题主要考查了二次函数与几何变换,正确得出平移前函数关系式是解题关键.11.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E、F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线【考点】ME:切线的判定与性质.【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=AO≠OB,于是得到C选项错误;D、如图2根据等边三角形的性质和等量代换即可得到D选项正确.【解答】解:A、如图1,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确;B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图2,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图2,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选C.【点评】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.12.若关于x的一元二次方程kx2﹣(2k+1)x+k+2=0,有两个不相等的实数根,则k的取值范围是()A.k≤B.k≤且k≠0 C.k>D.k<且k≠0【考点】AA:根的判别式.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣(2k+1)x+k+2=0,有两个不相等的实数根,∴,解得:k<且k≠0.故选D.【点评】本题考查了根的判别式,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.13.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44° B.66° C.96° D.92°【考点】KD:全等三角形的判定与性质.【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=42°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=42°,∴∠P=180°﹣∠A﹣∠B=96°,故选:C.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.14.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】采用列表法列出所有情况,再根据能让灯泡发光的情况利用概率公式进行计算即可求解.【解答】解:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是=.故选C.【点评】本题考查了列表法与画树状图求概率,用到的知识点为:概率=所求情况数与总情况数之比.15.如图所示,在扇形BAD中,点C在上,且∠BDC=30°,AB=2,∠BAD=105°,过点C作CE⊥AD,则图中阴影部分的面积为()A.π﹣2 B.π﹣1 C.2π﹣2 D.2π+1【考点】MO:扇形面积的计算.【分析】阴影部分的面积=S扇形ACD﹣S△ACE,根据面积公式计算即可.【解答】解:∵∠BDC=30°,∴∠BAC=60°,∵AC=AB,∴△ABC是等边三角形,∵∠BAD=105°,∴∠CAE=105°﹣60°=45°,∵CE⊥AD,AC=AB=2,∴AE=CE=2,∴S△ACE=2,S扇形ACD==π,∴阴影部分的面积为S扇形ACD﹣S△ACE=π﹣2,故选A.【点评】本题考查了三角形和扇形的面积公式及三角函数值,得到阴影部分的面积=S扇形ACD﹣S△ACE是解题的关键.16.如果不等式组恰有3个整数解,则a的取值范围是()A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1【考点】CC:一元一次不等式组的整数解.【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.【解答】解:如图,由图象可知:不等式组恰有3个整数解,需要满足条件:﹣2≤a<﹣1.故选C.【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=4,则△CEF的面积是()A.B.2 C.3 D.4【考点】L5:平行四边形的性质.【分析】首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,证明△ABE∽△FCE,再分别求出△ABE的面积,然后根据面积比等于相似比的平方即可得到答案.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=4,∴AG═2,∴AE=2AG=4;∴S△ABE=AE•BG=×4×4=8.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1.∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=2.故选B.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.18.如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8 D.【考点】L8:菱形的性质;PB:翻折变换(折叠问题).【分析】作CH⊥AB于H,如图,根据菱形的性质可判断△ABC为等边三角形,则CH=AB=4,AH=BH=4,再利用勾股定理计算出CP=7,再根据折叠的性质得点A′在以P点为圆心,PA为半径的弧上,利用点与圆的位置关系得到当点A′在PC上时,CA′的值最小,然后证明CQ=CP即可.【解答】解:作CH⊥AB于H,如图,∵菱形ABCD的边AB=8,∠B=60°,∴△ABC为等边三角形,∴CH=AB=4,AH=BH=4,∵PB=3,∴HP=1,在Rt△CHP中,CP==7,∵梯形APQD沿直线PQ折叠,A的对应点A′,∴点A′在以P点为圆心,PA为半径的弧上,∴当点A′在PC上时,CA′的值最小,∴∠APQ=∠CPQ,而CD∥AB,∴∠APQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP=7.故选B.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.19.对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大.②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是()A.0个B.1个C.2个D.3个【考点】H3:二次函数的性质;A3:一元二次方程的解.【分析】①根据二次函数的性质即可得出抛物线y=6x2的对称轴为y轴,结合a=6>0即可得出当x>0时,y随x的增大而增大,结论①正确;②将x=﹣2和1代入一元二次方程可得出x+m的值,再令x+m+2=该数值可求出x值,从而得出结论②正确;③由“当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0”可得出当x=1时y=0且抛物线的对称轴≥2,解不等式即可得出b≤﹣4、c≥3,结论③正确.综上即可得出结论.【解答】解:①∵在二次函数y=6x2中,a=6>0,b=0,∴抛物线的对称轴为y轴,当x>0时,y随x的增大而增大,∴①结论正确;②∵关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1,∴x+m=﹣2+m或1+m,∴方程a(x+m+2)2+b=0中,x+m+2=﹣2+m或x+m+2=1+m,解得:x1=﹣4,x2=﹣1,∴②结论正确;③∵二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴,解得:b≤﹣4,c≥3,∴结论③正确.故选D.【点评】本题考查了二次函数的性质、一元二次方程的解以及二次函数的图象,逐一分析三条结论的正误是解题的关键.20.如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】S9:相似三角形的判定与性质;KL:等边三角形的判定;KP:直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③正确;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【解答】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,正确.故选D.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.二、填空题(本大题共4个小题,每小题3分,共12分,把答案填在题中的横线上)21.分解因式:﹣3x3+12x2﹣12x= ﹣3x(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式后,利用完全平方公式分解即可.【解答】解:原式=﹣3x(x﹣2)2.故答案为:﹣3x(x﹣2)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.如图,在矩形ABCD中,AB=8,AD=12,过点A、D两点的⊙O与BC边相切于点E,则⊙O的半径为.【考点】MC:切线的性质;LB:矩形的性质.【分析】连结EO并延长交AD于F,如图,由切线的性质得OE⊥BC,再利用平行线的性质得到OF⊥AD,则根据垂径定理得到AF=DF=AD=6,易得四边形ABEF为矩形,则EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,然后在Rt△AOF中利用勾股定理得到(8﹣r)2+62=r2,再解方程求出r即可.【解答】解:连结EO并延长交AD于F,如图,∵⊙O与BC边相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF=AD=6,易得四边形ABEF为矩形,则EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,在Rt△AOF中,∵OF2+AF2=OA2,∴(8﹣r)2+62=r2,解得r=,即⊙O的半径为.故答案为.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和矩形的性质.解决本题的关键是构建直角三角形,利用勾股定理建立关于半径的方程.23.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为10+10海里/小时?【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意画图,过O向AB作垂线,根据特殊角的三角函数值求得AC、BC的值,从而求得AB的值.根据追及问题的求法求甲船追赶乙船的速度.【解答】解:如图:乙沿南偏东30°方向航行则∠DOB=30°,甲沿南偏西75°方向航行,则∠AOD=75°,当航行1小时后甲沿南偏东60°方向追赶乙船,则∠2=90°﹣60°=30°.∵∠3=∠AOD=75°,∴∠1=90°﹣75°=15°,故∠1+∠2=15°+30°=45°.过O向AB作垂线,则∠AOC=90°﹣∠1﹣∠2=90°﹣15°﹣30°=45°,∵OA=10,∠OAB=∠AOC=45°,∴OC=AC=OA•sin45°=10×=10.在Rt△OBC中,∠BOC=∠AOD+∠BOD﹣∠AOC=75°+30°﹣45°=60°,∴BC=OC•tan60°=10,∴AB=AC+BC=10+10.因为OC=10海里,∠B=30°,所以OB=2OC=2×10=20,乙船从O到B所用时间为20÷10=2小时,由于甲从O到A所用时间为1小时,则从A到B所用时间为2﹣1=1小时,甲船追赶乙船的速度为10+10海里/小时.【点评】本题考查解直角三角形﹣方向角问题、勾股定理等知识,结合航海中的实际问题,转化为解直角三角形的相关知识,体现了数学应用于实际生活的思想.24.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE 到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016,到BC的距离记为h2017;若h1=1,则h2017的值为2﹣.【考点】PB:翻折变换(折叠问题).【分析】根据中点的性质及折叠的性质可得DA=DA1=DB,从而可得∠ADA1=2∠B,结合折叠的性质可得∠ADA1=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2﹣1=1,同理h2=2﹣,h3=2﹣×=2﹣,于是经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣,据此求得h2017的值.【解答】解:如图,连接AA1.由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∴AA1=2,∴h1=2﹣1=1,同理,h2=2﹣,h3=2﹣×=2﹣,…∴经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2﹣.∴h2017=2﹣.故答案为:2﹣.【点评】本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理的综合应用,找出规律是解题的关键.三、解答题(本大题共5个小题,共48分,解答应写出文字说明、推理过程或演算步骤)25.当前正值樱桃销售季节,小李用20000元在樱桃基地购进樱桃若干进行销售,由于销售状况良好,他又立即拿出60000元资金购进该种樱桃,但这次的进货价比第一次的进货价提高了20%,购进樱桃数量是第一次的2倍还多200千克.(1)该种樱桃的第一次进价是每千克多少元?(2)如果小李按每千克90元的价格出售,当大部分樱桃售出后,余下500千克按售价的7折出售完,小李销售这种樱桃共盈利多少元.【考点】B7:分式方程的应用.【分析】(1)设该种樱桃的第一次进价是每千克x元,则第二次进价为每千克(1+20%)x元,根据题意可得:购进樱桃数量是第一次的2倍还多200千克,根据等量关系列出方程,再解即可.(2)首先计算出第二次的樱桃数量,再用每千克的利润×总量可得总利润.【解答】解:(1)设该种樱桃的第一次进价是每千克x元,由题意得:2×+200=,解得:x=50,经检验:x=50是原分式方程的解,答:该种樱桃的第一次进价是每千克50元;(2)第二批进的樱桃数量:60000÷[(1+20%)×50]=1000(千克),第一批进的樱桃数量:20000÷50=400(千克),。

山东省泰安市肥城市2019年中考数学二模考试试卷

山东省泰安市肥城市2019年中考数学二模考试试卷

山东省泰安市肥城市2019年中考数学二模考试试卷一、选择题(共12题;共24分)1.2019的相反数的倒数是()A. B. C. -2019 D. 20192.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A. 2.1×109B. 0.21×109C. 2.1×108D. 21×1073.下列图形中,可以由其中一个图形通过平移得到的是()A. B. C. D.4.下列运算正确的是()A. B. C. D.5.某校四个环保小组一天收集废纸的数量分别为:10,x,9,8,(单位千克)已知这组数据的众数与平均数相等,则这组数据的中位数是()A. 8.5B. 9C. 9.5D. 86.下图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A. 4cmB. 5cmC.D.7.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A. 勾股定理B. 直径所对的圆周角是直角C. 勾股定理的逆定理D. 90°的圆周角所对的弦是直径8.关于x的不等式组有四个整数解,则a的取值范围是()A. ﹣<a≤﹣B. ﹣≤a<﹣C. ﹣≤a≤﹣D. ﹣<a<﹣9.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.如图,一次函数y=k1x+b的图象与反比例函数y= 的图象相交于A(2,3),B(6,1)两点,当k1x+b <时,x的取值范围为()A. x<2B. 2<x<6C. x>6D. 0<x<2或x>611.如图,,射线和互相垂直,点是上的一个动点,点在射线上,,作并截取,连结并延长交射线于点.设,则关于的函数解析式是()A. B. C. D.12.如图所示为二次函数的图象,在下列结论① ;② 时,随的增大而增大;③ ;④方程的根是;中正确的个数有()个.A. 1B. 2C. 3D. 4二、填空题(共6题;共8分)13.________.14.己知如图,平分,当,且时,的度数为________.15.如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.16.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为和若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为________米结果保留根号.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为________.18.如图,动点在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),...按这样的运动规律,经过2019次运动后,动点的坐标为________.三、计算题(共1题;共5分)19.先化简,再求值:,其中.四、综合题(共6题;共85分)20.如图,在平面直角坐标中,点是坐标原点,一次函数与反比例函数的图象交于两点.(1)求的值.(2)根据图象写出当时,的取值范围.(3)若一次函数图象与轴、轴分别交于点,则求出的面积.21.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了多少名学生?在扇形统计图中,表示" "的扇形圆心角的度数是多少;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生大约有多少名?(4)某天甲、乙两名同学都想从“微信"、" "、“电话"三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.22.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.23.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?24.如图,二次函数的图象交x轴于A、B两点,交y轴于点D,点B的坐标为,顶点C的坐标为.(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使中BD边上的高为?若存在求出点Q的坐标;若不存在请说明理由.25.等腰直角和等腰直角分别在直线上.(1)如图所示,分别在线段上,若,求证:.(2)若分别在线段外(还在直线上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图,若,求证:.答案解析部分一、选择题1.【答案】B【解析】【解答】解:2019的相反数的倒数是故答案为:B.【分析】根据相反数的定义和倒数的定义即可得出结论.2.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数。

2018-2019学度泰安肥城初二下年末数学试卷含解析解析.doc.doc

2018-2019学度泰安肥城初二下年末数学试卷含解析解析.doc.doc

2018-2019学度泰安肥城初二下年末数学试卷含解析解析参考答案与试题解析【一】选择题:在以下各小题中,均给出四个答案,其中有且只有一个正确答案。

1、的计算结果是〔〕A、4B、﹣4C、±4D、8考点:算术平方根、专题:计算题、分析:利用平方根的意义化简、解答:解:=4,应选A、〔因为求的是算术平方根,故只有A对,C不对〕、点评:此题难点是平方根与算术平方根的区别与联系,一个正数的算术平方根有一个,而平方根有两个、2、以下二次根式中,最简二次根式是〔〕A、B、C、D、考点:最简二次根式、分析:先根据二次根式的性质化简,再根据最简二次根式的定义判断即可、解答:解:A、=,故不是最简二次根式,故本选项错误;B、==,故不是最简二次根式,故本选项错误;C、符合最简二次根式的定义,故本选项正确;D、=b,故不是最简二次根式,故本选项错误;应选:C、点评:此题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键、3、如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是〔〕A、AB=CDB、AD=BCC、AB=BCD、AC=BD考点:矩形的判定、分析:由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形、解答:解:可添加AC=BD,∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形, ∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD 是矩形, 应选:D 、 点评: 此题主要考查了矩形的判定,关键是矩形的判定: ①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形; ③对角线相等的平行四边形是矩形、 4、以下运算错误的选项是〔〕A 、=B 、=C 、D 、考点:二次根式的乘除法;二次根式的加减法、分析:根据二次根式的乘法运算法那么,二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可、解答:解:A 、=运算正确,故本选项错误;B 、=≠,运算错误,故本选项正确;C 、,运算正确,故本选项错误;D 、,运算正确,故本选项错误;应选B 、点评:此题考查了二次根式的加减及乘除运算,属于基础题,掌握各部分的运算法那么是关键、5、不等式组的解集在数轴上表示正确的选项是〔〕A 、B 、C 、D 、考点:在数轴上表示不等式的解集;解一元一次不等式组、分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案、解答:解:,由①得:x≤1,由②得:x>﹣3,那么不等式组的解集是﹣3<x≤1;应选D、点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键、6、如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,那么点A1,B1,C1的坐标分别为〔〕A、A1〔﹣4,﹣6〕,B1〔﹣3,﹣3〕,C1〔﹣5,﹣1〕B、A1〔﹣6,﹣4〕,B1〔﹣3,﹣3〕,C1〔﹣5,﹣1〕C、A1〔﹣4,﹣6〕,B1〔﹣3,﹣3〕,C1〔﹣1,﹣5〕D、A1〔﹣6,﹣4〕,B1〔﹣3,﹣3〕,C1〔﹣1,﹣5〕考点:坐标与图形变化-旋转、专题:网格型、分析:根据网格结构找出点A、B、C关于点P的对称点A1,B1,C1的位置,再根据平面直角坐标系写出坐标即可、解答:解:△A1B1C1如下图,A1〔﹣4,﹣6〕,B1〔﹣3,﹣3〕,C1〔﹣5,﹣1〕、应选:A、点评:此题考查了坐标与图形变化﹣旋转,熟练掌握网格结构准确找出对应点的位置是解题的关键、7、能使等式=成立的条件是〔〕A、x≥0B、﹣3<x≤0C、x>3D、x>3或x<0考点:二次根式的乘除法、分析:利用二次根式的性质得出x≥0,x﹣3>0,进而求出即可、解答:解:∵=成立,∴x≥0,x﹣3>0,解得:x>3、应选:C、点评:此题主要考查了二次根式的性质,正确利用二次根式的性质求出是解题关键、8、将一次函数y=x的图象向上平移2个单位,平移后,假设y>0,那么x的取值范围是〔〕A、x>4B、x>﹣4C、x>2D、x>﹣2考点:一次函数图象与几何变换、专题:数形结合、分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围、解答:解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0时,x=﹣4,当x=0时,y=2,如图:∴y>0,那么x的取值范围是:x>﹣4,应选:B、点评:此题主要考查了一次函数图象与几何变换以及图象画法,得出函数图象进而判断x的取值范围是解题关键、9、如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,那么这个一次函数的解析式是〔〕A、y=2x+3B、y=x﹣3C、y=2x﹣3D、y=﹣x+3考点:待定系数法求一次函数解析式;两条直线相交或平行问题、专题:数形结合、分析:根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出、解答:解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B〔1,2〕,设一次函数解析式为:y=kx+b,∵一次函数的图象过点A〔0,3〕,与正比例函数y=2x的图象相交于点B〔1,2〕,∴可得出方程组,解得,那么这个一次函数的解析式为y=﹣x+3,应选:D、点评:此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式、10、如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,假设DG=1,那么AE的边长为〔〕A、2B、4C、4D、8考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理、专题:计算题;压轴题、分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长、解答:解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,那么AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF〔AAS〕,∴AF=EF,那么AE=2AF=4、应选:B点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解此题的关键、11、直线y=x+1与y=﹣2x+a的交点在第一象限,那么a的取值可以是〔〕A、﹣1B、0C、1D、2考点:两条直线相交或平行问题、分析:联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可、解答:解:联立,解得:,∵交点在第一象限,∴,解得:a>1、故应选D、点评:此题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键、12、如图,函数y=2x和y=ax+4的图象相交于点A〔m,3〕,那么不等式2x≥ax+4的解集为〔〕A、x≥B、x≤3C、x≤D、x≥3考点:一次函数与一元一次不等式、分析:将点A〔m,3〕代入y=2x得到A的坐标,再根据图形得到不等式的解集、解答:解:将点A〔m,3〕代入y=2x得,2m=3,解得,m=,∴点A的坐标为〔,3〕,∴由图可知,不等式2x≥ax+4的解集为x≥、应选:A、点评:此题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论、13、如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F、假设AB=6,BC=4,那么FD的长为〔〕A、2B、4C、D、2考点:翻折变换〔折叠问题〕、分析:根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF 全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解、解答:解:∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴AE=EG,AB=BG,∴ED=EG,∵在矩形ABCD中,∴∠A=∠D=90°,∴∠EGF=90°,∵在Rt△EDF和Rt△EGF中,,∴Rt△EDF≌Rt△EGF〔HL〕,∴DF=FG,设DF=x,那么BF=6+x,CF=6﹣x,在Rt△BCF中,〔4〕2+〔6﹣x〕2=〔6+x〕2,解得x=4、应选:B、点评:此题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件EF=EC是解题的关键、14、实数a在数轴上的位置如下图,那么化简后为〔〕A、7B、﹣7C、2a﹣15D、无法确定考点:二次根式的性质与化简;实数与数轴、分析:先从实数a在数轴上的位置,得出a的取值范围,然后求出〔a﹣4〕和〔a﹣11〕的取值范围,再开方化简、解答:解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,那么,=a﹣4+11﹣a,=7、应选A、点评:此题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念、15、如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE、将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF、以下结论:①点G是BC中点;②FG=FC;③S△FGC=、其中正确的选项是〔〕A、①②B、①③C、②③D、①②③考点:正方形的性质;翻折变换〔折叠问题〕、专题:压轴题、分析:先求出DE、CE的长,再根据翻折的性质可得AD=AF,EF=DE,∠AFE=∠D=90°,再利用“HL”证明Rt△ABG和Rt△AFG全等,根据全等三角形对应边相等可得BG=FG,再设BG=FG=x,然后表示出EG、CG,在Rt△CEG中,利用勾股定理列出方程求出x=,从而可以判断①正确;根据∠AGB的正切值判断∠AGB≠60°,从而求出∠CGF≠60°,△CGF不是等边三角形,FG≠FC,判断②错误;先求出△CGE的面积,再求出EF:FG,然后根据等高的三角形的面积的比等于底边长的比求解即可得到△FGC的面积,判断③正确、解答:解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG〔HL〕,∴BG=FG,设BG=FG=x,那么EG=EF+FG=1+x,CG=3﹣x,在Rt△CEG中,EG2=CG2+CE2,即〔1+x〕2=〔3﹣x〕2+22,解得,x=,∴CG=3﹣=,∴BG=CG=,即点G是BC中点,故①正确;∵tan∠AGB===2,∴∠AGB≠60°,∴∠CGF≠180°﹣60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;△CGE的面积=CGCE=××2=,∵EF:FG=1:=2:3,∴S△FGC=×=,故③正确;综上所述,正确的结论有①③、应选:B、点评:此题考查了正方形的性质,翻折变换的性质,全等三角形的判定与性质,勾股定理的应用,根据各边的熟量关系利用勾股定理列式求出BG=FG的长度是解题的关键,也是此题的难点、【二】填空题〔本大题共5小题,只要求填写最好结果〕16、计算:=、考点:二次根式的乘除法、分析:先将二次根式化为最简,然后再进行二次根式的乘除运算即可、解答:解:=××=、故答案为:、点评:此题考查了二次根式的乘除运算、相乘除的时候,被开方数简单的直接让被开方数相乘除,再化简;较大的也可先化简,再相乘除,灵活对待、17、如果P〔﹣2,a〕是正比例函数y=﹣2x图象上的一点,那么P点关于y轴对称点的坐标为〔2,4〕、考点:一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标、分析:可先求得点P的坐标,再由对称性可求得其对称点的坐标、解答:解:∵P〔﹣2,a〕是正比例函数y=﹣2x图象上的一点,∴a=﹣2×〔﹣2〕=4,∴P点坐标为〔﹣2,4〕,∴P点关于y轴对称点的坐标为〔2,4〕,故答案为:〔2,4〕、点评:此题主要考查函数图象上的点的特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键、18、如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点、假设AB=8,AD=12,那么四边形ENFM的周长为20、考点:三角形中位线定理;勾股定理;矩形的性质、分析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长、解答:解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20、点评:此题考查了三角形的中位线,勾股定理以及矩形的性质,是中考常见的题型,难度不大,比较容易理解、19、一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y〔米〕与时间t〔秒〕之间的函数关系如图,那么这次越野跑的全程为2200米、考点:一次函数的应用、专题:数形结合、分析:设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可、解答:解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米、故答案为:2200、点评:此题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键、20、假设不等式组有解,那么a的取值范围是a>﹣1、考点:不等式的解集、专题:压轴题、分析:先解出不等式组的解集,根据不等式组有解,即可求出a的取值范围、解答:解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值范围是a>﹣1、故答案为:a>﹣1、点评:考查了不等式组的解集,求不等式组的公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了、此题是不等式组的解集,求不等式中另一未知数的问题、可以先将另一未知数当作数处理,求出不等式组的解集并与解集比较,进而求得另一个未知数的取值范围、【三】简单题〔本大题共7小题,解答应写出必要的文字说明、证明过程或演算步骤〕21、解不等式,并把它的解集在数轴上表示出来、考点:解一元一次不等式组;在数轴上表示不等式的解集、分析:解答:解:原式可化为,由①得:x≤1,由②得:x≥﹣4,∴不等式组的解集是﹣4≤x≤1、把不等式组的解集在数轴上表示为:点评:此题主要考查对解一元一次不等式〔组〕,不等式的性质,在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键、22、水银体温计的读数y〔℃〕与水银柱的长度x〔cm〕之间是一次函数关系、现有一支水银体温计,其部分刻度线不清晰〔如图〕,表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度、水银柱的长度x〔cm〕4、2 …8、2 9、8体温计的读数y〔℃〕35、0 …40、0 42、0 〔1〕求y关于x的函数关系式〔不需要写出函数的定义域〕;〔2〕用该体温计测体温时,水银柱的长度为6、2cm,求此时体温计的读数、考点:一次函数的应用、专题:应用题;待定系数法、分析:〔1〕设y关于x的函数关系式为y=kx+b,由统计表的数据建立方程组求出其解即可;〔2〕当x=6、2时,代入〔1〕的解析式就可以求出y的值、解答:解:〔1〕设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29、75、∴y关于x的函数关系式为:y=+29、75;〔2〕当x=6、2时,y=×6、2+29、75=37、5、答:此时体温计的读数为37、5℃、点评:此题考查了待定系数法求一次函数的解析式的运用,由解析式根据自变量的值求函数值的运用,解答时求出函数的解析式是关键、23、如图,四边形ABCD的对角线AC、BD交于点O,O是AC的中点,AE=CF,DF∥BE、〔1〕求证:△BOE≌△DOF;〔2〕假设OD=AC,那么四边形ABCD是什么特殊四边形?请证明你的结论、考点:全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定、专题:证明题、分析:〔1〕由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;〔2〕假设OD=AC,那么四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证、解答:〔1〕证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,∴OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF〔AAS〕;〔2〕假设OD=AC,那么四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∵OD=AC,∴OA=OB=OC=OD,且BD=AC,∴四边形ABCD为矩形、点评:此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解此题的关键、24、如下图,x轴所在直线是一条东西走向的河,A〔﹣2,3〕、B〔4,5〕两个村庄位于河的北岸,现准备在河上修建一净水站P,并利用管道为两个村庄供水〔单位:千米〕、〔1〕欲使所修管道最短,应该把净水站P修在什么位置,作出正确图形〔用尺规作图〕,求出P点坐标及PB所在直线解析式;〔2〕假设管道每米费用需要200元,求修管道的最低费用、考点:轴对称-最短路线问题;待定系数法求一次函数解析式、分析:〔1〕作点A关于x轴的对称点A′,连接A′B交x轴于P,那么点P即为所求;根据关于x轴对称的点的坐标特征得到A′〔﹣2,﹣3〕,根据待定系数法即可得到结果;〔2〕根据题意A′B即为所修管道的长,分别过A′,B作平行于x轴和y轴的直线交于点B′,根据勾股定理即可得到结论、解答:解:〔1〕作点A关于x轴的对称点A′,连接A′B交x轴于P,那么点P即为所求;∵A〔﹣2,3〕,∴A′〔﹣2,﹣3〕,设直线PB的解析式为:y=kx+b,∵直线PB过A′〔﹣2,﹣3〕,B〔4,5〕,∴,解得:、∴直线PB的解析式为:y=x﹣,〔2〕根据题意A′B即为所修管道的长,分别过A′,B作平行于x轴和y轴的直线交于点B′,在直角三角形A′B′B中,A′B′=6,B′B=8,∴A′B=10,∴修管道的最低费用=200×10×100=2×106元、点评:此题考查了轴对称﹣最短距离问题,用待定系数法确定函数的解析式的方法求解、两点之间线段最短是解题的关键、25、如图,点E、F分别在正方形ABCD的边CD与BC上,∠E AF=45°、〔1〕求证:EF=DE+BF;〔2〕作AP⊥EF于点P,假设AD=10,求AP的长、考点:旋转的性质;正方形的性质、分析:〔1〕延长CB到G,使BG=DE,连接AG,证明△ABG≌△ADE,即可证得AG=AE,∠DAE=∠BAG,再证明△AFG≌△AFE,根据全等三角形的对应边相等即可证得;〔2〕证明△ABF≌△APF,根据全等三角形的对应边相等即可证得AP=AB=AD,即可求解、解答:解:〔1〕延长CB到G,使BG=DE,连接AG、∵△ABG和△ADE中,,∴△ABG≌△ADE,∴AG=AE,∠DAE=∠BAG,又∵∠EAF=45°,∠DAB=90°,∴∠DAE+∠BAF=45°,∴∠GAF=∠EAF=45°、∴△AFG和△AFE中,,∴△AFG≌△AFE,∴GF=EF=BG+BF,又∵DE=BG,∴EF=DE+BF;〔2〕∵AFG≌△AFE,∴∠AFB=∠AFP,又∵AP⊥EF,∴∠ABF=∠APF,∴△ABF和△APF中,,∴△ABF≌△APF,∴AP=AB=AD=AD=10、点评:此题考查了正方形的性质以及全等三角形的判定与性质,正确作出辅助线,构造全等的三角形是关键、26、甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100、〔1〕根据题意,填写下表〔单位:元〕:实际花费累计购物130 290 (x)在甲商场127 …在乙商场126 …〔2〕当x取何值时,小红在甲、乙两商场的实际花费相同?〔3〕当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?考点:一元一次不等式的应用;一元一次方程的应用、分析:〔1〕根据在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费得出100+〔290﹣100〕×0、9以及50+〔290﹣50〕×0、95进而得出答案,同理即可得出累计购物x元的实际花费;〔2〕根据题中条件,求出0、95x+2、5,0、9x+10相等,再进行求解即可;〔3〕根据小红在同一商场累计购物超过100元时和〔1〕得出的关系式0、95x+2、5与0、9x+10,分别进行求解,然后比较,即可得出答案、解答:解:〔1〕在甲商场:100+〔290﹣100〕×0、9=271,100+〔x﹣100〕×0、9=0、9x+10;在乙商场:50+〔290﹣50〕×0、95=278,50+〔x﹣50〕×0、95=0、95x+2、5;填表如下〔单位:元〕:实际花费累计购物130 290 (x)在甲商场127 271 …0、9x+10在乙商场126 278 …0、95x+2、5 〔2〕根据题意得:0、9x+10=0、95x+2、5,解得:x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同,〔3〕根据题意得:0、9x+10<0、95x+2、5,解得:x>150,0、9x+10>0、95x+2、5,解得:x<150,那么当小红累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当小红累计购物超过100元而不到150元时,在乙商场实际花费少、点评:此题主要考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,依题意列出相关的式子进行求解、此题涉及方案选择时应与方程或不等式联系起来、27、如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC、求证:〔1〕DF=AE;〔2〕DF⊥AC、考点:全等三角形的判定与性质;平行四边形的性质、专题:证明题、分析:〔1〕延长DE交AB于点G,连接AD、构建全等三角形△AED≌△DFB〔SAS〕,那么由该全等三角形的对应边相等证得结论;〔2〕设AC与FD交于点O、利用〔1〕中全等三角形的对应角相等,等角的补角相等以及三角形内角和定理得到∠EOD=90°,即DF⊥AC、解答:证明:〔1〕延长DE交AB于点G,连接AD、∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC、∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB、∴AD=BD,∴∠BAD=∠ABD、∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°、又BF=BC,∴BF=DE、∴在△AED与△DFB中,,∴△AED≌△DFB〔SAS〕,∴AE=DF,即DF=AE;〔2〕设AC与FD交于点O、∵由〔1〕知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG、∵∠DFG+∠FDG=90°,∴∠DO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC。

山东省泰安市中考数学二模试卷

山东省泰安市中考数学二模试卷

山东省泰安市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七下·江门月考) 在实数:3.1416926,,1.010010001…,3.41,,中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分)据统计,贵阳市2012年报名参加九年级学业考试总人数为27000人,则27000用科学记数法表示为()A . 2.7×103B . 0.27×105C . 2.7×104D . 27×1043. (2分)如图,下面几何体的俯视图不是圆的是()A .B .C .D .4. (2分)(2017·常德) 将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A . y=2(x﹣3)2﹣5B . y=2(x+3)2+5C . y=2(x﹣3)2+5D . y=2(x+3)2﹣55. (2分)观察下列图象,可以得出不等式组的解集是()A . x<B . -<x<0C . 0<x<2D . -<x<26. (2分) (2018九上·杭州月考) 在一个不透明的布袋中装有红色,白色玻璃球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在左右,则口袋中红色球可能有()A . 4个B . 6个C . 34个D . 36个7. (2分)(2019·青海模拟) 下表是某公司员工月收入的资料:月收入/元45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是()A . 平均数和众数B . 平均数和中位数C . 中位数和众数D . 平均数和方差8. (2分)(2014·淮安) 如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为()A . 3πB . 3C . 6πD . 6二、填空题 (共8题;共32分)9. (1分)把多项式2x2y﹣4xy2+2y3分解因式的结果是________10. (1分)函数中,自变量x的取值范围是1 .11. (1分)如图,是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为________.12. (1分) (2018九上·青海期中) 小明把如图所示的矩形纸板ABCD挂在墙上,E为AD中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是________.13. (1分)(2017·长宁模拟) 如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为________米.14. (6分)我们学过的全等变换方式有________、________、________,生活中常用这三种图形变换进行图案设计.在图形的上述变换过程中,其________和________不变,只是________发生了改变.15. (1分)(2017·越秀模拟) 如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投影三角形的对应边长为________ cm.16. (20分) (2019九上·南关期末) 如图,在Rt△ABC中,∠ACB=90°,AC=16,BC=12,点D、E分别为边AB、BC中点,点P从点A出发,沿射线AB方向以每秒5个单位长度的速度向点B运动,到点B停止.当点P 不与点A重合时,过点P作PQ∥A C ,且点Q在直线AB左侧,AP=PQ ,过点Q作QM⊥AB交射线AB于点M .设点P运动的时间为t(秒)(1)用含t的代数式表示线段DM的长度;(2)求当点Q落在BC边上时t的值;(3)设△PQM与△DEB重叠部分图形的面积为S(平方单位),当△PQM与△DEB有重叠且重叠部分图形是三角形时,求S与t的函数关系式;(4)当经过点C和△PQM中一个顶点的直线平分△PQM的内角时,直接写出此时t的值.三、解答题 (共10题;共100分)17. (10分)(2011·绍兴) 计算下面各题(1)计算:(2)先化简.再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2,其中a=﹣,b=1.18. (5分) (2017七上·太原期中) 化简:﹣2x2﹣5x+3﹣3x2+6x﹣1.19. (5分)如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.20. (13分)(2018·德阳) 某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布表(如图).组别单次营运里程“x“(公里)频数第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:(1)①表中a=________;②样本中“单次营运里程”不超过15公里的频率为________;③请把频数分布直方图补充完整________;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21. (5分) (2016八上·泸县期末) 列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.22. (11分)(2017·吉林模拟) 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发匀速前行,且途中休息一段时间后继续以原速前行.家到公园的距离为2000m,如图是小明和爸爸所走的路程S(m)与步行时间t(min)的函数图象.(1)直接写出BC段图象所对应的函数关系式(不用写出t的取值范围).(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早18分钟到达公园,则小明在步行过程中停留的时间需减少________分钟.23. (10分)(2017·抚顺模拟) 如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若AE=6,CE=2 .①求⊙O的半径②求线段CE,BE与劣弧所围成的图形的面积(结果保留根号和π)24. (11分)(2017·玉环模拟) 如图①,OP为一墙面,它与地面OQ垂直,有一根木棒AB如图放置,点C 是它的中点,现在将木棒的A点在OP上由A点向下滑动,点B由O点向OQ方向滑动,直到AB横放在地面为止.(1)在AB滑动过程中,点C经过的路径可以用下列哪个图象来描述()(2)若木棒长度为2m,如图②射线OM与地面夹角∠MOQ=60°,当AB滑动过程中,与OM并于点D,分别求出当AD= 、AD=1、AD= 时,OD的值.(3)如图③,是一个城市下水道,下水道入口宽40cm,下水道水平段高度为40cm,现在要想把整根木棒AB通入下水道水平段进行工作,那么这根木棒最长可以是________(cm)(直接写出结果,结果四舍五入取整数).25. (15分)(2018·成华模拟) 如图,AB为⊙O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC,垂足为AC的延长线上的点E,连接DA,DB.(1)求证:DE为⊙O的切线;(2)试探究线段AB,BD,CE之间的数量关系,并说明理由;(3)延长ED交AB的延长线于F,若AD=DF,DE= ,求⊙O的半径;26. (15分)(2017·呼和浩特) 在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(﹣,0),试比较锐角∠PCO 与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围.(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x 轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5、答案:略6-1、7、答案:略8-1、二、填空题 (共8题;共32分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、16-2、16-3、16-4、三、解答题 (共10题;共100分) 17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-3、25-1、25-2、25-3、26-1、第21 页共22 页26-2、26-3、第22 页共22 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届山东省泰安市肥城市中考数学二模试卷
一、选择题(本大题共20小题,每小题3分,满分60分,在每小题给出的四个选项中,只有一个是符合题目要求的)
1.|﹣2019|的相反数是( )
A .2019
B .
C .﹣2019
D .﹣
2.下列运算正确的是( )
A .2a+3b=5ab
B .a 2•a 3=a 5
C .(2a )3=6a 3
D .a 6+a 3=a 9
3.一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )
A .
B .
C .
D .
4.据国家统计局公布,2015年我国国内生产总值约为676700亿元(人民币),用科学记数法表示数据“676700亿”,结果是( )
A .6.767×105
B .6.767×1012
C .6.767×1013
D .6.767×1014
5.以下图形中对称轴的数量小于3的是( )
A .
B .
C .
D .
6.化简(
﹣)的结果是( )
A .x
B .
C .
D . 7.如图,将矩形纸片ABCD 中折叠,使顶点B 落在边AD 的
E 点上折痕FG 交BC 于G ,交AB 于
F ,若∠AEF=20°,则∠FGB 的度数为( )
A .25°
B .30°
C .35°
D .40°
8.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )。

相关文档
最新文档