江西省2011年中考数学样卷(四)

合集下载

2011江西省中考数学

2011江西省中考数学

江西省2011年中等学校招生考试数学试题说明:1.本卷共有六个大题,25小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷,答案卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分一、选择题(本大题共8个小题,每个小题3分,共24分)每个小题只有一个正确选项. 1.(2011江西,1,3分)下列各数中,最小的数是().A.0B.1C.-1D.-2【答案】D2.(2011江西,2,3分)根据2010年第六次全国人中普查主要数据公报,江西省常住人口约为4456万人;这个数据可以用科学计数法表示为().A.4.456×107人B.4.456×106人C.4456×104人D.4.456×103人【答案】A3.(2011江西,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().【答案】C4.(2011江西,4,3分)下列运算正确的是(). 第3题图A.a+b=abB.a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=1【答案】B5.(2011江西,5,3分)已知一次函数y=x+b的图像经过一、二、三象限,则b的值可以是().A.-2B.-1C.0D.2【答案】D6.(2011江西,6,3分)已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是()A.1 B.2 C.-2 D.-1【答案】C7.(2011江西,7,3分)如图下列条件中,不能..证明△ABD≌△ACD的是().A.BD=DC,AB=ACB.∠ADB=∠ADCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC第7题图【答案】D8.(2011江西,8,3分)时钟在正常运行时,分针每分钟转动6,时针每分钟转动0.5.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12:00开始到12:30止,y 与t 之间的函数图像是( ).【答案】C二、填空题(本大题共8小题,每小题3分,共24分) 9.(2011江西,9,3分)计算:-2-1= . 【答案】-3 10.(2011江西,10,3分)因式分解:x 3-x = . 【答案】x (x +1)(x -1)11.(2011江西,11,3分)函数y =x 1中,自变量x 的取值范围是 . 【答案】x ≤112.(2011江西,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是 .【答案】43x y ì=ïïíï=-ïî13.(2011江西,13,3分)如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠P AB= 度.第13题图 【答案】90 14.(2011江西,14,3分)将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案。

2011年江西省南昌市中考数学试题(WORD版含答案)

2011年江西省南昌市中考数学试题(WORD版含答案)

机密★2011年6月19日江西省南昌市2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,26个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项. 1.下列各数中,最小的是( ). A. 0 B. 1 C.-1 D. -2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ). A. 4.456×107人 B. 4.456×106人 C. 4456×104人 D. 4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).4.下列运算正确的是( ). A.a +b =ab B. a 2·a 3=a 5 C.a 2+2ab -b 2=(a -b )2 D.3a -2a =15.下列各数中是无理数的是( )A. B. C. D.6.把点A (-2,1)向上平移2个单位,再向右平移3个单位后得到B ,点B 的坐标是( ). A.(-5,3) B.(1,3) C.(1,-3) D.(-5,-1)7.不等式8-2x >0的解集在数轴上表示正确的是( ).8. 已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 29.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-1 10.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DC C.∠B =∠C ,∠BAD =∠CAD D. ∠B =∠C ,BD =DC 11.下列函数中自变量x 的取值范围是x >1的是( ).B. C. D.A. 第7题图甲 图乙 第3题0 4 6 A. 0 2 4 6B. 0C. 0 2 6D.A. B. C. D.12.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).二、填空题(本大题共4小题,每小题3分,共12分)13.计算:-2-1=__________.14.因式分解:x 3-x =______________.15.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠P AB =__________度. 16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,∠DAB =30°,有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE =,其中正确结论的序号是 ..三、(本大题共2小题,每小题5分,共10分) 17.先化简,再求值:,其中18.解方程组:四、(本大题共2小题,每小题6分,共12分)19.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.20.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;30 O 180 y (度 ) 165 A. 30 O180 y (度) B. 30 O 180 y 度) 195C. 30 O 180 y 度 )D. ACBP第15题ADCB EOGF第16题(2)求经过点C 的反比例函数解析式.五、(本大题共2小题,每小题7分,共14分)21.有一种用来画圆的工具板(如图所示),工具板长21cm ,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm ,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距d 均相等.(1)直接写出其余四个圆的直径长; (2)求相邻两圆的间距.22.如图,已知⊙O 的半径为2,弦BC 的长为,点A 为弦BC 所对优弧上任意一点(B ,C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值. (参考数据: ,,.)五、(本大题共2小题,每小题8分,共16分)23.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点O 到BC (或DE )的距离大于或等于⊙O 的半径时(⊙O 是桶口所在圆,半径为OA ),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A -B -C -D -E -F ,C -D 是,其余是线段),O 是AF 的中点,桶口直径AF =34cm ,AB =FE =5cm ,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格. (参考数据:≈17.72,tan73.6°≈3.40,sin75.4°≈0.97.)21 1.51.5d3ABCO24.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)图丙 A B C D E F O34 BC A O 图甲 F ED BC A O 图乙DE 全省各级各类学校所数扇形统计图 2010年全省教育发展情况统计表六、(本大题共2小题,每小题10分,共20分)25.如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x 轴的另一个交点为A1.(1)当a=-1,b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.26.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=(0°<<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①=_________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…)求出此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根小棒,1 =_________,2=________,3=________;(用含的式子表示)(4)若只能..摆放4根小棒,求的范围.A2B A4A1A2ABC A3A4A5A6a1a2a3图甲·机密2011年6月19日江西省南昌市2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.一、选择题(本大题共12个小题,每小题3分,共36分)1.D 2.A 3.C 4.B 5.C 6.B7.C 8.D9. C 10. D 11. A 12. A二、填空题(本大题共4个小题,每小题3分,共12分)13. 14.15. 90 16.①②③④说明:第16题填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共2个小题,每小题各5分,共10分)17.解:原式=. ………………3分当时,原式=………………5分18.解:①-②,得,∴.………………2分把代入①得. ………………4分∴………………5分四、(本大题共2个小题,每小题各6分,共12分)19.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=. ………………4分方法二甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=. ………………4分(2)P(恰好选中乙同学)=. ………………6分20.解:(1)∵,∴∴.在菱形中,, ∴, ∴. ………………3分(2)∵∥, ,∴.设经过点C的反比例函数解析式为.把代入中,得:,∴,∴. …………6分五、(本大题共2个小题,每小题7分,共14分)21.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分(2)依题意得,,………………5分∴,∴. ………………6分答:相邻两圆的间距为cm. ………………7分22.解:(1) 解法一连接OB,OC,过O作OE⊥BC于点E. AO甲乙丙丁丙甲乙丁乙甲丙丁丁甲乙丙第一次第二次∵OE ⊥BC ,BC =,∴. ………………1分 在Rt △OBE 中,OB =2,∵,∴, ∴,∴. ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,. 在Rt △DBC 中,,∴,∴.………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,.在Rt △ABE 中,∵,∴,∴S △ABC =.答:△ABC 面积的最大值是. ………………7分解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC . ∵, ∴△ABC 是等边三角形.在Rt △ABE 中,∵,∴,∴S △ABC =.答:△ABC 面积的最大值是. ………………7分六、(本大题共2个小题,每小题8分,共16分).ABCODABCO E23.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =, ∴∠ABO =73.6°,………………3分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………4分 又 ∵, ………………5分∴在Rt △OBG 中,. ……………7分∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =,∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分 ∴水桶提手合格. ………………8分24.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)学校所数 (所) 在校学生数 (万人) 教师数(万人)小学 12500 440 20初中 2000 200 12高中 450 75 5其它 10050 280 11合计 25000 995 48 高中 1.8%8% 图丙 A B C D E F O34G……………5分(3)①小学师生比=1︰22,初中师生比≈1︰16.7,高中师生比=1︰15,∴小学学段的师生比最小.………6分②如:小学在校学生数最多等. ………7分③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分.七、(本大题共2个小题,每小题10分,共20分)25.解:(1)当时,抛物线的解析式为:.令,得:. ∴C(0,1).令,得:. ∴A(-1,0),B(1,0)∵C与C1关于点B中心对称,∴抛物线的解析式为:………4分(2)四边形AC1A1C是平行四边形. ………5分理由:∵C与C1、A与A1都关于点B中心对称,∴,∴四边形AC1A1C是平行四边形. ………8分(3)令,得:. ∴C(0,).令,得:, ∴,∴, ………9分∴.要使平行四边形AC1A1C是矩形,必须满足,∴,∴,∴.∴应满足关系式. ………10分26.解: (1)能.………………1分(2)① 22.5°. ………………2分②方法一∵A A1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3=,AA3=.又∵A2A3⊥A3A4 ,∴A1A2∥A3A4.同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,∴AA3=A3A4,AA5=A5A6∴a2=A3A4=AA3=,………………3分a3=AA3+ A3A5=a2+ A3A5.∵A3A5=a2,∴a3=A5A6=AA5=.………………4分方法二∵A A1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3=,AA3=.又∵A2A3⊥A3A4 ,∴A1A2∥A3A4.同理:A3A4∥A5A6.∴∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4 A6A5,∴△A2A3A4∽△A4A5A6,∴,∴a3=. ………………4分………………5分(3)………………6分………………7分………………8分(4)由题意得:∴. ………………10分。

2011江西南昌中考数学试题

2011江西南昌中考数学试题

江西省南昌市年初中毕业暨中等学校招生考试一、选择题(本大题共个小题,每小题分,共分) .下列各数中,最小的是( ). . . .- . -.根据年第六次全国人口普查主要数据公报,江西省常住人口约为万人.这个数据可以用科学计数法表示为( ). . ×人 . ×人 . ×人 . ×人.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ). .下列运算正确的是( ).. ·5-(-) .3a -2a .下列各数中是无理数的是( ). . . ..把点(-)向上平移个单位,再向右平移个单位后得到,点的坐标是( ). .(-) .() .(,-) .(-,-).不等式->的解集在数轴上表示正确的是( ).. 已知一次函数的图象经过第一、二、三象限,则的值可以是( ). .- .- . ..已知是方程-的一个根,则方程的另一个根是( ). .- .-.如图,在下列条件中,不能..证明△≌△的是( ). , .∠∠, .∠∠,∠∠ . ∠∠,.下列函数中自变量的取值范围是>的是( )......时钟在正常运行时,分针每分钟转动°,时针每分钟转动°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为(度),运行时间为(分),当时间从︰开始到︰止,与 之间的函数图象是( ).二、填空题(本大题共小题,每小题分,共分).计算:--.(度) ).度)) .) ).)) ... . . 第题图甲 图乙 第题... ..因式分解:..如图,在△中,点是△的内心,则∠∠∠度. .如图所示,两块完全相同的含°角的直角三角板叠放在一起,∠ °,有以下四个结论:①⊥ ②△≌△ ③为的中点 ④︰,其中正确结论的序号是 . 三、(本大题共小题,每小题分,共分) .先化简,再求值:,其中.解方程组:四、(本大题共小题,每小题分,共分).甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. ()请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.()若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率..如图,四边形为菱形,已知(),(-).()求点的坐标;()求经过点的反比例函数解析式. 五、(本大题共小题,每小题分,共分).有一种用来画圆的工具板(如图所示),工具板长21cm其中最大圆的直径为3cm ,其余圆的直径从左到右依次递减0.2cm. 最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm ,相邻两圆的间距均相等. ()直接写出其余四个圆的直径长; ()求相邻两圆的间距..如图,已知⊙的半径为,弦的长为,点为弦所对优弧上任意一点(,两点除外).()求∠的度数;()求△面积的最大值. (参考数据: ,,.)第题第题五、(本大题共小题,每小题分,共分).图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点到(或)的距离大于或等于⊙的半径时(⊙是桶口所在圆,半径为),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙,是,其余是线段),是的中点,桶口直径 34cm ,5cm ,∠ ∠ °.请通过计算判断这个水桶提手是否合格.(参考数据:≈,°≈,°≈.).以下是某省年教育发展情况有关数据:全省共有各级各类学校所,其中小学所,初中所,高中所,其它学校所;全省共有在校学生万人,其中小学万人,初中万人,高中万人,其它万人;全省共有在职教师万人,其中小学万人,初中万人,高中万人,其它万人.请将上述资料中的数据按下列步骤进行统计分析.()整理数据:请设计一个统计表,将以上数据填入表格中.()描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. ()分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可) ③从扇形统计图中,你得出什么结论?(写出一个即可)六、(本大题共小题,每小题分,共分)图丙图甲图乙全省各级各类学校所数扇形统计图 年全省教育发展情况统计.如图所示,抛物线:(<,>)与轴于点、(点在点的左侧),与轴交于点.将抛物线绕点旋转°,得到新的抛物线,它的顶点为,与轴的另一个交点为.()当-时,求抛物线的解析式;()四边形1A1C是什么特殊四边形,请写出结果并说明理由;()若四边形1A1C为矩形,请求出应满足的关系式..设∠(°<<°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线,上.活动一:如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,1A为第根小棒.数学思考:()小棒能无限摆下去吗?答:.(填“能”或“不能”)()设1A2A.①度;②若记小棒-1A的长度为(为正整数,如1A,3A,…)求出此时,的值,并直接写出(用含的式子表示).活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中为第根小棒,且.数学思考:()若已经摆放了根小棒,,,;(用含的式子表示)()若只能..摆放根小棒,求的范围.图乙图甲参考答案及评分意见一、选择题. . .. . . .. . . . .二、填空题 . .. . ①②③④三、.解:原式. ………………分 当时, 原式 ………………分.解:①-②,得, ∴. ………………分 把代入①得. ………………分∴………………分四、.解:()方法一 画树状图如下:所有出现的等可能性结果共有种,其中满足条件的结果有种.∴(恰好选中甲、乙两位同学). ………………分 方法二 列表格如下:甲 乙丙丁甲 甲、乙甲、丙甲、丁乙 乙、甲 乙、丙乙、丁丙 丙、甲 丙、乙 丙、丁丁丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有种,其中满足条件的结果有种. ∴(恰好选中甲、乙两位同学). ………………分 () (恰好选中乙同学). ………………分 .解:() ∵, ∴∴.在菱形中,, ∴, ∴. ………………分()∵∥,, ∴. 设经过点的反比例函数解析式为.把代入中,得:, ∴,∴. …………分五、(本大题共个小题,每小题分,共分).解:()其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………分甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁甲 乙 丙第一次 第二次()依题意得,, ………………分∴, ∴. ………………分答:相邻两圆的间距为. ………………分 .解:() 解法一连接,,过作⊥于点. ∵⊥,,∴. ………………分在△中,,∵,∴, ∴,∴. ………………分解法二连接并延长,交⊙于点,连接.∵是直径,∴,. 在△中,,∴,∴.………………分() 解法一因为△的边的长不变,所以当边上的高最大时,△的面积最大,此时点落在优弧的中点处. ………………分 过作⊥于,延长交⊙于点,则为优弧的中点.连接,,则,.在△中,∵,∴,∴△.答:△面积的最大值是. ………………分 解法二因为△的边的长不变,所以当边上的高最大时,△的面积最大,此时点落在优弧的中点处. ………………分过作⊥于,延长交⊙于点,则为优弧的中点.连接,,则. ∵, ∴△是等边三角形.在△中,∵,∴, ∴△.答:△面积的最大值是. ………………分六、.解法一连接,过点作⊥于点. ………………分在△中,,, ∴ ∠, ∴∠°,………………分∴∠∠-∠°-°°. ………………分 又 ∵, ………………分∴在△中,. ……………分∴水桶提手合格. ……………分 解法二:连接,过点作⊥于点. ……………分在△中,,,∴ ∠,∴∠°. ………………分 要使≥,只需∠≥∠, ∵∠∠-∠°-°°>°,……分∴水桶提手合格. ………………分.解:()年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分)……………分()()①小学师生比︰, 初中师生比≈︰, 高中师生比︰, ∴小学学段的师生比最小. ………分②如:小学在校学生数最多等. ………分 ③如:高中学校所数偏少等. ………分 七、.解:()当时,抛物线的解析式为:.令,得:. ∴().令,得:. ∴(),()∵与关于点中心对称,∴抛物线的解析式为:………分()四边形1A 1C 是平行四边形. ………分图丙全省各级各类学校所数扇形统计图理由:∵与、与都关于点中心对称,∴,∴四边形1A1C是平行四边形. ………分()令,得:. ∴(,).令,得:, ∴,∴, ………分∴.要使平行四边形1A1C是矩形,必须满足,∴,∴,∴.∴应满足关系式. ………分.解: (1)能.………………分(2)① °. ………………分②方法一∵1A2A,1A⊥2A,∴1A,.又∵2A⊥3A,∴1A∥3A.同理:3A∥5A,∴∠∠2A∠4A∠6A,∴3A,5A∴3A,………………分A 3A.3∵3A,∴5A.………………分方法二∵1A2A,1A⊥2A,∴1A,.又∵2A⊥3A,∴1A∥3A.同理:3A∥5A.∴∠2A3A∠4A5A°,∠2A4A∠46A,∴△2A3A∽△4A5A,∴,∴. ………………分………………分(3)………………分………………分………………分(4)由题意得:∴. ………………分个人整理,仅供交流学习--------------------------------------------------------------------------------------------------------------------。

江西省2011年中等学校招生统一考试数学样卷(四)

江西省2011年中等学校招生统一考试数学样卷(四)

2011年江西省中考数学样卷(四)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分) 1. 2-的相反数是( ) A .12-B .12C .2-D .2 2.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出, 就业形势依然严峻,中央财政拟投入433亿元用于促进就业.433亿用科学记数法表示应为( )A .8103.43⨯ B .91033.4⨯C .101033.4⨯D . 1110433.0⨯3.某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A.31,31B.32,31C.31,32D.32,35 4.不等式组10,2x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .0<x <25.若分式2242x x x--的值为零,则x 的值为( )A. 一2B. 2C. 0D.一2或26.将矩形纸片ABCD 对折, 使点B 与点D 重合,折痕为EF ,连结BE ,则与线段BE 相等的线段条数(不包括BE ,不添加辅助线)有 ( )A. 1B.2C.3D. 4P AOB第7题ABCDEF 第6题7.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P (P 与O 不重合)在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设点P 所表示的实数为x ,则x 的取值范围是( C ) A .或01<≤-x 10≤<x B .20≤<xC .2002≤<<≤-x x 或 D . 2>x8.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边 上有一动点P 从点A 出发沿A B C D A →→→→匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是( )二、填空题 (本大题共8小题,每小题3分,共24分) 9.分解因式=-x 12x 33_ _ _.10. 一元二次方程x x =22的解是 . 11.)30cos 30(tan 60sin ︒-︒︒= .12.如图,直线AB 分别与x 轴、y 轴交于点A (0,3)和点B (-1,0),求直线AB 的 解析式:第8题A B C D图2图1xyOAB -1 313.如图,小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10dm 的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为 ________________dm .14.二次函数162-+=x x y 的最小值为 .15.一个边长为4㎝的等边三角形ABC 与⊙O 等高,如图放置, ⊙O 与BC 相切于点C , ⊙O 与AC 相交于点E ,则CE 的长为 ㎝.16.已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置, ①点O 到O '的路径是1OO 21O O O O '2; ②点O 到O '的路径是1OO 21O O O O '2; ③点O 在1O 2O 段上运动路线是线段21O O ; ④点O 到O '的所经过的路径长为.34π 以上命题正确的是 . 三、(本大题共3小题,每小题6分,共18分) 17.解分式方程 26111x x x -=+-.⌒ ⌒ ⌒ A B CEO 第15题OAB1O 2O1B2AB 'O 'A '第16题18.在平面直角坐标中,直角三角板,30︒=∠C cm AB 6=,将直角顶点A 放在点(3,1)处,AC ∥轴x ,求经过点C 的反比例函数的解析式.19. 把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.(1)从中随机抽取一张牌是黑桃的概率是多少?(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张. 请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.yA B CxO第18题四、(本大题共2小题,每小题8分,共16分)20. 为了调查某校全体初中生的视力变化情况,统计了每位初中生连续三年视力检查的结果(如图1),并统计了2010年全校初中生的视力分布情况(如图2、3).(1) 从图1提供的信息用统计知识,预测2011年全校学生的视力在4.9及以下的学生人数(从一个角度预测即可.........); (2)根据3幅图中提供的信息补全图2与图3;(3)学校计划在2011年加强用眼健康方面的教育.并通过治疗, 要求2010年视力在4.9及以下的部分假性近视的学生,视力达到5.0及以上.使2011年学校视力的达标率(视力在5.0及以上就算达标)上升10%,求这个学校在2011年视力好转、达标的假性近视学生的人数.图1图 22010年全校初中生视力分布情况统计图40%21.一张长方形桌子有6个座位. (1) 按甲方式将桌子拼在一起.3张桌子拼在一起共有 个座位,n 张桌子拼在一起共有 个座位; (2) 按乙方式将桌子拼在一起.3张桌子拼在一起共有 个座位,m 张桌子拼在一起共有 个座位; (3)某食堂有A ,B 两个餐厅,现有200张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a 张桌子放在A 餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B 餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有790个座位,问A ,B 两个餐厅各有多少个座位?………甲方式:………乙方式:五、(本大题共2小题,每小题9分,共18分)22.如图, ⊙O的半径为4㎝,AB是⊙O的直径,BC切⊙O于点B ,且BC=4㎝,当点P在⊙O上运动时,是否存在点P,使得△PBC为等腰三角形,若存在,有几个符合条件的点P,并分别求出点P到线段BC的距离;若不存在,请说明理由.AoB C(第22题)23.已知直线b a ⊥于O ,现将矩形ABCD 和矩形EFGH ,如图1放置,直线BE 分别交直线b a ,于M N ,.(1)当矩形ABCD≌矩形EFGH 时,(如图1) BM 与 NE 的数量关系是 ; (2)当矩形ABCD 与矩形EFGH 不全等,但面积相等时,把两矩形如图2,3那样放置,问在这两种放置的情形中,(1)的结论都还成立吗?如果你认为都成立,请你利用图3给予证明,若认为BM 与 NE 的有不同的数量关系,先分别写出其数量关系式,再证明.(1) BM= NE(2) 如图2,3那样放置(1)中的结论都成立,证明: 如图3,在矩形ABCD 和矩形EFGH 中,FN∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN∽△BAE,同理:△BCM∽△EAB∴EF EN AB BE =…………①, BC BMHE EB=………………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1, ∴ EN=BM六、(本大题共2小题,每小题10分,共20分)24. 经过原点和G (4,0)的两条抛物线x b x a y 1211+=,x b x a y 2222+=,顶点分别为B A ,,且都在第1象限,连结BA 交x 轴于T ,且3==AT BA . (1) 分别求出抛物线1y 和2y 的解析式;(2) 点C 是抛物线2y 的x 轴上方的一动点,作x CE ⊥轴于E ,交抛物线1y 于D,试判断CD和DE 的数量关系,并说明理由;(3) 直线m x =,交抛物线1y 于M ,交抛物线2y 于N ,是否存在以点T B N M ,,,为顶点的四边形是平行四边形,若存在,求出m 的值;若不存在,说明理由..2y 1y 4 G25.平面内两条直线1l ∥2l ,它们之间的距离等于a .一块正方形纸板ABCD 的边长也等 于a .现将这块硬纸板如图所示放在两条平行线上.(1)如图1,将点C 放置在直线2l 上, 且1l AC ⊥于O , 使得直线1l 与AB 、AD 相交于E 、F ,证明:AEF ∆的周长等于a 2;请你继续完成下面的探索:(2)如图2,若绕点C 转动正方形硬纸板ABCD ,使得直线1l 与AB 、AD 相交于E 、F , 试问AEF ∆的周长等于a 2还成立吗?并证明你的结论;(3)如图3,将正方形硬纸片ABCD 任意放置,使得直线1l 与AB 、AD 相交于E 、F ,直线2l 与BC 、CD 相交于G ,H ,设∆AEF 的周长为1m ,∆CGH 的周长为2m ,试问1m ,2m 和a 之间存在着什么关系?试证明你的结论.1l2lABCDE F图2AC图31l2lBDEFGH1l2lABCDE F图1O参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分) 1. D 2. C 3.A 4. C 5. A 6. B 7. C 8. B 二、填空题(本大题共8小题,每小题3分,共24分) 9. 3x(x+2)(x-2) 10. 01=x ,212=x 11. 41-; 12. y=3x+3 13. 22014.-10 15.3 16. ③④三、(本大题共3小题,每小题6分,共18分)17. 解:方程两边乘以)1(1-+x x )( 得)1)(1(6)1(-+=--x x x x ……………………………………2分 整理得16-=-x解得 x =-5. ……………………………………5分 经检验: x =-5是原方程的解.∴原方程的解是x =-5. …………………………………………6分18.解:因为,30︒=∠C 6=AB ,所以36=AC ……………………………2分 所以点)1,37(C ……………………………3分后抽取的牌牌面数字先抽取的牌牌面数字5554443332225432开始设经过点C 的反比例函数的解析式xk y =. 所以137k=,即37=k . ………………………………………………5分 所以经过点C 的反比例函数的解析式xy 37=.………………………………………6分19. 解(1)从中随机抽取一张牌是黑桃的概率为41………………………2′ (2)抽取的两张牌牌面数字所有可能出现的结果用表格表示如下:3 6 10 63 (3,6) (3,10) (3,6)6 (6,3)(6,10) (6,6)10 (10,3) (10,6)(10,6)6(6,3) (6,6) (6,10)也可树状图表示如下:所有可能出现的结果 (3,6) (3,10) (3,6) (6,3) (6,10) (6,6) (10,3) (10,6) (10,6) (6,3) (6,6) (6,10)……………………………4′ 由表格(或树状图)可以看出,抽取的两张牌可能出现的结果有12种,它们出现的可能性相等,而两张牌牌面数字都是6的结果有2种,后抽取的牌 牌面数字∴P (抽取的是一对6 )=61122=. ……………………………6分四、(本大题共2小题,每小题8分,共16分.)20. (1)①从平均人数的角度预测,2011年全校学生的视力在4.9以下的学生有500人; ②从人数的最大值与最小值的平均值预测,2011年全校学生的视力在4.9以下的学生有550人;③从人数的中位数角度预测,2011年全校学生的视力在4.9以下的学生有450人;. ④从人数的平均增长数预测, (3)800+3300800-=32966,约967人. 2011年全校学生的视力在4.9以下的学生有约967人. 等等. …………………2分 (2)学生总数800÷40%=2000(人),………………………………………3分 视力5.0:=200060030%, 30%×︒360=︒108; 视力5.1: 2000-800-600-200=400(人),=200040020%, 20%×︒360=︒72; 视力5.2以上:=200020010%, 10%×︒360=︒36.………………………………………5分(3)设到达正常视力的假性近视学生的人数为x 人. 依题意得: 2000200400600++ +10%=2000200400600x+++ ………………7分解得:200=x答: 到达正常视力的假性近视学生的人数为200人. …………………8分21.(1)10 ,42+n ; ………………………………………………2分 (2)14,24+m ; …………………………………………4分 (3)按甲种方式每6张拼一张能有:2×6+4=16(个), 按乙种方式每4张拼一张能有:4×4+2=18(个), 根据,790420018616=-⨯+⨯a a ……………………………………6分 解得:.60=a ……………………………………7分A 餐厅:160616=⨯a(个), B 餐厅:=-⨯420018a630(个). ……………………………………8分 五、(本大题共2题,每小题9分,共18分) 22.解: 假设存在点P,使得为△PBC 等腰三角形, 当BC BP =时,可得OB BP OP ==, 则△1OBP 为等边三角形. ∴.,301︒=∠BG P1P2P过1P 作BC G P ⊥1于G , ∵.224211===BP G P ∴1P 到BC 距离为2cm .………………2分当BC CP =时, ∵22CP OP OB BC ===,︒=∠90OBC , ∴四边形2OBCP 为正方形. ∴.4,9022cm C P BCP =︒=∠ ∴2P 到BC 距离为4cm . ………………5分 当BP CP =时,作BC 的垂直平分线交⊙O 于P . ∵BC K P ⊥3, ∴321224222233==-=-=OM OP M P (㎝)∴,4323+=K P ∴3P 到线段BC 距离为432+ (㎝). …………………………7分∵23OP K P ⊥,∴3243==M P M P (㎝). ∴3244-=K P (㎝).∴4P 到线段BC 距离为324- ( ㎝). ………………………………………9分∴存在4个点P 满足条件,P 到BC 的距离分别为,4,2cm cm ,)432(cm +cm .)324(-.23. (1) BM= NE…………………………………………………2分 (2) 如图2,3那样放置(1)中的结论都成立,………………4分证明: 如图3,在矩形ABCD 和矩形EFGH 中,FG∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN∽△BAE,同理:△BCM∽△EAB……………………………6分∴EF EN AB BE =………①, BC BM HE EB=…………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1,∴ EN=BM ………………………………………9分六、(本大题共2小题,每小题10分,共20分) 24.(1) ∵,3==AT BA∴A (2,3),B (2,6). …………………………………………………………1分∵x b x a y 1211+=过A (2,3)和).0,4(G 依题意得:⎩⎨⎧=+=+.0416,3241111b a b a解得⎪⎩⎪⎨⎧=-=.3,4311b a∴.34321x x y +-= …………………………………………………………2分 同理.62322x x y +-= …………………………………………………………3分(2).EF CD = …………………………………………………………4分 证明;设40,<<=t t OE . ∵D 在.34321x x y +-=上, ∴=DE .3432t t +-………………………………………………………5分 ∵C 在x x y 62322+-=上,∴=CE t t 6232+-.∴=-=DE CE CD (t t 6232+-)—(t t 3432+-)=t t 3432+-.∴.DE CD = ……………………………………………7分 (3) 由于MN∥BT,当假设存在四边形BTNM 为平行四边形时,则.MN BT ==6. ∵)623,(),343,(22m m m N m m m M +-+-∴=MN .343)623()343(222m m m m m m -=+--+-依题意,得: 23634m m =-. …………………………………………9分 2334m m -=-6, 此方程无解, 2334m m -=6, 解之得:∴.322±=m …………………………………………10分 ∴存在322±=m 使得以点T B N M ,,,为顶点的四边形是平行四边形. 25.(1)证法一:,2,2,2a a AO AO AF AE AO EF -==== ……………………2分则.2222a AO AO EF AF AE =+=++…………………………………………3分 证法二:连结.,FC EC∵1l AC ⊥,∴.︒=∠=∠90COE B . 又∵,,EC EC a CO BC ===∴.OCE BCE ∆≅∆ ……………………………………………2分 ∴.EO BE =同理FD OF =.∴ .2a AD AB EF AF AE =+=++ ……………………………………………3分 (1) 如图4,过C 作EF CM ⊥于M , 则.90︒=∠=∠EMC B∵,,EC EC a CM BC ===∴MCE BCE ∆≅∆ …………………4分 同理CDF CMF ∆≅∆得.,DF MF ME BE ==…………………5分∴ .2a AD AB EF AF AE =+=++ ………………6分 (3)a m m 221=+证明:如图5将21,l l 分别同时向下平移相同的距离,则4l 和3l 的距离还是a ,使得4l 经过点C , 3l 交AB 于M ,交AD 于N . ……………………………………………7分1l2lABCDE F图4M由(2)的证明知,2a AN MN AM =++过F 作FK ∥AB 交MN 于K . ∴四边形EMKF 为平行四边形.∴,,EM FK MK EF == ………………………………………8分 ∵作FQ MN ⊥于Q ,P GH CP 于⊥.则.CP FQ = ∵FK ∥AB , ∴.AMN FKQ ∠=∠作BJ ∥MN , ∴.ABJ AMN ∠=∠ ∵︒=∠+∠90CBJ ABJ ,,CGP BGT CBJ ∠=∠=∠.90︒=∠+∠GHC CGP∴.GHC FKQ ∠=∠∴FQK ∆≌CPH ∆∴.,PH KQ CH FK == ……………………9分 同理.,GP NQ GC FN == ∴.GH KN =则.2a MN AN AM KNMK FN AF EM AE GH CH GC EF AF AE =++=+++++=+++++………………………………………10分4lAC1l2lBDEF G HMNK图53lQ P TJ。

2011年江西省中考数学试题及答案

2011年江西省中考数学试题及答案

2011年江西省中考数学试题及答案一、选择题(本大题共8个小题,每小题3分,共24分) 1.下列各数中,最小的是( ).A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ).A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是( ).4.下列运算正确的是( ).A.a +b =abB. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =15.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 26.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).二、填空题(本大题共8小题,每小题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 .12.方程组25,7x y x y +=⎧⎨-=⎩的解是 .y (度)A.(度)B.度)C.度)D. B. C. D.A. ACBP第13题第7题图甲图乙 第3题13.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB =__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 .15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________. 16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE4,其中正确结论的序号是 .三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2()11a aa a a+÷--,其中 1.a =18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-(1)求点D 的坐标;(2)求经过点C 的反比例函数解析式.x y第14题 AD CBEOG F 第16题第15题四、(本大题共2小题,每小题8分,共16分)20.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:3sin60=,3cos30=,3tan30=.)五、(本大题共2小题,每小题9分,共18分)22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O 到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是CD,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)23.以下是某省2010年教育发展情况有关数据:图丙C DC图甲DC图乙全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.(3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数) ②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)六、(本大题共2小题,每小题10分,共20分)24.将抛物线c 1:y=2+x 轴翻折,得抛物线c 2,如图所示. (1)请直接写出抛物线c 2的表达式. (2)现将抛物线c 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线c 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .①当B ,D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.2010年全省教育发展情况统全省各级各类学校所数扇形统计图设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB ,AC 上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A 1A 2为第1根小棒) 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ=_________度;②若记小棒A 2n -1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,…), 求出此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第一根小棒,且A 1A 2=AA 1. 数学思考: (3)若已经摆放了3根小棒,则θ1 =_________,θ2=________, θ3=________;(用含θ 的式子表示)(4)若只能..摆放4根小棒,求θ的范围.yxO备用图A 1A 2 AB C图乙A 3 A 41θ2θ3θ A 1A 2A BCA 3 A 4 A 5 A 6 a 1a 2 a 3图甲参考答案及评分意见一、选择题(本大题共8个小题,每小题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A二、填空题(本大题共8个小题,每小题3分,共24分)9. 3- 10.()()11x x x +- 11.1x ≤ 12.4,3x y =⎧⎨=-⎩13. 90 14.2180y x -=(或1902y x =+) 15.(0,1) 16.①②③④ 三、(本大题共3个小题,每小题各6分,共18分) 17.解:原式=2111111a a a a a a a a a ⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a 时,原式==…………6分18.解:(1)方法一 画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16.方法二 列表格如下: 甲 乙 丙丁甲 甲、乙 甲、丙 甲、丁乙 乙、甲 乙、丙 乙、丁 丙丙、甲 丙、乙 丙、丁 丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2)P (恰好选中乙同学)=13. ………………6分19.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为ky x=.把()3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x=. ……6甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁 甲 乙 丙 第一次 第二次四、(本大题共2个小题,每小题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, (6)分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E . ∵OE ⊥BC ,BC=∴BE EC =…1分在Rt△OBE 中,OB =2,∵sin BE BOE OB ∠=,∴60BOE ∠=, ∴120BOC ∠=,∴1602BAC BOC ∠=∠=. ……4分 解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠=. 在Rt△DBC中,sin BC BDC BD ∠==, ∴60BDC ∠=,∴60BAC BDC ∠=∠=.………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=.在Rt△ABE中,∵30BE BAE ∠=,∴3tan 303BEAE ===,∴S △ABC=132⨯=.答:△ABC 面积的最大值是………………8分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠=, ∴△ABC 是等边三角形. ………………6分图丙CD在Rt△ABE 中,∵30BE BAE =∠=,∴3t an 303BEAE ===,∴S△ABC=132⨯=.答:△ABC 面积的最大值是………………8分五、22.解法一连接OB ,过点O 作OG ⊥BC 于点G .………………1分 在Rt△ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB==, ∴∠ABO =73.6°,……4∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°.………又 ∵17.72OB =≈,……………6分∴在Rt△OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>.…8分∴水桶提手合格. ……………9分解法二 连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt△ABO 中,AB =5,AO =17,∴ tan ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………4分 要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°, (8)分∴水桶提手合格. ………………9分23.解:(1)2010年全省教育发展情况统计表……………3分 (2) ……………6分(3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小.………7分②如:小学在校学生数最多等. ………8分 ③如:高中学校所数偏少等. ………9分六、24.解:(1)2y =. ………………2分(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0).同理可得:D (-1+m ,0),E (1+m ,学校所数 (所) 在校学生数 (万人) 教师数 (万人) 小学 12500 440 20 初中 2000 200 12 高中 450 75 5 其它10050 280 11 合计25000 995 48全省各级各类学校所数扇形统计图0).当13AD AE =时,如图①,()()()()111113m m m m -+---=+---⎡⎤⎣⎦,∴12m =. ……4分当13AB AE =时,如图②,()()()()111113m m m m ----=+---⎡⎤⎣⎦, ∴2m =. …………6分12m =或2时,B ,D 是线段AE 的三等分点.②存在. ………………7分方法一理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分要使平行四边形ANEM 为矩形,必需满足OM OA =,即()2221m m +=--, ∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. (10)分方法二理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++, 222(11)484AE m m m m =+++=++,若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直角三角形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. (10)分25.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1,a 3=AA 3+ A 3A 5=a 2+ A 3A 5. ………………3分∵A 3A 52, ∴a 3=A 5A 6=AA 5=)2221a =. ………………4分方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -= ………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。

江西省历年(2011-2017)中考数学试卷及答案

江西省历年(2011-2017)中考数学试卷及答案

江西省2012年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(共6小题,每小题3分,满分18分) 1.-1的绝对值是( ) A.2 B.0 C.﹣1 D.+1 2.等腰三角形的顶角为80°,则它的底角是( ) A.20° B.50° C.60° D.80°3.下列运算正确的是( ). A.633a a a =+ B.336a aa =÷- C.3332a a a =⋅D.6328)2(a a -=-4.如图,有a 、b 、c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( ) A.a 户最长 B. b 户最长 C. c 户最长 D.三户一样长5.如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( ) A.南偏西60° B.南偏西30° C.北偏东60° D.北偏东30°6.某人驾车从A 地上高整公路前往B 地,中途在服务区休息了一段时间.出发时油箱中存油40升,到B 地后发现油箱中还剩油4升,则从出发后B 地油箱中所剩油y (升)与时间t (小时)之间函数大致图形是( )二、填空题(共8小题,每小题3分,满分24分) 7.一个正方体有 个面. 8.当4-=x 时,x 36-的值是 .9.如图,AC 经过⊙O 的圆心O ,AB 与⊙O 相切于点B ,若∠A =50°,则∠C = 度. 10.已知关于x 的一元二次方程022=-+m x x 有两个相等的实数根,则m 的值是 .11.已知2)(,8)(22=+=-n m n m ,则22n m += .12.已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限. 13.如图,已知正五边形ABCDE ,请用无刻度...的直尺,准确画出它的一条对称轴(保留画图痕迹). 14.如图正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 .三、解答题(共4小题,每小题6分,共24分)15.化简:aa a a +-÷-221)11(.16.解不等式组:⎩⎨⎧≥--+;13,112x x π并将解集在数轴上表示出来.17.如图,已知两菱形ABCD 、CEFG ,其中点A 、C 、F 在同一直线上,连接BE 、DG . (1)在不添加辅助线时,写出其中的两对全等三角形; (2)证明:BE=DG .18.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(21A A 、),(21B B 、)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配相同颜色的一双拖鞋的概率;[](2)其从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.四、(本大题共2小题,每小题8分,共16分)19.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在曲线上,求m的值.20.小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8㎝;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4㎝.试求信纸的纸长与信封的口宽.五、(本大题共2小题,每小题9分,共18分)21.我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机选出10名男生,分别测量出他们的身高(单位:㎝),收集并整理如下统计表:根据以上表格信息,解答如下问题:(1)计算这组数据的三个统计量:平均数、中位数和众数;(2)请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”的是哪几位男生?说明理由;(3)若该年级共有280名男生,按(2)中选定标准,请你估算出该年级男生中具有“普通身高”的人数约有多少名?22.如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的(一端的横截面)侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点立于地面,经测量:AB=CD =136㎝,OA=OC =51㎝,OE=OF =34㎝,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32㎝. (1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122㎝,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan28.1°≈0.533;可使用科学计算器.)六、(本大题共2小题,每小题10分,共20分) 23.如图,已知二次函数34:21+-=x x y L 与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C .(1)写出A 、B 两点的坐标;(2)二次函数k kx kx y L 34:22+-=(k ≠0),顶点为P.①直接写出二次函数2L 与二次函数1L 有关图象的两条相同的性质;②是否存在实数k ,使△ABP 为等边三角形?如存在,请求出k 的值;如不存在,请说明理由;③若直线k y 8 与抛物线2L 交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.24.已知,纸片⊙O 的半径为2,如图1,沿弦AB 折叠操作. (1)如图2,当折叠后的AB 经过圆心O 时,求AB 弧的长;(2)如图3,当弦AB =2时,求折叠后AB 弧所在圆的圆心O ′到弦AB 的距离; (3)在图1中,再将纸片⊙O 沿弦CD 折叠操作.①如图4,当AB ∥CD ,折叠后的CD 弧与AB 弧所在圆外切于点P ,设点O 到弦AB 、CD 的距离之和为d ,求d 的值;②如图5,当AB 与CD 不平行,折叠后的CD 弧与AB 弧所在圆外切于点P 时,设点M 为AB 的中点,点N 为CD 的中点.试探究四边形OMPN 的形状,并证明你的结论.[来中考数学答案[来源:]机密★2015年6月19日江西省2015年中等学校招生考试数学试题卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.计算(-1)°的结果为( ) A .1B .-1C .0D .无意义2.2015年初,一列CRH5型高速车组进行了“300 000公里正线运营考核”,标志着中国高铁车从“中国制造”到“中国创新”的飞跃.将数300 000用科学计数法表示为( ) A .6310⨯B .5310⨯C .60.310⨯D .43010⨯3.如图所示的几何体的左视图为( )4.下列运算正确的是( )A .236(2)6a a =B .2232533a b ab a b -•=-C .1b a a b b a+=---D .21111a a a -•=-+ 5.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个后向右扭矩形框架ABCD ,B 与D 两点之间用一根橡皮筋...拉直固定,然动框架,观察所得四边形的变化.下面判断错误..的是( ) A .四边形ABCD 由矩形变为平行四边形B .BD 的长度增大C .四边形ABCD 的面积不变D .四边形ABCD 的周长不变6.已知抛物线y =ax 2+bx +c (a >0)过(-2,0),(2,3)两点,那么抛物线的对称轴( ) A .只能是x =-1B .可能是y 轴C.在y 轴右侧且在直线x =2的左侧 D .在y 轴左侧且在直线x =-2的右侧二、填空题(本大题共8小题,每小题3分,共24分) 7.一个角的度数为20°,则它的补角的度数为 .8.不等式组110239x x ⎧-⎪⎨⎪-<⎩≤,的解集是 .9.如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB .则图中有 对全等三角形.10.如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,则∠ADC 的度数为 .11.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则m 2-mn +n 2= .12.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为 .13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15cm ,∠CBD =40°,则点B 到CD 的距离为 cm(参考数据:sin 20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.计算结果精确到0.1cm ,可用科学计算器).14.如图,在△ABC 中,AB =BC =4,AO =BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△P AB 为直角三角形时,AP 的长为 . 三、(本大题共4小题,每小题6分,共24分)15.先化简,再求值:22(2)(2)a a b a b +-+,其中1a =-,3b =16.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称.已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.17.⊙O为△ABC的外接圆,请仅用无.....,根据下列条件分别在图1,图2中画出一条弦.,使...刻度的直尺这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切与点P,且l∥B C.18.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m的值.四、(本大题共4小题,每小题8分,共32分)19.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?20.(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE'D 中,在EE'上取一点F ,使EF =4,剪下△AEF ,将它平移至△DE'F'的位置,拼成四边形AFF'D .①求证:四边形AFF'D 是菱形; ②求四边形AFF'D 的两条对角线的长.21.如图,已知直线y =ax +b 与双曲线(0)ky x x=>交于A (x 1,y 1),B (x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于点P (x 0,0),与y 轴交于点C .(1)若A ,B 两点坐标分别为(1,3),(3,y 2).求点P 的坐标;(2)若b =y 1+1,点P 的坐标为(6,0),且AB =BP ,求A ,B 两点的坐标; (3)结合(1),(2)中的结果,猜想并用等式表示x 1,x 2,x 0之间的关系(不要求证明).22.甲、乙两人在100米直道AB 上练习匀速往返跑,若甲、乙分别在A ,B 两端同时出发,分别到另一端点掉头,掉头时间不计,速度分别为5m/s 和4m/s .(1)在坐标系中,虚线表示乙离..A .端.的距离s (单位:m)与运动时间t (单位:s)之间的函数图象(0≤t ≤200),请在同一坐标系中用实线画出甲离A 端的距离s 与运动时间t 之间的函数图象(0≤t ≤200);(2)根据(1)中所画图象,完成下列表格:两人相遇次数1 2 3 4 …n(单位:次)两人所跑路程之和100 300 …(单位:m)(3)①直接写出甲、乙两人分别在第一个100m内,s与t的函数解析式,并指出自变量t的取值范围;②求甲、乙第6此相遇时t的值.五、(本大题共10分)23.如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图像的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2-2ax+a+3(a>0)的最小值为;当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是;(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明);(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程-a(x+1)2+1=0的解.六、(本大题共12分)24.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3.求AF的长.。

2011年江西省中考数学试卷详解版

2011年江西省中考数学试卷详解版

2011年江西省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2011•江西)下列各数中,最小的是()A.O B.1 C.﹣1 D.﹣【考点】:实数的大小比较M117【难易度】:容易题.【分析】:由实数的大小比较:正数都大于0,负数都小于0,两个负数绝对值大的反而小,则因为在四个答案中只有C,D为负数,所以应从C,D中选。

而|﹣1|<|﹣|,所以﹣<﹣1.故最小的为﹣。

【解答】:答案D.【点评】:本题考查了实数大小的比较,属于送分题,难度不大,很多学生对实数的范围模糊不清,以至出现0是最小实数这样的错误答案.2.(3分)(2011•江西)根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学记数法表示为()A.4.456×107人B.4.456×106人C.4456×104人D.4.456×103人【考点】:科学记数法M11C【难易度】:容易题【分析】:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.则将4456万人用科学记数法表示为:4.456×107【解答】:答案A.【点评】:此题考查科学记数法的表示方法.难度不大,它实际生活中应用广泛,需要熟记科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2011•江西)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是()A.B.C.D.【考点】:视图与投影M414【难易度】:容易题【分析】:由题意,找到从上面看所得到的图形即是答案,由图知,可以看到上面杯子的底,是圆形,可以看到两杯子的口,也是圆形.则看到两个实物圆形。

2011年江西省中考数学试题(含答案)

2011年江西省中考数学试题(含答案)

机密★2011年6月19日江西省2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项.1.下列各数中,最小的是().A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为().A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是().4.下列运算正确的是().A.a+b=abB. a2·a3=a5C.a2+2ab-b2=(a-b)2D.3a-2a=15.已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是( ).A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD≌△ACD的是().A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD. ∠B=∠C,BD=DC8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y(度),运行时间为t(分),当时间从12︰00开始到12︰30止,y与t之间的函数图象是().y(度(度度度B.C. D.A.第7题图甲图乙第3题二、填空题(本大题共8小题,每小题3分,共24分)9.计算:-2-1=__________.10.因式分解:x3-x=______________.11.函数y=x的取值范围是.12.方程组25,7x yx y+=⎧⎨-=⎩的解是.13.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠P AB=__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是.15.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC ②△ADG≌△ACF ③O为BC的中点④AG︰DE4,其中正确结论的序号是..三、(本大题共3小题,每小题6分,共18分)17.先化简,再求值:2()11a aaa a+÷--,其中 1.a=18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD为菱形,已知A(0,4),B(-3,0). (1)求点D的坐标;(2)求经过点C的反比例函数解析式.A CBP第13题xy第14题AD CB EOG F第16题第15题C DC DC四、(本大题共2小题,每小题8分,共16分)20.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:sin60=,cos30 ,tan30=)五、(本大题共2小题,每小题9分,共18分)22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)23.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本大题共2小题,每小题10分,共20分)24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所示.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备用图25.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=_________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根小棒,则θ1 =_________,θ2=________,θ3=________;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.A1A2BC图乙A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2011年6月19日江西省2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A二、填空题(本大题共8个小题,每小题3分,共24分)9. 3-10.()()11x x x+-11.1x≤12.4,3xy=⎧⎨=-⎩13. 9014.2180y x-=(或1902y x=+)15.(0,1)16.①②③④说明:(1)第11题中若写成“1x<”的,得2分;(2)第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共3个小题,每小题各6分,共18分)17.解:原式=2111111a a aaa a a a a⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a=时,原式==………………6分18.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P(恰好选中甲、乙两位同学)=16. ………………4分甲乙丙丁丙甲乙丁乙甲丙丁丁甲乙丙第一次第二次方法二列表格如下:甲 乙 丙 丁甲 甲、乙 甲、丙甲、丁乙 乙、甲 乙、丙 乙、丁丙丙、甲 丙、乙 丙、丁丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2)P (恰好选中乙同学)=13. ………………6分19.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为ky x=. 把()3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x =. ……6分四、(本大题共2个小题,每小题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分 ∴41621d += ∴54d =. ………………7分 答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分 在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==, ∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC中,sin BC BDC BD ∠==, ∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132⨯=答:△ABC面积的最大值是 ………………8分 解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三角形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132⨯=.答:△ABC面积的最大值是 ………………8分五、(本大题共2个小题,每小题9分,共18分). 22.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………4分 ∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分 又∵17.72OB =, ………………6分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………8分∴水桶提手合格. ……………9分 解法二祺祺之缘 第 10 页 共 13 页 图丙CDE 连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………4分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分 ∴水桶提手合格. ………………9分23.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………6分 (3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………7分②如:小学在校学生数最多等. ………8分 ③如:高中学校所数偏少等. ………9分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分. 六、(本大题共2个小题,每小题10分,共20分) 学校所数 (所) 在校学生数 (万人) 教师数(万人)小学12500 440 20 初中2000 200 12 高中450 75 5 其它10050 280 11 合计25000 995 48 全省各级各类学校所数扇形统计图祺祺之缘 第 11 页 共 13 页24.解:(1)2y =………………2分(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0).同理可得:D (-1+m ,0),E (1+m ,0). 当13AD AE =时,如图①, ()()()()111113m m m m -+---=+---⎡⎤⎣⎦, ∴12m =. ………………4分 当13AB AE =时,如图②,()()()()111113m m m m ----=+---⎡⎤⎣⎦, ∴2m =. ………………6分∴当12m =或2时,B ,D 是线段AE 的三等分点.②存在.………………7分 方法一理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分 要使平行四边形ANEM 为矩形,必需满足OM OA =,即()2221m m +=--, ∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分 方法二祺祺之缘 第 12 页 共 13 页理由:连接AN 、NE 、EM 、MA . 依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OM ON =.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分∵222(1)4AMm m =-+++=,2222(1)444ME m m m m =+++=++,222(11)484AE m m m m =+++=++, 若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直角三角形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1a 3=AA 3+ A 3A 5=a 2+ A 3A 5.………………3分∵A 3A 52,∴a 3=A 5A6=AA 5=)2221a =. ………………4分 方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -= ………………5分(3)12θθ= ………………6分 23θθ= ………………7分34θθ= ………………8分(4)由题意得:490, 590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分祺祺之缘第 13 页共 13 页。

江西省高安市灰埠二中2011年中考数学模拟测试卷四参考答案及评分标准

江西省高安市灰埠二中2011年中考数学模拟测试卷四参考答案及评分标准

word整理版学习参考资料2011年中考模拟试卷(四)数学卷考试时间为100分钟满分120分一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.在tan45,sin60,3.14,π,0.101001中,无理数的个数是()A.2 B.3 C.4 D.52.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为()A. 3.2×107L B. 3.2×106L C. 3.2×105L D. 3.2×104L 3.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②④C.②③D.③④4.如图,AB∥CD ,下列结论中正确的是( )A.∠A+∠E+∠C=180° B.∠A+∠E+∠C=360°C.∠A+∠C=2∠E D.∠A+∠C=∠E5.下列调查适合作抽样调查的是A.了解浙江卫视“我爱记歌词”节目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查6.如图,⊙O的内接多边形周长为3 ,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( )A6 B8 C10 D177.如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.甲同学认为:若MN = EF,则MN⊥EF;乙同学认为: 若MN⊥EF,则MN = EF.你认为 ( )A.两人都不对 B.两人都对 C.仅甲对 D.仅乙对8. 已知整数x满足-5≤x≤5,y1=2x+1,y2=-x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是( )A BEC DO①正方体②圆柱③圆锥④球(原创)(2009遂宁中考改编)word整理版学习参考资料 A.1 B.3 C.9D.119. 如图,已知圆心为A、B、C的三个圆彼此相切,且均与直线l相切.若⊙A、⊙B、⊙C的半径分别为a、b、c(0<c<a<b),则a、b、c一定满足的关系式为( )A. cab??B. cab??C.cba111?? D. cba111??10. 如图为某三岔路口交通环岛的简化模型, 在某高峰时刻, 单位时间进出路口A,B,C的机动车辆数如图所示. 图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等), 则有( ) A.321xxx??B.231xxx??C.132xxx??D.123xxx??二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

2011年江西省中考数学试题(WORD版含答案).

2011年江西省中考数学试题(WORD版含答案).

机密★2011年6月19日江西省2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分每小题只有一个正确选项.1.下列各数中,最小的是( .A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( . A. 4.456×107人 B. 4.456×106人 C.4456×104人 D. 4.456×103人3.将两个大小完全相同的杯子(如图甲叠放在一起(如图乙,则图乙中的实物的俯视图是( .4.下列运算正确的是( .A.a +b =abB. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b 2D.3a -2a =1 5.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( .A .-2 B.-1 C. 0 D. 26.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( . A .1 B.2 C.-2D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( . A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD=DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度,运行时间为t (分,当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( .y (度 A.(度B.度 C.度D.B.C. D.A. 第7题图甲图乙第3题二、填空题(本大题共8小题,每小题3分,共24分9.计算:-2-1=__________.10.因式分解:x3-x=______________.11.函数y=x的取值范围是.12.方程组25,7x yx y+=⎧⎨-=⎩的解是.13.如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=__________度.14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x度,平行四边形中较大角为y度,则y与x的关系式是.15.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°.有以下四个结论:①AF⊥BC ②△ADG≌△ACF ③O为BC的中点④AG︰DE4,其中正确结论的序号是..三、(本大题共3小题,每小题6分,共18分17.先化简,再求值:2(11a aaa a+÷--,其中 1.a=18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD为菱形,已知A(0,4,B(-3,0.(1求点D的坐标;(2求经过点C的反比例函数解析式.A CBP第13题xy第14题AD CB EOG F第16题第15题C DC图甲DC图乙四、(本大题共2小题,每小题8分,共16分20.有一种用来画圆的工具板(如图所示,工具板长21cm,上面依次排列着大小不等的五个圆(孔,其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1直接写出其余四个圆的直径长;(2求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外.(1求∠BAC的度数;(2求△ABC面积的最大值.(参考数据:sin60=,cos30 ,tan30=五、(本大题共2小题,每小题9分,共18分22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O到BC(或DE的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA,提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段,O是AF的中点,桶口直径AF=34cm, AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.图丙23.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1整理数据:请设计一个统计表,将以上数据填入表格中.(2描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整.(3分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可③从扇形统计图中,你得出什么结论?(写出一个即可2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本大题共2小题,每小题10分,共20分24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所示.(1请直接写出抛物线c2的表达式.(2现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备用图25.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°.现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒数学思考:(1小棒能无限摆下去吗?答:.(填“能”或“不能”(2设AA1=A1A2=A2A3=1.①θ=_________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…,求出此时a2,a3的值,并直接写出a n(用含n的式子表示.活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考:(3若已经摆放了3根小棒,则θ1 =_________,θ2=________,θ3=________;(用含θ的式子表示(4若只能..摆放4根小棒,求θ的范围.A1A2BC图乙A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2011年6月19日江西省2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分1.D2.A3.C4.B5.D6.C7.D8.A二、填空题(本大题共8个小题,每小题3分,共24分9. 3-10.(( 11x x x+-11.1x≤12. 4,3xy=⎧⎨=-⎩13. 9014.2180 y x-=(或1902y x=+15.(0,116.①②③④说明:(1第11题中若写成“1x<”的,得2分;(2第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共3个小题,每小题各6分,共18分17.解:原式=2111111a a aaa a a a a⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a=时,原式==………………6分18.解:(1方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P(恰好选中甲、乙两位同学=16. ………………4分甲乙丙丁丙甲乙丁乙甲丙丁丁甲乙丙第一次第二次方法二列表格如下:甲乙丙丁甲甲、乙甲、丙甲、丁乙乙、甲乙、丙乙、丁丙丙、甲丙、乙丙、丁丁丁、甲丁、乙丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学=16. ………………4分(2P (恰好选中乙同学=13. ………………6分19.解:(1 ∵(0,4,(3,0A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴(0,1D -. …………3分(2∵BC ∥AD , 5BC AB ==, ∴(3,5C --.设经过点C 的反比例函数解析式为k y x=. 把(3,5--代入k y x=中,得:53k -=-, ∴15k =,∴15y x =. ……6分四、(本大题共2个小题,每小题8分,共16分20.解:(1其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm (4)分(2依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==, ∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC中,sin BC BDC BD ∠==, ∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132⨯=答:△ABC面积的最大值是………………8分解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三角形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132⨯=.答:△ABC面积的最大值是………………8分五、(本大题共2个小题,每小题9分,共18分. 22.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………4分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分又∵17.72OB =, ………………6分∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………8分图丙CDE ∴水桶提手合格. ……………9分解法二连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°. ………………4分要使OG ≥OA ,只需∠OBC≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分∴水桶提手合格. ………………9分23.解:(12010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分(2……………6分 (3①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………7分②如:小学在校学生数最多等. .........8分③如:高中学校所数偏少等. (9)分说明:(1第①题若不求出各学段师生比不扣分;学校所数 (所在校学生数 (万人教师数(万人小学12500 440 20 初中2000 200 12 高中 450 75 5 其它10050 280 11 合计25000 995 48全省各级各类学校所数扇形统计图(2)第②、③题叙述合理即给分. (本大题共个小题,小题10分六、本大题共2个小题,每小题分,共20分)(本大题共分 24.解:(1)y = 3x 2 −3 . ………………2 分(2)①令− 3 x 2 + 3 = 0 ,得:x1 = −1, x2 = 1 ,则抛物线c1 与 x 轴的两个交点坐标为(-1,0)(1,0). ,∴A(-1-m,0),B(1-m,0). ,E(1+m,0). 同理可得:D(-1+m,0)当 AD = AE 时,如图①,1 3 ( −1+ m − ( −1 − m = ∴,分1 当 AB = AE 时,如图②,,∴m = 2 . ∴当m = y M M ………………6 分 1 或 2 时,B,D 是线段 AE 的三等分点. 2 y A D O B E x A B O D E x 图① N 图② N ………………7 分②存在. 方法一理由:连接 AN、NE、EM、MA.依题意可得:M −m, 3 , N m, − 3 . 即 M,N 关于原点 O 对称,∴ OM = ON . ∴ OA = OE , ( ( ∵ A ( −1 − m, 0 , E (1 + m, 0 ,∴A,E 关于原点 O 对称,∴四边形 ANEM 为平行四边形. ………………8 分要使平行四边形 ANEM 为矩形,必需满足 OM = OA , 即m 2 + ( 3 2 = ( −1 − m , 2 ∴m =1. ∴当 m = 1 时,以点 A,N,E,M 为顶点的四边形是矩形. …………10 分方法二理由:连接 AN、NE、EM、MA. 依题意可得:M −m, 3 , N m, − 3 . 即 M,N 关于原点 O 对称,∴ OM = ON . ∴ OA = OE , ( ( ∵ A ( −1 − m, 0 , E (1 + m, 0 ,∴A,E 关于原点 O 对称,∴四边形 ANEM 为平行四边形. ∵ AM 2 = (−m + 1 + m 2 + ( 3 2 = 4 , ME 2 = (1 + m + m 2 + ( 3 2 = 4m 2 + 4m + 4 , AE 2 = (1 + m + 1 + m 2 = 4m 2 + 8m + 4 ,………………8 分若 AM 2 + ME 2 = AE 2 ,则 4 + 4m 2 + 4m + 4 = 4m 2 + 8m + 4 ,∴ m = 1 . 此时△AME 是直角三角形,且∠AME=90°. ∴当m = 1 时,以点 A,N,E,M 为顶点的四边形是矩形. …………10 分 25.解: (1)能.………………1 分(2)① 22.5°. ………………2 分②方法一∵AA1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3= 2 ,AA3= 1 + 2 . 又∵A2A3⊥A3A4 ,∴A1A2∥A3A4. 同理:A3A4∥A5A6,∴∠A=∠AA2A1=∠AA4A3=∠AA6A5,∴AA3=A3A4,AA5=A5A6∴a2=A3A4=AA3= 1 + 2 , a3=AA3+ A3A5=a2+ A3A5. ∵A3A5= 2 a2,∴a3=A5A6=AA5= a2 + 2a2 = ………………3 分( 2 +1 . 2 ………………4 分方法二∵A A1=A1A2=A2A3=1,A1A2⊥A2A3,∴A1A3= 2 ,AA3= 1 + 2 . 又∵A2A3⊥A3A4 ,∴A1A2∥A3A4. 同理:A3A4∥A5A6.∴∠A2A3A4=∠A4A5A6=90°,∠A2A4A3=∠A4 A6A5,∴△A2A3A4∽△A4A5A6,∴ a2 1 a2 = ,∴a3= 2 = ( 2 + 12 . a2 a31 ..................4 分..................5 分..................6 分 (7)分………………8 分an = ( 2 +1 n −1 (3)θ1 = 2θ θ 2 = 3θ θ3 = 4θ(4)由题意得: ∴ 18o ≤ θ <22.5o . ………………10 分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年江西省中考数学样卷(四)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分) 1. 2-的相反数是( ) A .12-B .12C .2-D .2 2.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出, 就业形势依然严峻,中央财政拟投入433亿元用于促进就业.433亿用科学记数法表示应为( )A .8103.43⨯ B .91033.4⨯C .101033.4⨯D . 1110433.0⨯3.某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A.31,31B.32,31C.31,32D.32,35 4.不等式组10,2x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .0<x <25.若分式2242x x x--的值为零,则x 的值为( )A. 一2B. 2C. 0D.一2或26.将矩形纸片ABCD 对折, 使点B 与点D 重合,折痕为EF ,连结BE ,则与线段BE 相等的线段条数(不包括BE ,不添加辅助线)有 ( )A. 1B.2C.3D. 4P AOB第7题ABCDEF 第6题7.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P (P 与O 不重合)在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设点P 所表示的实数为x ,则x 的取值范围是( C )A .或01<≤-x 10≤<xB .20≤<xC .2002≤<<≤-x x 或 D . 2>x8.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边 上有一动点P 从点A 出发沿A B C D A →→→→匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是( )二、填空题 (本大题共8小题,每小题3分,共24分) 9.分解因式=-x 12x 33_ _ _.10. 一元二次方程x x =22的解是 . 11.)30cos 30(tan 60sin ︒-︒︒= .12.如图,直线AB 分别与x 轴、y 轴交于点A (0,3)和点B (-1,0),求直线AB 的 解析式:第8题ABCD图2图1第13题xyOAB -1 3 第12题13.如图,小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10dm 的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为 ________________dm .14.二次函数162-+=x x y 的最小值为 .15.一个边长为4㎝的等边三角形ABC 与⊙O 等高,如图放置, ⊙O 与BC 相切于点C , ⊙O 与AC 相交于点E ,则CE 的长为 ㎝.16.已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置, ①点O 到O '的路径是1OO 21O O O O '2; ②点O 到O '的路径是1OO 21O O O O '2; ③点O 在1O 2O 段上运动路线是线段21O O ; ④点O 到O '的所经过的路径长为.34π 以上命题正确的是 . 三、(本大题共3小题,每小题6分,共18分) 17.解分式方程 26111x x x -=+-.⌒ ⌒ ⌒ A B CEO 第15题OAB1O 2O1B2AB 'O 'A '第16题18.在平面直角坐标中,直角三角板,30︒=∠C cm AB 6=,将直角顶点A 放在点(3,1)处,AC ∥轴x ,求经过点C 的反比例函数的解析式.19. 把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.(1)从中随机抽取一张牌是黑桃的概率是多少?(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张. 请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.yA B CxO第18题四、(本大题共2小题,每小题8分,共16分)20. 为了调查某校全体初中生的视力变化情况,统计了每位初中生连续三年视力检查的结果(如图1),并统计了2010年全校初中生的视力分布情况(如图2、3).(1) 从图1提供的信息用统计知识,预测2011年全校学生的视力在4.9及以下的学生人数(从一个角度预测即可.........); (2)根据3幅图中提供的信息补全图2与图3;(3)学校计划在2011年加强用眼健康方面的教育.并通过治疗, 要求2010年视力在4.9及以下的部分假性近视的学生,视力达到5.0及以上.使2011年学校视力的达标率(视力在5.0及以上就算达标)上升10%,求这个学校在2011年视力好转、达标的假性近视学生的人数.图1图22010年全校初中生视力分布情况统计图40%21.一张长方形桌子有6个座位. (1) 按甲方式将桌子拼在一起.3张桌子拼在一起共有 个座位,n 张桌子拼在一起共有 个座位; (2) 按乙方式将桌子拼在一起.3张桌子拼在一起共有 个座位,m 张桌子拼在一起共有 个座位; (3)某食堂有A ,B 两个餐厅,现有200张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a 张桌子放在A 餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B 餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有790个座位,问A ,B 两个餐厅各有多少个座位?………甲方式:………乙方式:五、(本大题共2小题,每小题9分,共18分)22.如图, ⊙O的半径为4㎝,AB是⊙O的直径,BC切⊙O于点B,且BC=4㎝,当点P在⊙O 上运动时,是否存在点P,使得△PBC为等腰三角形,若存在,有几个符合条件的点P,并分别求出点P到线段BC的距离;若不存在,请说明理由.AoB C(第22题)23.已知直线ba⊥于O,现将矩形ABCD和矩形EFGH,如图1放置,直线BE分别交直线ba,于MN,.(1)当矩形ABCD≌矩形EFGH时,(如图1)BM与NE的数量关系是;(2)当矩形ABCD与矩形EFGH不全等,但面积相等时,把两矩形如图2,3那样放置,问在这两种放置的情形中,(1)的结论都还成立吗?如果你认为都成立,请你利用图3给予证明,若认为BM与NE的有不同的数量关系,先分别写出其数量关系式,再证明.(1)BM= NE(2)如图2,3那样放置(1)中的结论都成立,证明: 如图3,在矩形ABCD和矩形EFGH中,FN∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90°∴△EFN∽△BAE,同理:△BCM∽△EAB∴EF ENAB BE=…………①,BC BMHE EB=………………②①÷②得, EF HE EN EB AB BC BE BM ⨯⨯=⨯⨯又∵EF×HE=AB×BC,∴EN EBBE BM⨯⨯=1, ∴EN=BM六、(本大题共2小题,每小题10分,共20分)24. 经过原点和G (4,0)的两条抛物线x b x a y 1211+=,x b x a y 2222+=,顶点分别为B A ,,且都在第1象限,连结BA 交x 轴于T ,且3==AT BA .(1) 分别求出抛物线1y 和2y 的解析式;(2) 点C 是抛物线2y 的x 轴上方的一动点,作x CE ⊥轴于E ,交抛物线1y 于D,试判断CD和DE 的数量关系,并说明理由;(3) 直线m x =,交抛物线1y 于M ,交抛物线2y 于N ,是否存在以点T B N M ,,,为顶点的四边形是平行四边形,若存在,求出m 的值;若不存在,说明理由..2y 1y 4 G25.平面内两条直线1l ∥2l ,它们之间的距离等于a .一块正方形纸板ABCD 的边长也等 于a .现将这块硬纸板如图所示放在两条平行线上.(1)如图1,将点C 放置在直线2l 上, 且1l AC ⊥于O , 使得直线1l 与AB 、AD 相交于E 、F ,证明:AEF ∆的周长等于a 2; 请你继续完成下面的探索:(2)如图2,若绕点C 转动正方形硬纸板ABCD ,使得直线1l 与AB 、AD 相交于E 、F , 试问AEF ∆的周长等于a 2还成立吗?并证明你的结论;(3)如图3,将正方形硬纸片ABCD 任意放置,使得直线1l 与AB 、AD 相交于E 、F ,直线2l 与BC 、CD 相交于G ,H ,设∆AEF 的周长为1m ,∆CGH 的周长为2m ,试问1m ,2m 和a 之间存在着什么关系?试证明你的结论.1l2lABCDE F图2AC图31l2lBDEFGH1l2lABCDE F图1O参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分) 1. D 2. C 3.A 4. C 5. A 6. B 7. C 8. B 二、填空题(本大题共8小题,每小题3分,共24分) 9. 3x(x+2)(x-2) 10. 01=x ,212=x 11. 41-; 12. y=3x+3 13. 22014.-10 15.3 16. ③④三、(本大题共3小题,每小题6分,共18分)17. 解:方程两边乘以)1(1-+x x )( 得)1)(1(6)1(-+=--x x x x ……………………………………2分 整理得16-=-x解得 x =-5. ……………………………………5分 经检验: x =-5是原方程的解.∴原方程的解是x =-5. …………………………………………6分 18.解:因为,30︒=∠C 6=AB ,所以36=AC ……………………………2分 所以点)1,37(C ……………………………3分 设经过点C 的反比例函数的解析式xky =. 所以137k=,即37=k . ………………………………………………5分后抽取的牌牌面数字先抽取的牌牌面数字5554443332225432开始所以经过点C 的反比例函数的解析式xy 37=.………………………………………6分19. 解(1)从中随机抽取一张牌是黑桃的概率为41………………………2′ (2)抽取的两张牌牌面数字所有可能出现的结果用表格表示如下:3 6 10 63 (3,6) (3,10) (3,6)6 (6,3)(6,10) (6,6)10 (10,3) (10,6)(10,6)6(6,3) (6,6) (6,10)也可树状图表示如下:所有可能出现的结果 (3,6) (3,10) (3,6) (6,3) (6,10) (6,6) (10,3) (10,6) (10,6) (6,3) (6,6) (6,10)……………………………4′ 由表格(或树状图)可以看出,抽取的两张牌可能出现的结果有12种,它们出现的可能性相等,而两张牌牌面数字都是6的结果有2种,∴P (抽取的是一对6 )=61122=. ……………………………6分后抽取的牌 牌面数字四、(本大题共2小题,每小题8分,共16分.)20. (1)①从平均人数的角度预测,2011年全校学生的视力在4.9以下的学生有500人; ②从人数的最大值与最小值的平均值预测,2011年全校学生的视力在4.9以下的学生有550人;③从人数的中位数角度预测,2011年全校学生的视力在4.9以下的学生有450人;. ④从人数的平均增长数预测, (3)800+3300800-=32966,约967人. 2011年全校学生的视力在4.9以下的学生有约967人. 等等. …………………2分 (2)学生总数800÷40%=2000(人),………………………………………3分 视力5.0:=200060030%, 30%×︒360=︒108; 视力5.1: 2000-800-600-200=400(人),=200040020%, 20%×︒360=︒72; 视力5.2以上:=200020010%, 10%×︒360=︒36.………………………………………5分(3)设到达正常视力的假性近视学生的人数为x 人. 依题意得: 2000200400600++ +10%=2000200400600x+++ ………………7分解得:200=x答: 到达正常视力的假性近视学生的人数为200人. …………………8分21.(1)10 ,42+n ; ………………………………………………2分 (2)14,24+m ; …………………………………………4分 (3)按甲种方式每6张拼一张能有:2×6+4=16(个), 按乙种方式每4张拼一张能有:4×4+2=18(个), 根据,790420018616=-⨯+⨯a a ……………………………………6分 解得:.60=a ……………………………………7分A 餐厅:160616=⨯a(个), B 餐厅:=-⨯420018a630(个). ……………………………………8分 五、(本大题共2题,每小题9分,共18分) 22.解: 假设存在点P,使得为△PBC 等腰三角形, 当BC BP =时,可得OB BP OP ==, 则△1OBP 为等边三角形. ∴.,301︒=∠BG P过1P 作BC G P ⊥1于G , ∵.224211===BP G P ∴1P 到BC 距离为2cm .………………2分当BC CP =时, ∵22CP OP OB BC ===,︒=∠90OBC , ∴四边形2OBCP 为正方形. ∴.4,9022cm C P BCP =︒=∠ ∴2P 到BC 距离为4cm . ………………5分1P2P当BP CP =时,作BC 的垂直平分线交⊙O 于P . ∵BC K P ⊥3, ∴321224222233==-=-=OM OP M P (㎝)∴,4323+=K P ∴3P 到线段BC 距离为432+ (㎝). …………………………7分 ∵23OP K P ⊥,∴3243==M P M P (㎝). ∴3244-=K P (㎝).∴4P 到线段BC 距离为324- ( ㎝). ………………………………………9分 ∴存在4个点P 满足条件,P 到BC 的距离分别为,4,2cm cm ,)432(cm +cm .)324(-. 23. (1) BM= NE…………………………………………………2分 (2) 如图2,3那样放置(1)中的结论都成立,………………4分证明: 如图3,在矩形ABCD 和矩形EFGH 中,FG ∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN ∽△BAE,同理:△BCM ∽△EAB……………………………6分∴EF EN AB BE =………①, BC BMHE EB=…………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1,∴ EN=BM ………………………………………9分六、(本大题共2小题,每小题10分,共20分) 24.(1) ∵,3==AT BA∴A (2,3),B (2,6). …………………………………………………………1分 ∵x b x a y 1211+=过A (2,3)和).0,4(G依题意得:⎩⎨⎧=+=+.0416,3241111b a b a解得⎪⎩⎪⎨⎧=-=.3,4311b a∴.34321x x y +-= …………………………………………………………2分 同理.62322x x y +-= …………………………………………………………3分(2).EF CD = …………………………………………………………4分 证明;设40,<<=t t OE . ∵D 在.34321x x y +-=上, ∴=DE .3432t t +-………………………………………………………5分 ∵C 在x x y 62322+-=上,∴=CE t t 6232+-.∴=-=DE CE CD (t t 6232+-)—(t t 3432+-)=t t 3432+-.∴.DE CD = ……………………………………………7分 (3) 由于MN ∥BT,当假设存在四边形BTNM 为平行四边形时,则.MN BT ==6.∵)623,(),343,(22m m m N m m m M +-+- ∴=MN .343)623()343(222m m m m m m -=+--+-依题意,得: 23634m m =-. …………………………………………9分 2334m m -=-6, 此方程无解, 2334m m -=6, 解之得:∴.322±=m …………………………………………10分 ∴存在322±=m 使得以点T B N M ,,,为顶点的四边形是平行四边形. 25.(1)证法一:,2,2,2a a AO AO AF AE AO EF -==== ……………………2分则.2222a AO AO EF AF AE =+=++…………………………………………3分 证法二:连结.,FC EC∵1l AC ⊥,∴.︒=∠=∠90COE B . 又∵,,EC EC a CO BC ===∴.OCE BCE ∆≅∆ ……………………………………………2分 ∴.EO BE =同理FD OF =.∴ .2a AD AB EF AF AE =+=++ ……………………………………………3分 (1) 如图4,过C 作EF CM ⊥于M , 则.90︒=∠=∠EMC B∵,,EC EC a CM BC ===∴MCE BCE ∆≅∆ …………………4分 同理CDF CMF ∆≅∆得.,DF MF ME BE ==…………………5分∴ .2a AD AB EF AF AE =+=++ ………………6分 (3)a m m 221=+证明:如图5将21,l l 分别同时向下平移相同的距离,则4l 和3l 的距离还是a ,使得4l 经过点C , 3l 交AB 于M ,交AD 于N . ……………………………………………7分 由(2)的证明知,2a AN MN AM =++过F 作FK ∥AB 交MN 于K . ∴四边形EMKF 为平行四边形.∴,,EM FK MK EF == ………………………………………8分 ∵作FQ MN ⊥于Q ,P GH CP 于⊥.则.CP FQ = ∵FK ∥AB , ∴.AMN FKQ ∠=∠作BJ ∥MN , ∴.ABJ AMN ∠=∠ ∵︒=∠+∠90CBJ ABJ ,1l2lABCDE F图4M4lAC1l2lBDEF G HMNK图53lQ P TJ,CGP BGT CBJ ∠=∠=∠.90︒=∠+∠GHC CGP∴.GHC FKQ ∠=∠∴FQK ∆≌CPH ∆∴.,PH KQ CH FK == ……………………9分 同理.,GP NQ GC FN == ∴.GH KN =则.2a MN AN AM KNMK FN AF EM AE GH CH GC EF AF AE =++=+++++=+++++………………………………………10分。

相关文档
最新文档