高考数学理全国II卷详细解析
2023年全国统一高考数学试卷(新高考II)(解析版)
2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。
每小题给出的四个选项中,只有一个选项是正确的。
请把正确的选项填涂在答题卡相应的位置上。
1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。
2020年高考全国卷Ⅱ数学(理)试卷及答案详解,
2020年高考全国卷Ⅱ数学(理)试卷一、选择1. 已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则∁U(A∪B)= ( )A. {−2,3}B. {−2,2,3}C. {−2,−1,0,3}D. {−2,−1,0,2,3}2. 若α为第四象限角,则( )A.cos2α>0B.cos2α<0C.sin2α>0D. sin2α<03. 在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天新订单是1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名4. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块5. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为( )A.√55B. 2√55C.3√55D.4√556. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10=215−25,则k= ()A.2B.3C.4D.57. 如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H8. 设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.329. 设函数f(x)=ln|2x+1|−ln|2x−1|,则f(x)( )A.是偶函数,且在(12,+∞)单调递增B.是奇函数,且在(−12,12)单调递减C.是偶函数,且在(−∞,−12)单调递增D.是奇函数,且在(−∞,−12)单调递减10. 已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√3211. 若2x−2y<3−x−3−y,则( )A. ln(y−x+1)>0B.ln(y−x+1)<0C.ln|x−y|>0D.ln|x−y|<012. 0−1周期序列在通信技术中有着重要应用.若序列a 1a 2⋯a n ⋯满足a i ∈{0,1}(i =1,2,⋯),且存在正整数m ,使得a i+m =a i (i =1, 2, ⋯)成立,则称其为0−1周期序列,并称满足a i+m =a i (i =1, 2, ⋯)的最小正整数m 为这个序列的周期.对于周期为m 的0−1序列a 1a 2⋯a n ⋯,C (k )=1m∑a i m i=1a i+k (k =1, 2, ⋯, m −1)是描述其性质的重要指标.下列周期为5的0−1序列中,满足C (k )≤15(k =1,2,3,4)的序列是( ) A.11010⋯ B.11011⋯ C.10001⋯ D.11001⋯二、填空题已知单位向量a →,b →的夹角为45∘,ka →−b →与a →垂直,则k =________.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名学生,则不同的安排方法有________种.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=√3+i ,则|z 1−z 2|=________.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下列命题中所有真命题的序号是________.①p 1∧p 4 ;②p 1∧p 2 ;③¬p 2∨p 3 ; ④¬p 3∨¬p 4. 三、解答题△ABC 中, sin 2A −sin 2B −sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求△ABC 周长的最大值.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:r=∑(x−x¯)n(y−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1√2≈1.414.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合.C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.如图已知三棱柱ABC−A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥面EB1C1F.(2)设O为△A1B1C1的中心,若AO//面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.已知函数f(x)=sin2x sin2x.(1)讨论f(x)在(0,π)上的单调性;(2)证明:|f(x)|≤3√38;(3)证明:sin2x sin22x sin24x⋯sin22n x≤3n4n.已知曲线C1,C2的参数方程分别为C1:{x=4cos2θ,y=4sin2θ(θ为参数),C2:{x=t+1t,y=t−1t(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.已知函数f(x)=|x−a2|+|x−2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.参考答案与试题解析2020年高考全国卷Ⅱ数学(理)试卷一、选择1.【答案】A【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:由题意可知A∪B={−1,0,1,2},故∁U(A∪B)={−2,3}.故选A.2.【答案】D【考点】任意角的三角函数【解析】此题暂无解析【解答】解:∵α为第四象限角,∴−π+2kπ<α<2kπ,2∴−π+4kπ<2α<4kπ,∴2α是第三或第四象限角,∴当2α在第三象限时,cos2α<0,当2α在第四象限时,cos2α>0,故A,B错误;无论2α在第三还是在第四象限,都有sin2α<0.故选D.3.【答案】B【考点】生活中概率应用【解析】此题暂无解析【解答】解:因为公司可以完成配货1200份订单,则至少需要志愿者为:1600+500−1200=18名.50故选B.4.【答案】C【考点】等差数列的前n项和等差数列的性质等差数列【解析】此题暂无解析【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9.由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,解得n=9,则三层共有扇形面石板为S3n=S27=27a1+27×262×9=3402块. 故选C.5.【答案】B【考点】点与圆的位置关系点到直线的距离公式【解析】此题暂无解析【解答】解:设圆心为(a,a),则半径为a,圆过点(2,1),则(a−2)2+(a−1)2=a2,解得a=1或a=5,所以圆心坐标为(1,1)或(5,5),圆心(1,1)到直线的距离是d=5=2√55,圆心(5,5)到直线的距离是d=√5=2√55.故选B.6.【答案】C【考点】等比数列的前n项和等比关系的确定【解析】此题暂无解析【解答】解:a m+n=a m a n,取m=1,则a1+n=a1a n. 又a1=2,所以a n+1a n=2,所以{a n}是首项,公比均为2等比数列,则a n=2n,所以a k+1+a k+2+⋯+a k+10=2k+1(1−210)1−2=2k+1⋅210−2k+1=215−25,解得k=4.故选C.7.【答案】A【考点】由三视图还原实物图【解析】此题暂无解析【解答】解:该几何体是两个长方体拼接而成,如图所示,显然所求点对应的为E点.故选A.8.【答案】B【考点】直线与双曲线结合的最值问题双曲线的渐近线【解析】此题暂无解析【解答】解:双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别为y=±bax,则容易得到|DE|=2b,则S△ODE=ab=8. 又因为c2=a2+b2≥2ab=16,即c≥4,焦距2c≥8.故选B.9.【答案】D【考点】函数奇偶性的判断复合函数的单调性【解析】此题暂无解析【解答】解:函数f(−x)=ln|−2x+1|−ln|−2x−1|=ln|1−2x|−ln|2x+1|=−f(x),∴f(x)为奇函数.当x∈(12,+∞)时,f(x)=ln(2x+1)−ln(2x−1)=ln2x+12x−1=ln(1+22x−1),单调递减;当x∈(−12,12)时,f(x)=ln(2x+1)−ln(1−2x),单调递增;当x∈(−∞,−12)时,f(x)=ln(−2x−1)−ln(1−2x)=ln2x+12x−1=ln(1+22x−1),单调递减.故选D.10.【答案】C【考点】三角形的面积公式三角形五心球的体积和表面积【解析】此题暂无解析【解答】解:设ABC的外接圆圆心为O1,记OO1=d,圆O1的半径为r,球O半径为R,等边三角形△ABC的边长为a,则S△ABC=√34a2=9√34,可得a=3,所以r=√3=√3.由题知球O的表面积为16π,则R=2,由R2=r2+d2,易得d=1,即O到平面ABC的距离为1. 故选C.11.【答案】A【考点】利用导数研究函数的单调性函数单调性的性质【解析】此题暂无解析【解答】解:2x−3−x<2y−3−y,设f(x)=2x−3−x,则f′(x)=2x ln2+3−x ln3>0,∴函数f(x)在R上单调递增,∵f(x)<f(y),所以x<y,则y−x+1>1,∴ln(y−x+1)>0.故选A.12.【答案】C【考点】函数新定义问题数列的求和【解析】此题暂无解析【解答】解:对于A选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+0)=15,C(2)=15∑a i5i=1a i+2=15(0+1+0+1+0)=25>15,不满足,排除;对于B选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+1+1)=35>15,不满足,排除;对于C选项,C(1)=15∑a i5i=1a i+1=15(0+0+0+0+1)=15,C(2)=15∑a i5i=1a i+2=15(0+0+0+0+0)=0,C(3)=15∑a i5i=1a i+3=15(0+0+0+0+0)=0,C(4)=15∑a i5i=1a i+4=15(1+0+0+0+0)=15,满足;对于D选项,C(1)=15∑a i5i=1a i+1=15(1+0+0+0+1)=25>0,不满足,排除.故选C.二、填空题【答案】√22向量的数量积判断向量的共线与垂直 平面向量数量积 【解析】 此题暂无解析 【解答】解:∵ 单位向量a →,b →的夹角为45∘, ∴ a →⋅b →=|a →|⋅|b →|⋅cos 45∘=√22. ∵ ka →−b →与a →垂直, ∴ (ka →−b →)⋅a →=k −√22=0,∴ k =√22. 故答案为:√22.【答案】36【考点】排列、组合及简单计数问题 【解析】 此题暂无解析 【解答】解:由题意可得,不同的安排方法有C 42A 33=36种. 故答案为:36. 【答案】2√3【考点】 复数的模 【解析】 此题暂无解析 【解答】解:由题设z 1=a +bi ,则z 2=(√3−a)+(1−b )i , 故 |z 1|2=a 2+b 2=4, |z 2|2=(√3−a)2+(1−b )2 =a 2+b 2−2√3a −2b +4=4, 则|z 1−z 2|2=(2a −√3)2+(2b −1)2 =4a 2+4b 2−4√3a −4b +4=2(a 2+b 2)+2(a 2+b 2−2√3a −2b)+4 =2×4+4=12, 故|z 1−z 2|=2√3. 故答案为:2√3.①③④【考点】逻辑联结词“或”“且”“非”命题的真假判断与应用空间中直线与平面之间的位置关系空间中直线与直线之间的位置关系【解析】此题暂无解析【解答】解:对于p1:可设l1与l2相交,所得平面为α.若l3与l1相交,则交点A必在α内,同理,与l2交点B在α内,故直线AB在α内,即l3在α内,故p1为真命题.对于p2:过空间中任意三点,若三点共线,可形成无数多平面,故p2为假命题.对于p3:空间中两条直线的位置关系有相交、平行、异面,若不相交,可能平行,也可能异面,故p3为假命题.对于p4:若m⊥α,则m垂直于平面α内的所有直线,因为直线l⊂平面α,故m⊥l,故p4为真命题.综上可知:①p1∧p4为真命题;②p1∧p2为假命题,③¬p2∨p3为真命题;④¬p3∨¬p4为真命题.故答案为:①③④ .三、解答题【答案】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2, (b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【考点】基本不等式在最值问题中的应用正弦定理【解析】此题暂无解析【解答】解:(1)在△ABC中,设内角A,B,C的对边分别为a,b,c,∵sin2A−sin2B−sin2C=sin B sin C,由正弦定理得,a2−b2−c2=bc,即b2+c2−a2=−bc,由余弦定理得,cos A=b2+c2−a22bc =−12.∵0<A<π,∴A=2π3.(2)由(1)知A=2π3,因为BC=3,即a=3,由余弦定理得,a2=b2+c2−2bc cos A,∴9=b2+c2+bc=(b+c)2−bc.由基本不等式√bc≤b+c2知bc≤(b+c)24,结合上式得9=(b+c)2−bc≥34(b+c)2,(b+c)2≤12,∴b+c≤2√3,当且仅当b=c=√3时取等号,∴△ABC周长的最大值为3+2√3.【答案】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【考点】众数、中位数、平均数相关系数收集数据的方法此题暂无解析【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得,r=∑(x i−x¯)ni=1(y i−y¯)√∑(xi−x)2ni=1∑(y i−y)2ni=1=√80×9000=6√2≈0.94;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.【答案】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【考点】圆锥曲线的综合问题椭圆的离心率抛物线的标准方程抛物线的定义椭圆的标准方程【解析】此题暂无解析【解答】解:(1)F为C1的焦点,且AB⊥x轴,∴F(c,0),|AB|=2b2a,设C2的标准方程为y2=2px(p>0),∵F为C2的焦点,且AB⊥x轴,∴F(p2,0).由抛物线的定义可得,|CD|=2p.∵|CD|=43|AB| .C1与C2焦点重合,∴{c=p2,2p=43×2b2a,消去p得:4c=8b 23a,∴3ac=2b2,∴3ac=2a2−2c2,设C1的离心率为e,则2e2+3e−2=0,∴e=12或e=−2(舍),故C1的离心率为12.(2)由(1)知a=2c,b=√3c,p=2c.∴C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y得3x2+16cx−12c2=0,∴(3x−2c)(x+6c)=0,∴x=23c或x=−6c(舍).从而|MF|=x+p2=23c+c=53c=5,∴c=3,∴C1与C2的标准方程分别为x236+y227=1,y2=12x.【答案】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【考点】直线与平面所成的角两条直线平行的判定平面与平面垂直的判定【解析】此题暂无解析【解答】(1)证明:∵M,N分别为BC,B1C1的中点,底面为正三角形,∴B1N=BM,四边形BB1NM为矩形,A1N⊥B1C1,∴BB1//MN,而AA1//BB1,MN⊥B1C1,∴AA1//MN.又∵MN∩A1N=N,∴B1C1⊥面A1AMN.∵B1C1⊂面EB1C1F,∴面A1AMN⊥面EB1C1F.(2)∵三棱柱上下底面平行,平面EB1C1F与上下底面分别交于B1C1,EF,∴EF//B1C1//BC.∵AO//面EB1C1F,AO⊂面AMNA1,面AMNA1∩面EB1C1F=PN,∴AO//PN,四边形APNO为平行四边形,而O为正三角形的中心,AO=AB,∴A1N=3ON,AM=3AP,PN=BC=B1C1=3EF.由(1)知直线B1E在平面A1AMN内的投影为PN,直线B1E与平面A1AMN所成角即为等腰梯形EFC1B1中B1E与PN所成角.在等腰梯形EFC1B1中,令EF=1,过E作EH⊥B1C1于H,则PN=B1C1=EH=3,B1H=1,B1E=√10,sin∠B1EH=B1HB1E =√1010.所以直线B1E与平面A1AMN所成角的正弦值为√1010.【答案】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增;当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减; 当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数.f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯ sin 22n−1x sin 2n x ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x ≤(34)3n2 , ∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x =sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2nx ≤(34)3n 2,∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【考点】 不等式的证明利用导数研究函数的单调性 【解析】 此题暂无解析 【解答】(1)解:∵ f (x )=2sin 3x cos x , ∴ f ′(x )=2sin 2x(3cos 2x −sin 2x) =−8sin 2x sin (x +π3)sin (x −π3).当x ∈(0,π3)时, f ′(x )>0, f (x )单调递增; 当x ∈(π3,2π3)时, f ′(x )<0, f (x )单调递减;当x ∈(2π3,π)时, f ′(x )>0, f (x )单调递增.(2)证明:由f (x )=2sin 3x cos x 得, f (x )为R 上的奇函数. f 2(x )=4sin 6x cos 2x =4(1−cos 2x )3cos 2x =4(1−cos 2x )3×3cos 2x 3≤43×(3−3cos 2x+3cos 2x 4)4=(34)3.当1−cos 2x =3cos 2x ,即cos x =±12时等号成立,故|f (x )|≤3√38.(3)证明:由(2)知:sin 2x sin 2x ≤3√38=(34)32,sin 22x sin 4x ≤3√38=(34)32, sin 222x sin 23x ≤3√38=(34)32,⋯,sin 22n−1x sin 2nx ≤3√38=(34)32,∴ sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22nx ≤(34)3n 2,∴ sin 3x sin 32x sin 34x ⋯sin 32n−1x sin 32n x=sin x(sin 2x sin 32x sin 34x ⋯sin 32n−1x sin 22n x)sin 2n x ≤(34)3n2, ∴ sin 2x sin 22x sin 24x ⋯ sin 22n x ≤3n4n . 【答案】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710,则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2,即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【考点】圆的极坐标方程与直角坐标方程的互化 直线与双曲线结合的最值问题 参数方程与普通方程的互化 点到直线的距离公式 【解析】 此题暂无解析 【解答】解:(1)C 1:{x =4cos 2θ,①y =4sin 2θ,②①+②得,x +y =4,故C 1的普通方程为:x +y −4=0. 由 {x =t +1t ,y =t −1t 可得{x 2=t 2+2+1t2,③y 2=t 2−2+1t 2,④③−④得,x 2−y 2=4,故C 2的普通方程为:x 2−y 2=4. (2)联立C 1,C 2 {x +y −4=0,x 2−y 2=4,解得:{x =52,y =32, 所以点P 坐标为:P (52,32). 设所求圆圆心为Q (a,0),半径为a ,故圆心Q (a,0)到P (52,32)的距离为√(52−a)2+(32−0)2=a ,解得a =1710,所以圆Q 的圆心为(1710, 0),半径为1710, 则圆Q 的直角坐标方程为:(x −1710)2+y 2=(1710)2, 即.x 2+y 2−175x =0,所以所求圆的极坐标方程为: ρ=175cos θ.【答案】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.试卷第21页,总21页 因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).【考点】绝对值不等式的解法与证明绝对值三角不等式【解析】此题暂无解析【解答】解:(1)当a =2时,f (x )={7−2x ,x ≤3,1,3<x ≤4,2x −7,x >4.因此,不等式f (x )≥4的解集为{x|x ≤32或x ≥112}.(2)因为f (x )=|x −a 2|+|x −2a +1|≥|a 2−2a +1|=(a −1)2, 故当(a −1)2≥4,即|a −1|≥2时, f (x )≥4,所以当a ≥3或a ≤−1时,f (x )≥4;当−1<a <3时, f (a 2)=|a 2−2a +1|=(a −1)2<4. 所以a 的取值范围是(−∞,−1]∪[3,+∞).。
高考全国卷数学理科试题及答案详解
2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
高考新课标Ⅱ卷理数试题解析(正式版)(解析版)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+ (D )(3)∞--,【答案】A考点:复数的几何意义(2)已知集合{1,23}A =,,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】试题分析:集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.考点:集合的运算.(3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8(B )-6(C )6(D )8【答案】D 【解析】试题分析:(4,2)m +=-a b ,由()⊥a +b b 得43(2)(2)0m ⨯+-⨯-=,解得8m =,故选D. 考点:平面向量的坐标运算、数量积.(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=(A )43- (B )34-(C )3(D )2【答案】A考点:圆的方程、点到直线的距离公式.(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A)24(B)18(C)12(D)9【答案】B【解析】试题分析:由题意,小明从街道的E处出发到F处最短路径的条数为6,再从F处到G处最短路径的条数为⨯=,故选B.3,则小明到老年公寓可以选择的最短路径条数为6318考点:计数原理、组合.(6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的表面积 (7)若将函数y =2sin2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A )x =26k ππ-(k ∈Z ) (B )x =26k ππ+(k ∈Z )(C )x =212k ππ-(k ∈Z )(D )x =212k ππ+(k ∈Z )【答案】B 【解析】试题分析:由题意,将函数2sin 2y x =的图像向左平移12π个单位长度得函数2sin 2()2sin(2)126y x x ππ=+=+的图像,则平移后函数图像的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B. 考点:三角函数图像的变换与对称性.(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输 出的s =(A )7 (B )12 (C )17(D )34 【答案】C考点:程序框图,直到型循环结构. (9)若cos(4π–α)=53,则sin2α= (A )725(B )15(C )–15(D )–725【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⋅-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D.考点:三角恒等变换.(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )4n m(B )2n m(C )4mn(D )2mn【答案】C 【解析】试题分析:利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4m n π=.选C.考点:几何概型.(11)已知F 1,F 2是双曲线E :22221x y a b -=的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (A )2(B )32(C )3(D )2【答案】A考点:双曲线的几何性质、离心率(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m【答案】B 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,其图像与函数111x y x x+==+的图像的交点为()()1,2,1,0-,故12122x x y y +++=,故选B. 考点:函数的图像与性质第II 卷本卷包括必考题和选考题两部分。
2022年新高考全国Ⅱ卷数学真题及参考答案
一、选择题1. 已知函数f(x) = x^2 2x + 1,求f(x)的极值。
答案:f(x)的极值为0。
2. 若等差数列{an}的前n项和为Sn,且Sn = 2n^2 3n,求公差d。
答案:d = 4。
3. 设圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C的半径。
答案:半径为2。
4. 若随机变量X服从正态分布N(0, 1),求P(X < 0)。
答案:P(X < 0) = 0.5。
5. 已知等比数列{bn}的前n项和为Tn,且Tn = 2^n 1,求公比q。
答案:q = 2。
二、填空题1. 已知函数g(x) = x^3 3x,求g(x)的导数。
答案:g'(x) = 3x^2 3。
2. 若等差数列{cn}的前n项和为Sn,且Sn = 3n^2 + 2n,求首项c1。
答案:c1 = 5。
3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆心坐标。
答案:圆心坐标为(1, 2)。
4. 若随机变量Y服从二项分布B(n, p),且P(Y = 2) = 3P(Y = 1),求n和p。
答案:n = 3,p = 1/2。
5. 已知等比数列{dn}的前n项和为Tn,且Tn = 2^n 1,求首项d1。
答案:d1 = 1。
三、解答题1. 已知函数h(x) = (x 1)^2,求h(x)的单调区间。
答案:h(x)的单调递增区间为(∞, 1),单调递减区间为(1, +∞)。
2. 若等差数列{en}的前n项和为Sn,且Sn = 3n^2 2n,求公差d。
答案:d = 6。
3. 已知圆C的方程为(x 1)^2 + (y 2)^2 = 4,求圆C与x轴的交点坐标。
答案:交点坐标为(1, 0)。
4. 若随机变量Z服从泊松分布P(λ),且P(Z = 1) = P(Z = 2),求λ。
答案:λ = 2。
5. 已知等比数列{fn}的前n项和为Tn,且Tn = 2^n 1,求公比q。
答案:q = 2。
2020年高考全国II卷理科数学试题(含解析)
2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。
已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。
2023年新课标全国Ⅱ卷数学真题(解析版)
2023年全国新高考Ⅱ卷一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 在复平面内,()()13i 3i +−对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【分析】根据复数的乘法结合复数的几何意义分析判断. 【详解】因为()()213i 3i 38i 3i 68i +−=+−=+,则所求复数对应的点为()6,8,位于第一象限. 故选:A.2. 设集合{}0,A a =−,{}1,2,22B a a =−−,若A B ⊆,则=a ( ). A. 2 B. 1 C.23D. 1−【答案】B 【解析】【分析】根据包含关系分20a −=和220a −=两种情况讨论,运算求解即可. 【详解】因为A B ⊆,则有:若20a −=,解得2a =,此时{}0,2A =−,{}1,0,2B =,不符合题意; 若220a −=,解得1a =,此时{}0,1A =−,{}1,1,0B =−,符合题意; 综上所述:1a =. 故选:B.3. 某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A. 4515400200C C ⋅种 B. 2040400200C C ⋅种 C.3030400200C C ⋅种D.4020400200C C ⋅种【答案】D 【解析】【分析】利用分层抽样的原理和组合公式即可得到答案.【详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=,根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.4. 若()()21ln 21x f x x a x −=++为偶函数,则=a ( ). A. 1− B. 0C.12D. 1【答案】B 【解析】【分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可. 【详解】因为()f x 为偶函数,则1(1)(1)(1)ln (1)ln 33f f a a =−∴+=−+,,解得0a =,当0a =时,()21ln21x x x f x −=+,()()21210x x −+>,解得12x >或12x <−,则其定义域为12x x ⎧⎨⎩或12x ⎫<−⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x −−−+⎫−=−−−⎛==== ⎪−+−++⎝−⎭−, 故此时()f x 为偶函数. 故选:B.5. 已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =( ).A.23B.3C. 3−D. 23−【答案】C 【解析】【分析】首先联立直线方程与椭圆方程,利用0∆>,求出m 范围,再根据三角形面积比得到关于m 方程,解出即可.【详解】将直线y x m =+与椭圆联立2213y x m x y =+⎧⎪⎨+=⎪⎩,消去y 可得2246330x mx m ++−=, 因为直线与椭圆相交于,A B 点,则()223604433m m −⨯−∆=>,解得22m −<<,设1F 到AB 距离12,d F 到AB 距离2d,易知())12,F F ,的则1d =2d =122F AB F ABS S===,解得3m =−或−,故选:C.6. 已知函数()e ln xf x a x =−在区间()1,2上单调递增,则a 的最小值为( ).A. 2eB. eC. 1e −D. 2e −【答案】C 【解析】【分析】根据()1e 0xf x a x'=−≥在()1,2上恒成立,再根据分参求最值即可求出. 【详解】依题可知,()1e 0xf x a x '=−≥在()1,2上恒成立,显然0a >,所以1e x x a≥, 设()()e ,1,2xg x x x =∈,所以()()1e 0xg x x =+>',所以()g x 在()1,2上单调递增,()()1e g x g >=,故1e a ≥,即11e ea −≥=,即a 的最小值为1e −. 故选:C .7. 已知α为锐角,1cos 4α+=,则sin 2α=( ).A.38B.18−C.34−D.14−+ 【答案】D 【解析】【分析】根据二倍角公式(或者半角公式)即可求出.【详解】因为21cos 12sin 24αα+=−=,而α为锐角,解得:sin2α=14−==. 故选:D .8. 记n S 为等比数列{}n a 的前n 项和,若45S =−,6221S S =,则8S =( ).A. 120B. 85C.85−D. 120−【答案】C 【解析】【分析】方法一:根据等比数列的前n 项和公式求出公比,再根据48,S S 的关系即可解出; 方法二:根据等比数列的前n 项和的性质求解.【详解】方法一:设等比数列{}n a 的公比为q ,首项为1a , 若1q =,则61126323S a a S ==⨯=,与题意不符,所以1q ≠; 由45S =−,6221S S =可得,()41151a q q−=−−,()()6211112111a q a q q q−−=⨯−−①,由①可得,24121q q ++=,解得:24q =, 所以8S =()()()()8411411151168511a q a q q qq−−=⨯+=−⨯+=−−−.故选:C .方法二:设等比数列{}n a 的公比为q , 因为45S =−,6221S S =,所以1q ≠−,否则40S =,从而,2426486,,,S S S S S S S −−−成等比数列,所以有,()()22225215S S S −−=+,解得:21S =−或254S =, 当21S =−时,2426486,,,S S S S S S S −−−,即为81,4,16,21S −−−+,易知,82164S +=−,即885S =−; 当254S =时,()()()2241234122110S a a a a a a q q S =+++=++=+>, 与45S =−矛盾,舍去.故选:C .【点睛】本题主要考查等比数列的前n 项和公式的应用,以及整体思想的应用,解题关键是把握48,S S 的关系,从而减少相关量的求解,简化运算.二、选择题:本题共4小题,每小题5分,共20分。
2020年高考理科数学(全国卷Ⅱ真题)——(含答案和解析)
【答案】B
【解析】
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】由题意,第二天新增订单数为 ,
故需要志愿者 名.
故选:B
【点晴】本题主要考查函数模型的简单应用,属于基础题.
4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()
A. B. C. D.
8.设 为坐标原点,直线 与双曲线 的两条渐近线分别交于 两点,若 的面积为8,则 的焦距的最小值为()
A. 4B. 8C. 16D. 32
9.设函数 ,则f(x)()
A.是偶函数,且在 单调递增B.是奇函数,且在 单调递减
C.是偶函数,且在 单调递增D.是奇函数,且在 单调递减
(一)必考题:共60分.
17. 中,sin2A-sin2B-sin2C=sinBsinC.
(1)求A;
(2)若BC=3,求 周长的最大值.
18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得 , , , , .
10.已知△ABC是面积为 的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()
2023年全国卷新高考II卷数学真题解析
新高考二卷参考答案1.(2023·新高考Ⅱ卷·1·★)在复平面内,(13i)(3i)+−对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 答案:A解析:2(13i)(3i)3i 9i 3i 68i +−=−+−=+,所以该复数对应的点为(6,8),位于第一象限.2.(2023·新高考Ⅱ卷·2·★)设集合{0,}A a =−,{1,2,22}B a a =−−,若A B ⊆,则a =( ) (A )2 (B )1 (C )23(D )1− 答案:B解析:观察发现集合A 中有元素0,故只需考虑B 中的哪个元素是0, 因为0A ∈,A B ⊆,所以0B ∈,故20a −=或220a −=,解得:2a =或1, 注意0B ∈不能保证A B ⊆,故还需代回集合检验,若2a =,则{0,2}A =−,{1,0,2}B =,不满足A B ⊆,不合题意; 若1a =,则{0,1}A =−,{1,1,0}B =−,满足A B ⊆. 故选B.3.(2023·新高考Ⅱ卷·3·★)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )(A )4515400200C C ⋅种 (B )2040400200C C ⋅种 (C )3030400200C C ⋅种 (D )4020400200C C ⋅种答案:D解析:应先找到两层中各抽多少人,因为是比例分配的分层抽取,故各层的抽取率都等于总体的抽取率, 设初中部抽取x 人,则60400400200x =+,解得:40x =,所以初中部抽40人,高中部抽20人, 故不同的抽样结果共有4020400200C C ⋅种.4.(2023·新高考Ⅱ卷·4·★★)若21()()ln 21x f x x a x −=++为偶函数,则a =( ) (A )1− (B )0 (C )12(D )1 答案:B解法1:偶函数可抓住定义()()f x f x −=来建立方程求参, 因为()f x 为偶函数,所以()()f x f x −=,即2121()ln ()ln 2121x x x a x a x x −−−−+=+−++ ①,而121212121lnln ln()ln 21212121x x x x x x x x −−−+−−===−−+−++,代入①得:2121()(ln )()ln 2121x x x a x a x x −−−+−=+++,化简得:x a x a −=+,所以0a =.解法2:也可在定义域内取个特值快速求出答案, 210(21)(21)021x x x x −>⇔+−>+,所以12x <−或12x >,因为()f x 为偶函数,所以(1)(1)f f −=,故1(1)ln 3(1)ln 3a a −+=+ ①,而11ln ln 3ln 33−==−,代入①得:(1)ln3(1)ln3a a −+=−+,解得:0a =.5.(2023·新高考Ⅱ卷·5·★★★)已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B 两点,若1F AB ∆的面积是2F AB ∆面积的2倍,则m =( ) (A )23 (B(C) (D )23−答案:C解析:如图,观察发现两个三角形有公共的底边AB ,故只需分析高的关系,作1F G AB ⊥于点G ,2F I AB ⊥于点I ,设AB 与x 轴交于点K ,由题意,121212212F AB F ABAB F G S S AB F I ∆∆⋅==⋅, 所以122F G F I=,由图可知12F KG F KI ∆∆∽,所以11222F K FG F KF I==,故122F K F K =,又椭圆的半焦距c =,所以122F F c ==21213F K F F ==,故11OK OF F K =−=,所以K ,代入y x m =+可得0m =,解得:m =6.(2023·新高考Ⅱ卷·6·★★★)已知函数()e ln x f x a x =−在区间(1,2)单调递增,则a 的最小值为( ) (A )2e (B )e (C )1e − (D )2e − 答案:C解析:()f x 的解析式较复杂,不易直接分析单调性,故求导, 由题意,1()e x f x a x'=−,因为()f x 在(1,2)上,所以()0f x '≥在(1,2)上恒成立,即1e 0x a x−≥ ①, 观察发现参数a 容易全分离,故将其分离出来再看,不等式①等价于1ex a x ≥,令()e (12)x g x x x =<<, 则()(1)e 0x g x x '=+>,所以()g x 在(1,2)上,又(1)e g =,2(2)2e g =,所以2()(e,2e )g x ∈,故21111(,)()e 2e ex g x x =∈,因为1e x a x ≥在(1,2)上恒成立,所以11e e a −≥=,故a 的最小值为1e −.7.(2023·新高考Ⅱ卷·7·★★)已知α为锐角,1cos 4α=sin 2α=( )(A(B(C(D答案:D解析:22cos12sin sin22ααα=−=⇒=,此式要开根号,不妨上下同乘以2,将分母化为24,所以2sin2α==,故sin2α=,又α为锐角,所以(0,)24απ∈,故sin2α=8.(2023·新高考Ⅱ卷·8·★★★)记nS为等比数列{}na的前n项和,若45S=−,6221S S=,则8S=()(A)120 (B)85 (C)85−(D)120−答案:C解法1:观察发现2S,4S,6S,8S的下标都是2的整数倍,故可考虑片段和性质,先考虑q是否为1−,若{}na的公比1q=−,则414[1(1)]1(1)aS−−==−−,与题意不符,所以1q≠−,故2S,42S S−,64S S−,86S S−成等比数列①,条件中有6221S S=,不妨由此设个未知数,设2S m=,则621S m=,所以425S S m−=−−,64215S S m−=+,由①可得242262()()S S S S S−=−,所以2(5)(215)m m m−−=+,解得:1m=−或54,若1m=−,则21S=−,424S S−=−,6416S S−=−,所以8664S S−=−,故8664216485S S m=−=−=−;到此结合选项已可确定选C,另一种情况我也算一下,若54m=,则254S=>,而2222412341212122()(1)(1)S a a a a a a a q a q a a q S q=+++=+++=++=+,所以4S与2S同号,故4S>,与题意不符;综上所述,m只能取1−,此时885S=−.解法2:已知和要求的都只涉及前n项和,故也可直接代公式翻译,先看公比是否为1,若{}na的公比1q=,则612162142S a S a=≠=,不合题意,所以1q≠,故414(1)51a qSq−==−−①,又6221S S=,所以6211(1)(1)2111a q a qq q−−=⋅−−,化简得:62121(1)q q−=−②,又62322411()(1)(1)q q q q q−=−=−++,代入②可得:2242(1)(1)21(1)q q q q−++=−③,两端有公因式可约,但需分析21q−是否可能为0,已经有1q≠了,只需再看q是否可能等于1−,若1q=−,则414[1(1)]1(1)aS−−==−−,与题意不符,所以1q≠−,故式③可化为24121q q++=,整理得:42200q q+−=,所以24q=或5−(舍去),故要求的8241118(1)[1()]255111a q a q aSq q q−−===−⋅−−−④,只差11a q−了,该结构式①中也有,可由24q =整体计算它, 将24q =代入①可得21(14)51a q−=−−,所以1113a q =−,代入④得81255853S =−⨯=−. 9.(2023·新高考Ⅱ卷·9·★★★)(多选)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,o 120APB ∠=,2PA =,点C 在底面圆周上,且二面角P AC O −−为o 45,则( )(A )该圆锥的体积为π(B )该圆锥的侧面积为(C )AC =(D )PAC ∆答案:AC解析:A 项,因为2PA =,o 120APB ∠=,所以o 60APO ∠=,cos 1OP AP APO =⋅∠=,sin OA AP APO =⋅∠=,从而圆锥的体积211133V Sh ππ==⨯⨯⨯=,故A 项正确;B 项,圆锥的侧面积2S rl ππ===,故B 项错误;C 项,要求AC 的长,条件中的二面角P AC O −−还没用,观察发现PAC ∆和OAC ∆都是等腰三角形,故取底边中点即可构造棱的垂线,作出二面角的平面角,取AC 中点Q ,连接PQ ,OQ ,因为OA OC =,PA PC =,所以AC OQ ⊥,AC PQ ⊥, 故PQO ∠即为二面角P AC O −−的平面角,由题意,o 45PQO ∠=,所以1OQ OP ==,故AQ =,所以2AC AQ ==,故C 项正确;D 项,PQ =11222PAC S AC PQ ∆=⋅=⨯=,故D 项错误. POCABQ10.(2023·新高考Ⅱ卷·10·★★★)(多选)设O 为坐标原点,直线1)y x =−过抛物线2:2(0)C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则( )(A )2p = (B )83MN = (C )以MN 为直径的圆与l 相切 (D )OMN ∆为等腰三角形答案:AC解析:A 项,在1)y x =−中令0y =可得1x =,由题意,抛物线的焦点为(1,0)F ,所以12p=, 从而2p =,故A 项正确;B 项,此处可以由直线MN 的斜率求得MFO ∠,再代角版焦点弦公式22sin pMN α=求MN ,但观察发现后续选项可能需要用M ,N 的坐标,所以直接联立直线与抛物线,用坐标版焦点弦公式来算,设11(,)M x y ,22(,)N x y,将1)y x =−代入24y x =消去y 整理得:231030x x −+=,解得:13x =或3, 对应的y−(3,M −,1(3N ,从而121163233MN x x p =++=++=,故B 项错误;C 项,判断直线与圆的位置关系,只需将圆心到直线的距离d 和半径比较, 12523x x MN +=⇒的中点Q 到准线:1l x =−的距离8132d MN ==, 从而以MN 为直径的圆与准线l 相切,故C 项正确; D 项,M ,N 的坐标都有了,算出OM ,ON 即可判断,OMON ==, 所以OM ,ON ,MN 均不相等,故D 项错误.11.(2023·新高考Ⅱ卷·11·★★★)(多选)若函数2()ln (0)b cf x a x a x x =++≠既有极大值也有极小值,则( ) (A )0bc > (B ) 0ab > (C )280b ac +> (D )0ac < 答案:BCD解析:由题意,223322()(0)a b c ax bx cf x x x x x x −−'=−−=>,函数()f x 既有极大值,又有极小值,所以()f x '在(0,)+∞上有2个变号零点, 故方程220ax bx c −−=在(0,)+∞上有两个不相等实根,所以212120()(()4(2)020)()b a c c x x a b x x a ⎧⎪∆=−−−>⎪⎪=−>⎨⎪⎪+=>⎪⎩保证有两根保证两根同号保证两根只能同③正①②,由①可得280b ac +>,故C 项正确;由②可得0ca<,所以a ,c 异号,从而0ac <,故D 项正确; 由③可得a ,b 同号,所以0ab >,故B 项正确;因为a ,c 异号,a ,b 同号,所以b ,c 异号,从而0bc <,故A 项错误.12.(2023·新高考Ⅱ卷·12·★★★★)(多选)在信道内传输0,1信号,信号的传输相互独立. 发送0时,收到1的概率为(01)αα<<,收到0的概率为1α−;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β−. 考虑两种传输方案:单次传输和三次传输. 单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次. 收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).( )(A )采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)αβ−− (B )采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ− (C )采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ−+−(D )当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率 答案:ABD解析:A 项,由题意,若采用单次传输方案,则发送1收到1的概率为1β−,发送0收到0的概率为1α−, 所以依次发送1,0,1,则依次收到1,0,1的概率为2(1)(1)(1)(1)(1)βαβαβ−−−=−−,故A 项正确; B 项,采用三次传输方案,若发送1,则需独立重复发送3次1,依次收到1,0,1的概率为2(1)(1)(1)βββββ−−=−,故B 项正确;C 项,采用三次传输方案,由B 项的分析过程可知若发送1,则收到1的个数~(3,1)X B β−, 而译码为1需收2个1,或3个1,所以译码为1的概率为22332333(2)(3)C (1)C (1)3(1)(1)P X P X ββββββ=+==−+−=−+−,故C 项错误;D 项,若采用单次传输方案,则发送0译码为0的概率为1α−;若采用三次传输方案,则发送0等同于发3个0,收到0的个数~(3,1)Y B α−,且译码为0的概率为22332333(2)(3)C (1)C (1)3(1)(1)P Y P Y αααααα=+==−+−=−+−,要比较上述两个概率的大小,可作差来看,2323(1)(1)(1)(1)[3(1)(1)1](1)(12)ααααααααααα−+−−−=−−+−−=−−,因为00.5α<<,所以233(1)(1)(1)(1)(12)0ααααααα−+−−−=−−>, 从而233(1)(1)1αααα−+−>−,故D 项正确.13.(2023·新高考Ⅱ卷·13·★★)已知向量a ,b满足−a b 2+=−a b a b ,则=b _____.解析:条件涉及两个模的等式,想到把它们平方来看, 由题意,22223−=+−⋅=a b a b a b ①,又2+=−a b a b ,所以222+=−a b a b ,故2222244++⋅=+−⋅a b a b a b a b ,整理得:220−⋅=a a b , 代入①可得23=b ,即23=b,所以=b .14.(2023·新高考Ⅱ卷·14·★★)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为_____. 答案:28解析:如图,四棱锥1111P A B C D −与P ABCD −相似,它们的体积之比等于边长之比的立方,故只需求四棱锥1111P A B C D −的体积,11113112111()4228P A B C D P ABCD V A B AB V −−==⇒==,所以11118P ABCD P A B C D V V −−=,故所求四棱台的体积11117P A B C D V V −=,由题意,1111212343P A B C D V −=⨯⨯=,所以7428V =⨯=.P 1D 1A 1B 1CD ABCO423【反思】相似图形的面积之比等于边长之比的平方,体积之比等于边长之比的立方.15.(2023·新高考Ⅱ卷·15·★★★)已知直线10x my −+=与⊙22:(1)4C x y −+=交于A ,B 两点,写出满足“ABC ∆的面积为85”的m 的一个值_____.答案:2(答案不唯一,也可填2−或12或12−) 解析:如图,设圆心(1,0)C 到直线AB 的距离为(0)d d >,则12ABC S AB d ∆=⋅, 注意到AB 也可用d 表示,故先由85ABC S ∆=求d ,再将d 用m 表示,建立关于m 的方程,又AB ==12ABC S d ∆=⨯=由题意,85ABC S ∆=85,结合0d >解得:d =,又d ====,解得:2m =±或12±.16.(2023·新高考Ⅱ卷·16·★★★★)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若6AB π=,则()f π=_____.答案:2−解法1:6AB π=这个条件怎么翻译?可用12y =求A ,B 横坐标的通解,得到AB ,从而建立方程求ω, 不妨设0ω>,令1sin()2x ωϕ+=可得26x k πωϕπ+=+或526k ππ+,其中k ∈Z ,由图知26A x k πωϕπ+=+,526B x k πωϕπ+=+,两式作差得:2()3B A x x πω−=,故23B A x x πω−=, 又6B A AB x x π=−=,所以336ππω=,解得:4ω=,则()sin(4)f x x ϕ=+, 再求ϕ,由图知23π是零点,可代入解析式,注意,23π是增区间上的零点,且sin y x =的增区间上的零点是2n π,故应按它来求ϕ的通解, 所以82()3n n πϕπ+=∈Z ,从而823n πϕπ=−,故82()sin(42)sin(4)33f x x n x πππ=+−=−,所以222()sin(4)sin()sin 333f πππππ=−=−=−=. 解法2:若注意横向伸缩虽会改变图象在水平方向上的线段长度,但不改变长度比例,则可先分析sin y x =与12y =交点的情况,再按比例对应到本题的图中来, 如图1,直线12y =与函数sin y x =在y 轴右侧的三个I ,J ,K 的横坐标分别为6π,56π,136π, 所以52663IJ πππ=−=,1354663JK πππ=−=,:1:2IJ JK =,故在图2中:1:2AB BC =, 因为6AB π=,所以3BC π=,故2AC AB BC π=+=,又由图2可知AC T =,所以2T π=,故24Tπω==,接下来同解法1.2图【反思】①对于函数sin()(0)yx ωϕω=+>,若只能用零点来求解析式,则需尽量确定零点是在增区间还是减区间. “上升零点”用2x n ωϕπ+=来求,“下降零点”用2x n ωϕππ+=+来求;②对图象进行横向伸缩时,水平方向的线段长度比例关系不变,当涉及水平线与图象交点的距离时,我们常抓住这一特征来求周期.17.(2023·新高考Ⅱ卷·17·★★★)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆D 为BC 的中点,且1AD =. (1)若3ADC π∠=,求tan B ;(2)若228b c +=,求b ,c . 解:(1)如图,因为3ADC π∠=,所以23ADB π∠=,(要求tan B ,可到ABD ∆中来分析,所给面积怎么用?可以用它求出ABD S ∆,从而得到BD ) 因为D 是BC 中点,所以2ABC ABD S S ∆∆=,又ABC S ∆=ABD S ∆=,由图可知112sin 1sin 223ABD S AD BD ADB BD π∆=⋅⋅∠=⨯⨯⨯==2BD =,(此时ABD ∆已知两边及夹角,可先用余弦定理求第三边AB ,再用正弦定理求角B )在ABD ∆中,由余弦定理,2222212cos 12212()72AB AD BD AD BD ADB =+−⋅⋅∠=+−⨯⨯⨯−=,所以AB由正弦定理,sin sin AB ADADB B =∠,所以1sin sin AD ADB B AB⋅∠==由23ADB π∠=可知B为锐角,从而cos B ==,故sin tan cos B B B ==. (2)(已有关于bc 的一个方程,若再建立一个方程,就能求b 和c ,故把面积和中线都用b ,c 表示)由题意,1sin 2ABC S bc A ∆==sin bc A =①,(中线AD 怎样用b ,c 表示?可用向量处理) 因为D 为BC 中点,所以1()2AD AB AC =+,从而2AD AB AC =+,故22242AD AB AC AB AC =++⋅, 所以222cos 4c b cb A ++=,将228b c +=代入上式化简得cos 2bc A =− ②,(我们希望找的是b ,c 的方程,故由①②消去A ,平方相加即可) 由①②得222222sin cos 16b c A b c A +=,所以4bc = ③, 由228b c +=可得2()28b c bc +−=,所以4b c +==,结合式③可得2b c ==.ADBC118.(2023·新高考Ⅱ卷·18·★★★★)已知{}n a 为等差数列,6,2,n n n a n b a n −⎧⎪=⎨⎪⎩为奇数为偶数,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,432S =,316T =. (1)求{}n a 的通项公式; (2)证明:当5n >时,n n T S >.解:(1)(给出了两个条件,把它们用1a 和d 翻译出来,即可建立方程组求解1a 和d ) 由题意,414632S a d =+= ①,31231231111(6)2(6)62()26441216T b b b a a a a a d a d a d =++=−++−=−++++−=+−= ②,由①②解得:15a =,2d =,所以1(1)23n a a n d n =+−=+.(2)由(1)可得21()(523)422n n n a a n n S n n +++===+, (要证结论,还需求n T ,由于n b 按奇偶分段,故求n T 也应分奇偶讨论,先考虑n 为偶数的情形) 当(5)n n >为偶数时,12n n T b b b =++⋅⋅⋅+ 12341(6)2(6)2(6)2n n a a a a a a −=−++−++⋅⋅⋅+−+ 13124()62()2n n na a a a a a −=++⋅⋅⋅+−⨯+++⋅⋅⋅+ ③, 因为131,,,n a a a −⋅⋅⋅和24,,,n a a a ⋅⋅⋅分别也构成等差数列,所以211131()(521)32242n n na a n n n n a a a −−++++++⋅⋅⋅+===,2224()(723)52242n n na a n n n n a a a ++++++⋅⋅⋅+===,代入③化简得:222353732222n n n n n n nT n +++=−+⨯=, (要由此证n n T S >,可作差比较)所以2237(4)022n n n n n n T S n n 2+−−=−+=>,故n n T S >;(对于n 为奇数的情形,可以重复上述计算过程,但更简单的做法是补1项凑成偶数项,再减掉补的那项)当(5)n n >为奇数时,2113(1)7(1)2n n n n n T T b +++++=−=−2213(1)7(1)351022(25)22n n n n n a n +++++−=−+=, 所以223510(4)2n n n n T S n n +−−=−+ 2310(2)(5)022n n n n −−+−==>,故n n T S >;综上所述,当5n >时,总有n n T S >.19.(2023·新高考Ⅱ卷·19·★★★)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该项指标的频率分布直方图:患病者未患病者利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性. 此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c . 假设数据在组内均匀分布. 以事件发生的频率作为相应事件发生的概率. (1)当漏诊率()0.5%p c =时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+. 当[95,105]c ∈时,求()f c 的解析式,并求()f c 在区间[95,105]的最小值.解:(1)(给的是漏诊率,故先看患病者的图,漏诊率为0.5%即小于或等于c 的频率为0.5%,可由此求c )由患病者的图可知,[95,100)这组的频率为50.0020.010.005⨯=>,所以c 在[95,100)内, 且(95)0.0020.005c −⨯=,解得:97.5c =;(要求()q c ,再来看未患病者的图,()q c 是误诊率,也即未患病者判定为阳性(指标大于c )的概率) 由未患病者的图可知指标大于97.5的概率为(10097.5)0.0150.0020.035−⨯+⨯=,所以() 3.5%q c =. (2)([95,105]包含两个分组,故应分类讨论)当95100c ≤<时,()(95)0.002p c c =−⨯,()(100)0.0150.002q c c =−⨯+⨯,所以()()()0.0080.82f c p c q c c =+=−+, 故()0.0081000.820.02f c >−⨯+= ①;当100105c ≤≤时,()50.002(100)0.012p c c =⨯+−⨯,()(105)0.002q c c =−⨯, 所以()()()0.010.98f c p c q c c =+=−,故()(100)0.011000.980.02f c f ≥=⨯−= ②; 所以0.0080.82,95100()0.010.98,100105c c f c c c −+≤<⎧=⎨−≤≤⎩,且由①②可得min ()0.02f c =.20.(2023·新高考Ⅱ卷·20·★★★)如图,三棱锥A BCD −中,DA DB DC ==,BD CD ⊥,o 60ADB ADC ∠=∠=,E 为BC 的中点. (1)证明:BC DA ⊥;(2)点F 满足EF DA =,求二面角D AB F −−的正弦值.CDABEF解:(1)(BC 和DA 是异面直线,要证垂直,需找线面垂直,可用逆推法,假设BC DA ⊥,注意到条件中还有DB DC =,所以BC DE ⊥,二者结合可得到BC ⊥面ADE ,故可通过证此线面垂直来证BC DA ⊥)因为DA DB DC ==,o 60ADB ADC ∠=∠=,所以ADB ∆和ADC ∆是全等的正三角形,故AB AC =, 又E 为BC 中点,所以BC AE ⊥,BC DE ⊥,因为AE ,DE ⊂平面ADE ,AE DE E =,所以BC ⊥平面ADE ,又DA ⊂平面ADE ,所以BC DA ⊥.(2)(由图可猜想AE ⊥面BCD ,若能证出这一结果,就能建系处理,故先尝试证明) 不妨设2DA DB DC ===,则2AB AC ==, 因为BDCD ⊥,所以BC =故12DE CE BE BC ====AE 所以2224AE DE AD +==,故AE DE ⊥,所以EA ,EB ,ED 两两垂直,以E为原点建立如图所示的空间直角坐标系,则A,D,B ,所以(DA =−,(0,AB =,由EF DA =可知四边形ADEF 是平行四边形,所以(2,0,0)FA ED ==, 设平面DAB 和平面ABF 的法向量分别为111(,,)x y z =m ,222(,,)x y z =n ,则11112020DA AB y ⎧⋅=−+=⎪⎨⋅==⎪⎩m m ,令11x =,则1111y z =⎧⎨=⎩,所以(1,1,1)=m 是平面DAB 的一个法向量,2222020AB y FA x ⎧⋅==⎪⎨⋅==⎪⎩n n ,令21y =,则2201xz =⎧⎨=⎩,所以(0,1,1)=n 是平面ABF 的一个法向量, 从而cos ,⋅<>===⋅m n m n m n D AB F −−.21.(2023·新高考Ⅱ卷·21·★★★★)已知双曲线C 的中心为坐标原点,左焦点为(−. (1)求C 的方程;(2)记C 的左、右顶点分别为1A ,2A ,过点(4,0)−的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P ,证明:点P 在定直线上.解:(1)设双曲线方程为()222210,0x y a b a b−=>>,由焦点坐标可知c =则由ce a==2a =,4b ==,双曲线方程为221416x y −=.(2)由(1)可得()()122,0,2,0A A −,设()()1122,,,M x y N x y , 显然直线的斜率不为0,所以设直线MN 的方程为4x my =−,且1122m −<<, 与221416x y −=联立可得()224132480m y my −−+=,且264(43)0m ∆=+>,则1212223248,4141m y y y y m m +==−−,直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222y y x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()2121121211212121222222266y x y my my y y y y x x y x y my my y y +−−+++==−−=−− 112221122483216222141414148483664141m mm y y m m m m m y y m m −⋅−⋅++−−−===−⨯−−−−,由2123x x +=−−可得=1x −,即1P x =−, 据此可得点P 在定直线=1x −上运动.【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.22.(2023·新高考Ⅱ卷·22·★★★★)(1)证明:当01x <<时,2sin x x x x −<<; (2)已知函数2()cos ln(1)f x ax x =−−,若0x =是()f x 的极大值点,求a 的取值范围. 解:(1)构建()()sin ,0,1F x x x x =−∈,则()1cos 0F x x '=−>对()0,1x ∀∈恒成立, 则()F x 在()0,1上单调递增,可得()()00F x F >=,所以()sin ,0,1x x x >∈; 构建()()()22sin sin ,0,1G x x x xxx x x =−−=−+∈,则()()21cos ,0,1G x x x x '=−+∈,构建()()(),0,1g x G x x '=∈,则()2sin 0g x x '=−>对()0,1x ∀∈恒成立,则()g x 在()0,1上单调递增,可得()()00g x g >=,即()0G x '>对()0,1x ∀∈恒成立,则()G x 在()0,1上单调递增,可得()()00G x G >=,所以()2sin ,0,1x x x x >−∈;综上所述:sin x x x x 2−<<.(2)令210x −>,解得11x −<<,即函数()f x 的定义域为()1,1−,若0a =,则()()()2ln 1,1,1f x x x =−−∈−,因为ln y u =−在定义域内单调递减,21y x =−在()1,0−上单调递增,在()0,1上单调递减,则()()2ln 1f x x =−−在()1,0−上单调递减,在()0,1上单调递增,故0x =是()f x 的极小值点,不合题意,所以0a ≠. 当0a ≠时,令0b a =>因为()()()()()222cos ln 1cos ln 1cos ln 1f x ax x a x x bx x =−−=−−=−−,且()()()()()22cos ln 1cos ln 1f x bx x bx x f x ⎡⎤−=−−−−=−−=⎣⎦, 所以函数()f x 在定义域内为偶函数,由题意可得:()()22sin ,1,11xf x b bx x x =−−∈'−−, (i )当202b <≤时,取1min ,1m b ⎧⎫=⎨⎬⎩⎭,()0,x m ∈,则()0,1bx ∈,由(1)可得()()()2222222222sin 111x b x b x xf x b bx b x x x x +−'=−−>−−=−−−, 且22220,20,10b x b x >−≥−>,所以()()2222201x b x b f x x+−'>>−,即当()()0,0,1x m ∈⊆时,()0f x ¢>,则()f x 在()0,m 上单调递增, 结合偶函数的对称性可知:()f x 在(),0m −上单调递减, 所以0x =是()f x 的极小值点,不合题意;(ⅱ)当22b >时,取()10,0,1x b ⎛⎫∈⊆ ⎪⎝⎭,则()0,1bx ∈,由(1)可得()()()2233223222222sin 2111x x xf x b bx b bx b x b x b x b x b x x x'=−−<−−−=−+++−−−−, 构建()33223212,0,h x b x b x b x b x b ⎛⎫=−+++−∈ ⎪⎝⎭,则()3223132,0,h x b x b x b x b ⎛⎫'=−++∈ ⎪⎝⎭,且()33100,0h b h b b b ⎛⎫''=>=−> ⎪⎝⎭,则()0h x '>对10,x b ⎛⎫∀∈ ⎪⎝⎭恒成立,可知()h x 在10,b ⎛⎫ ⎪⎝⎭上单调递增,且()21020,20h b h b ⎛⎫=−<=> ⎪⎝⎭,所以()h x 在10,b ⎛⎫⎪⎝⎭内存在唯一的零点10,n b ⎛⎫∈ ⎪⎝⎭,当()0,x n ∈时,则()0h x <,且20,10x x >−>, 则()()3322322201xf x b x b x b x b x'<−+++−<−, 即当()()0,0,1x n ∈⊆时,()0f x '<,则()f x 在()0,n 上单调递减, 结合偶函数的对称性可知:()f x 在(),0n −上单调递增, 所以0x =是()f x 的极大值点,符合题意;综上所述:22b >,即22a >,解得a >a <故a 的取值范围为((),2,−∞+∞.。
2024年高考数学新高考Ⅱ卷试题评析及备考策略指导课件
2024新高考数学11卷评析/暨2025高考备考策略够》解构经典试题生重教考衔接6、、共享复习策略■科学备战高考PART01以考促教教考衔接2024年高考试卷评析及备考策略1.1.1稳定:突出基础性要求,全面考查/深入考查基础年份2021新高考II卷2022新高考II卷2023新高考II卷2024新高考II卷题号题型考点考点考点考点1选择题岌数的运算及几何意妲绝对值不等式的解法、集合的交集运算复数基本运第复数的几何意义_求角数的槿__________ 2选择题集合的运算_复数的乘法运算_集合的基本运算逻艇算,判定命题真假3选择题点到直线的距离、抛物线的焦点坐标等差数列的性质、斜率与倾斜角、数学文化分层抽样的计算;组合数的计第分步乘法原理向量基本运算,求向量的模4选择题球体的表面积平面向量的坐标运算、向量夹角、数量积运算函数奇偶性的定义,偶函数的性质,对数运算统计初步,中数、极差平均数等基本概念5选择题_棱台的体积_排列组合、分步乘法计数原理椭圆基本量与点到直线的距离与圆相关的中点轨迹方程(椭圆)6选择题正态曲线的特点两角和与差的正、余淞式、同角三角函数的基本关系含参指对型函数在给定区间单调,求参数范围函数零点问题,求参数值7选择题对数的大小比较棱台外接球的表面积二倍角公式或者半角公式己知台体的体积,线面角8选择题函数的基本性质函数的周期性等比数列前顽和公式函数单调性与不等式9多项选择题数字的样本特征正弦函数的图象与性质多选,以圆锥为背景,考查体积,侧面积,二面角等概念三角函数性质与图像问题10多项选择题直线与直线的位置关系抛物线的定义及性质、斜率公式抛物线焦点弦常用性质抛物线与圆的综合问题11多项选择题点与圆的位置关系、直线与圆的位置关系三枝锥的体积公式、空间中的线面垂直关系以极大值极小值为背景考查区间内-元二次方程根与系数的关系函数零点极值点以及对称问题12多项选择题新定义问题不等式的性质、基本不等式牌率问题,课本例习题等差数列求和问题13填空题双曲线的几何性质正杰曲线的对称性向量的数量积的运算三角函数正切公式应用14填空题函数的单调性与奇偶性、导数的应用导数的几何意义正四棱椎中台体的体积公式排列组合(两问)15平面向量的数量积直线与圆的位置关系、点到直线的距离公式设计含参直线与定圆,考察直线与圆的位置关系(相交弦构成的三角形面积);本题答案不唯一选、填共计73分16填空题利用导数求切线方程及取值范围问题椭圆的中点弦、直线与椭圆三角函数的图像变换,五点法作图以考促教教考衔接2024年高考试卷评析及备考策略1.1.2稳定:突出主干知识题号年份2021新高考II卷2022新高考II卷2023新高考II卷2024新高考II卷17m等差蹶的通项公式及前顽fil等差、等比效列综尔敏舰项却的关系解训形相灿识,余弦定理,俪积公式,正切公式15.(13分)正、余弦定理、求三觥的周长18KM利用正、余核定理解:M正、余弦定理、三角形的面积公式an为等差数列,bn为其衍生的等差效列,耕等差效列的通项公式,求利公式,分类计论蝴16.(15分)利用导拥究碱的切线时题、利川榆妹值点求参效的范国19m面面乖直的证明、二映的求解频率分步直旅求平均值、辩、条件骚率频率分砒方图相关诚17.(15分)立体几何SI折柯凯证明线西垂直,求:面角20解笞题眦的标准方程及几何食义、直线与倾J位置关系证明线画平行、空间向量求二而角以三棱勒我体,考嚓空间线雌直关系;向址在空间的应用;向量法求解二Ihi角的方法林题笫:问也可不it系)18.(17分)二项分布概率、期里(3问)21样本机国体的成川、随机变址的分布列及期里双曲线的方程及性质、直线与双曲线的位置关系以双曲线为我休,问题1求双曲线的方柩嘘2考察定直线问题固定斜率的直线与双曲19.(17分)线交娜性质,双曲线盘列的综合问题(3问)22m利川械0冼榆效的邮、利川损求甫跚岑占<小、导破求单邮、参效的取值都、不等式的证明雌1考察用*敏的不等式;雌2,改极大耕求参效邮醐,嫩较大1.试题易中难比例:52:76:22;2.选填题难度设置明显降低,没有难题,而且比2023年少了一题多选题,一道填空题,对考生相当友好,选填的答题准确率和速度,应该是2021年以来发挥最好的一次;3•解答题变化较大,减少了一个答题,而且每一题的赋分也有相应的增加,大题的第二题考查导数不再是压轴题,难度降低很多;18题是概率加载了较大的运算,最后的19题是解析几何与数列共舞,综合性强难度较大,考生考场上不易完整做出来。
2024年高考真题数学(新高考II卷)含解析
2024年普通高等学校招生全国统一考试(新课标II 卷)数学(含解析)适用地区:吉林、辽宁、海南、广西、贵州、甘肃、新疆、山西、云南、黑龙江、重庆本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =(A.0B.1C.D.2【答案】C【解析】【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--,则z ==.故选:C .2.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题【答案】B【解析】【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.3.已知向量,a b 满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12 B.2 C.2 D.1【答案】B【解析】【分析】由()2b a b -⊥ 得22b a b =⋅ ,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅ ,又因为1,22a a b =+= ,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.4.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C【解析】【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >) B.221168x y +=(0y >)C.221164y x +=(0y >) D.221168y x +=(0y >)【答案】A【解析】【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1- B.12 C.1 D.2【答案】D【解析】【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-∈-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12 B.1 C.2 D.3【答案】B【解析】【分析】解法一:根据台体的体积公式可得三棱台的高3h =,做辅助线,结合正三棱台的结构特征求得3AM =,进而根据线面夹角的定义分析求解;解法二:将正三棱台111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知111131662222ABC A B C S S =⨯⨯⨯==⨯=设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=++=,解得433h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AA==DN AD AM MN x=--=-,可得1DD==,结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=++,解得433x=,所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC A BC-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则116618322P ABCV d-=⨯⨯⨯⨯=,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.8.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18 B.14 C.12D.1【答案】C【解析】【分析】解法一:由题意可知:()f x 的定义域为(),b -+∞,分类讨论a -与,1b b --的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴【答案】BC【解析】【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(204g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB⊥D.满足||||PA PB =的点P 有且仅有2个【答案】ABD【解析】【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫ ⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【解析】【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为33332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33bb f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.【答案】95【解析】【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.【答案】223-【解析】【分析】法一:根据两角和与差的正切公式得()tan αβ+=-,再缩小αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan1tan tan αβαβαβ++==--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-<,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+,联立()()22sin cos 1αβαβ+++=,解得()22sin 3αβ+=-.法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==,cos β==,则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+224cos cos 3αβ==-故答案为:223-.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.【答案】①.24②.112【解析】【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =,sin sin 2C c B =,求ABC 的周长.【答案】(1)π6A =(2)2++【解析】【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【小问1详解】方法一:常规方法(辅助角公式)由sin 2A A +=可得13sin cos 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+∈,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A +=,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得3cos 2A =,又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =+<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin()3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即3tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,31cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22223(1)sin 211t t A A t t-==+++,整理可得,2222(2(20((2t t t --+==-,解得tan22A t ==-,根据二倍角公式,223tan 13t A t ==-,又(0,π)A ∈,故π6A =【小问2详解】由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而2cos 2B =,得到π4B =,于是7ππ12C A B =--=,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC的周长为2++16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.【答案】(1)()e 110x y ---=(2)()1,+∞【解析】【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a ≤和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e '=-x f x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【小问1详解】当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.【小问2详解】解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.【答案】(1)证明见解析(2)86565【解析】【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ⊥,则,EF PE EF DE ⊥⊥,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ⊥,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【小问1详解】由218,,52AB AD AE AD AF AB ====,得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF =,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥,所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE ,所以EF ⊥平面PDE ,又PD ⊂平面PDE ,故EF ⊥PD ;【小问2详解】连接CE,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,(2,0,2PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以65cos ,65m n m n m n ⋅===,设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF 所成角的正弦值为65.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i 15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?【答案】(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【解析】【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q ⎡⎤=--⎣⎦甲,331(1)P q p ⎡⎤=--⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【小问1详解】甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.【小问2详解】(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q ⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.【答案】(1)23x =,20y =(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【小问1详解】由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.【小问2详解】由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n kxk y kx x y kx ------=,由于(),n n n P x y 已经是直线()n ny k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k---=-=--,相应的()2221n n nn n y k y kx y k x x y k+-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫--+- ⎪--⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x ----,故n Q 一定在C 的左支上.所以2212222,11n n n n n n n x k x ky y k y kx P k k +⎛⎫+-+- ⎪--⎝⎭.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()222222221211111n n n n n n n n n n x k x kx y k y ky k k kx y x y k k k k+++++++=-=-=-----.再由22119x y -=,就知道110x y -≠,所以数列{}n n x y -是公比为11kk+-的等比数列.【小问3详解】方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = ,(),UW c d =,则12UVWSad bc =-.(若,,U V W 在同一条直线上,约定0UVWS =)证明:11sin ,22UVWSUV UW UV UW UV UW =⋅=⋅12UV UW =⋅==12ad bc===-.证毕,回到原题.由于上一小问已经得到21221n n nnx k x kyxk++-=-,21221n n nny k y kxyk++-=-,故()() 22211222221211111n n n n n nn n n n n n x k x ky y k y kx k k kx y x y x yk k k k +++-+-+--+=+=+=+---+.再由22119x y-=,就知道11x y+≠,所以数列{}n nx y+是公比为11kk-+的等比数列.所以对任意的正整数m,都有n n m n n mx y y x++-()()()()()() 1122n n m n n m n n m n n m n n m n n m n n m n n mx x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n mx y x y x y x y++++=-+-+-()()()()11112121m mn n n n n n n nk kx y x y x y x yk k-+⎛⎫⎛⎫=-+-+-⎪ ⎪+-⎝⎭⎝⎭()22111211m mn nk k x yk k⎛⎫-+⎛⎫⎛⎫=--⎪⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭911211m mk kk k⎛⎫-+⎛⎫⎛⎫=-⎪⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭.而又有()()()111,n n n n n nP P x x y y+++=----,()122121,n n n n n nP P x x y y++++++=--,故利用前面已经证明的结论即得()()()()1212112112n n nn P P P n n n n n n n nS S x x y y y y x x++++++++==---+--()()()()12112112n n n n n n n nx x y y y y x x++++++=-----()()()1212112212n n n n n n n n n n n nx y y x x y y x x y y x++++++++=-+---2219119119112211211211k k k k k kk k k k k k⎛⎫-+-+-+⎛⎫⎛⎫⎛⎫⎛⎫=-+---⎪⎪ ⎪ ⎪ ⎪⎪+-+-+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.这就表明n S的取值是与n无关的定值,所以1n nS S+=.方法二:由于上一小问已经得到21221n n nnx k x kyxk++-=-,21221n n nny k y kxyk++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+⎛⎫-=-=- ⎪+-⎝⎭,以及221313229121n n n n n n n n k x y y x x y y x k ++++++⎛⎫+⎛⎫-=-=- ⎪ ⎪ ⎪-⎝⎭⎝⎭.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=-- ,()122121,n n n n n n P P x x y y ++++++=--.所以3n n P P + 和12n n P P ++平行,这就得到12123n n n n n n P P P P P P SS+++++=,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。
2024年高考数学试题新课标全国Ⅱ卷+答案详解
2024年高考数学试题新课标全国Ⅱ卷+答案详解(试题部分)一、单选题1.已知1i z =−−,则z =( )A .0B .1CD .22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.已知向量,a b 满足1,22a a b =+=,且()2b a b −⊥,则b =( )A .12BCD .14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg )并部分整理下表据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >) C .221164y x +=(0y >) D .221168y x +=(0y >) 6.设函数2()(1)1f x a x =+−,()cos 2g x x ax =+,当(1,1)x ∈−时,曲线()y f x =与()y g x =恰有一个交点,则=a ( ) A .1− B .12 C .1 D .27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12 B .1 C .2 D .38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .1二、多选题 9.对于函数()sin 2f x x =和π()sin(2)4g x x =−,下列说法正确的有( ) A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +−=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =−+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= . 14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .四、解答题15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =−−.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD =,12AF AB =,将AEF △沿EF 对折至△PEF ,使得PC =(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m −=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P −作斜率为k 的直线与C 的左支交于点1n Q −,令n P 为1n Q −关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ; (2)证明:数列{}n n x y −是公比为11k k +−的等比数列; (3)设n S 为12n n n P P P ++的面积,证明:对任意的正整数n ,1n n S S +=.2024年高考数学试题新课标全国Ⅱ卷+答案详解(答案详解)一、单选题1.已知1i z =−−,则z =( )A .0B .1CD .2 【答案】C【解析】若1i z =−−,则z = 故选C.2.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题 【答案】B 【解析】对于p 而言,取=1x −,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题. 故选B. 3.已知向量,a b 满足1,22a a b =+=,且()2b a b −⊥,则b =( )A .12B C D .1 【答案】B【分析】由()2b a b −⊥得22b a b =⋅,结合1,22a a b =+=,得22144164a b b b +⋅+=+=,由此即可得解. 【解析】因为()2b a b −⊥,所以()20b a b −⋅=,即22b a b =⋅, 又因为1,22a a b =+=,所以22144164a b b b +⋅+=+=, 从而22=b . 故选B.4.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在[)900,1200之间,单位:kg )并部分整理下表据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间【答案】C【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【解析】A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , A 错误;B ,亩产量不低于1100kg 的频数为341024=+,因此低于1100kg 的稻田占比为1003466%100−=,B 错误; C ,稻田亩产量的极差最大为1200900300−=,最小为1150950200−=,C 正确;D ,根据频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30−++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,D 错误. 故选C.5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >) C .221164y x +=(0y >) D .221168y x +=(0y >) 【答案】A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>. 故选A.6.设函数2()(1)1f x a x =+−,()cos 2g x x ax =+,当(1,1)x ∈−时,曲线()y f x =与()y g x =恰有一个交点,则=a ( ) A .1−B .12C .1D .2【答案】D【分析】解法一:令()()21,cos a x F x ax G x =−=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =−∈−,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【解析】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +−=+,可得21cos a x ax −=+,令()()21,cos a x F x ax G x =−=+,原题意等价于当(1,1)x ∈−时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a −=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +−=因为()1,1x ∈−,则220,1cos 0x x ≥−≥,当且仅当0x =时,等号成立,可得221cos 0x x +−≥,当且仅当0x =时,等号成立,则方程221cos 0x x +−=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =正确;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =−=+−−∈−,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x −=−+−−−=+−−=,则()h x 为偶函数,由偶函数的对称性可知()h x 的零点只能为0,即()020h a =−=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+−∈−,又因为220,1cos 0x x ≥−≥当且仅当0x =时,等号成立, 可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =正确;故选D.7.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( ) A .12B .1C .2D .3【答案】B【分析】解法一:根据台体的体积公式可得三棱台的高h =做辅助线,结合正三棱台的结构特征求得AM =进而根据线面夹角的定义分析求解;解法二:将正三棱台111ABC A B C -补成正三棱锥−P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V −=,进而可求正三棱锥−P ABC 的高,即可得结果.【解析】解法一:分别取11,BC B C 的中点1,D D,则11AD A D =可知1111316693,23222ABC A B C S S =⨯⨯⨯==⨯⨯= 设正三棱台111ABC A B C -的为h , 则(11115233ABC A B C V h −==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AADNAD AM MN x =--=, 可得1DD == 结合等腰梯形11BCCB 可得22211622BB DD −⎛⎫=+ ⎪⎝⎭,即()221616433x x +=++,解得x = 所以A 1A 与平面ABC 所成角的正切值为tan ∠A 1AD =A 1MAM =1; 解法二:将正三棱台111ABC A B C -补成正三棱锥−P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABCV V −−=,可知1112652273ABC A B C PABC V V −−==,则18P ABC V −=, 设正三棱锥−P ABC 的高为d,则11661832P ABC V d −=⨯⨯⨯=,得d =取底面ABC 的中心为O ,则PO ⊥底面ABC ,且AO =所以PA 与平面ABC 所成角的正切值tan 1PO PAO AO∠==. 故选B.8.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( ) A .18B .14C .12D .1【答案】C 【分析】解法一:根据题意可知:()f x 的定义域为(),b ∞−+,分类讨论a −与,1b b −−的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:根据题意可知:()f x 的定义域为(),b ∞−+,令0x a +=解得x a =−;令ln()0x b +=解得1x b =−;若−≤−a b ,当(),1x b b ∈−−时,可知()0,ln 0x a x b +>+<,此时()0f x <,错误;若1b a b −<−<−,当(),1x a b ∈−−时,可知()0,ln 0x a x b +>+<,此时()0f x <,错误;若1a b −=−,当(),1x b b ∈−−时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∞∈−+时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b −=−,正确;若1a b −>−,当()1,x b a ∈−−时,可知()0,ln 0x a x b ++,此时()0f x <,错误;综上所述:1a b −=−,即1b a =+,则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =−=时,等号成立, 所以22a b +的最小值为12;解法二:根据题意可知:()f x 的定义域为(),b ∞−+,令0x a +=解得x a =−;令ln()0x b +=解得1x b =−;则当(),1x b b ∈−−时,()ln 0x b +<,故0x a +≤,所以10b a −+≤; ()1,x b ∞∈−+时,()ln 0x b +>,故0x a +≥,所以10b a −+≥;故10b a −+=, 则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭, 当且仅当11,22a b =−=时,等号成立,所以22a b +的最小值为12.故选C.二、多选题 9.对于函数()sin 2f x x =和π()sin(2)4g x x =−,下列说法正确的有( ) A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴 【答案】BC【分析】由正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【解析】A 令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(2)04g x x =−=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 错误;B 显然max max ()()1f x g x ==,B 正确;C 由周期公式,(),()f x g x 的周期均为2ππ2=,C 正确; D 由正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k −=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 错误. 故选BC 。
2022年全国统一高考数学卷(新高考2卷)含答案解析(原卷版)
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(新高考2卷)数学副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A ={−1,1,2,4},B ={x||x −1|≤1},则A ∩B =( ) A. {−1,2}B. {1,2}C. {1,4}D. {−1,4}2. (2+ 2i)(1−2i)=( ) A. −2+4iB. −2−4iC. 6+2iD. 6−2i3. 中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,AA′,BB′,CC′,DD′是桁,DD 1,CC 1,BB 1,AA 1是脊,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的脊步的比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB1CB 1=k 2,AA 1BA 1=k 3,若k 1,k 2,k 3是公差为0.1的等差数列,直线OA 的斜率为0.725,则k 3=( )A. 0.75B. 0.8C. 0.85D. 0.94. 已知向量a ⃗ =(3,4),b ⃗ =(1,0),c ⃗ =a ⃗ +t b ⃗ ,若<a ⃗ ,c ⃗ >=<b ⃗ ,c ⃗ >,则实数t =( )A. −6B. −5C. 5D. 65. 甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( )A. 12种B. 24种C. 36种D. 48种6. 若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则( ) A. tan(α+β)=−1 B. tan(α+β)=1 C. tan(α−β)=−1D. tan(α−β)=17. 已知正三棱台的高为1,上下底面的边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A. 100πB. 128πC. 144πD. 192π8. 若函数f(x)的定义域为R ,且f(x +y)+f(x −y)=f(x)f(y),f(1)=1,则∑f 22k=1(k)=( )A. −3B. −2C. 0D. 1二、多选题(本大题共4小题,共20.0分。
全国的高中高考新课标二卷理有关科数学考点分析
2011-20XX 年新课标全国卷Ⅱ——理科数学试卷剖析数学学科纵观 20XX年数学新课标II卷,与昨年对比,难度有所下调,在每年用来择优的分析和导数压轴题上,今年避开了繁冗的计算量和偏难怪的考向,题型更趋于平凡化和惯例化,考生只需抓住题干重点即可很快上手。
整体出题思路较惯例,没有出现大跨度的跳跃,每道题学生都会很快找到打破口,整体答题感觉会不错。
与早年略有不一样,今年的选填侧重了对图表类题目的把控,需要学生拥有必定的空间想象和理解剖析能力,但整体难度不大。
整体而言,今年整套试卷更为突出了数学课程的改革,更为表现了新课程的特色。
试题严格依据注重通性通法,淡化特别技巧的命题原则,紧扣教课纲领,对推动数学新课程改革起着踊跃作用。
一、近五年新课标二卷高考数学题考点比较题题( 理科 ) 年份型号2011 2012 2013 2014 2015选会合及元素运算 ( 集不等式、会合的交集一元二次不等式、交不等式、会合的交集择 1 复数(除法、共轭)合的观点和会合中运算集及其运算运算题元素个数的求法 )选函数性质(单一摆列组合 ( 计数原理复数的几何意义及择 2 复数的四则运算代数形式的乘除运复数的运算性、奇偶性)中摆列组合 )题算选等比数列的的基本平面向量数目积的统计图表,正、负相择 3 算法(循环)命题与复数公式的应用运算关性题选古典概型(计数原空间中线线、线面、正三角形面积公式、等比数列通项公式择 4 椭圆及其性质面面的地点关系的理)余弦定理和性质题判断选三角函数(定义、等比数列的性质及互相独立事件的概择 5 二项式睁开式定理分段函数二倍角)运算率乘法公式题选程序框图的基础知由三视图求面积、体择 6 三视图程序框图由三视图求体积识积题选双曲线(离心率、三视图、空间几何体择7 三视图的有关知识程序框图圆的方程与直线地点关系)体积题选二项式定理(两个抛物线的准线、直线对数的运算、对数换利用导数研究曲线择8 与双曲线的地点关底公式、对数函数的程序框图乘积、特别项)上某点切线方程题系性质等选三角函数的单一性外接球表面积和椎择9 定积分( 三角函数的图像及简单线性规划简单线性规划体的体积题其性质 )复合函数图象 ( 函数选的图像,定义域、最择10 向量与命题值、单一性,导数在函数与导数的关系抛物线的简单性质函数的图像和性质题求单一性和最值得应用 )选锥体及其外接球的异面直线及其所成双曲线的标准方程择11 三角函数(性质)函数与导数的关系构造特色的角的和简单几何性质题选正弦函数的定义域函数图象(反比率指数函数与对数函直线方程和数形结和值域,利用导数研导数的应用、函数的择12型、三角函数)数合思想究极值,一元二次不图像和性质题等式填平面向量的数目积空13 线性规划平面向量的数目二项式系数的性质向量共线及其运算法例题填椭圆(与直线的位联合组合知识,主要三角函数的最值,和空14 简单的线性规划线性规划置关系)观察古典概型差公式题填正态散布 ( 正态散布三角函数各公式的函数的性质(奇偶空15 球内截圆锥在实质问题中的应二项式定理灵巧运用性、单一性)题用 )填等差数列的前 N 项和公式的应用、导数直线与圆的地点关等差数列和递推关空16 解三角形数列乞降求数列这一特别函系系题数的最值正余弦定理的应用、解等比数列(列项求解斜三角形 ( 正余弦三角形面积公式、两递推数列求通项,数解斜三角形 ( 面积公答17 角和的正弦定理、已列的乞降,等比数列式、正余弦定理应和)定理应用 )题知三角函数值求角、的性质用)均值不等式等解立体几何(空间直线二面角的平面角及立几(锥体、垂直、分段函数、概率及分与平面平行等地点求法,棱柱、棱锥、茎叶图和特色数、互答18二面角)布列关系的证明、二面角棱台的体积,直线与斥事件和独立事件题的求解)平面平行的判断立体几何线线垂直、解二面角 ( 空间直线与统计与概率、频次、立体几何(直线和平统计概率(散布直线、直线与平面、答19 均匀数、频次散布直线性回归方程面平行的性质、直线列)平面与平面的地点题方图等基础知识和平面所成的角)关系;二面角的观点和计算 )抛物线方程及其与直线地点关系 ( 圆的分析几何(椭圆方程解分析几何与函数方程、抛物线的定的求解、直线与椭圆椭圆的应用(圆锥曲分析几何(弦的中点答20 义、直线与抛物线的的地点关系、观察待线中的最值与范围问题、直线和椭圆的(轨迹、导数)题地点关系、点到直线定系数法、设而不求问题)地点关系)距离公式、线线平行思想)等 )解函数与导数 ( 导数在导数与函数(函数的利用导数研究函数答21 函数导数求单一性、最值问题极值、单一性、证明导数的综合应用的单一性题中的应用 ) 不等式等知识)圆(四点共圆、相22似)三选一参数方程、极坐标23方程选修 4—1:几何选圆的切线、割线、圆与圆有关的比率线等腰三角形的性质、讲 ( 线线平行判断、内接四边形、勾股定段,相像三角形的判圆的切线长定理、圆三角形相像的判断理等平面几何知识定的切线的性质等 )选修 4—:4 :坐标系参数方程化为一般极坐标方程和直角坐标系与参数方程与参数方程 ( 参数方方程,圆的切线方坐标方程的转变、三的基础知识程及参数的意义,极程,圆的参数方程角函数的最大值坐标的基本观点和点在极坐标中地点确实定 )选修 4—5:不等式绝对值不等式,恒选讲 ( 含绝对值不等不等式的证明问题绝对值不等式的解24 不等式的证明问题建立式的解法,分类议论法的数学思想 )二、 20XX 年新课标二卷高考理科数学试卷剖析1.试题整体看,高频考点依旧在试卷中据有较高比率。
2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)
2019年全国统一高考数学试卷(理科)以及答案解析(全国2卷)1.设集合A={x|x^2-5x+6>0},B={x|x-1<0},则A∩B=()A。
(-∞,1) B。
(-2,1) C。
(-3,-1) D。
(3,+∞)解析:将x^2-5x+6=0化为(x-2)(x-3)>0,得到x∈(-∞,2)∪(3,+∞),将x-1<0化为x<1,得到B={x|x<1},所以A∩B=(-∞,1)。
2.设z=-3+2i,则在复平面内对应的点位于()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限解析:实部为-3,虚部为2,所以该点位于第二象限。
3.已知|z-3|=2,|z+(3+ti)|=1,则|z|=()A。
-3 B。
-2 C。
2 D。
3解析:将|z-3|=2化为|z-3|^2=4,得到(z-3)(z-3*)=4,其中z*为z的共轭复数,将|z+(3+ti)|=1化为|z+(3+ti)|^2=1,得到(z+(3+ti))(z*+(3-ti))=1,将z展开得到z=x+yi,代入两式,化简得到x^2+y^2-6x+4=0和x^2+(y+t)^2=4,联立两式,解得x=1,y=-2-t,代入|z|^2=x^2+y^2,得到|z|=2.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就。
实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系。
为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行。
L2点是平衡点,位于地月连线的延长线上。
设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1M2/(M1+M2)(R+r)^2=G(M1+M2)/r^2.设α=GM2/R^2,由于α的值很小,因此在近似计算中α≈3α^3,则r的近似值为()A。
高考数学题全国二卷解析
高考数学题全国二卷解析一、选择题解析1. 选择题1:本题考查了函数的奇偶性与单调性。
首先,我们需要判断函数f(x) = x^2 - 3x + 2的奇偶性。
由于f(-x) = (-x)^2 - 3(-x) + 2 = x^2 + 3x + 2,可以看出f(x)与f(-x)不相等,因此f(x)既不是奇函数也不是偶函数。
接下来,我们分析函数的单调性。
函数的导数为f'(x) = 2x - 3,令导数等于0,解得x = 3/2。
在x < 3/2时,导数小于0,函数单调递减;在x > 3/2时,导数大于0,函数单调递增。
因此,函数在x = 3/2处由单调递减变为单调递增。
2. 选择题2:此题涉及三角函数的图像与性质。
我们需要根据三角函数y = Asin(ωx + φ)的图像特征来判断选项的正确性。
首先,根据A的值确定振幅,振幅越大,波峰和波谷的距离越大。
其次,根据ω的值确定周期,ω值越大,周期越小。
最后,根据φ的值确定图像的平移。
结合这些特征,我们可以排除错误的选项,得出正确答案。
3. 选择题3:本题考查了数列的通项公式与求和公式。
给出了一个等差数列的前n项和S_n = 10n^2 - 7n,我们需要求出其通项公式。
根据等差数列的性质,我们知道S_n - S_(n-1) = a_n,即数列的第n项。
通过计算,我们可以得出数列的通项公式,进而验证选项的正确性。
二、填空题解析1. 填空题1:此题要求解一个二次方程的根。
根据题目给出的方程x^2 - 5x + 6 = 0,我们可以使用求根公式x = (-b ± √(b^2 - 4ac)) / 2a来求解。
将方程的系数代入公式,计算得到方程的两个根。
2. 填空题2:本题考查了概率的计算。
题目描述了一个古典概型问题,我们需要根据题意计算某个事件发生的概率。
首先,确定所有可能的结果总数,然后确定事件满足条件的结果数。
事件的概率即为满足条件的结果数除以所有可能结果的总数。
年高考数学(理)(全国II卷)详细解析
绝密★启用前2017年普通高等学校招生全国统一考试新课标II 卷 理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3i1i+=+ A.12i +ﻩﻩﻩﻩB .12i -C.2i +ﻩﻩﻩD .2i -【答案】D2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =A .{}1,3-ﻩB .{}1,0 ﻩﻩ C.{}1,3 ﻩ ﻩD.{}1,5【答案】C 【解析】试题分析:由{}1AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C.【考点】 交集运算、元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏ﻩﻩ ﻩB .3盏ﻩﻩC.5盏ﻩﻩ D.9盏【答案】B4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C.42π D.36π 【答案】B 【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B.【考点】 三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A.15-ﻩﻩﻩB.9-ﻩﻩﻩC .ﻩD.【答案】A6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A.12种ﻩ B .18种 C.24种 ﻩﻩ ﻩD.36种【答案】D 【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .【考点】 排列与组合、分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩ﻩﻩﻩB.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】Da=-,则输出的S=8.执行右面的程序框图,如果输入的1A.2ﻩﻩﻩﻩB.3 ﻩﻩC.4 ﻩﻩD.5【答案】B9.若双曲线:C 22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 A .2ﻩﻩﻩ 3ﻩﻩﻩ 2ﻩﻩ ﻩﻩD .233【答案】A 【解析】试题分析:由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为22213d -=,则点()2,0到直线0bx ay +=的距离为222023b a bd ca b +⨯===+ 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).10.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A.32ﻩﻩB .155ﻩﻩ C.105ﻩﻩﻩD.33【答案】C11.若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A.1-ﻩB.32e --ﻩﻩC.35e -ﻩD .1【答案】A 【解析】试题分析:由题可得12121()(2)e(1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-,故选A.【考点】 函数的极值、函数的单调性【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x0左侧与右侧f ′(x )的符号不同学*;(2)若f (x)在(a ,b )内有极值,那么f(x )在(a,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.12.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小是 A.2-B.32-ﻩﻩﻩﻩ C. 43- ﻩD.1-【答案】B解等问题,然后利用函数、不等式、方程的有关知识来解决.二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________. 【答案】1.96 【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=. 【考点】 二项分布的期望与方差【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A发生的概率是否均为p ;②随机变量是否为在这n次独立重复试验中某事件发生的次数,且()()C 1n kk knp X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率. 14.函数23()sin 3cos 4f x x x =+-([0,])2x π∈的最大值是____________. 【答案】115.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑____________. 【答案】21nn + 【解析】16.已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M为FN 的中点,则FN =____________. 【答案】6 【解析】试题分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =.“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐. 18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50k g,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50k g旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .【考点】独立事件概率公式、独立性检验原理、频率分布直方图估计中位数【名师点睛】(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大.(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19.(12分)如图,四棱锥P-AB CD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是P D的中点.(1)证明:直线CE ∥平面P AB;(2)点M 在棱PC 上,且直线B M与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.【答案】(1)证明略;(2)10.【考点】 判定线面平行、面面角的向量求法【名师点睛】(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m,n>|=⋅m nm n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20.(12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M作x 轴的垂线,垂足为N,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1) 222x y +=;(2)证明略.【考点】 轨迹方程的求解、直线过定点问题【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系F(x ,y )=0. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点P (x,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P(x,y )的轨迹方程.21.(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.【答案】(1)1a =;(2)证明见解析.(2)由(1)知 ()2ln f x x x x x =--,()22ln f 'x x x =--.设()22ln h x x x =--,则1()2'x h x=-. 当1(0,)2x ∈ 时,()0h'x < ;当1(,)2x ∈+∞ 时,()0h'x >,所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增.又()2e 0h ->,1()02h <,()10h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当()00,x x ∈时,()0h x >;当()0,1x x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点. 由0()0f 'x =得()00ln 21x x =-,故()()0001f x x x =-.由()00,1x ∈得()014f x <. 因为0x x =是()f x 在(0,1)的最大值点,由()1e 0,1-∈,1(e )0f '-≠得120()(e )e f x f -->=.所以()220e2f x --<<.【考点】利用导数研究函数的单调性、利用导数研究函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.【答案】(1)()()22240x y x -+=≠;(2)2+.(2)设点B的极坐标为()(),0B B ραρ>,由题设知2,4cos B OA ρα==,于是OAB △的面积S =13sin 4cos |sin()|2|sin(2)2 3.233B OA AOB ραααππ⋅⋅∠=⋅-=-≤ 当12απ=-时,S 取得最大值23,所以OAB △面积的最大值为23. 【考点】圆的极坐标方程与直角坐标方程、三角形面积的最值【名师点睛】本题考查了极坐标方程的求法及应用。
普通高等学校招生全国统一考试(全国II卷)——数学理解析数学理(全国II)解析版
绝密★启用前2015年普通高等学校招生全国统一考试(全国II卷)数学理解析版注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}【答案】A【解析】由已知得,故,故选A(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()(A)-1 (B)0 (C)1 (D)2【答案】B(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B ) 2007年我国治理二氧化硫排放显现(C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关 【答案】D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关. (4)等比数列{a n }满足a 1=3, =21,则( )(A )21 (B )42 (C )63 (D )84 【答案】B(5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩, ( )(A )3 (B )6 (C )9 (D )12 【答案】C【解析】由已知得,又,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A ) (B ) (C ) (D ) 【答案】D【解析】由三视图得,在正方体中,截去四面体,如图所示,,设正方体棱长为,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为.A1A(7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则=(A )2 (B )8 (C )4(D )10 【答案】C(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年普通高等学校招生全国统一考试新课标II 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3i 1i+=+ A .12i +B .12i -C .2i +D .2i - 【答案】D2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B =I ,则B = A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C【解析】 试题分析:由{}1A B =I 得1B ∈,即1x =是方程240x x m -+=的根,所以140,3m m -+==,{}1,3B =,故选C .【考点】 交集运算、元素与集合的关系【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏【答案】B4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B . 【考点】 三视图、组合体的体积【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A .15-B .9-C .D .【答案】A6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D . 【考点】 排列与组合、分步乘法计数原理【名师点睛】(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】Da=-,则输出的S=8.执行右面的程序框图,如果输入的1A.2 B.3 C.4 D.5【答案】B9.若双曲线:C 22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2B 3C 2D .233【答案】A【解析】试题分析:由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为22213d -=,则点()2,0到直线0bx ay +=的距离为222023b a b d ca b +⨯===+ 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).10.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A .32B .155C .105D .33【答案】C11.若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为 A .1-B .32e --C .35e -D .1 【答案】A【解析】试题分析:由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e11f -=--=-,故选A .【考点】 函数的极值、函数的单调性 【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同学*;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.12.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r 的最小是A .2-B .32-C . 43-D .1-【答案】B解等问题,然后利用函数、不等式、方程的有关知识来解决.二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =____________.【答案】1.96【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得()11000.020.98 1.96DX np p =-=⨯⨯=.【考点】 二项分布的期望与方差【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()C 1n k kk n p X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.14.函数23()sin 3cos 4f x x x =+-([0,])2x π∈的最大值是____________. 【答案】115.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk k S ==∑____________. 【答案】21n n + 【解析】16.已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M为FN 的中点,则FN =____________. 【答案】6 【解析】试题分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2B A C +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .【答案】(1)15cos 17B =;(2)2b =.“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:,22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关;(3)52.35kg .【考点】独立事件概率公式、独立性检验原理、频率分布直方图估计中位数【名师点睛】(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大.(2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.【答案】(1)证明略;(2)10.【考点】 判定线面平行、面面角的向量求法【名师点睛】(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m ,n >|=⋅m n m n.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20.(12分) 设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP =u u u r u u u r .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r .证明:过点P 且垂直于OQ 的直线l 过C的左焦点F .【答案】(1) 222x y +=;(2)证明略.【考点】 轨迹方程的求解、直线过定点问题【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系F (x ,y )=0.(2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P (x ,y )的轨迹方程.21.(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e()2f x --<<.【答案】(1)1a =;(2)证明见解析.(2)由(1)知 ()2ln f x x x x x =--,()22ln f 'x x x =--. 设()22ln h x x x =--,则1()2'x h x=-. 当1(0,)2x ∈ 时,()0h'x < ;当1(,)2x ∈+∞ 时,()0h'x >, 所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增. 又()2e 0h ->,1()02h <,()10h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当()00,x x ∈时,()0h x >;当()0,1x x ∈时,()0h x <,当()1,x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点.由0()0f 'x =得()00ln 21x x =-,故()()0001f x x x =-.由()00,1x ∈得()014f x <. 因为0x x =是()f x 在(0,1)的最大值点,由()1e 0,1-∈,1(e )0f '-≠得120()(e )e f x f -->=.所以()220e 2f x --<<.【考点】利用导数研究函数的单调性、利用导数研究函数的极值【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.【答案】(1)()()22240x y x -+=≠;(2)2.(2)设点B 的极坐标为()(),0B B ραρ>,由题设知2,4cos B OA ρα==,于是OAB △的面积S =13sin 4cos |sin()|2|sin(2)2 3.233B OA AOB ραααππ⋅⋅∠=⋅-=--≤+ 当12απ=-时,S 取得最大值23,所以OAB △面积的最大值为23. 【考点】圆的极坐标方程与直角坐标方程、三角形面积的最值【名师点睛】本题考查了极坐标方程的求法及应用。