七年级数学下册第7周周测题

合集下载

七年级周测数学试卷

七年级周测数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 22. 下列等式中,正确的是()A. -5 + 3 = -2B. -5 + 3 = 2C. -5 - 3 = -2D. -5 - 3 = 23. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 04. 下列代数式中,同类项的是()A. 3x^2B. 2xyC. 4x^2yD. 5x^2 + 2xy5. 已知a、b、c是等差数列,且a + b + c = 9,则a + c的值为()A. 3B. 6C. 9D. 126. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 + 2x - 1C. y = 3x^2 - 2x + 1D. y = 4x - 37. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 梯形D. 圆形8. 在直角三角形ABC中,∠C = 90°,AC = 3cm,BC = 4cm,则AB的长度为()A. 5cmB. 6cmC. 7cmD. 8cm9. 下列方程中,有唯一解的是()A. 2x + 3 = 5B. 3x - 2 = 7C. 2x^2 - 5x + 3 = 0D. 3x^2 - 2x + 1 = 010. 下列数中,是质数的是()A. 15B. 16C. 17D. 18二、填空题(每题5分,共50分)11. 计算:-3 + (-2) = _______12. 等差数列{an}中,首项a1 = 2,公差d = 3,则第10项a10 = _______13. 已知二次函数y = -x^2 + 2x - 1,其顶点坐标为(_______,_______)。

14. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为(_______,_______)。

2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析

2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析

2023年春学期七年级数学下册第七章《一次方程组》综合测评卷一、单选题(每小题4分,共48分)1.下列方程中,是二元一次方程的是()A.xy =1B.x +1y=2C.y =3x -1D.x +y +z =12.下列方程组中,表示二元一次方程组的是()A.3{5x y z x +=+=B.5{1x y x y+==C.3{5x y xy +==D.11{122x y y x =++=3.下列各组数中,是二元一次方程52x y -=的一个解的是()A.31x y =⎧⎨=⎩B.13x y =⎧⎨=⎩C.20x y =⎧⎨=⎩D.02x y =⎧⎨=⎩4.将方程2x -3y -4=0变形为用含有y 的式子表示x ,正确的是()A.2x =3y +4B.x =32y +2C.3y =2x -4D.y =243x -5.方程01ax y x by +=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,则a ,b 为()A.01a b =⎧⎨=⎩B.10a b =⎧⎨=⎩C.11a b =⎧⎨=⎩D.00a b =⎧⎨=⎩6.已知e ,f 满足方程组32,26,e f f e -=⎧⎨-=⎩则2e +f 的值为()A.2B.4C.6D.87.已知23x y --+(2x+y+11)2=0,则()A.21x y =⎧⎨=⎩B.03x y =⎧⎨=-⎩C.15x y =-⎧⎨=-⎩D.27x y =-⎧⎨=-⎩8.已知关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩,与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,则a ,b 的值为()A.21a b =-⎧⎨=⎩B.12a b =⎧⎨=-⎩C.12a b =⎧⎨=⎩D.12a b =-⎧⎨=-⎩9.若方程组()213431kx k y x y ⎧+-=⎨+=⎩,的解x 和y 互为相反数,则k 的值为()A.2B.-2C.3D.-310.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b 对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1B.1,-3C.-3,1D.-1,311.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是()A.8.31.2x y =⎧⎨=⎩B.10.32.2x y =⎧⎨=⎩C. 6.32.2x y =⎧⎨=⎩D.10.30.2x y =⎧⎨=⎩12.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是()A.6036241680x y x y +=⎧⎨+=⎩B.6024361680x y x y +=⎧⎨+=⎩C.3624601680x y x y +=⎧⎨+=⎩D.2436601680x y x y +=⎧⎨+=⎩二、填空题(每小题4分,共16分)13.若mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,则mn=____________14.关于x ,y 的二元一次方程组23,1ax by ax by +=⎧⎨-=⎩的解为1,1x y =⎧⎨=-⎩,则2a b -的值为______15.一桶油,连桶共8kg,用去一半以后,连桶的质量为4.5kg.问原来有油多少千克?若设油的质量为x kg,桶的质量为y kg,则根据题意可列方程组为______.16.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是6{8x y ==,则方程组111222345{345a x b y c a x b y c +=+=的解是_________.三、解答题(6个小题,共56分)17.用适当的方法解下列方程组.(1)21437x y x y =-⎧⎨+=⎩;(2)3222328x y x y +=⎧⎨+=⎩.18.为预防新冠肺炎病毒,市面上95KN 等防护型口罩出现热销.已知3个A 型口罩和2个B 型口罩共需31元;6个A 型口罩和5个B 型口罩共需70元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A 型,B 型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A 型口罩售价上涨40%,B 型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.19.某超市代理销售,A B 两种鲜牛奶,这两种鲜奶的成本价和销售价如表格所示,它们的保质期为一天,当天未售出的鲜奶必须全部销毁.该超市某天用1320元购进,A B 两种鲜奶共200瓶,卖出180瓶,当天共获得570元的利润.价格类别成本价(元/瓶)销售价(元/瓶)A 种鲜奶58B 种鲜奶914(1)求该超市这一天购进,A B 种鲜奶各多少瓶;(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩来解决另一个问题,你认为小明要解决的问题可能是什么?小明所列的方程组解决这个问题能得出正确的答案吗?若可以,请求结果;若不可以,请列出正确的方程或方程组,不必求解.20.某文具店有甲,乙两种水笔,它们的单价分别为a 元/支,b 元/支,若购买甲种水笔5支,乙种水笔2支,共花费25元,购买甲种水笔3支,乙种水笔4支,共花费29元.(1)求a 和b 的值;(2)甲种水笔涨价m 元/支(02m <<),乙种水笔单价不变,小明花了40元购买了两种水笔10支,那么购买甲种水笔多少支?(用含m 的代数式表示).21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.22.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第_____________次购物打了折扣;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?参考答案:1.C【详解】根据二元一次方程的定义:只含有两个未知数,并且未知数最高次数是2的整式方程,故选C. 2.D【详解】A、有三个未知数,故不是二元一次方程组;B、有两个未知数,第二个方程不是整式方程,故不是二元一次方程组;C、有两个未知数,第二个方程的次数是2次,故不是二元一次方程组;D、有两个未知数,方程的次数是1次,所以是二元一次方程组,故选D.3.B【详解】解:A、把31xy=⎧⎨=⎩代入方程得:左边=15-1=14,右边=2,∵左边≠右边,∴不是方程的解;B、把13xy=⎧⎨=⎩代入方程得:左边=5-3=2,右边=2,∵左边=右边,∴是方程的解;C、把2xy=⎧⎨=⎩代入方程得:左边=10-0=10,右边=2,∵左边≠右边,∴不是方程的解;D、把2xy=⎧⎨=⎩代入方程得:左边=0-2=-2,右边=2,∵左边≠右边,∴不是方程的解;故选:B.4.B【详解】2x-3y-4=0,2x=4+3y,x=32y+2,故选B. 5.B【详解】解:由题意得:1011a b -=⎧⎨-=⎩,解得:10a b =⎧⎨=⎩.故选B6.D【详解】3226e f f e -=⎧⎨-=⎩①②,①+②得,2e +f =8,故选:D.7.D【详解】由题意得:2302110x y x y --=⎧⎨++=⎩,解得:27x y =-⎧⎨=-⎩,故选D.8.B【详解】关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,所以234356x y x y -=⎧⎨-=⎩,解得20x y =⎧⎨=⎩,将20x y =⎧⎨=⎩代入24ax by bx ay +=⎧⎨+=-⎩可得2224a b =⎧⎨=-⎩,解得12a b =⎧⎨=-⎩,故选B.9.A【详解】由题意可得4310x y x y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,把11x y =⎧⎨=-⎩代入方程2kx+(k-1)y=3得2k-(k-1)=3,解得k=2;故选A.10.A【详解】由题意得:2127a b a b +=⎧⎨-=⎩,解得:31a b =⎧⎨=-⎩,故选A.11.C【详解】由题意知,28.31 1.2x y +=⎧⎨-=⎩,解得, 6.32.2x y =⎧⎨=⎩,故选:C.12.B【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩故选B.13.2【详解】因为mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,所以可得:32121m n m n -=⎧⎨+=⎩,解得:12 14m n ⎧=⎪⎪⎨⎪=⎪⎩,所以2mn=,故答案为:2.14.2【详解】解:由题意,得231a b a b -⎧⎨+⎩=①=②,解得4313a b ⎧=⎪⎪⎨⎪=-⎪⎩,2a b -=41233⎛⎫-⨯- ⎪⎝⎭=2,故答案为:2.15.814.52x y x y +=⎧⎪⎨+=⎪⎩【详解】油的质量为x kg,桶的质量为y kg,由题意得81 4.52x y x y +=⎧⎪⎨+=⎪⎩故答案为81 4.52x y x y +=⎧⎪⎨+=⎪⎩.16.1010x y =⎧⎨=⎩【详解】试题分析:根据题意,把方程组的解6{8x y ==代入111222{a x b y c a x b y c +=+=,可得11122268{68a b c a b c +=+=①②,把①和②分别乘以5可得11122230405{30405a b c a b c +=+=,和所求方程组111222345{345a x b y c a x b y c +=+=比较,可知1112223104105{3104105a b c a b c ⨯+⨯=⨯+⨯=,因此方程组的解为10{10x y ==.17.(1)11x y =⎧⎨=⎩;(2)1016x y =-⎧⎨=⎩【详解】(1)21,437,x y x y =-⎧⎨+=⎩①②将①代入②,()42137y y -+=,解得,1y =,把1y =代入①得,1x =,∴原方程组的解为11x y =⎧⎨=⎩.(2)322,2328,x y x y +=⎧⎨+=⎩①②,32⨯-⨯②①,得,580y =,解得,16y =.将16y =代入①:3322x +=解得,10x =-,∴原方程组的解为1016x y =-⎧⎨=⎩.18.(1)一个A 型口罩的售价为5元,一个B 型口罩的售价为8元(2)小红有2种不同的购买方案,方案1:购买8个A 型口罩,13个B 型口罩;方案2:购买16个A 型口罩,6个B 型口罩【详解】(1)设一个A 型口罩的售价为x 元,一个B 型口罩的售价为y 元,依题意,得:32316570x y x y +=⎧⎨+=⎩,解得:58x y =⎧⎨=⎩,答:一个A 型口罩的售价为5元,一个B 型口罩的售价为8元;(2)解:设购买A 型口罩m 个,B 型口罩n 个,根据题意,得5(140%)8160m n ++=,即78160m n +=,∴满足条件的m ,n 有:8m =,13n =或16m =,6n =,∴小红有2种购买方案:第一种方案:A 型口罩购买8个,B 型口罩购买13个;第二种方案:A 型口罩购买16个,B 型口罩购买6个;19.(1)该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.【详解】(1)解:设该超市这一天购进A 种鲜奶x 瓶,购买B 种鲜奶()200x -瓶,则()592001320x x +-=,解得:120x =,则80200=-x ,答:该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,设A 种鲜奶卖出m 瓶,卖出B 种鲜奶n 瓶,则正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.20.(1)a 的值为3,b 的值为5;(2)购买甲102m-支【详解】(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩.故a 的值为3,b 的值为5;(2)设购买甲种水笔x 支,则购买乙种糖果()10x -支,依题意有:()()351040m x x ++-=,解得:102x m=-;故购买甲102m -支.21.(1)16m n +=;(2)时间上考虑选择甲公司;(3)从节约开支上考虑选择乙公司【详解】(1)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,则16m n +=,故答案为:16m n +=.(2)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,根据题意得,16491m n m n ⎧+=⎪⎨⎪+=⎩;解得:110115m n ⎧=⎪⎪⎨⎪=⎪⎩∵111015>∴甲公司的效率高,所以从时间上考虑选择甲公司.(3)解:设甲公司每周费用为a 万元,乙公司每周费用为b 万元,根据题意得:66 5.249 4.8a b a b +=⎧⎨+=⎩;解得:35415a b ⎧=⎪⎪⎨⎪=⎪⎩∴公司共需33010655⨯==万元,乙公司共需415415⨯=万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.(1)三;(2)商品A 的标价为90元,商品B 的标价为120元;(3)商店是打6折出售这两种商品的【详解】(1)解:由表中数据可知,第三次购买商品数量比第一次、第二次都多,但总费用却比第一次、第二次低,从而确定第三次购物打了折扣,故答案为:三;(2)解:设商品A 的标价为x 元,商品B 的标价为y 元,则651140371110x y x y +=⎧⎨+=⎩①②,②2⨯-①得91080y =,解得120y =,将120y =代入①得到90x =,答:商品A 的标价为90元,商品B 的标价为120元;(3)解:设商店是打m 折出售这两种商品,则()9908120·106210m⨯+⨯=,解得6m =,答:若商品A ,B 的折扣相同,问商店是打6折出售这两种商品的.。

初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(7)

初中数学冀教版七年级下册第九章 三角形9.1 三角形的边-章节测试习题(7)

章节测试题1.【答题】一个三角形的两边长分别是3和7,则第三边长可能是()A. 2B. 3C. 9D. 10【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,选C.2.【答题】下列长度的四根木棒中,能与长为,的两根木棒围成一个三角形的是().A. B. C. D.【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为,则,即.选C.3.【答题】a,b,c为△ABC的三边,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|,结果是()A. 0B. 2a+2b+2cC. 4aD. 2b2c【答案】A【分析】本题考查了绝对值及三角形三边关系的知识点.根据三角形的三边关系去绝对值,即两边之和大于第三边,两边之差小于第三边,进而再化简即可.【解答】|a+b+c|−|a−b−c|−|a−b+c|−|a+b−c|,=a+b+c+a−b−c−a+b−c−a−b+c=0.选A.4.【答题】若一个三角形两边长分别是3、7,则第三边长可能是()A. 4B. 8C. 10D. 11【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为x,则由三角形三边关系定理得7−3<x<7+3,即4<x<10.因此,本题的第三边应满足4<x<10,把各项代入不等式符合的即为答案。

只有8符合不等式,故选B.5.【答题】下列各组线段,能组成三角形的是()A. 2cm,3cm,5cmB. 5cm,6cm,10cmC. 1cm,1cm,3cmD. 3cm,4cm,8cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边的性质可得选项A,3+2=5,不能组成三角形;选项B,5+6>10,能组成三角形;选项C,1+1<3,不能组成三角形;选项D,4+3<8,不能组成三角形.选B.6.【答题】在平面内,线段AC=5cm,BC=3cm,线段AB长度不可能的是()A. 2 cmB. 8 cmC. 5 cmD. 9 cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】若点A,B,C三点共线,则AC=2cm或8cm;若三点不共线,则根据三角形的三边关系,应满足大于2cm而小于8cm.则2cm⩽Ac⩽8cm.选D.7.【答题】已知等腰三角形的一边长为4,另一边长为8,则它的周长是().A. 12B. 16C. 20D. 16或20【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:等腰三角形的一边长为4,另一边长为8,则第三边可能是4,也可能是8,(1)当4是腰时,4+4=8,不能构成三角形;(2)当8是腰时,不难验证,可以构成三角形,周长=8+8+4=20选C.8.【答题】下列长度的三条线段能组成三角形的是(※).A.B.C.D.【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A、∵2+3=5,故2,3,5不能组成三角形;B、∵4+2<7,故7,4,2不能组成三角形;C、∵3+4<8,3,4,8不能组成三角形;D、3+3>4,3,3,4能组成三角形.选D.方法总结:运用三角形三边关系判定三条线段能否构成三角形时,并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.【答题】已知a=3cm,b=6cm,则下列长度的线段中,能与a,b组成三角形的是()A. 2cmB. 6cmC. 9cmD. 11cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三条边为c,则3cm<c<9cm.选C.方法总结:三角形两边之和大于第三边,两边之差小于第三边.10.【答题】下列选项中的三条线段能组成三角形的是()A. 2,2,6B. 1,2,3C. 4,5,6D. 8,3,2【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项:2+2<6,所以不能组成三角形;B选项:1+2=3,所以不能组成三角形;C选项:能组成三角形;D选项:2+3<8,所以不能组成三角形.选C.11.【答题】若等腰三角形有两条边的长为5和7,则此等腰三角形的周长为()A. 12B. 17C. 19D. 17或19【答案】D【分析】根据三角形的三边关系进行判断.【解答】解:当等腰三角形的腰为5时,三边为5,5,7,5+5=10>7,此等腰三角形的周长5+5+7=17;当等腰三角形的腰为7时,三边为5,7,7,三边关系成立,周长为5+7+7=19选D.12.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】三角形中任意两边和需大于第三边,任意两边之差小于第三边,可知A选项:1+2=3,构不成三角形,故选.13.【答题】以下列长度的线段为边,能组成三角形的是()A. ,,B. ,,C. ,,D. ,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A、1+2=3,构不成三角形,不符合题意;B、6+8<15,构不成三角形,不符合题意;C、4+7>10,10-7<4,能构成三角形,符合题意;D、3+3<7,构不成三角形,不符合题意,选C.14.【答题】已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有()A. 6个B. 5个C. 4个D. 3个【答案】D【分析】根据三角形的三边关系进行判断.【解答】∵8-3<x<8+3,∴5<x<11,∴符合条件的偶数有:6,8,10共3个.选D.15.【答题】若三条线段中a=3,b=5,c为奇数,那么由a、b、c为边组成的三角形共有()A. 1个B. 3个C. 无数多个D. 无法确定【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得5−3<c<5+3,2<c<8.又c是奇数,则c=3或5或7.选B.16.【答题】下列各组线段中,能构成三角形的是()A. 2,3,5B. 3,4,5C. 3,4,10D. 2,5,8【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A. 2+3=5,故不能构成三角形,故选项错误;B. 3+4=7>5,故能构成三角形,故选项正确;D. 2+5=7<8,故不能构成三角形,故选项错误;C. 3+4=7<10,故不能构成三角形,故选项错误.选B.17.【答题】已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A. 5B. 10C. 15D. 20【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】由三角形的三边关系,得9-5<第三边<9+5,则4<第三边<14,因此,只有B选项符合.选B.18.【答题】已知等腰三角形的一边等于3,一边等于6,那么它的周长等于()A. 12B. 12或15C. 15D. 15或18【答案】C【分析】根据三角形的三边关系进行判断.【解答】解:当3为腰,6为底时,∵3+3=6,∴不能构成三角形;当腰为6时,∵3+6>6,∴能构成三角形,∴等腰三角形的周长为:6+6+3=15,选C.19.【答题】在平面内,线段AC=5cm,BC=3cm,线段AB长度不可能的是()A. 2cmB. 8cmC. 5cmD. 9cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】若点A,B,C三点共线,则AC=2cm或8cm;若三点不共线,则根据三角形的三边关系,应满足大于2cm而小于8cm.则2cm⩽Ac⩽8cm.选D.20.【答题】下列各组长度的线段能构成三角形的是()A. 1,2,4B. 4,5,9C. 4,6,8D. 5,5,11【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项,因为1+2<4,所以A选项中的线段不能构成三角形;B选项,因为4+5=9,所以B选项中的线段不能构成三角形;C选项,因为4+6>8,所以C选项中的线段能构成三角形;D选项,因为5+5<11,所以D选项中的线段不能构成三角形;选C.。

第9章 不等式与不等式组(全章)人教版数学七年级下册周周测(含答案)

第9章 不等式与不等式组(全章)人教版数学七年级下册周周测(含答案)

第九章不等式与不等式组(全章)周周测3一、选择题1.已知x>y,若对任意实数a,以下结论:甲:ax>ay;乙:a2-x>a2-y;丙:a2+x≤a2+y;丁:a2x≥a2y.其中正确的是( )A. 甲B. 乙C. 丙D. 丁2.不等式组的整数解是( )A. 15B. 16C. 17D. 15,163.如果式子2x+6的值是非负数,那么x的取值范围在数轴上表示出来,正确的是( )A. B.C. D.4.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品( )A. 9件B. 10件C. 11件D. 12件5.如果b>a>0,那么( )A. B. C. D. -b>-a6.下列不等式总成立的是( )A. 4a>2aB. a2>0C. a2>aD. -a2≤07.与不等式<-1有相同解集的不等式是( )A. 3x-3<(4x+1)-1B. 3(x-3)<2(2x+1)-1C. 2(x-3)<3(2x+1)-6D. 3x-9<4x-48.甲、乙两人从相距24 k m的A、B两地沿着同一条公路相向而行,甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,那么甲的速度应( )A. 小于8 k m/hB. 大于8 k m/hC. 小于4 k m/hD. 大于4 k m/h9.如果不等式组有解,那么m的取值范围是( )A. m>1B. m≤2C. 1<m≤2D. m>-210.不等式组的整数解共有4个,则a的取值范围是( )A. -3<a<-2B. -4<a≤-2C. -3≤a<-2D. -3<a≤-2二、填空题11.若点(2,m-1)在第四象限,则实数m的取值范围是______.12.不等式3x+2≤14的解集为______ .13.若不等式(4-k)x>-1的解集为x,则k的取值范围是______ .14.不等式5x+14≥0的负整数解是______.15.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,至少要选对______道题,其得分才能不少于80分.16.定义一种新的运算:a※b=2a+b,已知关于x不等式x※k≥1的解集在数轴上表示如图,则k= ______ .17.已知x=3是不等式mx+2<1-4m的一个解,如果m是整数,那么m的最大值是______.18.甲、乙两队进行足球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分.两队一共比赛了10场,甲队保持不败,得分超过22分,则甲队至少胜了___ 场.三、解答题19.解不等式组:.20.解不等式组:,注:不等式(1)要给出详细的解答过程.21.解下列不等式(组):(1)2(x+3)>4x-(x-3);(2)22.求不等式≤+1的非负整数解.23.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各是多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.26.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?第九章不等式与不等式组周周测3 参考答案与解析一、选择题1.C2.B3.C4.C5.C6.D7.D8.B9.D 10.D二、填空题11.m<1 12.x≤413.k>4 14.x=-2,-1 15.16 16.3 17.-1 18.7三、解答题19.解:-2<x≤13.20.解:解不等式3-(2x-1)≥5x+4,去括号,得3-2x+1≥5x+4,移项、合并同类项,得7x≤0,系数化为1,得x≤0.解不等式-3<2x,去分母,得x-6<4x,移项、合并同类项,得-3x<6,系数化为1,得x>-2.∴不等式组的解集为-2<x≤0.21.解(1)x<3. (2)-1≤x<2.22.解:解不等式得x≤4,则不等式的非负整数解为x=0,1,2,3,4.23.解:(1)设榕树和香樟树的单价各是a元,b元.由题意得解得答:榕树和香樟树的单价各是60元,80元.(2)设购买榕树x棵,则购买香樟树(150-x)棵.由题意得解得58≤x≤60.∵x为整数,∴x=58,59,60.即共有3种方案:购买榕树58棵,则购买香樟树92棵;购买榕树59棵,则购买香樟树91棵;购买榕树60棵,则购买香樟树90棵.24.解:(1)设打包成件的帐篷和食品各a件,b件.由题意得解得答:打包成件的帐篷和食品各200件,120件.(2)设安排甲种货车x辆,则安排乙种货车(8-x)辆.由题意得解得2≤x≤4.∵x为自然数,∴x=2,3,4.即有3中方案:安排甲种货车2辆,安排乙种货车6辆;安排甲种货车3辆,安排乙种货车5辆;安排甲种货车4辆,安排乙种货车4辆.。

最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)

最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)

人教版七年级下册第7章平面直角坐标系水平测试卷第10章数据的收集、整理与描述期末复习测试卷一、选择题(每小题3分,共30分)1.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()3.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“声临其境”的满意情况D.调查某中学九年级某班学生数学暑假作业检测成绩4.下列调查中,调查方式选择不合理的是A.调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A.2000名学生的体重是总体B.2000名学生是总体C.每个学生是个体D.150名学生是所抽取的一个样本6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:和最合适...的是()A.20双B.30双C.50双D.80双7.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。

从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只8.一个容量为40的样本最大值为35,最小值为12,取组距为4 ,则可以分为()A.4组B.5组C.6组D.7组9.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人10.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日二、选择题(每小题3分,共30分)11.一组数据分为5组,第一组的频率为0.15,第二组的频率为0.21,第三组的频率为0.29,第四组的频率为0.15,则第五组的频率是______.12.小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有____人.13.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是。

人教版七年级数学下单元周周测(一)(5

人教版七年级数学下单元周周测(一)(5
七年级 数学 下册 人教版
周周测(一)(5.1-5.2) (时间:45分钟 满分:100分)
七年级 数学 下册 人教版
一、选择题(每小题 5 分,共 20 分)
1.邻补角是
(D )
A.和为 180°的两个角
B.有公共顶点且互补的两个角
C.有一条公共边且相等的两个角
D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角
七年级 数学 下册 人教版
14.(12 分)如图,O 为直线 AB 上一点,OC 为一射线,OE 平分∠AOC,OF 平分∠BOC. (1)若∠BOC=50°,试探究 OE,OF 的位置关系; (2)若∠BOC=α(0°<α<180°),(1)中 OE,OF 的 位置关系是否仍成立?请说明理由,由此你发现了 什么规律?
七年级 数学 下册 人教版
12.(10 分)将一副三角板拼成如图所示的图形,过点 C 作 CF 平分∠DCE 交 DE 于点 F. (1)试说明 CF∥AB; (2)求∠DFC 的度数.
七年级 数学 下册 人教版
解:(1)由题意可知∠3=45°,∠DCE=90°, ∵CF 平分∠DCE, ∴∠1=∠2=45°,∴∠3=∠1,∴AB∥CF. (2)由题意知:∠D=30°,又∠1=45°, ∴∠DFC=180°-30°-45°=105°.
(2)OE⊥OF 仍成立.理由:由邻补角的定义,可得∠AOC=180°-α. 因为 OE 平分∠AOC,OF 平分∠BOC, 所以∠COF=12∠BOC=12α,∠COE=12∠AOC=12(180°-α)=90°-12α, 所以∠EOF=∠COF+∠COE=12α+(90°-12α)=90°,即 OE⊥OF. 由此发现:无论∠BOC 的度数是多少,∠EOF 总等于 90°, 即邻补角的平分线互相垂直.

第七章综合测试卷备选试题七年级数学

第七章综合测试卷备选试题七年级数学

第七章综合测试题、选择题1.有4根木条,长度分别为 24cm , 20cm , 16cm , 8cm ,选择其中的三根作为边组成三角 形,选择的方法共有( )A. 1种B. 2种C. 3种D. 4种2.在三角形ABC 中,已知两边长分别为 a=4,b=6,则第三边c 的范围是( )A. c>2B. c<6C. c<10D. 2<c<103.三角形的两边长分别为 5和7,则这个三角形的周长 I 的范围是 (A . I>12B . I>14C . 12VIV24D . 14<l<244.已知三角形 ABC 的三边长为a,b,c ,化简丨a+b-c 丨-丨b-c-a 丨的结果是 (A. 2aB. -2bC.2a+2bD. 2b-2c5. —个三角形三边的长都是整数, 并且唯一的最长边长是6,则这样的三角形共有 (A. 5个B. 6个C. 7个D. 8个6.下列说法错误的是(A.三角形的三条中线都在三角形的内部B.三角形的三条角平分线都在三角形内部C. 若三角形有两条高不在三角形的内部,则这个三角形是钝角三角形D. 三角形的三边长度一定,那么这个三角形的形状不变 7.如图,BD 是厶ABC 的高,EF 平行 AC 交 BD 于G ,下列说法不正确的是()A. BG 是厶EBF 的高B. CD 是厶BGC 的高C. DG 是厶BGC 的高D. AD 是厶ABG 的高 8.下列不是利用三角形稳定性的是A.自行车的三角形车架B.三角形的房架C.四边形活动挂架 D 。

长方形门框的斜拉条9.在△ ABC 中,如果/ A- / B = 90°,那么△ ABC 是 ()A.直角三角形B.锐角三角形C.钝角三角形D.锐角三角形或钝角三角形10.在△ ABC 中,/ A = 2/B = 75°,则/ C = ()A. 30B. 67 30'C. 105D.13511.一个多边形每一个外角都是72°,则这个多边形的边数是 ()A. 5B. 6C. 7D. 8 12.一个多边形的各内角都相等,且内角与) ) ) )( )外角的差是100°,那么这个多边形是()A. 七边形B. 八边形C.九边形D.十边形13. 过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()° ° _ ° °A. 1620B. 1800C. 1980D. 216014. 一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A. 5B. 6C. 7D. 815•商店出售下列形状的地板:⑴下方形;⑵正五边形;⑶长方形;⑷正六边形。

2024年北师大版七年级下册数学周周测试题及答案(三)(考查范围:1.6-1.7)

2024年北师大版七年级下册数学周周测试题及答案(三)(考查范围:1.6-1.7)

周周测(三)______月______日建议用时:45分钟(考查范围:1.6-1.7)1.(2023·六盘水期中)下列计算正确的是(D)A.x5·x2=x10B.(3x3)3=9x6C.(1+x)(1-y)=1-xyD.3x4y3÷x2y=3x2y22.(2023·鸡西中考)下列运算正确的是 (C)A.(-2a)2=-4a2B.(a-b)2=a2-b2C.(-m+2)(-m-2)=m2-4D.(a5)2=a73.计算(3x-1)2的结果是(B)A.6x2-6x+1B.9x2-6x+1C.9x2-6x-1D.9x2+6x-14.计算12x2y÷(-6xy)的结果是 (A)A.-2xB.2xC.-2xyD.2xy5.代数式(x+1)2+x(x-2)化简,得(C)A.2x+1B.2x-1C.2x2+1D.2x2-16.若长方形的面积是6a3+9a2-3ab,其中一边长是3a,则它的邻边长是(D)A.2a3+3a2-bB.2a2+3a+bC.3a2+2a+bD.2a2+3a-b7.(2023·六盘水期中)诚诚同学在课外实践活动中,利用大小不等的两个正方形纸板A,B进行拼接(重组)探究,已知纸板A与B的面积之和为52.如图所示,现将纸板B按甲方式放在纸板A 的内部,阴影部分的面积为9.若将纸板A,B按乙方式并列放置后,构造新的正方形,则阴影部分的面积为(C)A.40B.41C.43D.458.如图,矩形ABCD的周长是10 cm,以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为17 cm2,那么矩形ABCD的面积是 (B)A.3 cm2B.4 cm2C.5 cm2D.6 cm29.对a,b,c,d规定运算|a bc d|=ad-bc.若|x+1x+2x-2 x+1|=10,则x的值为(B)A.2B.2.5C.3D.3.510.小刚把(2 022x+2 021)2展开后得到ax2+bx+c,把(2 021x+2 020)2展开后得到mx2+nx+q,则a-m的值为 (C)A.1B.-1C.4 043D.-4 04311.计算:12x3y2z÷(-4xy)=-3x2yz .12.计算:(-2a+3)2=4a2-12a+9.13.计算:(8a4+6a)÷2a=4a3+3.14.如图,边长为m,n(m>n)的长方形,它的周长为12,面积为8,则(m-n)2的值为4.15.已知(x+y)2=25,(x-y)2=9,则xy=4.16.若(m+2)2=64,则(m+1)(m+3)=63.17.计算:(1)(-xy 2)2·x 2y ÷(x 3y 4);(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷3x 2y.【解析】(1)原式=x 2y 4·x 2y ÷(x 3y 4)=x 4y 5÷(x 3y 4)=xy.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷3x 2y=(2x 3y 2-2x 2y )÷3x 2y=23xy -23.18.计算:(x +2y )2+(x -2y )(x +2y )+x (x -4y ).【解析】原式=(x 2+4xy +4y 2)+(x 2-4y 2)+(x 2-4xy )=x 2+4xy +4y 2+x 2-4y 2+x 2-4xy=3x 2.19.先化简,再求值:(x +1)2+(2+x )(2-x ),其中x =1.【解析】原式=x 2+2x +1+4-x 2=2x +5,当x =1时,原式=2+5=7.20.计算:(2x -3y +z )(2x +3y -z ).【解析】(2x -3y +z )(2x +3y -z )=[2x -(3y -z )][2x +(3y -z )]=(2x )2-(3y -z )2=4x 2-9y 2+6yz -z 2.21.(2023·六盘水水城区质检)先化简,再求值:[(x -2y )2-2y (2y -x )]÷2x ,其中x =2,y =1.【解析】原式=[x 2-4xy +4y 2-4y 2+2xy ]÷2x=(x 2-2xy )÷2x=x 2-y ,当x =2,y =1时,原式=22-1=0.22.把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a +2b )(a +b )=a 2+3ab +2b 2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a +b +c 的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a +b +c =11,ab +bc +ac =38,求a 2+b 2+c 2的值.(3)如图3,将两个边长分别为a 和b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF.若这两个正方形的边长满足a +b =10,ab =20,请求出阴影部分的面积.【解析】(1)(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;(2)因为a +b +c =11,ab +bc +ac =38,所以a 2+b 2+c 2=(a +b +c )2-2(ab +ac +bc )=121-76=45;(3)因为a +b =10,ab =20,所以S 阴影=a 2+b 2-12(a +b )·b -12a 2=12a 2+12b 2-12ab =12(a +b )2-32ab=12×102-32×20=50-30=20.。

人教版数学七年级下册《期中检测题》及答案解析

人教版数学七年级下册《期中检测题》及答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件k的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析][分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析][分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程为(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.[详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形是解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。

七年级数学周测试卷答案

七年级数学周测试卷答案

一、选择题(每题3分,共15分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. √0答案:D解析:有理数包括整数和分数,而√0=0是一个整数,因此选D。

2. 如果a=3,那么下列等式中不正确的是()A. a²=9B. a³=27C. a⁴=81D. a⁵=243答案:C解析:将a=3代入各选项中,可得:A. 3²=9B. 3³=27C. 3⁴=81D. 3⁵=243显然,C选项中的81不正确,因此选C。

3. 下列各数中,无理数是()A. √4B. √2C. √-1D. √9答案:B解析:无理数是不能表示为两个整数比的实数。

√2是无理数,因为它不能表示为两个整数的比,而其他选项都可以表示为整数,因此选B。

4. 已知a+b=5,a-b=3,则a的值为()A. 4B. 2C. 3D. 1答案:A解析:将两个等式相加,得2a=8,因此a=4。

5. 下列图形中,中心对称图形是()A. 等腰三角形B. 矩形C. 等边三角形D. 正方形答案:B解析:中心对称图形是指存在一个点,使得图形上的任意一点关于这个点对称。

矩形具有这个性质,因此选B。

二、填空题(每题4分,共16分)6. 5的平方根是_________。

答案:±√5解析:5的平方根是一个无理数,它可以表示为±√5。

7. 如果x²=4,那么x的值为_________。

答案:±2解析:x²=4可以写成x²-4=0,即(x+2)(x-2)=0,因此x=±2。

8. 下列等式中,正确的是_________。

答案:2(x+3)=2x+6解析:将等式两边都乘以2,得2x+6=2x+6,因此等式成立。

9. 一个长方形的长是8cm,宽是4cm,它的周长是_________cm。

答案:24解析:长方形的周长计算公式为2(长+宽),代入长8cm和宽4cm,得周长为2(8+4)=24cm。

2024年北师大版七年级下册数学周周测试题及答案(九)(考查范围:4.3-4.5)

2024年北师大版七年级下册数学周周测试题及答案(九)(考查范围:4.3-4.5)

周周测(九)______月______日建议用时:45分钟(考查范围:4.3-4.5)1.卞师傅用角尺平分一个角,如图,先在∠AOB两边上分别取OM=ON,然后使角尺两边相同刻度分别与M,N重合,角尺顶点为点P,则射线OP平分∠AOB,可由△OMP≌△ONP得知,其依据是(A)A.SSSB.SASC.ASAD.AAS2.如图,用纸板挡住了三角形的一部分,小明根据所学知识很快就重新画出了一个与原来完全一样的三角形,他的依据是(D)A.SSSB.SASC.AASD.ASA3.(2023·长春中考)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA',BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是(A)A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.两条直线被一组平行线所截,所得的对应线段成比例D.两点之间线段最短⏜,交射线OB 4.如图,已知锐角∠AOB,在射线OA上取一点C,以点O为圆心、OC长为半径作MN于点D,连接CD;分别以点C,D为圆心、CD长为半径作弧,两弧交于点P,连接CP,DP;作射线OP.若∠AOP=20°,则∠ODP的度数是(C)A.110°B.120°C.130°D.140°5.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是(C)6.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE,AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为(C)A.2B.5C.8D.117.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是OA=OC(答案不唯一).(只写一个)8.在△ABC中,AC=4,AB=6,则中线AD的取值范围是1<AD<5.9.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠APB的度数为50°.10.(2022·铜仁中考)如图,点C 在BD 上,AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,AB =CD.求证:△ABC ≌△CDE.【证明】因为AB ⊥BD ,ED ⊥BD ,AC ⊥CE ,所以∠B =∠D =∠ACE =90°,所以∠DCE +∠DEC =90°,∠BCA +∠DCE =90°, 所以∠BCA =∠DEC ,在△ABC 和△CDE 中,{∠BCA =∠DEC ∠B =∠D AB =CD,所以△ABC ≌△CDE (AAS).11.如图,已知△ABC 与线段DE ,AC =DE.利用尺规,运用“SAS ”作△DEF ≌△ACB. (保留作图痕迹,不写作法)【解析】如图,△DEF 为所作.12.小明利用一根长2 m 的竹竿来测量垂直于地面的路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使BP =2 m,并测得∠APB =77°,然后把竖直的竹竿CD (CD =2m)在BP 的延长线上左右移动,使∠CPD =13°,此时测得BD =8.5 m .请根据这些数据,计算出路灯AB 的高度.【解析】因为∠CPD =13°,∠APB =77°, ∠CDP =∠ABP =90°,所以∠DCP =∠APB =77°.在△CPD 和△PAB 中,{∠CDP =∠PBACD =PB ∠DCP =∠BPA ,所以△CPD ≌△PAB (ASA). 所以DP =BA.因为BD =8.5 m,BP =2 m,所以DP =BD -BP =6.5 m,即AB =6.5 m . 答:路灯AB 的高度是6.5 m .13.如图,在四边形ABCD 中,AD =BC =4,AB =CD ,BD =6,点E 从D 点出发,以每秒1个单位的速度沿DA 向点A 匀速运动,点F 从点C 出发,以每秒3个单位的速度沿C →B →C 作匀速运动,点G 从点B 出发沿BD 向点D 匀速运动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动.(1)试证明:AD ∥BC ;(2)在运动过程中,小明发现当点G 的运动速度取某个值时,有△DEG 与△BFG 全等的情况出现,请你探究当点G 的运动速度取哪些值时,△DEG 与△BFG 全等. 【解析】(1)在△ABD 和△CDB 中,{AD =BC ,AB =CD ,BD =DB ,所以△ABD ≌△CDB (SSS), 所以∠ADB =∠CBD ,所以AD ∥BC ;。

7年级数学第七周周测试卷

7年级数学第七周周测试卷
7、如图:
①∵∠1=∠4,∴__∥___,理由是___ ____.
②∵AB∥DC,∴∠3=∠_______,理由是___ .
③∵AD∥BC,∴∠ABC+∠ =180°,理由是______
8、如图,木工师傅把曲尺的一边紧靠要板边缘(要板的边缘是直线)移动,在移动过程中曲尺的另一边____________。(填“平行”或“不平行)
1、-5a2+25a 2、 25x2-16y2
3、4m(m-n)+4n(n-m) 4、(a2+4)2-16a2
四.计算化简求值(4分+4分+4分+4分+6分+8ห้องสมุดไป่ตู้=30分)
1.
2.已知:如图, AD∥BC,∠1=∠2,∠A=100°,且BD⊥CD,求∠C的度数。
(A) 2 (B) ±2 (C) 4 (D)±4
4.计算(x-y)2-(x+y)2的结果是( )
(A)-4 xy (B)4 xy (C)0 (D)4 y2
5. 若(2x+a)( x-1)的计算结果中不含x的一次项,则a等于.( )
A. B. C. D.()
10.下列多项式, 在有理数范围内不能用平方差公式分解的是: ( )
A. B. C. D. 1
11.在下列各图的△ABC中,正确画出AC边上的高的图形是 ( )
二.填空题(每空1分,共24分)
1、计算:
p2·(-p)·(-p)5= (-2x3y4)3=
(-0.125)8×230=
2、(1)若am·am=a8,则m=
(2)若a5·(an)3=a11,则n=
4、若0.0000002=2×10a,则a=

人教版七年级下册数学《数据的收集、整理与描述》试卷B(含答案)

人教版七年级下册数学《数据的收集、整理与描述》试卷B(含答案)

七年级下册数学单元检测题 (数据的收集、整理与描述)一、选择题(每题3分,共30分)1、下列调查中,最适合采用全面调查(普查)方式是( ) A 、对四川省辖区内长江流域水质情况的调查 B 、对乘坐飞机的旅客是否携带违禁物品的调查 C 、对一个社区每天丢弃塑料袋数量的调查D 、对重庆市电视台“天天630”栏目收视率的调查 2、要反映某支股票的涨跌情况,应选择( )A 、条形统计图B 、折线统计图C 、扇形统计图D 、都可以3、如图,是杭州市区人口统计图,则根据统计图得出的下列判断,正确的是( ) A 、其中有3个区的人口数低于40万 B 、只有1个区的人口数超过百万 C 、上城区与下城区的人口数超过百万 D 、杭州市区的人口数已超过600万4、观察下列统计图,下列判断错误的是( )A 、甲校男生、女生人数相等B 、乙校女生比男生人数多C 、乙校女生比甲校女生人数多D 、无法比较甲、乙两校女生人数谁多谁少 5、频数分布直方图反映了( )A 、样本数据的多少B 、样本数据的平均水平C 、样本数据所分组数D 、样本数据在各组的频数分布情况6、东风中学九年级进行了一次数学测验,参加考试的人数共600人,为了了解这次数学测验的成绩,下列抽取的样本中,较为合理的是( )A 、前100名学生的数学成绩B 、后100名学生的数学成绩C 、一、二两个班学生的数学成绩D 、各班学号为3的倍数的学生的数学成绩 7、如图,是某班前45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( ) A 、5~10元 B 、10~15元 C 、15~20元 D 、20~25元8、现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的为( )A 、9B 、12C 、15D 、189、某市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( ) A 、1.6万名考生 B 、2000名考生C 、1.6万名考生的数学成绩D 、2000名考生的数学成绩10、某学校将为七年级学生开设A ,B ,C ,D ,E ,F ,共6门选修课,现选取若干学生进行2021了“我最喜欢的一门选修课”调查,将调查结果绘制成如下统计图表(不完整).根据图表提供的信息,下列结论错误的是()A、这次被调查的学生人数为400人B、扇形统计图中E部分扇形的圆心角为72C、被调查学生中喜欢选修课E,F的人数分别为80,70D、喜欢选修课C的人数最少二、填空题(每题4分,共24分)11、为了考察一批乒乓球的质量,从中抽取50个进行检测,在这个问题中,总体是,个体是.12、已知一组数据共20个:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,落在64.5~66.5内的数据的频数是 .13、如图,是某中学七(1)班数学期末考试成绩统计图,从图中可以看出,这次考试的优秀率约为 %,及格率约为 %(结果保留小数点后一位).14、地球上山地面积、水域面积和陆地面积,大体可以用“三山六水一分田”来描述,则用扇形统计图表示时,它们所占的百分比分别是.15、如图,是某班为贫困地区捐书情况的条形图,则这个班平均每名学生捐书册.16、如图,已知数据总数是300,在样本频数分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,从左到右第三小组的频数为.三、解答题一(每题6分,共18分)17、新安商厦对销量较大的A,B,C三种品牌的洗衣液进行了问卷调查,发放问卷270份,题目可单选也可多选,对收回的238份进行了整理,部分数据如下:①最近一次购买各品牌洗衣液的用户的比例如图17—2所示;②用户对各品牌洗衣液的满意情况汇总表如内容质量广告价格品牌A B C A B C A B C 满意的用户数1941211171631721079896100(1)A品牌洗衣液的主要竞争优势是什么?你是怎么样看出来的?(2)广告对用户选择品牌有影响吗?请简要说明理由.18、为推进阳光体育活动的开展,某校七年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组,经调查,该班学生全员参与,各活动小组人数分布情况的扇形图和条形图如图18—1和图18—2所示.(1)求该班学生人数;(2)请你补上条形图的空缺部分.19、为了了解某市120000名初中学生的视力,某校数学小组收集有关数据,并进行整体分析,小明在眼镜店调查了1000名学生的视力;小刚在邻居中调查了20名初中学生的视力.(1)他们的抽样调查是否合理?请说明理由;(2)请指出小刚所调查的问题中的总体、样本和样本容量.四、解答题二(每题7分,共21分)20、如图,是某晚报“百姓热线”一周内接到热线电话的统计图.其中有关环境保护问题的电话最多,共70个,请回答下列问题(1)本周“百姓热线”共接到热线电话多少个? (2)有关道路交通问题的电话有多少个?21、为了了解某中学男生的身高情况,随机抽取若干名男生进行身高测量,将所得到的数据(身高取整数)整理后,画出频数分布直方图(如图),图中从左到右依次为第1,2,3,4,5组.(1)抽取了多少名男生进行身高测量?(2)身高在哪个范围内的男生人数最多?(写出是第 几个小组即可)(3)若该中学有300名男生,试估计身高在169.5 厘米~179.5厘米范围内的人数.22、某学生会干部对校学生会倡导的“助残自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整),已知A 、B 两组捐款人数的比为1:5.请结合以上信息解答下列问题:(1)a = ,本次调查样本的容量是 ; (2)先求出C 组的人数,再补全“捐款人数分组统计图 ”.组别 捐款额/x 元 人数 A 101<≤x a B 2010<≤x 100 C 3020<≤x D 4030<≤x E 40≥x(3)若该学校自愿捐款的学生有1500人,请估计捐款不少于30元的学生有多少人?五、解答题三(每题9分,共27分)23、某校课外小组从我市七年级学生中抽取2000人做了如下问卷调查,并将统计结果绘制问卷您平时喝饮料吗?()(A)不喝(B)喝请选择B选项的同学回答下列问题:请您减少喝饮料的数量,将节省下来的钱捐给希望工程,您愿意平均每月少喝多少瓶?()(A)0瓶(B)1瓶(C)2瓶(D)2瓶以上根据上述信息,解答下列问题:(1)求条形统计图中n的值.(2)如果每瓶饮料平均3元钱,“少喝2瓶以上”按少喝3瓶计算.①这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?②按上述统计结果估计,我市七年级6万名学生一个月少喝饮料大约能节省多少钱捐给希望工程?24、某校有2000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到如图24—1和24—2所示的图表.(1)理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽取是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全部2000名学生上学方式的情况在图24—3上绘制成条形统计图;(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议,如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地.请你结合上述统计的全过程,再提出一条合理化建议.25、李老师为了了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下图所示的不完整的频数分布直方图(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?数据的收集、整理与描述参考答案一、BBDCD DCBDD 二、11、这批乒乓球的质量;每个乒乓球的质量 12、8 13、55.6;94.4 14、30%,60%,10% 15、3 16、90 三、 17、解:(1)A 品牌洗衣粉的主要竞争优势是质量,可以从以下看出:①对A 品牌洗衣粉的质量满意的用户最多;②对A 品牌洗衣粉的广告、价格满意的用户不是最多.(2)广告对用户选择品牌有影响,可从以下看出:①对B ,C 品牌洗衣粉质量、价格满意的用户相差不大;②对B 品牌洗衣粉广告满意的用户多于C 品牌,且相差较大.18、解:(1)该班学生人数为483609012=÷. (2)篮球小组的人数为12%2548=⨯,补全条形图如图:19、解:(1)他们的抽样调查都不合理,因为如果1000名学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性,如果只在邻居中抽取20名初中生,那么样本容量过小,样本不具有广泛性.(2)总体是该市120000名初中学生的视力情况,样本是所调查的邻居中20名初中学生的视力情况,样本容量是20. 四、20、解:(1)200%3570=÷(个) (2)40%20200=⨯(个)所以本周共接到热线电话200个,其中有关道路交通问题的电话有40个.21、解:(1)因为5061216106=++++(名),所以抽取了50名男生进行身高测量. (2)观察题图可知,身高在第3小组内的男生人数最多.(3)根据题意可知抽取到的男生中身高在169.5~179.5厘米的人数为18612=+,因为%36%1005018=⨯,所以108%36300=⨯(名),所以估计该中学身高在169.5厘米~179.5厘米范围内的人数为108.22、解:(1)20;500(2)C 组的人数为200%40500=⨯(人),图略.(3)540%)8%28(1500=+⨯(人),即捐款不少于30元的学生估计有540人. 五、23、解:(1)100185470445%602000=---⨯=n ; (2)①34203)310021851470(=⨯⨯+⨯+⨯(元)答:这2000名学生一个月少喝饮料能节省3420元捐给希望工程. ②1026002000600003420=⨯(元)=10.26(万元) 答:我市七年级6万名学生一个月少喝饮料大约能节省10.26万元捐给希望工程. 24、解:(1)不合理.因为如果150名学生全部在同一个年级抽取,那么全校每个学生被抽的机会不相等,样本不具有代表性. (2)(3)答案不唯一,下面建议供参考:乘私家车上学的学生约400人,建议学校与交通部门协商安排停车区域.25、解:(1)班里学生的作息时间是总体; (2)上学路上花费时间在30~40分钟的人有411324850=----(人), 图略; (3)%10%1005014=⨯+.。

学典数学学业水平测试卷七年级(下)周周导练第1-3章教师版

学典数学学业水平测试卷七年级(下)周周导练第1-3章教师版

(2) ( 1 )8 ×48 4
解:原式= x9
解:原式= 1
(3) (-a2)3+(a3)2
解:原式= -a6+a6=0
(4) (-a3m)2n ÷(amn)5
解:原式= a6mn ÷a5mn=amn
16. (8 分)计算: (1) (- 1 a3-nbm-1)2 4
解:原 式= 1 a b 6-2n 2m-2 16
面积为 1.25×106 cm2. 12. 若单项式-6x2ym 与 1 xn-1y3 是同类项, 那么这两个单项式的积
3 是 -2x4y6 . 13. 如图①,将边长为 a 的大正方形剪去一个边长为 b 的小正方形 (a>b), 将剩下的阴影部分沿图中的虚线剪开, 拼接后得到图 ②,这种变化可以用含字母 a,b 的等式表示为 a2-b2=(a+b)(a-b) .
22. 若 x=2m+1,y=3+4m,则用 x 的代数式表示 y 为 y=(x-1)2+3 .
23. 已知(x-1)x+2=1,则整数 x= -2,0,2 .
二、解答题(本题满分 8 分) 24. 请看下面的解题过程:
“比较 2100 与 375 大小, 解 :∵2100=(24)25,375=(33)25, 又 ∵24=16,33=27,16<27, ∴2100<375”. 请你根据上面的解题过程,比较 3100 与 560 的 大小,并总结 本题 的解题方法.
解 :原 式 =(10a)2+(10b)3=25+216=241
(2) 求 102a+3b 的值;
解 :原 式 =(10a)2·(10b)3=25×216=5400
(3) 求 102a-3b 的值.

苏科版七年级数学下册第7-8章达标检测卷 附答案

苏科版七年级数学下册第7-8章达标检测卷 附答案

苏科版七年级数学下册第7章达标检测卷一、选择题(每题3分,共24分)1.下列长度的3根小木棒不能搭成三角形的是( )A.2 cm,3 cm,4 cm B.1 cm,2 cm,3 cmC.3 cm,4 cm,5 cm D.4 cm,5 cm,6 cm2.如图,直线a∥b,∠1=130°,则∠2等于( )A.70°B.60°C.50°D.40°3.如图,在下列给出的条件中,不能判定AB∥EF的是( )A.∠B=∠3B.∠1=∠4C.∠1=∠BD.∠B+∠2=180°4.如图,将周长为7的△ABC沿BC方向平移2个单位长度得到△DEF,则四边形ABFD的周长为( )A.16 B.9 C.11 D.125.如图,AD,BE,CF是锐角三角形ABC的三条高,它们交于点H,则图中直角三角形的个数是( )A.6 B.8 C.10 D.126.如图,已知直线AB∥CD,直线EF与AB相交于点O,且∠BOE=140°.直线l 平分∠BOE交CD于点G,那么∠CGO=( )A.110°B.105°C.100°D.70°7.如图,直角三角形ABC的顶点A在直线m上,分别测量下列角的度数:①∠1,∠2,∠C;②∠2,∠3,∠B;③∠3,∠4,∠C;④∠1,∠2,∠3.可判断直线m与直线n是否平行的是( )A.①B.②C.③D.④8.如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A.75°B.80°C.85°D.90°二、填空题(每题3分,共30分)9.若线段AD是△ABC的中线,且BD=3,则BC的长为________.10.如图,请填写一个条件,使结论成立:因为________,所以a∥b.11.若长度分别为3,4,a的三条线段能组成一个三角形,则整数a的值可以是________.(写出一个即可)12.在△ABC中,∠ACB是钝角,AD是BC边上的高,若AD=2,BD=3,CD=1,则△ABC的面积等于________.13.如图,直线m与∠AOB的一边射线OB相交,∠1=30°,向上平移直线m得到直线n,直线n与∠AOB的另一边射线OA相交,则∠2+∠3=________.14.如图,有一块长为a m,宽为3 m的长方形地,其中阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1 m能得到它的右边线,若草地的面积为12 m2,则a=________.15.两个直角三角尺如图摆放,其中∠BAC=∠EDF=90°,∠E=45°,∠C=30°,AB与DF交于点M.若BC∥EF,则∠BMD的大小为________.16.一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为________.17.将一个长方形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________°.18.一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠CAE=15°时,BC∥DE.则∠CAE(0°<∠CAE<180°)其他所有可能符合条件的度数为______________.三、解答题(19,20题每题6分,21,22题每题8分,23,24题每题9分,其余每题10分,共66分)19.在△ABC中,AB=8,BC=2,并且AC的长为偶数,求△ABC的周长.20.如图,点E在AB的延长线上,指出下面各题中的两个角是哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.21.已知一个多边形的边数为n.(1)若n=5,求这个多边形的内角和.(2)若这个多边形的内角和的14比一个四边形的内角和多90°,求n的值.22.如图,在方格纸中,△ABC的顶点都在方格纸的格点上.将△ABC平移后得到△A′B′C′,图中已画出B点的对应点B′.(1)请补全△A′B′C′;(2)画出△A′B′C′的高C′H以及中线A′D;(3)连接BB′,CC′,BB′和CC′的数量关系为__________.23.如图,已知AD,AE分别是△ABC的中线和高,△ABD的周长比△ACD的周长多3 cm,且AB=9 cm.(1)求AC的长;(2)求△ABD与△ACD的面积的关系.24.如图,已知∠1+∠2=180°,且∠3=∠B.(1)试说明:∠AFE=∠ACB;(2)若CE平分∠ACB,且∠2=110°,∠3=50°,求∠ACB的度数.25.如图,在四边形ABCD中,AD∥BC,∠BDC=∠C,DE⊥DC交AB于点E.(1)试说明:DE平分∠ADB.(2)若∠ABD的平分线与CD的延长线交于点F,与DE交于点G,设∠F=α°.①若α=50,求∠A的度数;②若∠F<12∠ABC,试确定α的取值范围.26.已知MN∥EF,C为两直线之间的一点,连接AC,BC.(1)如图①,∠CAM与∠CBE的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图②,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?请说明理由.(3)如图③,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请写出∠ACB与∠ADB的数量关系,并说明理由.答案一、1.B 2.C 3.C 4.C 5.D 6.A 7.B8.A 二、9.6 10.∠1=∠4(答案不唯一)11.5(答案不唯一) 12.2 13.210°14.5 15.75°16.32 m 17.12818.60°或105°或135°点拨:如图①,当BC∥AE时,∠CAE=∠C=60°;如图②,当DE∥AB时,则∠E+∠EAB=180°,所以∠EAB=135°,所以∠CAE=135°-30°=105°,此时AD∥BC;如图③,当AC∥DE时,则∠E+∠CAE=180°,所以∠CAE=135°.三、19.解:根据三角形的三边关系得8-2<AC<8+2,即6<AC<10.因为AC的长为偶数,所以AC=8,所以△ABC的周长为8+2+8=18.20.解:(1)∠A和∠D是由直线AE,CD被直线AD所截形成的,它们是同旁内角.(2)∠A和∠CBA是由直线AD,BC被直线AE所截形成的,它们是同旁内角.(3)∠C和∠CBE是由直线CD,AE被直线BC所截形成的,它们是内错角.21.解:(1)当n=5时,(5-2)×180°=540°,所以这个多边形的内角和为540°.(2)由题意,得14×(n-2)×180°-360°=90°,解得n=12.所以n的值为12.22.解:(1)如图,△A′B′C′即为所求.(2)如图,C′H,A′D即为所求,(3)BB′=CC′23.解:(1)因为AD是△ABC的中线,所以BD=CD.因为△ABD的周长比△ACD的周长多3 cm,所以AB+BD+AD-(AD+AC+DC)=3 cm,即AB-AC=3 cm.因为AB=9 cm,所以AC=6 cm.(2)因为S△ABD=12BD·AE,S△ACD=12CD·AE,BD=CD,所以S△ABD=S△ACD.24.解:(1)因为∠1+∠2=180°,∠1+∠FDE=180°,所以∠FDE=∠2.因为∠3+∠FEC+∠FDE=180°,∠2+∠B+∠ECB=180°,∠B=∠3,所以∠FEC=∠ECB,所以EF∥BC,所以∠AFE=∠ACB.(2)因为∠3=∠B,∠3=50°,所以∠B=50°.因为∠2+∠B+∠ECB=180°,∠2=110°,所以∠ECB=20°.因为CE平分∠ACB,所以∠ACB=2∠ECB=40°.25.解:(1)因为AD∥BC,所以∠ADC+∠C=180°.因为DE⊥DC,所以∠EDC=90°,所以∠BDE+∠BDC=90°,∠ADE+∠C=90°.因为∠BDC=∠C,所以∠BDE=∠ADE,即DE平分∠ADB.(2)①因为DE平分∠ADB,BF平分∠ABD,所以∠EDB=12∠ADB,∠DBF=12∠ABD,所以∠EDB+∠DBF=12(∠ADB+∠ABD).因为∠A+∠ADB+∠ABD=180°,所以∠EDB+∠DBF=90°-12∠A.由题意知∠EDF=90°,∠F=α°=50°,所以∠FGD=40°.因为∠BGD+∠FGD=180°,∠BGD+∠EDB+∠DBF=180°,所以∠FGD=∠EDB+∠DBF,所以90°-12∠A=40°,所以∠A=100°.②因为AD∥BC,所以∠ADB=∠DBC,所以∠EDB+∠DBF=12(∠ADB+∠ABD)=12∠ABC.由(2)①知∠FGD=∠EDB+∠DBF,所以∠FGD=12∠ABC.因为∠F<12∠ABC,所以∠F<∠FGD.易知∠F+∠FGD=90°,所以0°<∠F<45°,即0<α<45.26.解:(1)如图①,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥EF,MN∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG.因为∠CAM与∠CBE的平分线相交于点D,所以∠1=12∠MAC=12∠ACG,∠2=12∠EBC=12∠BCG,所以∠ADB=∠ADH+∠BDH=∠1+∠2=12∠ACG+12∠BCG=12(∠ACG+∠BCG)=12∠ACB.因为∠ACB=100°,所以∠ADB=50°.(2)∠ADB=180°-12∠ACB.理由如下:如图②,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥EF,MN∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∠MAC+∠ACG=180°,∠EBC+∠BCG=180°.因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC,∠2=12∠EBC,所以∠ADB=∠ADH+∠BDH=∠1+∠2=12(∠MAC+∠EBC)=12(180°-∠ACG+180°-∠BCG)=12(360°-∠ACB),所以∠ADB=180°-12∠ACB.(3)∠ADB=90°-12∠ACB.理由如下:如图③,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥EF,MN∥DH∥EF,所以∠DBE=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG,∠MAC+∠ACG=180°,∠NAD+∠ADH=180°.因为∠MAC的平分线与∠FBC的平分线所在的直线相交于点D,所以∠CAD=12∠MAC,∠BDH=∠DBE=12∠CBF,所以∠ADB=180°-∠CAD-∠CAN-∠BDH=180°-12∠MAC-∠ACG-12∠CBF=180°-12∠MAC-∠ACG-12∠BCG=180°-12(180°-∠ACG)-∠ACG-12∠BCG=180°-90°+12∠ACG-∠ACG-12∠BCG=90°-12∠ACG-12∠BCG=90°-12(∠ACG+∠BCG)=90°-12∠ACB.苏科版七年级数学下册期中达标检测卷一、选择题(每题3分,共24分)1.下列运算正确的是( )A.(a2)3=a5B.a4·a2=a8C.a6÷a3=a3D.(-ab2)5=-a5b7 2.将下面的图形进行平移,能得到的图形是( )3.下列长度的三条线段,能组成三角形的是( )A.3,4,8 B.5,6,10C.5,5,11 D.5,6,114.如图,可以判定AC∥BD的是( )A.∠2=∠3B.∠2=∠5C.∠1=∠4D.∠4=∠55.把多项式(x-y)2-2(x-y)-8分解因式,正确的结果是( )A.(x-y+4)(x-y+2) B.(x-y-4)(x-y-2)C.(x-y-4)(x-y+2) D.(x-y+4)(x-y-2)6.将一副直角三角尺(∠A=30°,∠E=45°)按如图所示的位置摆放,使AB∥EF,则∠DOC的度数是( )A.70°B.75°C.80°D.85°7.若259+517能被n整除,则n的值可能是( )A.20 B.30 C.35 D.408.已知(x2+px+8)(x2-3x+q)乘积中不含x2与x3项,则p,q的值分别是( ) A.0,0 B.3,1 C.-3,-9 D.-3,1 二、填空题(每题3分,共30分)9.如图,直线a,b被直线c所截,a∥b,∠1=60°,那么∠2=________°.10.计算:12x·(-2x2)3=________.11.分解因式:-12a2+2a-2=____________.12.肥皂泡的泡壁厚度大约为0.000 7 mm,用科学记数法表示0.000 7=________.13.已知2x+y+1=0,则52x·5y=________.14.若x2+(m-2)x+9是一个完全平方式,则m的值是________.15.如图,将△ABE向右平移3 cm得到△DCF,如果△ABE的周长是16 cm,那么四边形ABFD的周长是________cm.16.若a+b=10,ab=11,则代数式a2-ab+b2的值是________.17.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P=______.18.如图,将一副三角尺按如图放置,则下列结论:①∠1=∠3;②若∠2=30°,则BC∥AE;③若∠1=∠2=∠3,则BC∥AE;④若∠2=30°,则∠3=∠E.其中正确的是________(填序号).三、解答题(19,20题每题6分,21,22题每题8分,23,24题每题9分,其余每题10分,共66分)19.计算:(1)(12)-1+(π+3)0-|-3|+(-1)2 023; (2)x·x5+(-2x3)2-3x8÷x2.20.把下列各式分解因式:(1)a4-16; (2)18a2-50.21.先化简,再求值:(a -2b )(a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.22.如图,将方格纸中的△ABC (顶点A ,B ,C 均在格点上)向右平移6个单位长度,得到△A 1B 1C 1. (1)画出平移后的图形;(2)连接AA 1,BB 1,则线段AA 1,BB 1的位置关系是________; (3)如果每个小方格的边长是1,那么△ABC 的面积是________.23.如图是一个长为10 cm ,宽为6 cm 的长方形,在它的4个角上分别剪去边长为x cm 的小正方形,再沿虚线折成一个有底无盖的长方体盒子,求盒子的体积.24.如图,点F是线段BA延长线上一点,点E,G是线段CD上的两点,在△ADE 中,∠D=∠DAE,AD平分∠EAF,AG∥BC,若∠B=140°,求∠AGD的度数.25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如12=42-22,20=62-42,28=82-62,…,因此12,20,28这三个数都是“奇巧数”.(1)52,72都是“奇巧数”吗?(2)设两个连续偶数为2n,2n+2(其中n为正整数),由这两个连续偶数构造的“奇巧数”是8的倍数吗?为什么?(3)试说明:任意两个连续“奇巧数”之差是同一个数.26.【数学经验】三角形的中线能将三角形分成面积相等的两部分.【经验发展】面积比和线段比的联系:如果两个三角形的高相同,那么它们的面积比等于对应底边的比.如图①,△ABC的边AB上有一点M,试说明:S△ACMS△BCM =AM BM.【结论应用】如图②,S△CDE=1,CDAC=14,CECB=13,求S△ABC.【拓展延伸】如图③,△ABC的边AB上有一点M,D为CM上任意一点,请利用上述结论,试说明:S△ACDS△BCD =AM BM.【迁移应用】如图④,在△ABC中,M是AB上一点,且AM=13AB,N是BC的中点,若S△ABC=1,则S四边形BMDN=________.答案一、1.C 2.C 3.B 4.C 5.C 6.B 7.B 8.B二、9.60 10.-4x711.-12(a-2)212.12.7×10-413.1 514.8或-4 15.22 16.6717.60°18.①③④三、19.解:(1)原式=2+1-3-1=-1.(2)原式=x6+4x6-3x6=2x6.20.解:(1)原式=(a2+4)(a2-4)=(a2+4)(a+2)(a-2).(2)原式=2(9a2-25)=2(3a+5)(3a-5).21.解:原式=a2-4b2-a2+4ab-4b2+8b2=4ab,当a=-2,b=12时,原式=4×(-2)×12=-4.22.解:(1)如图,△A1B1C1即为所求.(2)平行(3)423.解:盒子的体积为x(10-2x)(6-2x)=x(4x2-32x+60)=4x3-32x2+60x(cm3).24.解:因为AD平分∠EAF,所以∠DAF=∠DAE.又因为∠D=∠DAE,所以∠D=∠DAF.所以BF∥CD.所以∠B+∠C=180°.所以∠C=180°-∠B=180°-140°=40°.又因为AG∥BC,所以∠AGD=∠C=40°.25.解:(1)因为52=142-122,68=182-162,76=202-182,所以52是“奇巧数”,72不是“奇巧数”.(2)不是.因为(2n+2)2-(2n)2=(2n+2+2n)(2n+2-2n)=4(2n+1),所以这两个连续偶数构造的“奇巧数”不是8的倍数.(3)设三个连续偶数分别为2k,2k+2,2k+4(k为正整数),因为[(2k+2)2-(2k)2]-[(2k+4)2-(2k+2)2]=(2k+2+2k)(2k+2-2k)-(2k+4+2k+2)(2k+4-2k-2)=4(2k+1)-4(2k+3)=8k+4-8k-12=-8,所以任意两个连续“奇巧数”之差是同一个数.26.解:【经验发展】如图①,过C作CH⊥AB于H.因为S△ACM=12AM×CH,S△BCM=12BM×CH,所以S△ACMS△BCM =12AM×CH12BM×CH=AMBM,即S△ACMS△BCM=AMBM.【结论应用】如图②,连接AE.因为CDAC=14,所以S△CDE=14S△ACE.因为CECB=13,所以S△ACE=13S△ABC,所以S△CDE=14×13S△ABC=112S△ABC.又因为S△CDE=1,所以S△ABC=12.【拓展延伸】因为M是AB上任意一点,所以S△ACMS△BCM =AM BM.因为D是CM上任意一点,所以S△ACDS△ACM =CDCM,S△BCDS△BCM=CDCM,所以S△ACD=CDCM×S△ACM,S△BCD=CDCM×S△BCM,所以S△ACDS△BCD =CDCM×S△ACMCDCM×S△BCM=S△ACMS△BCM,即S△ACD S△BCD =AM BM.【迁移应用】512点拨:如图③,连接BD.因为AM=13 AB,所以AM=12 BM,所以S△ACDS△BCD =AMBM=12,S△ADMS△BDM =AMBM=12,即S△ACD=12S△BCD,S△ADM=12S△BDM.因为N是BC的中点,所以CN=BN,所以S△ACDS△ABD =CNBN=1,S△CDNS△BDN=CNBN=1,即S△ACD=S△ABD,S△CDN=S△BDN.设S△ADM=a,则S△BDM=2a,所以S△ACD=S△ABD=3a,所以S△CDN=S△BDN =12S△BCD=S△ACD=3a,所以S 四边形BMDN =5a ,S △ABC =12a , 所以S 四边形BMDN =512S △ABC =512×1=512. 苏科版七年级数学下册第8章达标检测卷一、选择题(每题3分,共24分) 1.计算(-a )2·a 4的结果是( )A .a 6B .-a 6C .a 8D .-a 82.-3-2的倒数是( )A .-9B .9C .19D .-193.下列运算正确的是( )A .2a -a =2B .a 3·a 2=a 6C .a 3÷a =a 2D .(2a 2)3=6a 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.数据0.000 000 12用科学记数法可表示为( )A .1.2×10-7B .0.12×10-6C .12×10-8D .1.2×10-66.定义一种新的运算:若a ≠0,则有a ▲b =a -2+ab +|-b |,那么(-12)▲2的值是( ) A .-3B .5C .-34D .327.已知10a=20,100b=50,则12a +b +32的值是( )A .2B .52C .3D .928.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1B .-1C .-1或2D .2二、填空题(每题3分,共30分) 9.计算:(1)(2a 2)2=________;(2)(x 2)3÷(x ·x 2)2=________; (3)[(a -b )2]3·[(b -a )3]3=________. 10.计算:⎝ ⎛⎭⎪⎫12-3+2 0230=________.11.计算:(-5)2 021×⎝ ⎛⎭⎪⎫15 2 022=________.12.若(m -2)0无意义,则代数式(-m 2)3的值为________.13.纳秒(ns)是非常小的时间单位,1 ns =10-9s.北斗全球导航系统的授时精度优于20 ns.用科学记数法表示20 ns 是__________s. 14.若0<x <1,则x -1,x ,x 2的大小关系是____________. 15.若x +3y -4=0,则3x ·27y 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________. 17.梯形的上、下底的长分别是4×103 cm 和8×103 cm ,高是1.6×104 cm ,此梯形的面积是__________.18.对于数a ,b ,定义运算a ▲b =⎩⎨⎧a b(a >b ,a ≠0),a -b (a <b ,a ≠0),如2▲3=2-3=18,4▲2=42=16.照此定义的运算方法计算[2▲(-4)]×[(-4)▲(-2)]的结果为________.三、解答题(19,20题每题6分,21,22题每题8分,23,24题每题9分,其余每题10分,共66分) 19.计算:(1)a 3·a 2·a +(a 2)3;(2)(2m 3)3+m 10÷m -(m 3)3.20.计算:(1)0.62 023×(-53)2 022; (2)(-23)2 022×(-32)2 023.21.已知2a=4b(a,b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.(1)已知m+2n=4,求2m×4n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.24.某农科所要在一块长1.2×105 cm,宽为2.4×104 cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104 cm的正方形实验地,这块实验地最多可以培育多少种新品种粮食?25.已知a m=2,a n=3.(1)求a m+2n的值;(2)求a2m-3n的值.26.阅读以下材料:苏格兰数学家纳皮尔是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N.比如指数式24=16可以转化为对数式4=log216,对数式2=log39可以转化为指数式32=9.我们根据对数的定义可得到对数的一个性质:log a(M·N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,所以M·N=a m·a n=a m+n,由对数的定义得m+n=log a(M·N).又因为m+n=log a M+log a N,所以log a(M·N)=log a M+log a N.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①log232=________,②log327=________,③log71=________;(2)试说明:log a MN=log a M-log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log5125+log56-log530.答案一、1.A 2.A 3.C 4.D 5.A 6.B7.C 8.C 二、9.(1)4a 4 (2)1 (3)(b -a )15 10.9 11.-15 12.-6413.2×10-8 14.x 2<x <x -1 15.81 16.125x 3 17.9.6×107 cm 2 18.1三、19.解:(1)原式=a 6+a 6=2a 6.(2)原式=8m 9+m 9-m 9=8m 9. 20.解:(1)原式=0.62 022×⎝ ⎛⎭⎪⎫-53 2 022×0.6=⎣⎢⎡⎦⎥⎤0.6×⎝ ⎛⎭⎪⎫-53 2 022×0.6=(-1)2 022×0.6=1×0.6=0.6. (2)原式=⎣⎢⎡⎦⎥⎤-23×⎝ ⎛⎭⎪⎫-32 2 022×⎝ ⎛⎭⎪⎫-32=1×⎝ ⎛⎭⎪⎫-32=-32.21.解:因为2a =4b =22b ,所以a =2b .又因为a +2b =8,所以4b =8,解得b =2,所以a =4, 所以2a +4b =24+42=32. 22.解:(1)221=(23)7=87,314=(32)7=97,因为8<9,所以87<97, 即221<314.(2)86=(23)6=218, 411=(22)11=222,因为18<22,所以218<222, 即86<411.23.解:(1)因为m +2n =4,所以原式=2m ×22n =2m +2n =24=16.(2)因为x2n=4,所以原式=(x2n)3-2(x2n)2=43-2×42=32.24.解:[(1.2×105)÷(1.2×104)]×[(2.4×104)÷(1.2×104)]=20(种),所以这块实验地最多可以培育20种新品种粮食.25.解:(1)因为a m=2,a n=3,所以a m+2n=a m·a2n=a m·(a n)2=2×32=2×9=18.(2)因为a m=2,a n=3,所以a2m-3n=a2m÷a3n=(a m)2÷(a n)3=22÷33=4 27.26.解:(1)①5 ②3 ③0(2)设log a M=m,log a N=n,则M=a m,N=a n,所以MN=a ma n=a m-n.由对数的定义得m-n=log a M N .又因为m-n=log a M-log a N,所以log a MN=log a M-log a N.(3)原式=log5(125×6÷30)=log525=2.。

周周测七年级试卷数学

周周测七年级试卷数学

一、选择题(每题4分,共40分)1. 下列数中,是正整数的是()A. -3B. 0C. 1.5D. -0.52. 下列代数式中,含有字母的是()A. 5x + 3B. 4C. 2y - 7D. 3.143. 如果a > b,那么下列不等式中正确的是()A. a < bB. a ≤ bC. a ≥ bD. a > b4. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 三角形D. 圆形5. 已知直线l上有一点P,下列说法正确的是()A. 直线l上有无数个点B. 直线l上只有一个点C. 直线l上至少有两个点D. 直线l上至多有两个点6. 下列关于圆的说法正确的是()A. 圆是所有到定点距离相等的点的集合B. 圆是所有到定线距离相等的点的集合C. 圆是所有到定点距离相等的线段的集合D. 圆是所有到定线距离相等的线段的集合7. 如果一个长方形的长是8cm,宽是5cm,那么它的周长是()A. 15cmB. 20cmC. 30cmD. 40cm8. 下列关于质数和合数的说法正确的是()A. 质数和合数都是整数B. 质数是只有1和它本身两个因数的数C. 合数是除了1和它本身外还有其他因数的数D. 以上都是9. 如果一个正方形的面积是16cm²,那么它的边长是()A. 2cmB. 4cmC. 8cmD. 16cm10. 下列关于一元一次方程的说法正确的是()A. 一元一次方程只有一个未知数B. 一元一次方程的次数为1C. 一元一次方程的系数不为0D. 以上都是二、填空题(每题4分,共40分)11. 3的倒数是______,0的倒数是______。

12. 如果a + b = 10,那么a = 5,b = ______。

13. 一个数的平方根是2,那么这个数是______。

14. 一个等腰三角形的底边长是8cm,腰长是5cm,那么它的面积是______cm²。

15. 下列数中,质数有______个。

最新人教版七年级数学上册 全册周周测全集(22套,含答案解析)

最新人教版七年级数学上册 全册周周测全集(22套,含答案解析)
第一章 有理数周周测 1
一.选择题
1.下列说法正确的是( )
A. 0 是正数
B.0 是负数 C. 0 是整数
D. 0 是分数
2.数轴上有一个点从原点开始向左移动 3 个长度单位后,它所表示的有理数是
()
A. 3
B. 1
C. 3
D. 1
3
3
3.工作人员检验 4 个零件的长度,超过标准长度的记作正数,不足标准长度的记
19.某检修小组乘一辆汽车在东西走向的公路上检修线路,约定向东走为正,某天从A地出发 到收工时的行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣13,﹣2,+12,﹣5, +4,+6,求: (1)问收工时检修小组是否回到A地,如果回到A地,请说明理由;如果没有回到A地,请说 明检修小组最后的位置; (2)距离A地最近的是哪一次?距离多远? (3)若汽车每千米耗油 3 升,开工时储油 180 升,到收工时,中途是否需要加油,若加油 最少加多少升?若不需要加油,到收工时,还剩多少升汽油?(假定汽车可以开到油量为 0)
作负数(单位: mm ),从长度的角度看,下列记录的数据中最接近标准长度的是 ()
A. 3
B. 1
C. 2
D. 5
4.下列四个数在 2 和1之间的数是( )
A. 0
B. 3
C. 2
D. 3
5.下列说法正确的是( )
A.有理数的绝对值一定是正数
B.有理数的相反数一定是负数
C.互为相反数的两个数的绝对值相等 D.如果两个数的绝对值相等,那么这两
第一章 有理数周周测 2
一、选择题 1. 我市冬季里某一天的最低气温是
,最高气温是 ,这一天的温差为

七年级下册数学三角形测试题(含答案)(有代表性测试题)

七年级下册数学三角形测试题(含答案)(有代表性测试题)

第7章三角形一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )A.1个B.2个C.3个D.4个第5题图第6题图二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。

2024-2025学年上外版七年级科学下册阶段测试试卷828

2024-2025学年上外版七年级科学下册阶段测试试卷828

2024-2025学年上外版七年级科学下册阶段测试试卷828考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、单选题(共5题,共10分)1、2013年6月11日17时38分,我国“神舟十号”载人飞船发射升空.如图当地球公转到位置④时()A. 大约是6月22日B. 阳光直射赤道C. 南半球为夏季D. 泉州昼长夜短2、在千姿百态的植物中没有根、茎、叶等器官分化的类群是( )A. 藻类植物B. 种子植物C. 苔藓植物D. 蕨类植物3、往保温瓶里灌开水的过程,听声音的变化就能判断壶里水位的高低,因为 ( )A. 随着水位的升高,音调逐渐升高B. 随着水位的升高,音调逐渐降低C. 灌水过程中,音调保持不变,响度越来越大D. 灌水过程中,音调保持不变,响度越来越小4、在画有指向标的平面图上,确定方向的一般方法是()A. 面对地图“上北下南,左西右东”B. 不论什么样的地图,均用经纬线确定C. 根据指向标确定方向D. 经线指示东西方向,纬线指示南北方向5、下列四幅图中的现象,由于光的反射形成的是()A.B.C.D.评卷人得分二、填空题(共9题,共18分)6、①鱼类它们都生活在 ____ 中,用 ____ 呼吸,靠 ____ 运动,身体表面常覆有 ____ 。

②两栖类幼体生活在 ____ 中,有 ____ 无四肢,用 ____ 呼吸。

它的成体生活在____ 上或水中, ____ 尾有四肢,主要用 ____ 呼吸。

③爬行动物一般贴地 ____ ,身体内有 ____ ,体表覆盖着 ____ 或 ____ 。

④鸟类它们的身体呈 ____ ,前肢特化为 ____ ,体表有 ____ ,体温 ____ ,____ 发达,骨骼 ____ 、薄、中空,脑比较 ____ 。

⑤哺乳动物全身被 ____ ,体温 ____ , ____ 生,哺乳。

7周数学周测试卷

7周数学周测试卷

阳春华附初中部2019——2020学年度上学期八年级数学第七周周测试卷总分:100分考试时间:40分钟班别____姓名________ 校编号_____ 分数______ 一、选择题(每题5分,共25分)1.在下列长度的各组线段中,能组成三角形的是()A.1,2,4 B.1,4,9 C.3,4,5 D.4,5,92.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()B.D.A B C D3.如图所示,小明从A点出发,沿直线前进8米后左转40°,再沿直线前进8米,又左转40°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.70 B.72 C.74 D.764.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°5.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6二、填空题(每题5分,共25分)6.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.7.如图,已知正方形的边长为4cm,则图中阴影部分的面积为cm2.8.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=°.9.七边形的内角和是.10.如图AC=AD,要使△ABC≌△ABD,还需要添加一个条件,你添加的条件是.(只需要写一个,不添加辅助线)三、解答题(共50分)11.如图,在四边形ABCD中,BC∥AD,∠2=∠3,∠1=35°,求∠D的度数.12.如图,在△ABC中,AC=4,BC=8,AB的垂直平分线交BC于点D,点E是垂足,求△ACD的周长.13.已知:如图,C1A=C1B,C2A=C2B.C3是直线C1C2上一点.求证:C3A=C3B.14.已知:AB⊥BD,ED⊥BD,C是BD上一点,且AC=EC,AC⊥EC.(1)、求证:△ABC≌△CDE(2)、求证:BD=AB+ED.15.如图,已知,△ABC的∠B,∠C的外角平分线交于点D,AD是∠BAC的平分线吗?说明理由.附加题:(20分)16.已知:点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M、N分别是射线AE、AF上的点,且PM=PN.(1)当点M在线段AB上,点N在线段AC的延长线上时(如图1),求证:BM=CN;(2)在(1)的条件下,AM+AN=AC;(3)当点M在线段AB的延长线上时(如图2),若AC:PC=2:1,PC=4,求四边形ANPM的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7周周测题 (A 组) 姓名:________________
一. 填空题(1-4每空3分,第5、6题每题4分,第7题5分)
1. 已知三角形的两边长为4,8,则第三边的长度可以是_______.(写出一个即可)
2. 若一个三角形的三个内角的度数之比为2:7:4,那么这个三角形是________三角形。

3. 如图1,D 、E 分别是AB 、AC 上的点,若∠A=70°,∠B=60°,DE//BC,则∠
AED=________.
4. 如图2,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,填空:
(1)BE=______=12______. (2)∠BAD=_________=12
__________; (3) ∠AFB=________=90° (4)S △ABC =____________.
5.如图3,将一副常规的三角尺按下图方式放置,则图中∠AOB 的度数为__________.
C A
第3题图1 第4题图2 第5题图3
6若等腰三角形的两边长分别为4,6,则等腰三角形的周长为___________.
7.已知△ABC 中,∠A=60°,∠ABC 和∠ACB
的角平分线交于点O ,∠BOC 的度数为_____.
B A
第7图
二. 解答题
8.长为10,7,5,3的四根木条,选其中3根组成三角形,有几种选法?为什么?(12分)
9.一个三角形有两条边相等,周长为20cm,三角形的一边长为6cm ,求其他两边长。

(12分)
B
10.如图,△ABC 中,∠A=60°,∠B :∠C=1:5,求∠B 的度数。

(10分)
11.如图,从A 处观测C 处时仰角∠CAD=30°,从B 处观测C 处时仰角∠CBD=45°,从C 处观测A ,B 两处时∠ACB 是多少?(11分)
D
B A
C
12.如图,在ΔABC 中,AE 是∠BAC 的平分线,AD 是BC 的高,且∠ B=50°,∠C=60°,求∠EAD 的度数。

(15分)
D B
B 组(10分)
如图所示,求∠A+∠B+∠C+∠D+∠E+∠F 的度数。

D E
B B A。

相关文档
最新文档