2018年山东省中考数学试题
2018年山东省青岛市数学中考真题含答案解析
![2018年山东省青岛市数学中考真题含答案解析](https://img.taocdn.com/s3/m/b368efee4bfe04a1b0717fd5360cba1aa8118c77.png)
10
∵点 B 是 的中点, ∴∠AOB= ∠AOC=70°, 由圆周角定理得,∠D= ∠AOB=35°, 故选:D.
6. 【解答】解: ∵沿过点 E 的直线折叠,使点 B 与点 A 重合, ∴∠B=∠EAF=45°, ∴∠AFB=90°, ∵点 E 为 AB 中点, ∴EF= AB,EF= ,
4
18.(6 分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校 随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制 了以下统计图.
请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查。 (2)补全条形统计图和扇形统计图。 (3)全校共有学生 1500 人,请估计该校学生一个月阅读 2 本课外书的人数约为 多少. 19.(6 分)某区域平面示意图如图,点 O 在河的一侧,AC 和 BC 表示两条互相垂 直的公路.甲勘测员在 A 处测得点 O 位于北偏东 45°,乙勘测员在 B 处测得点 O 位于南偏西 73.7°,测得 AC=840m,BC=500m.请求出点 O 到 BC 的距离. 参考数据:sin73.7°≈ ,cos73.7°≈ ,tan73.7°≈
2018年山东省临沂市中考数学试卷-答案
![2018年山东省临沂市中考数学试卷-答案](https://img.taocdn.com/s3/m/115694821a37f111f1855b70.png)
2018山东省临沂市初中学业水平考试数学答案解析第Ⅰ卷一、选择题。
1.【答案】A【解析】解:3101﹣<-<<,∴最小的是3-,故选:A . 【考点】实数大小比较2.【答案】B【解析】解:1 100万71.110=⨯,故选:B .【考点】科学计数法表示较大的数3.【答案】C【解析】解:AB CD ∥,64ABC C ∴∠=∠=︒,在BCD △中,180180644274CBD C D ∠=︒∠∠=︒︒︒=︒----,故选:C .【考点】平行线的性质.4.【答案】B【解析】解:222230434114112y y y y y y y -==+=--=--()故选:B . 【考点】解一元二次方程—配方法.5.【答案】C【解析】解:解不等式123x -<,得:1x ->,解不等式122x +≤,得:3x ≤, 则不等式组的解集为13x -<≤,所以不等式组的正整数解有1、2、3这3个,故选:C .【考点】一元一次不等式组的整数解.6.【答案】B【解析】解:EB CD ∥,ABE ACD ∴△∽△,AB BE AC CD ∴=,即 1.6 1.21.612.4CD=+, 10.5CD ∴=(米).故选:B .【考点】相似三角形的应用.7.【答案】C【解析】解:先由三视图确定该几何体是圆柱体,底面半径是22 1 cm ÷=,高是3 cm .所以该几何体的侧面积为22π136πcm ⨯⨯=().故选:C .【考点】由三视图判断几何体,几何体的表面积8.【答案】D【解析】解:如图所示:,一共有9种可能,符合题意的有1种, 故小华和小强都抽到物理学科的概率是:19. 故选:D .【考点】列表法与树状图法.9.【答案】C【解析】解:该公司员工月收入的众数为3 300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工11136111125+++++++=人,所以该公司员工月收入的中位数为3 400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选:C .【考点】统计量的选择.10.【答案】A【解析】解:设今年1—5月份每辆车的销售价格为x 万元,则去年的销售价格为1x +()万元/辆, 根据题意,得:()5000120%50001x x-=+, 故选:A . 【考点】由实际问题抽象出分式方程.11.【答案】B【解析】解:BE CE ⊥,AD CE ⊥,90E ADC ∴∠=∠=︒,90EBC BCE ∴∠+∠=︒.90BCE ACD ∠+∠=︒,EBC DCA ∴∠=∠.在CEB △和ADC △中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩CEB ADC AAS ∴△≌△(), 1BE DC ∴==,3CE AD ==.312DE EC CD ∴=-=-=故选:B .【考点】全等三角形的判定与性质.12.【答案】D 【解析】解:正比例函11y k x =与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为1. B ∴点的横坐标为:1-,故当12y y <时,x 的取值范围是:1x -<或01x <<. 故选:D .【考点】反比例函数与一次函数的交点问题.13.【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD AC =时,中点四边形是菱形,当对角线AC BD ⊥时,中点四边形是矩形,当对角线AC BD =,且AC BD ⊥时,中点四边形是正方形,故④选项正确,故选:A .【考点】中点四边形,行四边形的性质,菱形的判定与性质,矩形的判定与性质,正方形的性质14.【答案】D【解析】解:设原数为a ,则新数为21100a ,设新数与原数的差为y 则2211100100y a a a a =-=-+ 易得,当0a =时,0y =,则A 错误 10100-< ∴当150122100b a a =-=-=⎛⎫⨯- ⎪⎝⎭时,y 有最大值,B 错误,A 正确.当21y =时,2121100a a -+= 解得130a =,270a =,则C 错误.故选:D .【考点】规律型:数字的变化类.第Ⅱ卷二、填空题15.1【解析】解1=1.【考点】实数的性质.16.【答案】1【解析】解:()()()111m n mn m n --=-++,m n mn +=,()()()1111m n mn m n ∴--=-++=,故答案为1.【考点】整式的混合运算—化简求值.17.【答案】【解析】解:四边形ABCD 是平行四边形,6BC AD ∴==,OB D =,OA OC =,AC BC ⊥,8AC ∴==,4OC ∴=,OB ∴2BD OB ∴==故答案为:【考点】平行四边形的性质.18. 【解析】解:设圆的圆心为点O ,能够将ABC 完全覆盖的最小圆是ABC 的外接圆, 在ABC △中,60A ∠=︒,5BC cm =,120BOC ∴∠=︒,作OD BC ⊥于点D ,则90ODB ∠=︒,60BOD ∠=︒,52BD ∴=,30OBD ∠=︒, 52sin 60OB ∴=︒,得OB =2OB ∴即ABC △,. 【考点】三角形的外接圆与外心.19.【答案】411【解析】解:设0.36x =,则36.36100x =,10036x x ∴-=, 解得:411x =. 故答案为:411【考点】一元一次方程的应用.20.【答案】解:原式()()221242x x x x x x x ⎡⎤+-=-⋅⎢⎥---⎢⎥⎣⎦()()()()222142x x x x x x x x +---=⋅-- ()2442x x x x x -=⋅-- ()212x =-.【考点】分式的混合运算.21.【答案】解:(1)补充表格如下:(2)补全频数分布直方图如下:(3)由频数分布直方图知,1722x ≤<时天数最多,有10天.【考点】频率分布直方图.22.【答案】解:工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门,理由是:过B 作BD AC ⊥于D ,AB BD >,BC BD >,AC AB >,∴求出DB 长和2.1 m 比较即可,设 m BD x =,30A ∠=︒,45C ∠=︒,m DC BD x ∴==, m AD BD x ==,)21 m AC =,21x ∴=),2x ∴=, 即 2 m 2.1 m BD =<,∴工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门.【考点】垂径定理的应用.23.【答案】(1)证明:连接OD ,作OF AC ⊥于F ,如图,ABC 为等腰三角形,O 是底边BC 的中点,AO BC ∴⊥,AO 平分BAC ∠, AB 与O 相切于点D ,OD AB ∴⊥,而OF AC ⊥,OF OD ∴=,AC ∴是O 的切线;(2)解:在Rt BOD 中,设O 的半径为r ,则OD OE r ==,2221r r ∴+=+(),解得1r =,1OD ∴=,2OB =,30B ∴∠=︒,60BOD ∠=︒,30AOD ∴∠=︒,在Rt AOD △中,AD ==, ∴阴影部分的面积2AOD DOF S S =扇形﹣2160π-1212360⋅=⨯⨯π6-. 【考点】四边形与三角形的综合应用.24.【答案】解:(1)设PQ 解析式为y kx b =+把已知点010P (,),115,42⎛⎫ ⎪⎝⎭代入得1512410k b b ⎧=+⎪⎨⎪=⎩ 解得:1010k b =-⎧⎨=⎩,1010y x =-+ 当0y =时,1x =∴点Q 的坐标为()1,0点Q 的意义是:甲、乙两人分别从A ,B 两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为 km/h a ,乙的速度为 km/h b 由已知第53小时时,甲到B 地,则乙走1小时路程,甲走52133-=小时 1023a b b a +=⎧⎪∴⎨=⎪⎩,64a b =⎧∴⎨=⎩ ∴甲、乙的速度分别为6 km/h 、4 km/h【考点】二次函数.25.【答案】解:(1)由旋转可得,AE AB =,90AEF ABC DAB ∠=∠=∠=︒,EF BC AD ==,AEB ABE ∴∠=∠,又90ABE GDE AEB DEG ∠+∠=︒=∠+∠,EDG DEG ∴∠=∠,DG EG ∴=,FG AG ∴=,又DGF EGA ∠=∠,AEG Rt FDG SAS ∴△≌△(),DF AE ∴=,又AE AB CD ==,CD DF ∴=;(2)如图,当GB GC =时,点G 在BC 的垂直平分线上, 分两种情况讨论:①当点G 在AD 右侧时,取BC 的中点H ,连接GH 交AD 于M ,GC GB =,GH BC ∴⊥,∴四边形ABHM 是矩形,1122AM BH AD AG ∴===, GM ∴垂直平分AD ,GD GA DA ∴==,ADG ∴△是等边三角形,60DAG ∴∠=︒,∴旋转角60α=︒;②当点G 在AD 左侧时,同理可得ADG 是等边三角形,60DAG ∴∠=︒,∴旋转角36060300α=︒-︒=︒.【考点】旋转的性质;全等三角形的判定与性质;矩形的性质.26.【答案】解:(1)()1,0B ,1OB ∴=, 22OC OB ==,()2,0C ∴-,Rt ABC △中,tan 2ABC ∠=,2AC BC ∴=,23AC ∴=, 6AC ∴=,()26A ∴-,,把()26A ∴-,和()1,0B 代入2y x bx c =-++ 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩∴抛物线的解析式为:234y x x =+-﹣; (2)①()26A -,,()1,0B ,易得AB 的解析式为:22y x =-+,设()2,34P x x x -+-,则(),22E x x +-, 12PE DE =,()()2342222x x x x ∴-+-+=+---, 1x =(舍)或1-,()1,6P ∴-;②M 在直线PD 上,且()1,6P -,设()1,M y -,()()()222212616AM y y ∴=++-=+--,()2222114BM y y =++=+,()22212645AB =++=, 分三种情况:i )当90AMB ∠=︒时,有222AM BM AB +=, ()2216445y y ∴+-++=,解得:3y =(1,3M ∴-或(1,3-; ii )当90ABM ∠=︒时,有222AB BM AM +=, ()2245416y y ∴++=+-,1y =-, ()1,1M ∴--,iii )当90BAM ∠=︒时,有222AM AB BM +=,2216454y y ∴+-+=+(),132y =, 131,2M ⎛⎫∴ ⎪⎝⎭-;综上所述,点M 的坐标为:(3M ∴-1,或(1,3--或()1,1--或131,2⎛⎫ ⎪⎝⎭-. 【考点】二次函数综合题.。
山东省日照市2018年中考数学试题
![山东省日照市2018年中考数学试题](https://img.taocdn.com/s3/m/4771ab7dbd64783e08122b22.png)
试卷类型:A日照市二0一二年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,40分;第Ⅱ卷8页为非选择题,80分;全卷共10页,满分120分,考试时间为120分钟.QwKjHuQXVI 2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案. QwKjHuQXVI 第Ⅰ卷<选择题 共40分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题选对每小题得3分,第9~12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.QwKjHuQXVI 1.-5的相反数是(A>-5 <B )-51 <C )5 <D )51 2.如图,DE AB ∥,若 55ACD ∠=°,则∠A 等于 (A> 35° (B > 55° (C> 65° (D>125°3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方M.194亿用科学记数法表示为(A > 1.94×1010 (B>0.194×1010 (C> 19.4×109 (D> 1.94×109QwKjHuQXVI4.如图,是由两个相同的圆柱组成的图形,它的俯视图是(A> (B> (C> (D>5.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程<工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y<升)与浆洗一遍的时间x<分)之间函数关系的图象大致为QwKjHuQXVI6.如图,在4×4的正方形网格中,若将△ABC 则的绕着点A 逆时针旋转得到△AB ′C ′,长为<A )π <B )2π <C )7π <D )6π 7. 下列命题错误的是 (A>若 a<1,则(a -1>a-11=-a -1 (B> 若2)3(a -=a -3 ,则a ≥3(C>依次连接菱形各边中点得到的四边形是矩形 (D>81的算术平方根是98.在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F, 若EC=2BE,则FDBF的值是 (A> 21 (B> 31 (C> 41 (D> 519.已知关于x 的一元二次方程(k-2>2x2+(2k+1>x+1=0有两个不相等的实数根,则k 的取值范围是QwKjHuQXVI (A> k>34且k ≠2 (B>k ≥34且k ≠2 (C> k >43且k ≠2 (D>k ≥43且k ≠2QwKjHuQXVI 10.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有QwKjHuQXVI <A )29人 <B )30人 <C )31人 <D )32人 11.二次函数y=ax2+bx+c(a ≠0>的图象如图所示,给出下列结论:① b2-4ac>0;② 2a+b<0;③ 4a -2b+c=0;④ a ︰b ︰c= -1︰2︰3.其中正确的是QwKjHuQXVI (A> ①② (B> ②③ (C> ③④ (D>①④12.如图,在斜边长为1的等腰直角三角形OAB 中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;……;依次作下去,则第n 个正方形AnBnCnDn 的边长是QwKjHuQXVI <A )131-n <B )n31 <C )131+n <D )231+n试卷类型:A二0一二年中等学校招生考试数 学 试 题 第Ⅱ卷<非选择题 共80分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.已知x1、x2是方程2x2+14x -16=0的两实数根,那么2112x x x x +的值为 .得 分评 卷 人14.下图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息可得这些同学跳绳考试的平均成绩为 . GVevtAyuMf15.如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1 S2<用“>”、“<”或“=”填空).GVevtAyuMf6上,过A作AC⊥x 16.如图,点A在双曲线y=x轴,垂足为C,OA的垂直平分线交OC于点B,当OA=4时,则△ABC周长为 .GVevtAyuMf17.如图,过A、C 、D三点的圆的圆心为E,过B、F、E三点的圆的圆心为D,如果∠A=63°,那么∠B= .GVevtAyuMf三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分>解不等式组:()461,315,x x x x +>-⎧⎪⎨-≤+⎪⎩并把解集在数轴上表示出来.19.(本题满分8分>某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?GVevtAyuMf20.(本题满分8分>周日里,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑啊,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网.GVevtAyuMf (1>任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑. GVevtAyuMf得 分 评 卷 人得 分评 卷 人得 分评 卷 人(2>任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑. GVevtAyuMf 请你来评判,这两种游戏规则哪种公平,并说明理由噢!21.(本题满分9分>如图,在正方形ABCD 中,E 是BC 上的一点,连结AE ,作BF ⊥AE ,垂足为H,交CD 于F,作CG ∥AE,交BF 于G.GVevtAyuMf (1>求证CG=BH; (2>FC2=BF·GF ;(3>22AB FC =GBGF .22.(本题满分9分>如图,矩形ABCD 的两边长AB=18cm ,AD=4cm ,点P 、Q 分别从A 、B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x 秒,△PBQ 的面积为y<cm2).GVevtAyuMf <1)求y 关于x 的函数关系式,并写出x 的取值范围;<2)求△PBQ的面积的最大值. 23.(本题满分10分>得 分评 卷 人得 分评 卷 人得 分评 卷 人如图,二次函数y=x2+bx+c 的图象与x 轴交于A 、B 两点,且A 点坐标为<-3,0),经过B 点的直线交抛物线于点D<-2,-3).GVevtAyuMf <1)求抛物线的解读式和直线BD 解读式;<2)过x 轴上点E<a ,0)<E 点在B 点的右侧)作直线EF ∥BD,交抛物线于点F,是否存在实数a 使四边形BDFE 是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.GVevtAyuMf 24.(本题满分10分>在Rt △ABC 中,∠C =90°,AC=3,BC=4,AB=5.<Ⅰ>探究新知如图① ⊙O 是△ABC 的内切圆,与三边分别相切于点E 、F 、G.. <1)求证内切圆的半径r1=1; <2)求tan ∠OAG 的值;<Ⅱ)结论应用<1)如图②若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC 、AB 相切,⊙O2与BC 、AB 相切,求r2的值;GVevtAyuMf <2)如图③若半径为rn 的n 个等圆⊙O1、⊙O2、…、⊙On 依次外切,且⊙O1与AC 、AB 相切,⊙On 与BC 、AB 相切,⊙O1、⊙O2、…、⊙On 均与AB 相切,求rn 的值.GVevtAyuMf 得 分评 卷 人试卷类型:A二0一二年中等学校招生考试 数学试题参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种,对考生的其他解法,请参照评分意见进行评分.GVevtAyuMf 3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.GVevtAyuMf 一、选择题:(本大题共12小题,1-8每小题3分;9-12每小题4分,共40分>二、填空题:(本大题共5小题,每小题4分,共20分> 13. -865; 14. 175.55; 15. <; 16. 27; 17. 18°.三、解答题:(本大题共7小题, 共60分> 18.(本小题满分6分> 解:由不等式4x+6>1-x 得:x>-1, ……………………1分 由不等式3<x-1)≤x+5得:x ≤4, ……………………2分所以不等式组的解集为 -1 < x ≤4. ……………………4分 在数轴上表示不等式组的解集如图所示.…………6分19.(本小题满分8分>解:设九年级学生有x 人,根据题意,列方程得: ……………1分x 1936×0.8=881936x , …………………4分 整理得0.8<x+88)=x , 解之得x=352, ……………………6分 经检验x=352是原方程的解. ……………………7分答:这个学校九年级学生有352人. ……………………8分20.(本题满分8分>解:<1)用列表法计算概率朝上两枚硬币都是正面朝上的概率为:;41;两枚硬币都是反面朝上的概率为:41;两枚硬币一正面朝上一反面朝上的概率为:2“我”使用电脑的概率大;……………………4分<2)用列表法计算概率:点数之和被3整除的概率为:36=3; 点数之和被3除余数为1的概率为:3612=31;点数之和被3除余数为2的概率为:3612=31;三种情况的概率相等. ……………………7分 所以第一种游戏规则不公平,第二种游戏规则公平……………………8分 21.(本题满分9分>证明:<1)∵BF ⊥AE ,CG ∥AE, CG ⊥BF, ∴ CG ⊥BF.∵在正方形ABCD 中,∠ABH+∠CBG=90o, ∠CBG+∠BCG=90o,∠BAH+∠ABH=90o,∴∠BAH=∠CBG, ∠ABH=∠BCG, ……………………2分 AB=BC,∴△ABH ≌△BCG,∴CG=BH; ……………………4分 (2> ∵∠BFC=∠CFG, ∠BCF=∠CGF=90 o,∴△CFG ∽△BFC, ∴FCGFBF FC =, 即FC2=BF.GF ; (7)分(3> 由<2)可知,BC2=BG·BF , ∵AB=BC,∴AB2=BG.BF , (8)分∴22BC FC =BF BG BF FG ∙∙=BGFG 即22AB FC =GBGF ……………………9分 22.<本题满分9分) 解:<1)∵S △PBQ=21P B·BQ,PB=AB -AP=18-2x ,BQ=x , ∴y=21<18-2x )x ,即y=-x2+9x<0<x ≤4); (5)分<2)由<1)知:y=-x2+9x ,∴y=-(x -29)2 +481,∵当0<x ≤29时,y 随x 的增大而增大, ………………6分而0<x ≤4,∴当x=4时,y 最大值=20,即△PBQ 的最大面积是20cm2. (9)分23.<本题满分10分)解:<1)将A<-3,0),D(-2,-3>的坐标代入y=x2+bx+c 得,⎩⎨⎧-=+-=+-324039c b c b , 解得:⎩⎨⎧-==32c b , ∴y=x2+2x -3 ……………2分 由x2+2x -3=0,得: x1=-3,x2=1, ∴B 的坐标是<1,0),设直线BD 的解读式为y=kx+b,则⎩⎨⎧-=+-=+320b k b k , 解得:⎩⎨⎧-==11b k , ∴直线BD 的解读式为y=x -1; ……………………4分<2)∵直线BD 的解读式是y=x -1,且EF ∥BD,∴直线EF 的解读式为:y=x -a. (5)分若四边形BDFE 是平行四边形, 则DF ∥x 轴,∴D 、F 两点的纵坐标相等,即点F 的纵坐标为-3. ……………6分由⎩⎨⎧-=-+=ax y x x y 322,得 y2+<2a+1)y+a2+2a-3=0, 解得:y=()24132aa -±+-. ……………………7分令()24132aa -±+-=-3,解得:a1=1,a2=3. ……………………9分当a=1时,E 点的坐标<1,0),这与B 点重合,舍去; ∴当a=3时,E 点的坐标<3,0),符合题意. ∴存在实数a=3,使四边形BDFE 是平行四边形. ……………10分 24.<本题满分10分)<Ⅰ)<1)证明:在图①中,连结OE,OF,OA.∵四边形CEOF 是正方形,……………………1分CE=CF=r1.又∵AG=AE=3-r1,BG=BF=4-r1, AG+BG=5, ∴<3-r1)+<4-r1)=5. 即r1=1. ……………………3分<2)连结OG ,在Rt △AOG 中,∵r1=1, AG= 3-r1=2, tan ∠OAG=AG OG =21; ……………………5分<Ⅱ)(1>连结O1A 、O2B ,作O1D ⊥AB 交于点D 、O2E ⊥AB 交于点E ,AO1、BO2分别平分∠CAB 、∠ABC.GVevtAyuMf 由tan ∠OAG=21,知tan ∠O1AD=21, 同理可得:tan ∠O2BE=BE E O 2= 31,∴AD=2r2,DE=2r2,BE=3r2. …………………6分∵AD+DE+BE=5, r2=75;……………………8分(2>如图③,连结O1A 、OnB ,作O1D ⊥AB 交于点D 、O2E ⊥AB 交于点E 、…、OnM ⊥AB 交于点M.GVevtAyuMf 则AO1、BO2分别平分∠CAB 、∠ABC. tan ∠O1AD=21,tan ∠OnBM=31, AD=2rn ,DE=2rn ,…,MB=3rn ,又∵AD+DE+…+MB=5, 2rn+2rn+…+3rn=5, (2n+3> rn=5, rn=325n . …………………………………10分 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年山东省德州市中考数学试卷(含答案解析版)
![2018年山东省德州市中考数学试卷(含答案解析版)](https://img.taocdn.com/s3/m/009e7fa1dd88d0d233d46aaf.png)
2018年山东德州中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个均记零分。
1.(4分)(2018•德州)3的相反数是()A.3 B. C.﹣3 D.﹣2.(4分)(2018•德州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.(4分)(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×1084.(4分)(2018•德州)下列运算正确的是()A.a3•a2=a6B.(﹣a2)3=a6C.a7÷a5=a2D.﹣2mn ﹣mn=﹣mn5.(4分)(2018•德州)已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A.7 B.6 C.5 D.46.(4分)(2018•德州)如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④7.(4分)(2018•德州)如图,函数y=ax2﹣2x+1和y=ax ﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.8.(4分)(2018•德州)分式方程﹣1=的解为()A.x=1 B.x=2 C.x=﹣1 D.无解9.(4分)(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm210.(4分)(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③11.(4分)(2018•德州)我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”根据”杨辉三角”请计算(a+b)8的展开式中从左起第四项的系数为()A.84 B.56 C.35 D.2812.(4分)(2018•德州)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S ;③四边形ODBE的面积始终等于;④△BDE △BDE周长的最小值为6.上述结论中正确的个数是()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分。
山东潍坊市2018中考数学试题及答案解析
![山东潍坊市2018中考数学试题及答案解析](https://img.taocdn.com/s3/m/3127f4663968011ca300916e.png)
2018年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.(3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.(3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l7.(3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11x y21 A.22,3 B.22,4 C.21,3 D.21,48.(3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.(3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x ≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.(3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°) C.Q(3,600°)D.Q(3,﹣500°)11.(3分)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.(3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.(3分)因式分解:(x+2)x﹣x﹣2=.14.(3分)当m=时,解分式方程=会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.(3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.17.(3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x 轴正半轴于点A3;….按此作法进行下去,则的长是.18.(3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(本大题共7小题,共66分。
2018年山东省聊城市中考数学试卷(解析版)
![2018年山东省聊城市中考数学试卷(解析版)](https://img.taocdn.com/s3/m/e6b77d31852458fb770b56e6.png)
2018年山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.56.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k 的值是.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42a1533b解答下列问题:(1)这次抽样调查中的样本是;(2)统计表中,a=,b=;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.25.(12分)如图,已知抛物线y=ax2+bx与x轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边AB在x轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N 位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t (0≤t≤5)(1)求出这条抛物线的表达式;的值;(2)当t=0时,求S△OBN(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时S有最大值,最大值是多少?2018年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:用左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A.1.25×108亿次/秒B.1.25×109亿次/秒C.1.25×1010亿次/秒D.12.5×108亿次/秒【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A.110°B.115°C.120° D.125°【分析】直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.5.(3分)下列计算错误的是()A.a2÷a0•a2=a4 B.a2÷(a0•a2)=1C.(﹣1.5)8÷(﹣1.5)7=﹣1.5 D.﹣1.58÷(﹣1.5)7=﹣1.5【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可.【解答】解:∵a2÷a0•a2=a4,∴选项A不符合题意;∵a2÷(a0•a2)=1,∴选项B不符合题意;∵(﹣1.5)8÷(﹣1.5)7=﹣1.5,∴选项C不符合题意;∵﹣1.58÷(﹣1.5)7=1.5,∴选项D符合题意.故选:D.【点评】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(3分)已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.【分析】把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的方法部分即可.【解答】解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.7.(3分)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【分析】直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.【解答】解:∵∠A=60°,∠ADC=85°,∴∠B=85°﹣60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°﹣95°﹣50°=35°故选:D.【点评】此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.8.(3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2 D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.9.(3分)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:,共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率=.故选:B.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.10.(3分)如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:A.【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.11.(3分)如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)【分析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【解答】解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.【点评】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12.(3分)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.【点评】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k 的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.14.(3分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是50cm.【分析】设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.【解答】解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.(3分)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是540°或360°或180°.【分析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【解答】解:n边形的内角和是(n﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.故答案为:540°或360°或180°.【点评】本题主要考查了多边形的内角和的计算公式,理解:剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,是解决本题的关键.17.(3分)若x为实数,则[x]表示不大于x的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x的最小整数,对任意的实数x都满足不等式[x]≤x<[x]+1.①利用这个不等式①,求出满足[x]=2x﹣1的所有解,其所有解为x=0.5或x=1.【分析】根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.【解答】解:∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x﹣1,∴2x﹣1≤x<2x﹣1+1,解得,0<x≤1,∵2x﹣1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.【点评】本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.19.(8分)时代中学从学生兴趣出发,实施体育活动课走班制.为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1200名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:球类名称乒乓球羽毛球排球篮球足球人数42a1533b解答下列问题:(1)这次抽样调查中的样本是时代中学学生最喜欢的一种球类运动情况;(2)统计表中,a=39,b=21;(3)试估计上述1200名学生中最喜欢乒乓球运动的人数.【分析】(1)直接利用样本的定义分析得出答案;(2)用喜欢排球的人数除以其所占的百分比即可求得样本容量,用样本容量乘以羽毛球所占的百分比即可求得a,用样本容量减去其他求得b值;(3)用总人数乘以喜欢乒乓球的人所占的百分比即可.【解答】解:(1)这次抽样调查中的样本是:时代中学学生最喜欢的一种球类运动情况;故答案为:时代中学学生最喜欢的一种球类运动情况;(2)∵喜欢蓝球的有33人,占22%,∴样本容量为33÷22%=150;a=150×26%=39(人),b=150﹣39﹣42﹣15﹣33=21(人);故答案为:39,21;(3)最喜欢乒乓球运动的人数为:1200×=336(人).【点评】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.20.(8分)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH ⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.【点评】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.21.(8分)建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土方量为120万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工150天完成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工40天后甲队返回,两队又共同施工了110天,这时甲乙两队共完成土方量103.2万立方.(1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方?(2)在抽调甲队外援施工的情况下,为了保证150天完成任务,公司为乙队新购进了一批机械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时完成任务?【分析】(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据“甲乙两队合作150天完成土方量120万立方,甲队施工110天、乙队施工150天完成土方量103.2万立方”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据完成工作的总量=甲队完成的土方量+乙队完成的土方量,即可得出关于a 的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:(1)设甲队原计划平均每天的施工土方量为x万立方,乙队原计划平均每天的施工土方量为y万立方,根据题意得:,解得:.答:甲队原计划平均每天的施工土方量为0.42万立方,乙队原计划平均每天的施工土方量为0.38万立方.(2)设乙队平均每天的施工土方量比原来提高a万立方才能保证按时完成任务,根据题意得:110×0.42+(40+110)×(0.38+a)≥120,解得:a≥0.112.答:乙队平均每天的施工土方量至少要比原来提高0.112万立方才能保证按时完成任务.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出关于a的一元一次不等式.22.(8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)【分析】作CE⊥BD、AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠ADB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.23.(8分)如图,已知反比例函数y=(x>0)的图象与反比例函数y=(x <0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=(x>0)图象上的两点,连接AB,点C(﹣2,n)是函数y=(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.【分析】(1)先由点A确定k,再求m的值,根据关于y轴对称,确定k2再求n;(2)先设出函数表达式,再代入A、B两点,得直线AB的表达式;(3)过点A、B作x轴的平行线,过点C、B作y轴的平行线构造矩形,△ABC 的面积=矩形面积﹣3个直角三角形的面积.【解答】解:(1)因为点A、点B在反比例函数y=(x>0)的图象上,∴k1=1×4=4,∴m×4=k1=4,∴m=1∵反比例函数y=(x>0)的图象与反比例函数y=(x<0)的图象关于y 轴对称.∴k2=﹣k1=﹣4∴﹣2×n=﹣4,∴n=2(2)设直线AB所在的直线表达式为y=kx+b把A(1,4),B(4,1)代入,得解得∴AB所在直线的表达式为:y=﹣x+5(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3∴S△ABC =S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=【点评】本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.24.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED ⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.【分析】(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;(2)证△BDE∽△BEC得=,据此可求得BC的长度,再证△AOE∽△ABC 得=,据此可得AD的长.【解答】解:(1)如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC为⊙O的切线;。
山东省东营市2018年中考数学试卷及参考答案
![山东省东营市2018年中考数学试卷及参考答案](https://img.taocdn.com/s3/m/5f5f249569eae009591bec23.png)
(1) 求线段OC的长度; (2) 设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式; (3) 在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的
坐标;若不存在,请说明理由.
参考答案 1.
2.
3.
4.
5.
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.
(1) 求证:∠CAD=∠BDC;
(2) 若BD= AD,AC=3,求CD的长.
23. 关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角. (1) 求sinA的值; (2) 若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长. 24. 如图
(1) 某学校“智慧方园”数学社团遇到这样一个题目: 如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=
,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,7),点M为x轴上的一个动点,若要使MB﹣ MA的值最大,则点M的坐标为________.
18. 如图,在平面直角坐标系中,点A1 , A2 , A3 , …和B1 , B2 , B3 , …分别在直线y= x+b和x轴上.△OA1B 1 , △B1A2B2 , △B2A3B3 , …都是等腰直角三角形.如果点A1(1,1),那么点A2018的纵坐标是________.
山东省烟台市2018年中考数学试卷(含答案解析)
![山东省烟台市2018年中考数学试卷(含答案解析)](https://img.taocdn.com/s3/m/a9981ca4a417866fb94a8e83.png)
山东省烟台市2018年中考数学试卷一、选择题1.﹣的倒数是()A. 3B. ﹣3C.D. ﹣2.在学习《图形变化的简单应用》这一节时,老师要求同学们利用图形变化设计图案.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A. 0.827×1014B. 82.7×1012C. 8.27×1013D. 8.27×10144.由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为()A. 9B. 11C. 14D. 185.甲、乙、丙、丁4支仪仗队队员身高的平均数及方差如下表所示:哪支仪仗队的身高更为整齐?()A. 甲B. 乙C. 丙D. 丁6.下列说法正确的是()A. 367人中至少有2人生日相同B. 任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C. 天气预报说明天的降水概率为90%,则明天一定会下雨D. 某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖7.利用计算器求值时,小明将按键顺序为显示结果记为a,的显示结果记为b.则a,b的大小关系为()A. a<bB. a>bC. a=bD. 不能比较8.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A. 28B. 29C. 30D. 319.对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为()A. 7B. 6C. 5D. 410.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE 的度数为()A. 56°B. 62°C. 68°D. 78°11.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A. ①③B. ②③C. ②④D. ③④12.如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以lcm/s的速度沿A→D→C方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A. B. C. D.二、填空题13.(π﹣3.14)0+tan60°=________.14.与最简二次根式5 是同类二次根式,则a=________.15.如图,反比例函数y= 的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=________.16.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为________.17.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是________.18.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=________.三、解答题19.先化简,再求值:(1+ )÷ ,其中x满足x2﹣2x﹣5=0.20.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了________人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为________;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“________”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.21.汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)22.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?23.如图,已知D,E分别为△ABC的边AB,BC上两点,点A,C,E在⊙D上,点B,D在⊙E上.F为弧BD上一点,连接FE并延长交AC的延长线于点N,交AB于点M.(1)若∠EBD为α,请将∠CAD用含α的代数式表示;(2)若EM=MB,请说明当∠CAD为多少度时,直线EF为⊙D的切线;(3)在(2)的条件下,若AD= ,求的值.24.如图【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.(1)请参考小明的思路,任选一种写出完整的解答过程.(2)【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC= ,求∠APB的度数.25.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+ 分别与y 轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N 的坐标;若不存在,请说明理由.答案解析部分一、选择题1.【答案】B【解析】【解答】解:﹣的倒数是﹣3,故选:B.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.2.【答案】C【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,也是中心对称图形,故不符合题意;C、不是轴对称图形,是中心对称图形,故符合题意;D、是轴对称图形,也是中心对称图形,故不符合题意.故答案为:C.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;把一个图形绕着某点旋转180 °后能与其自身重合的图形就是中心对称图形;根据定义一一判断即可。
2018年山东省威海市中考数学试卷附详细答案(原版+解析版)
![2018年山东省威海市中考数学试卷附详细答案(原版+解析版)](https://img.taocdn.com/s3/m/fc19c7426c175f0e7cd137e2.png)
2018年山东省威海市中考数学试卷一、选择题1.(2018年山东省威海市)﹣2的绝对值是()A.2 B.﹣ C.D.﹣22.(2018年山东省威海市)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a23.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(2018年山东省威海市)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.6.(2018年山东省威海市)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(2018年山东省威海市)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(2018年山东省威海市)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣19.(2018年山东省威海市)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(2018年山东省威海市)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.511.(2018年山东省威海市)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.12.(2018年山东省威海市)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(2018年山东省威海市)分解因式:﹣a2+2a﹣2=.14.(2018年山东省威海市)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(2018年山东省威海市)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(2018年山东省威海市)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E 是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(2018年山东省威海市)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(2018年山东省威海市)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x 于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、解答题(本题包括7小题,共66分)19.(2018年山东省威海市)解不等式组,并将解集在数轴上表示出来.20.(2018年山东省威海市)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(2018年山东省威海市)如图,将矩形ABCD(纸片)折叠,使点B与AD 边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(2018年山东省威海市)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(2018年山东省威海市)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(2018年山东省威海市)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(2018年山东省威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A (﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.2018年山东省威海市中考数学试卷参考答案与试题解析一、选择题1.(2018年山东省威海市)﹣2的绝对值是()A.2 B.﹣ C.D.﹣2【分析】根据负数的绝对值等于它的相反数可得答案.【解答】解:﹣2的绝对值是2,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质.2.(2018年山东省威海市)下列运算结果正确的是()A.a2•a3=a6 B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、去括号法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、去括号法则,正确掌握相关运算法则是解题关键.3.(2018年山东省威海市)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键.4.(2018年山东省威海市)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(2018年山东省威海市)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.【分析】首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x﹣3y的值为多少即可.【解答】解:∵5x=3,5y=2,∴52x =32=9,53y =23=8,∴52x ﹣3y ==.故选:D .【点评】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a ≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.6.(2018年山东省威海市)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣x 2刻画,斜坡可以用一次函数y=x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:2【分析】求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D .【解答】解:当y=7.5时,7.5=4x ﹣x 2,整理得x 2﹣8x +15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.【点评】本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.(2018年山东省威海市)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8.(2018年山东省威海市)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.9.(2018年山东省威海市)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>0【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:(A)由图象开口可知:a<0由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.【点评】本题考查二次函数的综合问题,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.10.(2018年山东省威海市)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.5【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.【点评】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.11.(2018年山东省威海市)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.(2018年山东省威海市)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是( )A .18+36πB .24+18πC .18+18πD .12+18π【分析】作FH ⊥BC 于H ,连接FH ,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt △ABE ≌△EHF 得∠AEF=90°,然后利用图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF 进行计算.【解答】解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt △ABE ≌△EHF ,∴∠AEB=∠EFH ,而∠EFH +∠FEH=90°,∴∠AEB +∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S 正方形ABCD +S 半圆﹣S △ABE ﹣S △AEF=12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C .【点评】本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.二、填空题(本题包括6小题,每小题3分,共18分)13.(2018年山东省威海市)分解因式:﹣a2+2a﹣2=﹣(a﹣2)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.14.(2018年山东省威海市)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是m=4.【分析】若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)>0,且m﹣5≠0,解得m<5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(2018年山东省威海市)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为﹣6<x<2.【分析】利用待定系数法求出k、m,再利用图象法即可解决问题;【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.【点评】本题考查反比例函数的性质、三角形的面积、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(2018年山东省威海市)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E 是△ACD的内切圆,连接AE,BE,则∠AEB的度数为135°.【分析】如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题;【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.【点评】本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.(2018年山东省威海市)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为44﹣16.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.18.(2018年山东省威海市)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x 于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.三、解答题(本题包括7小题,共66分)19.(2018年山东省威海市)解不等式组,并将解集在数轴上表示出来.【分析】根据解一元一次不等式组的步骤,大小小大中间找,可得答案【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.【点评】本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.20.(2018年山东省威海市)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?【分析】设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.(2018年山东省威海市)如图,将矩形ABCD(纸片)折叠,使点B与AD 边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.(2018年山东省威海市)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 4.5首;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.【分析】(1)根据统计图中的数据可以求得这组数据的中位数;(2)根基表格中的数据可以解答本题;(3)根据统计图和表格中的数据可以分别计算出比赛前后的众数和中位数,从而可以解答本题.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次举办后的效果比较理想.【点评】本题考查扇形统计图、条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(2018年山东省威海市)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(2018年山东省威海市)∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(2018年山东省威海市)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2018年山东省威海市)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(2018年山东省威海市)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(2018年山东省威海市)∴==6,即最快在第7个月可还清10万元的无息贷款.(2018年山东省威海市)【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.24.(2018年山东省威海市)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.【分析】(1)根据四边形ANFM是平行四边形,AB⊥AE,即可得到四边形ANFM 是矩形,再根据FN=FM,即可得出矩形ANFM是正方形,AB=AE,结合∠1=∠3,∠C=∠D=90°,即可得到△ABC≌△EAD,进而得到BC=AD,CA=DE,即可得出=;(2)依据四边形MANF为矩形,MF=AE,NF=AB,tan∠FMN=,即可得到=,依据△ABC∽△EAD,即可得到==,即可得到AD的长;(3)根据△ABC和△ADE都是直角三角形,M,N分别是AB,AE的中点,即可得到BM=CM,NA=ND,进而得出∠4=2∠1,∠5=2∠3,根据∠4=∠5,即可得到∠FMC=∠FND,再根据FM=DN,CM=NF,可得△FMC≌△DNF;(4)由BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,即可得到:△BMF≌△NFM≌△MAN≌△FNE.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.【点评】本题属于相似形综合题,主要考查了全等三角形的判定与性质,相似三角形的判定与性质,直角三角形的性质以及矩形的判定与性质的综合运用,解决问题的关键是判定全等三角形或相似三角形,利用全等三角形的对应边相等,相似三角形的对应边成比例得出有关结论.25.(2018年山东省威海市)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A (﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.【分析】(1)利用待定系数法问题可解;(2)依据垂直平分线性质,利用勾股定理构造方程;(3)由题意画示意图可以发现由两种可能性,确定方案后利用锐角三角函数定。
2018年山东临沂中考数学试卷(答案解析版)
![2018年山东临沂中考数学试卷(答案解析版)](https://img.taocdn.com/s3/m/83f7dd7d5ef7ba0d4a733bf3.png)
2018年山东临沂中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2018•临沂)在实数﹣3,﹣1,0,1中,最小的数是( )A .﹣3B .﹣1C .0D .12.(3分)(2018•临沂)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A .1.1×103人B .1.1×107人C .1.1×108人D .11×106人3.(3分)(2018•临沂)如图,AB ∥CD ,∠D=42°,∠CBA=64°,则∠CBD 的度数是( )A .42°B .64°C .74°D .106°4.(3分)(2018•临沂)一元二次方程y 2﹣y ﹣34=0配方后可化为( ) A .(y +12)2=1 B .(y ﹣12)2=1 C .(y +12)2=34 D .(y ﹣12)2=345.(3分)(2018•临沂)不等式组{1−2x <3x+12≤2的正整数解的个数是( ) A .5 B .4 C .3 D .26.(3分)(2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m7.(3分)(2018•临沂)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.(3分)(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .13B .14C .16D .199.(3分)(2018•临沂)如表是某公司员工月收入的资料. 月收入/元45000 18000 10000 5500 5000 3400 3300 1000 人数 1 1 1 3 6 1 11 1 能够反映该公司全体员工月收入水平的统计量是( )A .平均数和众数B .平均数和中位数C .中位数和众数D .平均数和方差10.(3分)(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .5000x+1=5000(1−20%)xB .5000x+1=5000(1+20%)xC .5000x−1=5000(1−20%)xD .5000x−1=5000(1+20%)x11.(3分)(2018•临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32B .2C .2√2D .√1012.(3分)(2018•临沂)如图,正比例函y 1=k 1x 与反比例函数y 2=k 2x 的图象相交于A 、B 两点,其中点A 的横坐标为1.当y 1<y 2时,x 的取值范围是( )A .x <﹣1或x >1B .﹣1<x <0或x >1C .﹣1<x <0或0<x <1D .x <﹣1或0<x <l13.(3分)(2018•临沂)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC=BD ,则四边形EFGH 为矩形;②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .414.(3分)(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2018•襄阳)计算:|1﹣√2|= .16.(3分)(2018•临沂)已知m +n=mn ,则(m ﹣1)(n ﹣1)= .17.(3分)(2018•临沂)如图,在▱ABCD 中,AB=10,AD=6,AC ⊥BC .则BD= .18.(3分)(2018•临沂)如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .19.(3分)(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7⋅为例进行说明:设0.7⋅=x ,由0.7⋅=0.7777…可知,l0x=7.7777…,所以l0x ﹣x=7,解方程,得x=79,于是.得0.7⋅=79.将0.36⋅⋅写成分数的形式是 .三、解答题(本大题共7小题,共63分)20.(7分)(2018•临沂)计算:(x+2x2−2x﹣x−1x2−4x+4)÷x−4x.21.(7分)(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17317≤x<2222≤x<2727≤x<322(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.22.(7分)(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(√3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m 的圆形门?23.(9分)(2018•临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=√3,BE=1.求阴影部分的面积.24.(9分)(2018•临沂)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(11分)(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.26.(13分)(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE . ①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2018年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
山东省济南市2018年中考数学试卷(含答案解析)
![山东省济南市2018年中考数学试卷(含答案解析)](https://img.taocdn.com/s3/m/c06e59ddba1aa8114531d988.png)
山东省济南市2018年中考数学试卷一、选择题1.4的算术平方根为( )A. 2B. -2C. ±2D. 162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A. 50°B. 60°C. 140°D. 150°3.下列运算中,结果是的是( )A. B. a10÷a2 C. (a2)3 D. (-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A. 3.7×102B. 3.7×103C. 37×102D. 0.37×1045.下列图案既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是47.化简的结果是()A. B. C. D.8.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形9.若一次函数的函数值随的增大而增大,则()A. B. C. D.10.在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )A. ∠E=∠CDFB. EF=DFC. AD=2BFD. BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.12.如图,直线与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A. (,3)B. (,)C. (2,)D. (,4)13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2B.C.D.14.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A. t≥﹣1B. ﹣1≤t<3C. ﹣1≤t<8D. 3<t<8二、填空题16.|﹣7﹣3|=________.17.分解因式:x2+2x+1=________18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.19.若和的值相等,则________.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________.三、解答题22.(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.23.(1)如图,在四边形ABCD是矩形,点E是AD的中点,求证:EB=EC.(2)如图,AB与相切于C,,⊙O的半径为6,AB=16,求OA的长.24. 2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.27.如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1)AE=________,正方形ABCD的边长=________;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若=30°,求菱形的边长.28.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积 ;(2)如图2,直线AB 与 轴相交于点P ,点M 为线段OA 上一动点, 为直角,边MN 与AP 相交于点N ,设 ,试探求: ① 为何值时为等腰三角形;② 为何值时线段PN 的长度最小,最小长度是多少.答案解析部分一、选择题1.【答案】A【解析】【解答】解:4的平方根是±2,所以4的算术平方根是2.【分析】一个正数有两个平方根,其中正的平方根是算术平方根。
2018年山东东营中考数学试卷(含解析)
![2018年山东东营中考数学试卷(含解析)](https://img.taocdn.com/s3/m/c1a45458ff00bed5b9f31dc4.png)
2018年山东省东营市初中毕业、升学考试数 学(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018山东省东营市,1,3分) 15-的倒数是( ) A. -5 B. 5 C. 15- D. 15【答案】A【解析】15-的倒数是-5.求一个数的倒数就是用1去除以这个数,若这个数是分数,则是分子分母颠倒位置。
故选A.【知识点】倒数的概念。
2.(2018山东省东营市,2,3分)下列运算正确的是( )A. 2222()x y x xy y --=--- B. 224a a a +=C. 236a a a =gD. 2224()xy x y =【答案】 D.【解析】选项A 考查完全平方公式与去括号,正确答案应是:2222()+x y x xy y --=--.选项B 考查合并同类项,按照合同类项的法则应是系数相加减,字母及字母的指数不变。
正确答案应是:2222a a a +=.选项C 考查同底数的幂的乘法法则,底数不变,指数相加。
正确答案应是:235a a a =g选项D 考查积的乘方法则,等于积中每一个因式的乘方的积。
故正确。
故选D.【知识点】整式的运算相关法则。
如:合并同类项法则,幂的法则,完全平方公式等。
3.(2018山东省东营市,3,3分) 下列图形,根据AB ∥CD ,能得到∠1=∠2的是( )A. B. C. D.【答案】B【解析】选项A 中,∠1与∠2是一对同旁内角,一般情况下不能由AB ∥CD 得到∠1=∠2。
选项B 中∠1与∠2的对顶角是同位角,所以能得到∠1=∠2.选项C 中,∠1与∠2不是由AB 与CD 被第三条直线所截得的内错角,而是由AC 与BD 被AD 所截得的内错角,因此也不能得到∠1=∠2。
选项D 中∠1与∠2不是由AB 与CD 被第三条直线所截得的角,而是AC 与BD 被CD 所截得的同旁内角,因此也不能得到∠1=∠2 故选B.【知识点】平行线的性质,同位角,同旁内角,内错角的识别。
2018年山东省济宁市中考数学试卷(含答案与解析)
![2018年山东省济宁市中考数学试卷(含答案与解析)](https://img.taocdn.com/s3/m/0da79972c850ad02de80413b.png)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山东省济宁市2018年初中学业水平考试数 学(本试卷满分100分,考试时间120分钟)第Ⅰ卷(非选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)( )A.1B.1-C.3D.3-2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部 署,教育部会同有关部门近五年来共新建、改扩建校舍186 000 000平方米,其中数据186 000 000用科学记数法表示是( )A.81.8610⨯B.618610⨯C.91.8610⨯D.90.18610⨯ 3.下列运算正确的是( )A.842a a a ÷=B.224a a =()C.236•a a a =D.2242a a a +=4.如图,点B ,C ,D 在⊙O 上,若130BCD ∠=︒,则BOD ∠的度数是( )A.50°B.60°C.80°D.100° 5.多项式34a a -分解因式的结果是( )A.24a a -()B.(2)(2)a a a -+C.22a a a -+()()D.22a a -()6.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为10(-,),2AC =.将Rt ABC △先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A.2,2()B.1,2()C.1,2(-)D.2,1-()7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A.众数是5B.中位数是5C.平均数是6D.方差是3.68.如图,在五边形ABCDE 中,300A B E ∠+∠+∠=︒,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度数是( )A.50°B.55°C.60°D.65° 9.一个几何体的三视图如图所示,则该几何体的表面积是( )A.242π+B.164π+C.168π+D.1612π+10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页)数学试卷 第4页(共28页)A B C D第Ⅱ卷(非选择题 共70分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上) 11.若二次根式1x +在实数范围内有意义,则x 的取值范围是 .12.在平面直角坐标系中,已知一次函数21y x =-+的图象经过111,P x y ()、222,P x y ()两点,若12x x <,则1y 2y .(填“>”“<”“=”) 13.在ABC △中,点E ,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接 DE ,DF ,EF ,请你添加一个条件 ,使BED △与FDE △全等.14.如图,在一笔直的海岸线l 上有相距2km 的A ,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60°的方向上,从B 站测得船C 在北偏东30°的方向上,则船C 到海岸线l 的距离是 km .15.如图,点A 是反比例函数4y x=(0x >)图象上一点,直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD x ⊥轴,垂足为D ,连接DC ,若BOC△的面积是4,则DOC △的面积是 .三、解答题(本大题共7小题,共55分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分6分)化简:(2)(2)1)(5)y y y y +--+-(17.(本小题满分7分)某校开展研学旅行活动,准备去的研学基地有A (曲阜)、B (梁山)、C (汶上),D (泗水),每位学生只能选去一个地方,王老师对本班全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示). (1)求该班的总人数,并补全条形统计图. (2)求D (泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18.(本小题满分7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒 EF ;③T 型尺(CD 所在的直线垂直平分线段AB ).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页)数学试卷 第6页(共28页)(1)在图1中,请你画出用T 形尺找大圆圆心的示意图(保留画图痕迹,不写画法); (2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积, 具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M ,N 之间的距离,就可求出环形花坛的面积,如果测得MN=10 m ,请你求出这个环形花坛的面积.19.(本小题满分7分)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄 清理养鱼网箱人数/人 清理捕鱼网箱人数/人 总支出/元 A 15 9 57 000 B 10 16 68 000 (1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的 人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102 000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?20.(本小题满分8分)如图,在正方形ABCD 中,点E ,F 分别是边AD ,BC 的中点,连接DF ,过点E 作EH DF ⊥,垂足为H ,EH 的延长线交DC 于点G . (1)猜想DG 与CF 的数量关系,并证明你的结论;(2)过点H 作MN CD ∥,分别交AD ,BC 于点M ,N ,若正方形ABCD 的边长为10,点P 是MN 上一点,求PDC △周长的最小值.21.(本小题满分9分)知识背景当0a >且0x >时,因为20a x x ⎛⎫- ⎪ ⎪⎝⎭≥,所以20a x a x -+≥,从而2ax a x +≥(当x a =时取等号).设函数(0,0)ay x a x x=+>>,由上述结论可知:当x a =时,该函数有最小值为2a .应用举例已知函数为10=x y x (>)与函数204x y x =(>),则当42x ==时,124y y x x+=+有最小值为24=4.解决问题(1)已知函数为133y x x =+(>﹣)与函数22(3)39x x y =++(>﹣),当x 取何值时,21y y 有最小值?最小值是多少? (2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x 天,则当x 取何值时,该设备平均每天的租货使用成本最低?最低是多少元?22.(本小题满分11分)如图,已知抛物线20y ax bx c a =++≠()经过点30A (,),1,0B (-),0,3C (-). (1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山东省济宁市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B1=-.故选B .【考点】立方根 2.【答案】A【解析】解:将186 000 000用科学记数法表示为:81.8610⨯.故选:A . 【考点】科学计数法 3.【答案】B【解析】解:A.864a a a ÷=,故此选项错误;B.224()a a =,故原题计算正确;C.235•a a a =,故此选项错误;D.2222a a a +=,故此选项错误;故选:B . 【考点】整式的运算 4.【答案】D【解析】解:圆上取一点A ,连接AB ,AD , ∵点A 、B ,C ,D 在⊙O 上,130BCD ∠=︒, ∴50BAD ∠=︒,∴100BOD ∠=︒,故选:D .【考点】圆周角定理和圆心角定理 5.【答案】B【解析】解:()324422a a a a a a a -==-+(-)().故选:B . 【考点】因式分解 6.【答案】A【解析】解:∵点C 的坐标为1,0(-),2AC =, ∴点A 的坐标为()3,0-,5 / 14如图所示,将Rt ABC △先绕点C 顺时针旋转90°,则点A′的坐标为1,2(-), 再向右平移3个单位长度,则变换后点A′的对应点坐标为2,2(),故选:A .【考点】旋转和平移 7.【答案】D【解析】解:A.数据中5出现2次,所以众数为5,此选项正确;B.数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 平均数为75351056++++÷=(),此选项正确;D 方差为22221[()()()()76562361065]5.6⨯+⨯++=----,此选项错误;故选:D . 【考点】众数、中位数、平均数和方差 8.【答案】C【解析】解:∵在五边形ABCDE 中,300A B E ∠+∠+∠=︒, ∴240ECD BCD ∠+∠=︒,又∵DP 、CP 分别平分EDC BCD ∠∠、, ∴120PDC PCD ∠+∠=︒,∴CDP △中,180()18012060P PDC PCD ∠=︒-∠+∠=︒-︒=︒. 故选:C .【考点】五边形的内角和、角平分线的性质、三角形的内角和定理 9.【答案】D【解析】解:该几何体的表面积为1122244+224121622⨯+⨯+⨯⨯=+πππ,故选:D . 【考点】几何体的三视图、根据三视图求几何体的表面积 10.【答案】C【解析】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C .数学试卷 第11页(共28页)数学试卷 第12页(共28页)【考点】探索规律第Ⅱ卷二、填空题 11.【答案】1x ≥∴10x -≥, 解得1x ≥. 故答案为:1x ≥.【考点】二次根式有意义的条件 12.【答案】>【解析】解:∵一次函数21y x =+-中20k =-<, ∴y 随x 的增大而减小, ∵12x x <, ∴12y y >.故答案为>.【考点】一次函数的增减性 13.【答案】D 是BC 的中点【解析】解:当D 是BC 的中点时,BED FDE △≌△ ∵E ,F 分别是边AB ,AC 的中点, ∴EF BC ∥,当E ,D 分别是边AB ,BC 的中点时,ED AC ∥, ∴四边形BEFD 是平行四边形, ∴BED FDE △≌△,故答案为:D 是BC 的中点.【考点】三角形的中位线定理、全等三角形的判定 14.【解析】解:过点C 作CD AB ⊥于点D ,根据题意得:906030CAD ∠=︒-︒=︒,903060CBD ∠=︒︒=︒-, ∴30ACB CBD CAD ∠=∠∠=︒-, ∴CAB ACB ∠=∠, ∴2km BC AB ==,在Rt CBD △中,•602CD BC sin =︒=.7 / 14. 【考点】解直角三角形15.【答案】2【解析】解:设4A(a )(a 0)a,>,∴4AD a=,OD a =,∵直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,∴0,C b (),(,)0bB k-,∵BOC △的面积是4, ∴11422BOCbSOB OC b k=⨯=⨯⨯==4, ∴28b k =,∴28b k =①∴AD x ⊥轴, ∴OC AD ∥, ∴BOC BDA △∽△, ∴OB OCBD AD =, ∴4b b k b a ka=+, ∴24a k ab +=②,联立①②得,4ab =--4ab =,∴11222DOCSOD OC ab ===数学试卷 第15页(共28页)数学试卷 第16页(共28页)故答案为2-.【考点】求三角形的面积、利用几何图形的等量关系求一次函数的解析式、求图象交点的坐标 三、解答题16.【答案】解:原式2245541y y y y y =++=+原式--﹣-【解析】解:原式2245541y y y y y =++=+原式--﹣-17.【答案】解:(1)该班的人数为165032%=人,则B 基地的人数为5024%12⨯=人,补全图形如下:(2)D (泗水)所在扇形的圆心角度数为14360=100.850︒⨯︒ (3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为41=123. 【解析】(1)该班的人数为165032%=人,则B 基地的人数为5024%12⨯=人,补全图形如下:(2)D (泗水)所在扇形的圆心角度数为14360=100.850︒⨯︒9 / 14(3)画树状图为:共有12种等可能的结果数,其中所抽取的2人中恰好有1人选去曲阜,1人选去梁山的占4种,所以所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率为41=123. 18.【答案】解:(1)如图点O 即为所求;(2)设切点为C ,连接OM ,OC . ∵MN 是切线, ∴OC MN ⊥, ∴5CM CN ==,∴22225OM OC CM ==-, ∴22••25S OM OC πππ==圆环-. 【解析】(1)如图点O 即为所求;(2)设切点为C ,连接OM ,OC . ∵MN 是切线, ∴OC MN ⊥, ∴5CM CN ==,∴22225OM OC CM ==-, ∴22••25S OM OC πππ==圆环-.19.【答案】解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩,答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元;数学试卷 第19页(共28页)数学试卷 第20页(共28页)(2)设m 人清理养鱼网箱,则40m (-)人清理捕鱼网箱, 根据题意,得:20003000(40)10200040m m m m+-⎧⎨-⎩≤<,解得:1820m ≤<, ∵m 为整数,∴18m =或19m =,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 【解析】(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩,答:清理养鱼网箱的人均费用为2 000元,清理捕鱼网箱的人均费用为3 000元; (2)设m 人清理养鱼网箱,则40m (-)人清理捕鱼网箱, 根据题意,得:20003000(40)10200040m m m m +-⎧⎨-⎩≤<,解得:1820m ≤<,∵m 为整数,∴18m =或19m =,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱. 20.【答案】解:(1)结论:2CF DG =. 理由:∵四边形ABCD 是正方形,∴AD BC CD AB ===,90ADC C ∠=∠=︒, ∵DE AE =,∴2AD CD DE ==, ∵EG DF ⊥, ∴90DHG ∠=︒,∴90CDF DGE ∠+∠=︒,90DGE DEG ∠+∠=︒, ∴CDF DEG ∠=∠, ∴DEG CDF △∽△,∴12DG DE CF DC == ∴2CF DG =.(2)作点C 关于NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时PDC △的周长最短.周长的最小值CD PD PC CD PD PK CD DK =++=++=+.由题意:10CD AD ==,5ED AE ==,52DG =,EG =5DE DG DH EG ==∴2EH DH == ∴2DH EHHM DE==, ∴1DM CN NK ===,在Rt DCK △中,DK ===∴PCD △的周长的最小值为10+【解析】(1)结论:2CF DG =.理由:∵四边形ABCD 是正方形,∴AD BC CD AB ===,90ADC C ∠=∠=︒,∵DE AE =,∴2AD CD DE ==,∵EG DF ⊥,∴90DHG ∠=︒,∴90CDF DGE ∠+∠=︒,90DGE DEG ∠+∠=︒,∴CDF DEG ∠=∠,∴DEG CDF △∽△, ∴12DG DE CF DC == ∴2CF DG =.(2)作点C 关于NM 的对称点K ,连接DK 交MN 于点P ,连接PC ,此时PDC △的周长最短.周长的最小值CD PD PC CD PD PK CD DK =++=++=+.由题意:10CD AD ==,5ED AE ==,52DG =,EG =5DE DG DH EG ==∴2EH DH == ∴2DH EH HM DE==,∴1DM CN NK ===,在Rt DCK △中,DK ===∴PCD △的周长的最小值为10+21.【答案】解:(1)221(3)99(3)33y x x y x x ++==++++, ∴当933x x +=+时,21y y 有最小值, ∴0x =或6-(舍弃)时,有最小值6=.(2)设该设备平均每天的租货使用成本为w 元. 则24902000.0014900.001200x w x x x++==++, ∴当4900.001x x=时,w 有最小值, ∴700x =或700-(舍弃)时,w 有最小值,最小值201.4=元.22.【答案】解:(1)把(3,0)A ,(1,0)B -,(0,3)C -代入抛物线解析式得:93003a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为223y x x =--;(2)设直线BC 解析式为3y kx =-,把1,0B (-)代入得:30k -=-,即 3k =-,∴直线BC 解析式为33y x =--,∴直线AM 解析式为 13y x m =+ 把3,0A()代入得:10m +=,即1m =-,∴直线AM 解析式为1 13y x =-,联立得:33113y x y x =--⎧⎪⎨=-⎪⎩, 解得:3565x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则36(,)55M --. (3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,分两种情况考虑:设,0Q x (),2(,23)P m m m --, 当四边形BCQP 为平行四边形时,由(1,0)B -,(0,3)C -,根据平移规律得:10003223x m m m -+=++=+,---,解得:1m =2x =,当m =时,2238233m m -=+-=-,即 (1P ;当1m =时,2238233m m --=+=-,即(1P ;当四边形BCPQ 为平行四边形时,由(1,0)B -,(03)C ,-,根据平移规律得:10m x +=+-,202330m m +--=-+,解得:0m =或2,当0m =时,0,3P -()(舍去);当2m =时,(2,3)P -,综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为((1或(1或(23),-.【解析】(1)把(3,0)A ,(1,0)B -,(0,3)C -代入抛物线解析式得: 93003a b c a b c c ++=⎧⎪-+=⎨⎪=-⎩解得:123a b c =⎧⎪=-⎨⎪=-⎩,则该抛物线解析式为223y x x =--;(2)设直线BC 解析式为3y kx =-,把1,0B (-)代入得:30k -=-,即 3k =-,∴直线BC 解析式为33y x =--,∴直线AM 解析式为 13y x m =+ 把3,0A()代入得:10m +=,即1m =-, ∴直线AM 解析式为1 13y x =-,联立得:33113y x y x =--⎧⎪⎨=-⎪⎩, 解得:3565x y ⎧=-⎪⎪⎨⎪=⎪⎩, 则36(,)55M --. (3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,分两种情况考虑:设,0Q x (),2(,23)P m m m --, 当四边形BCQP 为平行四边形时,由(1,0)B -,(0,3)C -,根据平移规律得:10003223x m m m -+=++=+,---,解得:1m =2x =,当m =时,2238233m m -=+-=-,即 (1P ;当1m =时,2238233m m --=+=-,即(1P ;当四边形BCPQ 为平行四边形时,由(1,0)B -,(03)C ,-,根据平移规律得:10m x +=+-,202330m m +--=-+,解得:0m =或2,当0m =时,0,3P -()(舍去);当2m =时,(2,3)P -,综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为((1或(1或(23),-.。
山东省淄博市2018年中考数学真题试题(含解析)
![山东省淄博市2018年中考数学真题试题(含解析)](https://img.taocdn.com/s3/m/cd201802bc64783e0912a21614791711cc7979fc.png)
山东省淄博市2018年中考数学真题试题一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算的结果是()A.0 B.1 C.﹣1 D.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形的是()A. B.C.D.4.(4分)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.95.(4分)与最接近的整数是()A.5 B.6 C.7 D.86.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.7.(4分)化简的结果为()A. B.a﹣1 C.a D.18.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3 B.2 C.1 D.09.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB. C. D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.812.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.二、填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=度.14.(4分)分解因式:2x3﹣6x2+4x= .15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为.17.(4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.22.(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.24.(9分)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)计算的结果是()A.0 B.1 C.﹣1 D.【考点】1A:有理数的减法;15:绝对值.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.2.(4分)下列语句描述的事件中,是随机事件的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意【考点】X1:随机事件.【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、水能载舟,亦能覆舟,是必然事件,故此选项错误;B、只手遮天,偷天换日,是不可能事件,故此选项错误;C、瓜熟蒂落,水到渠成,是必然事件,故此选项错误;D、心想事成,万事如意,是随机事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.3.(4分)下列图形中,不是轴对称图形的是()A. B.C.D.【考点】P3:轴对称图形.【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【解答】解:根据轴对称图形的概念,可知:选项C中的图形不是轴对称图形.故选:C.【点评】本题考查了轴对称图形,牢记轴对称图形的概念是解题的关键.4.(4分)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9【考点】35:合并同类项;42:单项式.【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.5.(4分)与最接近的整数是()A.5 B.6 C.7 D.8【考点】2B:估算无理数的大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.【点评】此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.6.(4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.【考点】T9:解直角三角形的应用﹣坡度坡角问题;T6:计算器—三角函数.【分析】先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:sinA===0.15,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.(4分)化简的结果为()A. B.a﹣1 C.a D.1【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(4分)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3 B.2 C.1 D.0【考点】O2:推理与论证.【分析】四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.9.(4分)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB. C. D.【考点】MN:弧长的计算;M5:圆周角定理.【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC的长为=.【解答】解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.【点评】本题考查了圆周角定理,弧长的计算,熟记弧长的公式是解题的关键.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【考点】KO:含30度角的直角三角形;JA:平行线的性质;KJ:等腰三角形的判定与性质.【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.【点评】本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.(4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.B.C.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BE A,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC的面积是•AB2=•(25+12)=.故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.二、填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=40 度.【考点】JA:平行线的性质.【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.14.(4分)分解因式:2x3﹣6x2+4x= 2x(x﹣1)(x﹣2).【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.【解答】解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为:2x(x﹣1)(x﹣2).【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.(4分)在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于10 .【考点】PB:翻折变换(折叠问题);L5:平行四边形的性质.【分析】要计算周长首先需要证明E、C、D共线,DE可求,问题得解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,CD=AB=2由折叠,∠DAC=∠EAC∵∠DAC=∠ACB∴∠ACB=∠EAC∴OA=OC∵AE过BC的中点O∴AO=BC∴∠BAC=90°∴∠ACE=90°由折叠,∠ACD=90°∴E、C、D共线,则DE=4∴△ADE的周长为:3+3+2+2=10故答案为:10【点评】本题考查了平行四边形的性质、轴对称图形性质和三点共线的证明.解题时注意不能忽略E、C、D三点共线.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为 2 .【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A 和B的坐标可得AB的长,从而得结论.【解答】解:如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.【点评】本题考查了抛物线与x轴的交点问题、抛物线的平移及解一元二次方程的问题,利用数形结合的思想和三等分点的定义解决问题是关键.17.(4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【考点】4J:整式的混合运算—化简求值;76:分母有理化.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当时,原式=2(+1)()﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【考点】K7:三角形内角和定理.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?【考点】X4:概率公式;VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)先根据表格提示的数据得出50名学生读书的时间,然后除以50即可求出平均数;在这组样本数据中,9出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,从而求出中位数是8.5;(2)根据题意直接补全图形即可.(3)从表格中得知在50名学生中,读书时间不少于9小时的有25人再除以50即可得出结论.【解答】解:(1)观察表格,可知这组样本数据的平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据的平均数为2;∵这组样本数据中,9出现了15次,出现的次数最多,∴这组数据的众数是9;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,∴这组数据的中位数为(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时的有15人,读书时间是10小时的有10,∴读书时间不少于9小时的有15+10=25人,∴被抽到学生的读书时间不少于9小时的概率是=【点评】本题考查了加权平均数、众数以及中位数,用样本估计总体的知识,解题的关键是牢记概念及公式.21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.【解答】解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.【考点】MR:圆的综合题.【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形的性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG的长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形的面积即可求出菱形ADFE 的面积.【解答】解:(1)∵DP平分∠APB,∴∠APE=∠BPD,∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB是⊙O的直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴,∴PA•BD=PB•AE;(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,∵DP平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF,∵∠EAP=∠B,∴∠APC=∠BAC,易证:DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)的长是x2﹣5x+6=0,解得:AE=2,BD=3,∴由(1)可知:,∴cos∠APC==,∴cos∠BDF=cos∠APC=,∴,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形,∵AD=AE,∴四边形ADFE是菱形,此时点F即为M点,∵cos∠BAC=cos∠APC=,∴sin∠BAC=,∴,∴DG=,∴在线段BC上是否存在一点M,使得四边形ADME是菱形其面积为:DG•AE=2×=【点评】本题考查圆的综合问题,涉及圆周角定理,锐角三角函数的定义,平行四边形的判定及其面积公式,相似三角形的判定与性质,综合程度较高,考查学生的灵活运用知识的能力.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC 的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是MG=NG ;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【考点】KY:三角形综合题.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相较于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE,相较于H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.【点评】此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.24.(9分)如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.【考点】HF:二次函数综合题.【分析】(1)将已知点坐标代入即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A,点B到直线OC的距离之和小于等于AB;同时用点A(1,),点B(3,﹣)求出相关角度.【解答】解:(1)把点A(1,),点B(3,﹣)分别代入y=ax2+bx得解得∴y=﹣(2)由(1)抛物线开口向下,对称轴为直线x=当x>时,y随x的增大而减小∴当t>4时,n<m.(3)如图,设抛物线交x轴于点F分别过点A、B作AD⊥OC于点D,BE⊥OC于点E∵AC≥AD,BC≥BE∴AD+BE≥AC+BE=AB∴当OC⊥AB时,点A,点B到直线OC的距离之和最大.∵A(1,),点B(3,﹣)∴∠AOF=60°,∠BOF=30°∴∠AOB=90°∴∠ABO=30°当OC⊥AB时,∠BOC=60°点C坐标为(,).【点评】本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.祝福语祝你考试成功!。
2018年山东省日照市中考数学试卷(试卷+答案+解析)
![2018年山东省日照市中考数学试卷(试卷+答案+解析)](https://img.taocdn.com/s3/m/78d5e7f581c758f5f61f6725.png)
2018年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的 1.(3分)|﹣5|的相反数是( ) A .﹣5B .5C .15D .﹣152.(3分)在下列图案中,既是轴对称又是中心对称图形的是( )A .B .C .D .3.(3分)下列各式中,运算正确的是( )A .(a 3)2=a 5B .(a ﹣b )2=a 2﹣b 2C .a 6÷a 2=a 4D .a 2+a 2=2a 44.(3分)若式子√m+2(m−1)2有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C .m ≥﹣2D .m ≥﹣2且m ≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小时)7 8 9 10 11 学生人数610987则该班学生一周读书时间的中位数和众数分别是( ) A .9,8 B .9,9 C .9.5,9 D .9.5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A .30°B .25°C .20°D .15°7.(3分)计算:(12)﹣1+tan 30°•sin 60°=( ) A .﹣32B .2C .52D .728.(3分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AO =CO ,BO =DO .添加下列条件,不能判定四边形ABCD 是菱形的是( )A .AB =AD B .AC =BDC .AC ⊥BD D .∠ABO =∠CBO9.(3分)已知反比例函数y =﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A .2√55B .√55C .2D .1211.(3分)已知二次函数y =ax 2+bx +c (a ≠0)图象如图所示,下列结论:①abc <0;②2a ﹣b <0;③b 2>(a +c )2;④点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2. 其中正确的结论有( )A .4个B .3个C .2个D .1个12.(3分)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )=n 2k (其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =24,则:若n =13,则第2018次“F ”运算的结果是( )A .1B .4C .2018D .42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程 13.(4分)一个角是70°39′,则它的余角的度数是 .14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为 .15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据计算这个几何体的表面积是 .16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y =mx(m <0)与y =x 2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为 .三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤 17.(10分)(1)实数x 取哪些整数时,不等式2x ﹣1>x +1与12x ﹣1≤7﹣32x 都成立? (2)化简:(x+2x 2−2x﹣x−1x 2−4x+4)÷x−4x,并从0≤x ≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y (km )随时间x (h )变化的函数图象大致如图所示. (1)小红从甲地到乙地骑车的速度为 km /h ;(2)当1.5≤x ≤2.5时,求出路程y (km )关于时间x (h )的函数解析式;并求乙地离小红家多少千米?19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是DÊ的中点.(1)求证:直线l是⊙O的切线;(2)若P A=6,求PB的长.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=1AB.2探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB 边上中线CE ,由于CE =12AB ,易得结论:①△ACE 为等边三角形;②BE 与CE 之间的数量关系为 .(2)如图2,点D 是边CB 上任意一点,连接AD ,作等边△ADE ,且点E 在∠ACB 的内部,连接BE .试探究线段BE 与DE 之间的数量关系,写出你的猜想并加以证明.(3)当点D 为边CB 延长线上任意一点时,在(2)条件的基础上,线段BE 与DE 之间存在怎样的数量关系?请直接写出你的结论 .拓展应用:如图3,在平面直角坐标系xOy 中,点A 的坐标为(﹣√3,1),点B 是x 轴正半轴上的一动点,以AB 为边作等边△ABC ,当C 点在第一象限内,且B (2,0)时,求C 点的坐标.2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.15D.﹣15【考点】14:相反数;15:绝对值.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.4.(3分)若式子√m+2(m−1)2有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1C.m≥﹣2 D.m≥﹣2且m≠1【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:{m+2≥0m−1≠0∴m≥﹣2且m≠1故选:D.5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示: 读书时间(小时)7 8 9 10 11 学生人数610987则该班学生一周读书时间的中位数和众数分别是( ) A .9,8 B .9,9 C .9.5,9 D .9.5,8 【考点】W 4:中位数;W 5:众数.【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决. 【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A .6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A .30°B .25°C .20°D .15°【考点】JA :平行线的性质.【分析】根据平行线的性质可得∠A =∠FDE =45°,再根据三角形内角与外角的性质可得∠1的度数. 【解答】解:∵AB ∥CD , ∴∠A =∠FDE =45°, 又∵∠C =30°.∴∠1=∠FDE ﹣∠C =45°﹣30°=15°, 故选:D .7.(3分)计算:(12)﹣1+tan 30°•sin 60°=( )A .﹣32B .2C .52D .72【考点】2C :实数的运算;6F :负整数指数幂;T 5:特殊角的三角函数值. 【分析】根据实数的运算,即可解答. 【解答】解:(12)﹣1+tan 30°•sin 60°=2+√33×√32=2+12=52故选:C .8.(3分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AO =CO ,BO =DO .添加下列条件,不能判定四边形ABCD 是菱形的是( )A .AB =ADB .AC =BDC .AC ⊥BDD .∠ABO =∠CBO【考点】KD :全等三角形的判定与性质;L 9:菱形的判定.【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得. 【解答】解:∵AO =CO ,BO =DO , ∴四边形ABCD 是平行四边形,当AB =AD 或AC ⊥BD 时,均可判定四边形ABCD 是菱形; 当∠ABO =∠CBO 时,由AD ∥BC 知∠CBO =∠ADO , ∴∠ABO =∠ADO , ∴AB =AD ,∴四边形ABCD 是菱形;当AC =BD 时,可判定四边形ABCD 是矩形; 故选:B .9.(3分)已知反比例函数y =﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【考点】G 4:反比例函数的性质.【分析】根据反比例函数的性质,可得答案.【解答】解:①当x =﹣2时,y =4,即图象必经过点(﹣2,4); ②k =﹣8<0,图象在第二、四象限内;③k =﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k =﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误,故选:B .10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A .2√55B .√55C .2D .12【考点】KQ :勾股定理;M 5:圆周角定理;T 7:解直角三角形. 【分析】根据同弧或等弧所对的圆周角相等来求解. 【解答】解:∵∠DAB =∠DEB , ∴tan ∠DAB =tan ∠DEB =12.故选:D .11.(3分)已知二次函数y =ax 2+bx +c (a ≠0)图象如图所示,下列结论:①abc <0;②2a ﹣b <0;③b 2>(a +c )2;④点(﹣3,y 1),(1,y 2)都在抛物线上,则有y 1>y 2. 其中正确的结论有( )A.4个B.3个C.2个D.1个【考点】H4:二次函数图象与系数的关系.【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>﹣1,可得结论②错误;判断出﹣b<a+c <b,可得结论③正确,利用图象法可以判断出④正确;【解答】解:∵抛物线开口向上,∴a>0,∵﹣b2a<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣b2a>﹣1,a>0,∴b<2a,∴2a﹣b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=n2k(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018【考点】1G:有理数的混合运算.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:4023=5,第3次结果为:3n+1=16,第4次结果为:1624=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是19°21′.【考点】II:度分秒的换算;IL:余角和补角.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200.【考点】AC:由实际问题抽象出一元二次方程.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为√(2√2)2+12=3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=mx(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1.【考点】G4:反比例函数的性质;H3:二次函数的性质.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=mx(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y =x 2﹣4,∴当x =0时,y =﹣4,当y =0时,x =±2,当x =1时,y =﹣3,∴抛物线y =x 2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y =mx (m <0)与y =x 2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴{m1≥−2m 1<−1,解得,﹣2≤m <﹣1.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤 17.(10分)(1)实数x 取哪些整数时,不等式2x ﹣1>x +1与12x ﹣1≤7﹣32x 都成立? (2)化简:(x+2x 2−2x﹣x−1x 2−4x+4)÷x−4x,并从0≤x ≤4中选取合适的整数代入求值.【考点】6D :分式的化简求值;CC :一元一次不等式组的整数解.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值. (2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x ≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组{2x −1>x +1①12x −1≤7−32x②, 解不等式①,得:x >2, 解不等式②,得:x ≤4,所以不等式组的解集为2<x ≤4, 则整数x 的值为3、4;(2)原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4=[(x+2)(x−2)x(x−2)2﹣x(x−1)x(x−2)2]•xx−4=x 2−4−x 2+x x(x−2)2•x x−4=x−4x(x−2)2•xx−4=1(x−2)2, ∵{x ≠0x −2≠0x −4≠0,∴x ≠0且x ≠2、x ≠4,∴在0≤x ≤4中,可取的整数为x =1、x =3, 当x =1时,原式=1;当x =3时,原式=1.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y (km )随时间x (h )变化的函数图象大致如图所示. (1)小红从甲地到乙地骑车的速度为 20 km /h ;(2)当1.5≤x ≤2.5时,求出路程y (km )关于时间x (h )的函数解析式;并求乙地离小红家多少千米?【考点】FH:一次函数的应用.【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度=100.5=20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是14;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【考点】W2:加权平均数;X4:概率公式;X6:列表法与树状图法.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)x甲=70×5+85×4+80×15+4+1=77(分),x 乙=90×5+85×4+75×15+4+1=86.5(分),x 丙=80×5+90×4+85×15+4+1=84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是14,故答案为:14;②解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DC DADBD CD DD所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA ,BB ,CC ,DD ,4种情况,所以小王、小张抽到同一个实验的概率为416=14.20.(12分)如图所示,⊙O 的半径为4,点A 是⊙O 上一点,直线l 过点A ;P 是⊙O 上的一个动点(不与点A 重合),过点P作PB ⊥l 于点B ,交⊙O 于点E ,直径PD 延长线交直线l 于点F ,点A 是DÊ的中点. (1)求证:直线l 是⊙O 的切线; (2)若P A =6,求PB 的长.【考点】M 2:垂径定理;ME :切线的判定与性质;S 9:相似三角形的判定与性质.【分析】(1)连接DE ,OA .想办法证明OA ⊥BF 即可; (2)作OH ⊥P A 于H ,只要证明△AOH ∽△P AB ,可得OA PA =AH PB,即可解决问题.【解答】(1)证明:连接DE ,OA . ∵PD 是直径, ∴∠DEP =90°, ∵PB ⊥FB , ∴∠DEP =∠FBP , ∴DE ∥BF ,∵AD̂=AE ̂, ∴OA ⊥DE , ∴OA ⊥BF ,∴直线l 是⊙O 的切线.(2)解:作OH ⊥P A 于H . ∵OA =OP ,OH ⊥P A , ∴AH =PH =3, ∵OA ∥PB , ∴∠OAH =∠APB , ∵∠AHO =∠ABP =90°, ∴△AOH ∽△P AB , ∴OA PA =AH PB,∴46=3PB,∴PB =92.21.(13分)如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y =ax 2+bx +c 上. (1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC =∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.【考点】HF :二次函数综合题.【分析】(1)设抛物线的解析式为y =a (x +1)(x ﹣3),将C (0,1)代入求得a 的值即可;(2)过点P 作PD ⊥x ,交BC 与点D ,先求得直线BC 的解析式为y =﹣13x +1,设点P (x ,﹣13x 2+23x +1),则D (x ,﹣13x +1),然后可得到PD 与x 之间的关系式,接下来,依据△PBC 的面积为1列方程求解即可;(3)首先依据点A 和点C 的坐标可得到∠BQC =∠BAC =45°,设△ABC 外接圆圆心为M ,则∠CMB =90°,设⊙M 的半径为x ,则Rt △CMB 中,依据勾股定理可求得⊙M 的半径,然后依据外心的性质可得到点M 为直线y =﹣x 与x =1的交点,从而可求得点M 的坐标,然后由点M 的坐标以及⊙M 的半径可得到点Q 的坐标.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣3),将C (0,1)代入得﹣3a =1,解得:a =﹣13, ∴抛物线的解析式为y =﹣13x 2+23x +1.(2)过点P 作PD ⊥x ,交BC 与点D .设直线BC 的解析式为y =kx +b ,则{3k +b =0b =1,解得:k =﹣13,∴直线BC 的解析式为y =﹣13x +1. 设点P (x ,﹣13x 2+23x +1),则D (x ,﹣13x +1) ∴PD =(﹣13x 2+23x +1)﹣(﹣13x +1)=﹣13x 2+x ,∴S △PBC =12OB •DP =12×3×(﹣13x 2+x )=﹣12x 2+32x . 又∵S △PBC =1,∴﹣12x 2+32x =1,整理得:x 2﹣3x +2=0,解得:x =1或x =2,∴点P 的坐标为(1,43)或(2,1).(3)存在.∵A (﹣1,0),C (0,1), ∴OC =OA =1 ∴∠BAC =45°.∵∠BQC =∠BAC =45°,∴点Q 为△ABC 外接圆与抛物线对称轴在x 轴下方的交点. 设△ABC 外接圆圆心为M ,则∠CMB =90°.设⊙M 的半径为x ,则Rt △CMB 中,由勾股定理可知CM 2+BM 2=BC 2,即2x 2=10,解得:x =√5(负值已舍去), ∵AC 的垂直平分线的为直线y =﹣x ,AB 的垂直平分线为直线x =1, ∴点M 为直线y =﹣x 与x =1的交点,即M (1,﹣1),∴Q 的坐标为(1,﹣1﹣√5).22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,则:AC =12AB .探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB 边上中线CE ,由于CE =12AB ,易得结论:①△ACE 为等边三角形;②BE 与CE 之间的数量关系为 BE =CE .(2)如图2,点D 是边CB 上任意一点,连接AD ,作等边△ADE ,且点E 在∠ACB 的内部,连接BE .试探究线段BE 与DE 之间的数量关系,写出你的猜想并加以证明.(3)当点D 为边CB 延长线上任意一点时,在(2)条件的基础上,线段BE 与DE 之间存在怎样的数量关系?请直接写出你的结论 BE =DE .拓展应用:如图3,在平面直角坐标系xOy 中,点A 的坐标为(﹣√3,1),点B 是x 轴正半轴上的一动点,以AB 为边作等边△ABC ,当C 点在第一象限内,且B (2,0)时,求C 点的坐标. 【考点】KY :三角形综合题.【分析】探究结论:(1)只要证明△ACE 是等边三角形即可解决问题;(2)如图2中,结论:ED =EB .想办法证明EP 垂直平分线段AB 即可解决问题; (3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO =CB ,设C (1,n ),根据OC =CB =AB ,构建方程即可解决问题; 【解答】解:探究结论(1)如图1中,∵∠ACB =90°,∠B =30°, ∴∠A =60°,∵AC =12AB =AE =EB ,∴△ACE 是等边三角形, ∴EC =AE =EB , 故答案为EC =EB .(2)如图2中,结论:ED =EB .理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠P AE,∴△CAD≌△P AE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵P A=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣√3,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(√3+2)2,∴n=2+√3,∴C(1,2+√3).。
2018年山东省济宁市中考数学试卷(含答案解析)
![2018年山东省济宁市中考数学试卷(含答案解析)](https://img.taocdn.com/s3/m/0bc281a602d276a201292e1c.png)
山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.)A.1 B.﹣1 C.3 D.﹣3【解答】.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍 186000000 平方米,其中数据 186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将 186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50° B.60° C.80° D.100°【解答】解:圆上取一点 A,连接 AB,AD,∵点 A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式 4a﹣a3 分解因式的结果是()A.a(4﹣a2) B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点 A,C 在 x 轴上,点 C 的坐标为(﹣1,0),AC=2.将 Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2) B.(1,2) C.(﹣1,2)D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将 Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为 7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是 5 B.中位数是 5 C.平均数是 6 D.方差是 3.6【解答】解:A、数据中 5 出现 2 次,所以众数为 5,此选项正确; B、数据重新排列为3、5、5、7、10,则中位数为 5,此选项正确; C、平均数为(7+5+3+5+10)÷5=6,此选项正确; D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形 ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°【解答】解:∵在五边形 ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为 2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题3 分,共15 分。
2018年青岛中考数学真题及答案
![2018年青岛中考数学真题及答案](https://img.taocdn.com/s3/m/99b36da82f60ddccdb38a068.png)
2018年山东省青岛市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)观察下列四个图形,中心对称图形是()A .B .C .D .【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6 D.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C .D .【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.【点评】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.4.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6 D.4a6【分析】直接利用幂的乘方运算法则化简,再利用单项式乘以单项式、合并同类项法则计算得出答案.【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.【点评】此题主要考查了幂的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.5.(3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B 是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B 是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A 重合,折痕现交于点F.已知EF=,则BC的长是()A .B . C.3 D .【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.【解答】解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转某个点或某直线的位置关系.8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A .B .C .D .【分析】根据反比例函数图象一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y 轴的交点在y轴负正半轴.故选:A.【点评】本题考查了一次函数的图象以及二次函数的图象,根据一次函数图象经过的象限,找出<0、c>0是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S 甲2<S乙2(填“>”、“=”、“<”)【分析】结合图形,根据数据波动较大的方差较大即可求解.【解答】解:从图看出:乙组数据的波动较小,故乙的方差较小,即S甲2<S乙2.故答案为:<.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.(3分)计算:2﹣1×+2cos30°=2.【分析】根据特殊角的三角函数值和有理数的乘法和加法可以解答本题.【解答】解:2﹣1×+2cos30°===2,故答案为:2.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.11.(3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.【分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.(3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD ,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF ,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF ,则图中阴影部分的面积是﹣π.【分析】根据扇形面积公式以及三角形面积公式即可求出答案.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF ,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π【点评】本题考查扇形面积公式,涉及含30度角的直角三角形的性质,勾股定理,切线的性质,扇形的面积公式等知识,综合程度较高.14.(3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有4种.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:这个几何体的搭法共有4种:如下图所示:故答案为:4.【点评】本题考查几何体的三视图.由几何体的主视图、左视图及小立方块的个数,可知俯视图的列数和行数中的最大数字.三、作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点评】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.四、解答题(本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(1)解不等式组:(2)化简:(﹣2)•.【分析】(1)先求出各不等式的解集,再求出其公共解集即可.(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.【点评】本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【解答】解:不公平,列表如下:4 5 64 8 9 105 9 10 116 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;【点评】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O 到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x +x=500,解得,x=480,答:点O到BC的距离为480m.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).【分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,0),点P在x轴上,即可求出点P的坐标.【解答】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m ,),C(6m ,),过点B、C分别作x 轴、y轴的垂线,两垂线相交于点D,∴D(2m ,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.21.(8分)已知:如图,平行四边形ABCD,对角线AC 与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题;【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x ﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点评】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.23.(10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m (n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:这个长方体框架的横长是s,则:[3m+2(m+1)]×5+(m+1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为60×5=330条需要木棒1320条.故答案为22,m(n+1),n(m+1),[m(n+1)+n(m+1)](s+1),(m+1)(n+1)s,4,1320;【点评】本题考查规律型﹣图形变化类问题,解题的关键是理解题意,学会用分类讨论的思想解决问题,属于中考填空题中的压轴题.24.(12分)已知:如图,四边形ABCD,AB∥DC,CB ⊥AB,AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,以QA、QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题:(1)用含t的代数式表示AP;(2)设四边形CPQB的面积为S(cm2),求S与t的函数关系式;(3)当QP⊥BD时,求t的值;(4)在运动过程中,是否存在某一时刻t,使点E在∠ABD的平分线上?若存在,求出t的值;若不存在,请说明理由.【分析】(1)如图作DH⊥AB于H则四边形DHBC是矩形,利用勾股定理求出AD的长即可解决问题;(2)作PN⊥AB于N.连接PB,根据S=S△PQB+S△BCP,计算即可;(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∠QPN+∠PQN=90°,推出∠QPN=∠DBA,推出tan∠QPN==,由此构建方程即可解解题问题;(4)存在.连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,推出KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,推出EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,推出BF=16﹣[(10﹣2t)﹣2t],由KH∥EF,可得=,由此构建方程即可解决问题;【解答】解:(1)如图作DH⊥AB于H,则四边形DHBC 是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),∴BN=16﹣AN=16﹣(10﹣2t),S=S△PQB+S△BCP =•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣12t+78(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.(4)存在.理由:连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],∵KH∥EF,∴=,∴=,解得:t=,经检验:t=是分式方程的解,∴当t=s时,点E在∠ABD的平分线.【点评】本题考查四边形综合题,解直角三角形、锐角三角函数、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.。
2018年山东省济南市中考数学试卷含解析答案
![2018年山东省济南市中考数学试卷含解析答案](https://img.taocdn.com/s3/m/4048d4e227fff705cc1755270722192e453658cc.png)
2018年山东省济南市中考数学试卷含解析答案2018年山东省济南市中考数学试卷含解析答案一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A。
2B。
−2C。
±2D。
无解2.(4分)如图所示的几何体,它的俯视图是()A。
B。
C。
D。
3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力。
数字7600用科学记数法表示为()A。
0.76×10^4B。
7.6×10^3C。
7.6×10^4D。
76×10^24.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A。
B。
C。
D。
5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A。
17.5°B。
35°C。
55°D。
70°6.(4分)下列运算正确的是()A。
a^2+2a=3a^3B。
(−2a^3)^2=4a^5C。
(a+2)(a−1)=a^2+a−2D。
(a+b)^2=a^2+b^2+2ab7.(4分)关于x的方程3x−2m=1的解为正数,则m的取值范围是()A。
m<−1/2B。
m>3/2C。
m>1/2D。
m<3/28.(4分)在反比例函数y=−k/x的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<x3,则下列结论正确的是()A。
y3<y2<y1B。
y1<y3<y2C。
y2<y3<y1D。
y3<y1<y29.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A。
2018年山东省菏泽市中考数学试卷(word原版+解析版)
![2018年山东省菏泽市中考数学试卷(word原版+解析版)](https://img.taocdn.com/s3/m/cc56efe6c5da50e2524d7ffc.png)
2018年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号填在答题卡的相应位置。
) 1.(3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.12.(3分)习近平主席在2018年新年贺词中指出,“安得广厦千万间,大庇天下寒土俱欢颜!”2017年,340万贫困人口实现异地扶贫搬迁,有了温暖的新家,各类棚户区改造开工提前完成600万套目标任务.将340万用科学记数法表示为()A.0。
34×107B.34×105 C.3.4×105D.3.4×1063.(3分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°4.(3分)如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.5.(3分)关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0 B.k≤0 C.k<0且k≠﹣1 D.k≤0且k≠﹣16.(3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°7.(3分)规定:在平面直角坐标系中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么点与互相垂直.下列四组向量,互相垂直的是() A.=(3,2),=(﹣2,3)B.=(﹣1,1),=(+1,1)C.=(3,20180),=(﹣,﹣1) D.=(,﹣),=(()2,4)8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,请把最后结果填写在答题卡的相应区域内.)9.(3分)不等式组的最小整数解是.10.(3分)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.11.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.12.(3分)据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是度.13.(3分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是.14.(3分)一组“数值转换机"按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(本大题共10个小题,共78分,请把解答或证明过程写在答题卡的相应区域内。
2018年山东省济南市中考数学试题及解析
![2018年山东省济南市中考数学试题及解析](https://img.taocdn.com/s3/m/50df30d86137ee06eff918eb.png)
一、选择题(共 15 小题,每小题 3 分,满分 45 分,每小题只有一个选项符合题意) 1. (3 分) (2018•济南)﹣6 的绝对值是( ) A. 6 B.﹣6 C . ±6 D.
2. (3 分) (2018•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯 亚欧两大洲中部地带,总长约为 10900 公里,10900 用科学记数法表示为( ) A.0.109×105 B.1.09×104 C.1.09×103 D.109×102 )
A.
B.
C.
D.
6. (3 分) (2018•济南)若代数式 4x﹣5 与 A. 1 B. C.
的值相等,则 x 的值是( D. 2
)
7. (3 分) (2018•济南)下列图标既是轴对称图形又是中心对称图形的是( A. B. C. D.
)
8. (3 分) (2018•济南)济南某中学足球队的 18 名队员的年龄如表所示: 年龄(单位:岁) 12 人数 A. 13 岁,14 岁 3 13 5 B.14 岁,14 岁 14 6 ) C.14 岁,13 岁 D.14 岁,15 岁 15 4
19. (3 分) (2018•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜 色外完全相同,它最终停留在黑色方砖上的概率是 .
20. (3 分) (2018•济南)如图,等边三角形 AOB 的顶点 A 的坐标为(﹣4,0) ,顶点 B 在反比例函数 y= (x <0)的图象上,则 k= .
四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息, 回答下列问题: 类别 小说 戏剧 散文 其他 合计 4 10 6 m 1 0.25 频数(人数) 频率 0.5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:A山东省二○○九年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷4页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共12页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.某市2018年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 (A)-10℃ (B)-6℃ (C)6℃(D)10℃2.计算()4323b a --的结果是(A)12881b a (B )7612b a (C )7612b a -(D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70°(B ) 65° (C ) 50°(D ) 25° 4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 ) (B )(-2,-3 ) (C )(2,3 )(D )(3,2)5.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) (A )2cm (B )4cm(C )6cm(D )8cm6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(A )①② (B )②③ (C ) ②④ (D ) ③④7.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是①正方体②圆柱③圆锥④球(第5题图)EDBC′FCD ′A(第3题图)ABCD(第5题图)E8.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是 (A )点A(B )点B (C )点C (D )点D9.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x的解,则k 的值为 (A )43- (B )43(C )34(D )34-10.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 (A )10cm (B )30cm (C )40cm(D )300cm11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为(A )1 (B )2(C )-1 (D )-2(A )(B )(C )(D )11 (第8题图)12.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22) (C )(-21,-21)(D )(-22,-22)(第12题图)绝密★启用前试卷类型:A 山东省日照市二○○九年中等学校招生考试数学试题第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的项目填写清楚.得分评卷人二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.2018年4月16日,国家统计局发布:一季度,城镇居民人均可支配收入为4834元,与去年同时期相比增长10.2%.4838元用科学记数法表示为.14.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.15.如图,在四边形ABCD 中,已知AB 与CD 不平行,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD .16.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .17.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分 别在直线y kx b =+(k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分)化简:22222369x y x y yx y x xy y x y--÷-++++. 得 分评 卷 人BC DAO(第15题图)E(第16题图)AB ′CFB得分评卷人19.(本题满分9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?(第19题图)20. (本题满分9分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E . (1) 求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.得 分评 卷 人(第20题图)得分评卷人21.(本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2018年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2018年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2018年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•3倍,求彩电、手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的2冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?22. (本题满分10分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分评 卷 人ABC (第22题图)D得分评卷人23.(本题满分10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆.(1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积; (2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数;(3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.EC(第23题图)24. (本题满分10分)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)得 分评 卷 人D第24题图①DD第24题图②第24题图③山东省日照市二○○九年中等学校招生考试数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:(本大题共12小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D C A A B A B B A D C二、填空题:(本大题共5小题,每小题4分,共20分)13.4.834×103;14.乙;15.∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD;(任选其一)16.或2; 17..三、解答题:(本大题共7小题, 共64分)18.(本小题满分6分)解:原式= o ………………………1分= o ………………………4分= …………………………………………6分= =1. ……………………………………………7分19.(本小题满分9分)解:(1)该班60秒跳绳的平均次数至少是:=100.8.因为100.8>100,所以一定超过全校平均次数.…………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内.…………………………………………6分(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),……………………………………………………………………………8分.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66.…………………………………………………………9分20.(本题满分9分)(1)解:在△AOC中,AC=2,∵AO=OC=2,∴△AOC是等边三角形.………2分∴∠AOC=60°,∴∠AEC=30°.…………………4分(2)证明:∵OC⊥l,BD⊥l.∴OC∥BD.……………………5分∴∠ABD=∠AOC=60°.∵AB为⊙O的直径,∴△AEB为直角三角形,∠EAB=30°.…………………………7分∴∠EAB=∠AEC.∴四边形OBEC 为平行四边形.…………………………………8分又∵OB=OC=2.∴四边形OBEC是菱形.…………………………………………9分21.(本题满分9分)解:(1)2018年销量为a万台,则a(1+40%)=350,a =250(万台).…………………………………………………………………………3分(2)设销售彩电x万台,则销售冰箱x万台,销售手机(350- x)万台.由题意得:1500x+2000×+800(350 x)=500000.……………6分解得x=88.………………………………………………………7分∴,.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分∴88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.……9分22.(本题满分10分)解:延长BC交AD于E点,则CE⊥AD.……1分在Rt△AEC中,AC=10,由坡比为1: 可知:∠CAE=30°,………2分∴CE=AC·sin30°=10×=5,………3分AE=AC·cos30°=10×=.……5分在Rt△ABE中,BE===11.……………………………8分∵BE=BC+CE,∴BC=BE-CE=11-5=6(米).答:旗杆的高度为6米.…………………………………………10分23.(本题满分10分)解:(1)由题意,当MN和AB之间的距离为0.5米时,MN应位于DC下方,且此时△EMN中MN边上的高为0.5米.所以,S△EMN= =0.5(平方米).即△EMN的面积为0.5平方米. …………2分(2)①如图1所示,当MN在矩形区域滑动,即0<x≤1时,△EMN的面积S= = ;……3分②如图2所示,当MN在三角形区域滑动,即1<x<时,如图,连接EG,交CD于点F,交MN于点H,∵E为AB中点,∴F为CD中点,GF⊥CD,且FG=.又∵MN∥CD,∴△MNG∽△DCG.∴,即.……4分故△EMN的面积S==;…………………5分综合可得:……………………………6分(3)①当MN在矩形区域滑动时,,所以有;………7分②当MN在三角形区域滑动时,S= .因而,当(米)时,S得到最大值,最大值S= = = (平方米). ……………9分∵,∴S有最大值,最大值为平方米. ……………………………10分24.(本题满分10分)解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG= FD.………………1分同理,在Rt△DEF中,EG= FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=CG.…………………………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG 与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG 与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG ≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴.在Rt△MFE 与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE ≌△CBE.∴.…………………………………………………6分∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.…………7分∴△MEC为直角三角形.∵MG = CG,∴EG= MC.∴.………………………………8分(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分。