11Chapter4-Composite Solids(1)

合集下载

凝聚态物理课程大纲

凝聚态物理课程大纲

凝聚态物理》课程大纲Condensed Matter Physics ” Course Outline、课程简介(course description)教学目标(goal) :Basic understandings of solids, energy bands, semiconductors, superconductivity and magnetism, and their main uses.主要内容(course contents):Condensed matter physics covers an extremely broad range of topics. Unfortunately therefore it is one of the most difficult course to teach and a one of the most boring course to learn. On the other hand, research in this area of physics has (arguably) resulted in the most useful outcomes. The topics to be covered in this course are crystal lattice structure, Bragg reflection and reciprocal lattice, phonons, free electron Fermi gas, energy band and band structure, semiconductors andsemiconductor devices, Fermi surface and metals, superconductivities/magnetism,plasmon/plariton/polaron, optical properties and excitons, surfaces, interfaces, and nanostructures.We will try to make it fun by injecting more applied topics of relevance to our everyday lives such as semiconductor devices and applications.、教学内容(teaching contents)第一章Chapter 1***主要内容Main subject :Crystal lattice structure重点与难点important and difficult points :Read Chapter 1 of the book. The materials are -10 mostly definitions to be familiar with. Must remember 1 ? (angstrom) = 10 m (meter) =0.1 nm (nanometer). The cases of simple, body-centered, and face-centered cubic lattice structuresshould be remembered.第二章Chapter 2***主要内容Main subject :Crystal diffraction and reciprocal lattice重点与难点important and difficult points :Review Fourier transform, light diffraction.Reciprocal lattice is essential in understanding X-ray Bragg reflections and therefore experimental determination of crystal structures.第三章Chapter 3***主要内容Main subject :Crystal binding重点与难点important and difficult points:difference and different binding strengths of various forces, van der Waals force is treated in more mathematical terms.第四章Chapter 4*** 主要内容Main subject :Phonons: lattice vibration 重点与难点important and difficult points :phonons are “ qua-psai rticles ” of lattice vibration第五章Chapter 5***主要内容Main subject :Phonons: thermal properties重点与难点important and difficult points :Debye temperature, Debye and Einstein models, anharmonic effects, phonon-phonon scattering, thermal expansion, thermal conductivity/resistivity, Umklapp process第六章Chapter 6*** 主要内容Main subject :Free electron Fermi gas 重点与难点important and difficult points :Electron motion is treated as though they are freely moving, Fermi-Dirac distribution, Fermi energy vs. chemical potential, Drude formula.第七章Chapter 7***主要内容Main subject :Energy band and band structure重点与难点important and difficult points:How does the periodic potential give rise to energy band?第八章Chapter 8***主要内容Main subject :Semiconductors and semiconductor devices重点与难点important and difficult points :Applications of band theory, band gap, and band structure, effective mass, hole.第九章Chapter 9***主要内容Main subject :Fermi surface and metal重点与难点important and difficult points :Everything happens at the Fermi surface, almost第十章Chapter 10***主要内容Main subject :Superconductivities and magnetism重点与难点important and difficult points: Basic concepts of superconductivity and magnetism, their physical mechanism.第十一章Chapter 11***主要内容Main subject :Plasmon/polariton/polaron, optical properties and excitons 重点与难点important and difficult points :Various quasi-particles involving coupling among electrons, phonons, and photons.第十二章Chapter 12***主要内容Main subject :Surfaces, interfaces, and nanostructures重点与难点important and difficult points :Surfaces, interfaces and associated nanostructures form much of current research topics and promising applications.Lectures on Superconductivities and Magnetism will be given by Prof. Hang Zheng.Some lectures on En ergy Bands an d/or Semic on ductors will likely be give n by Prof. Harald Schn eider of Helmholtz Zen trum Dresde n-Rosse ndo戊Germa ny, who is also a visiti ng chair professor with the SJTU.、教学进度安排(detailed cale ndar)Class locations & times: Tuesday & Thursday 10:00-11:40 东中院1-104(16 weeks total lecture time, weeks 17 & 18 —readi ng/final exam week)Office hours: Every Tuesday after class 2:00pm-6:00pm . On those no-class days, there will be no office hour. The office hour will be at my office (Physics Building, Room 902).During the period of Prof. Zheng ' s lectures, the office hour will be held101RQom四、课程考核及说明(Exams and grades)40%为平时成绩(大作业等) Homework assig nments60% 为考试成绩Exams (mid-term 20% & final 40%)五、教材与参考书(books and references)* Lecture no tes, to provide softcopy* Charles Kittle, "In troduction to Solid State Physics" (John Wiley & Son s, I nc. New York), 8th editi on. Stude nts are en couraged to get both the tran slatio n version and the En glish versio n.。

机工英语试题及答案

机工英语试题及答案

机工英语试题及答案一、选择题(每题2分,共20分)1. The machine is ________ to operate.A) easyB) difficultC) complexD) impossible2. The engineer ________ the design last night.A) revisedB) approvedC) rejectedD) abandoned3. What is the ________ of this component?A) functionB) structureC) materialD) efficiency4. The assembly line is ________ to meet the demand.A) insufficientB) adequateC) excessiveD) redundant5. The project was ________ due to budget constraints.A) postponedC) acceleratedD) scaled down二、填空题(每题1分,共10分)6. The ________ of the engine is to convert fuel into mechanical energy.7. The ________ of the project was to improve the production efficiency.8. The ________ of the new machine is expected to be high.9. The ________ of the workshop must be followed strictly.10. The ________ of the material is crucial for the product quality.三、阅读理解(每题2分,共20分)Read the following passage and answer the questions.Passage:In the modern industry, precision is key to success. Engineers are constantly seeking new ways to improve the accuracy of their machines. With the advent of advanced technologies, the possibilities for enhancing the performance of industrial equipment have expanded significantly. The development of high-precision sensors and actuators has made it possible to achieve previously unattainable levels of control.11. What is essential in modern industry according to the passage?A) Advanced technologiesB) PrecisionD) High-precision sensors12. What are engineers looking for?A) Ways to reduce costsB) Ways to improve accuracyC) Ways to increase productionD) Ways to expand their teams13. Which of the following has greatly improved the performance of industrial equipment?A) The use of cheaper materialsB) The development of new machinesC) The advent of advanced technologiesD) The increase in the number of engineers14. What has made it possible to achieve higher levels of control?A) The use of cheaper sensorsB) The development of high-precision sensors and actuatorsC) The increase in the number of actuatorsD) The advent of new technologies15. What is the main topic of the passage?A) The importance of precision in modern industryB) The role of engineers in industryC) The history of industrial equipmentD) The cost of advanced technologies四、翻译题(每题5分,共10分)16. 请将以下句子翻译成英文:“这个机器的维护成本相对较低。

材料热力学

材料热力学

Chapter 1 Introduction and
Definition of Terms
4. Properties Quantities which can be used to describe a system,
e.g. density, volume, … (1) Intensive properties
Chapter 1 Introduction and
Definition of Terms
5. State
Microscopic state: If it is possible to know the masses, velocities, positions, and all modes of all of the constituent particles in a system, this mass of knowledge would serve to describe the state of the system, which would determine all of the properties of the system.
Chapter 1 Introduction and
Definition of Terms
6. State Function (State Variable) A variable which depends only on the state of the system.
If a change in the system occurs, the change in such a function depends only on the initial and final state, and is independent of the path of the change. e.g. T, V, P, U, H, S, G. 7. Equation of State

Dairy Processing Handbook index

Dairy Processing Handbook index

Measuring equipment42 Measuring techniques43 Pressure drop calculations44 Circular ducts44 Rectangular ducts44 Chapter 4Micro-organisms45 Some milestones ofmicrobiological history45 Classification: Protista46 Biotechnology46 Bacteria47 Morphology of bacteria47 Shape of bacteria47 Size of bacteria47 Cell structure of bacteria47 Mobility of bacteria48 Spore formation and capsule formation48 Conditions for growth of bacteria48 Nutrients48Passage of matter through thecytoplasmic membrane49Temperature49Classificationby temperature preference50Moisture50Oxygen50Light51Osmotic pressure51pH – acidity/alkalinity51 Reproduction of bacteria51Rate of reproduction51Growth curve of bacteria51 Biochemical activity52 Breakdown of carbohydrates52 Breakdown of protein53 Breakdown of fat53 Breakdown of lecithin53 Pigment and colour production53 Mucus production54 Odour production54 Reducing power54 Disease production (T oxins)54 Enumeration of bacteria54 Identification and classification of bacteria55 Bacteria in milk55 Infection at the farm55 Bacteria count in milk55 Principal bacteria in milk56 Lactic acid bacteria56 Coliform bacteria57 Butyric acid bacteria57 Propionic acid bacteria58 Putrefaction bacteria58 Fungi59 Yeasts59 Reproduction of yeast59 Conditions for the growth of yeast60Nutrients60Moisture60Acidity60Temperature60Oxygen60 Classification of yeasts60 Importance of yeast60 Moulds61 Reproduction of moulds61 Metabolism of moulds61 External factors affectingthe growth of moulds61Moisture61Water activity (aw)61 Oxygen61Temperature61Acidity61 Importance of moulds in the dairy62 Penicillium62 Milk mould62 Bacteriophages62 Structure of bacteriophages62 Reproduction of phages63 Concluding notes63Chapter 5Collection and reception of milk65 Keeping the milk cool66 Design of farm dairy premises66 Delivery to the dairy66 Churn collection66 Bulk collection67 Testing milk for quality67 Taste and smell68 Cleaning checks68 Sediment tests68 Hygiene or Resazurin tests68 Somatic cell count68 Bacteria count68 Protein content68 Fat content68 Freezing point68 Milk reception69 Churn reception69 Tanker reception69Measuring by volume69Measuring by weight70 Tanker cleaning71 Chilling the incoming milk71 Raw milk storage71 Agitation in silo tanks71 Tank temperature indication71 Level indication71 Low-level protection72 Overflow protection72 Empty tank indication72Chapter 6Building-blocks of dairy processing73 Chapter 6.1Heat exchangers75 The purposes of heat treatment75 Time/temperature combination76 Limiting factors for heat treatment76Thermisation76LTLT pasteurisation77HTST pasteurisation77Milk77Cream and cultured products77Ultra pasteurisation77UHT treatment78Sterilisation78Preheating78Heat transfer processes in the dairy78Heating78Cooling78Regenerative heating and cooling79 Heat transfer theory79 Heat transfer principles79Direct heating79Indirect heating80 The heat exchanger80Dimensioning data for a heat exchanger80Product flow rate81Physical properties of the liquids81Temperature program81Temperature change81Logarithmic mean temperaturedifference (LMTD)82Countercurrent flow82Concurrent flow82Overall heat transfer coefficient82Permitted pressure drops82Viscosity83Shape and thickness of the partition83Material of the partition83Precence of fouling matter83Cleanability requirement84Running time requirement84Regeneration85 Holding85Calculation of holding time85 Different types of heat exchangers86 Plate heat exchangers86Flow patterns87 Tubular heat exchangers87Multi/mono channel87Multi/mono tube88 Scraped-surface heat exchanger88Chapter 6.2Centrifugal separatorsand milk fat standardisation91 Centrifugal separators91 Some historical data91 Sedimentation by gravity92 Requirements for sedimentation92 How does sedimentation work?92Density92Sedimentation and flotation velocity93Flotation velocity of a fat globule93 Batch separation by gravity94 Continuous separation by gravity94 Baffles increase the capacity94 Continuous separation of a solid phaseand two liquid phases95 Separation by centrifugal force95 Sedimentation velocity95 Flotation velocity of a fat globule96 Continuous centrifugal separation of solidparticles – Clarification96 Separation channels96 The limit particle97 Continuous centrifugal separation of milk97 Clarification97 Separation97 Skimming efficiency98 Fat content of cream98 Solids ejection99 Basic design of the centrifugal separator99 Semi-open design99Paring disc99 Hermetic design100 Control of the fat content in cream101 Paring disc separator101 Cream flow meter101 Hermetic separator101 Differences in outlet performance ofhermetic and paring-disc separators102 The discharge system102Production and CIP102Discharge103 Drive units103 Standardisation of fat content in milk and cream104 Principle calculation methods for mixing ofproducts104 Principle of standardisation104 Direct in-line standardisation105 Cream fat control system106 Cascade control106 Fat control by density measurement107 Flow transmitter107 Flow control valves for creamand skimmilk108 Control circuit for remixing of cream108 The complete direct standardisation line109 Some options for fat standardisation110 The Bactofuge110 Decanter centrifuges111 The function of the decanter centrifuge111 Solids discharge112 Liquid discharge (open)112Liquid discharge (pressurised)112 Continuous process112 Principal components112 The bowl112 The conveyor113 The gearbox113 Frame and vessel113 Chapter 6.3Homogenisers115 The technology behind disruption offat globules115 Process requirements115 Flow characteristics116 Homogenisation theories116 Single-stage and two-stagehomogenisation116 Effect of homogenisation116 The homogeniser117 The high-pressure pump117 The homogenisation device118 Homogenisation efficiency118 Analytical methods119Studies of creaming rate119Size distribution analysis119 Energy consumption and influence ontemperature120 The homogeniser in a processing line121 Full stream homogenisation121 Partial homogenisation121 Health aspects of homogenisedmilk products122 Chapter 6.4Membrane filters123 Definitions123 Membrane technology123 Principles of membrane separation125 Filtration modules126Plate and frame design126Tubular design – polymers126Tubular design – ceramic126Spiral-wound design127Hollow-fibre design128 Separation limits for membranes129 Material transport through the membrane129 Pressure conditions130 Principles of plant designs130 Batch production131 Continuous production131 Processing temperature in membranefiltration applications132 Chapter 6.5Evaporators133 Removal of water133 Evaporation133 Evaporator design133Circulation evaporators134 Falling film evaporators134Tubular type evaporator135Plate type evaporator135Multiple-effect evaporation136Thermocompression137Evaporation efficiency137Mechanical vapour compression138 Chapter 6.6Deaerators139 Air and gases in milk139 Further air admixture139 Air elimination at collection140 Milk reception140 Vacuum treatment140 Deaeration in the milk treatment line141 Chapter 6.7Pumps143 Pumping demands143 Suction line144 Delivery line144 Cavitation144 Pump chart144 Head (pressure)145 NPSH (Net Positive Suction Head)145 Shaft seals145 Single mechanical seal146 Flushed shaft seal146Material for shaft seals146 Centrifugal pumps146 Pumping principle146 Centrifugal pump applications147 Flow control147Throttling147Reducing impeller diameter147Speed control148Pumps for 60 Hz148 Head and pressure148Density148Viscosity149 Liquid-ring pumps149 Applications149 Positive displacement pumps149 Pumping principle149 Flow control150Pipe dimensions and lengths150 Lobe-rotor pumps150Applications150 Eccentric-screw pumps150 Piston pumps150 Diaphragm pumps151Working principle151 Peristaltic pumps (hose pumps)151Chapter 6.8Pipes, valves and fittings153 The pipe system153 Connections153 Special pipe fittings154Sampling devices154 Valves154 Mixproof valve systems154 Shut-off and change-over valves155 Seat valves155 Butterfly valves156Manual control156Automatic control156 Mixproof valves157 Position indication and control158 Position indication only158The ultimate control158 Check valves158 Control valves158 Valve systems160 Pipe supports160 Chapter 6.9Tanks161 Storage tanks161 Silo tanks161 Intermediate storage tanks162 Mixing tanks162 Process tanks162 Balance tank162 Chapter 6.10Process control165 Automation165 What is automation?165 Logic166 Why do we need automatic process control?166 What are the control tasks?167Digital control167Analog control168Monitoring168Management Information168 What decides the level of automation?169Role of the operator169Colour graphic VDU169Printer terminal169Local operator units169 How does the control system work?170 The programmable control system170 Demands on a control system171 Extending a control system171 Simple programming language171 Efficient electronic solutions171 Examples of control systems172 The small Programmable LogicController172 Decentralised process control172 Total integrated plant control173Chapter 6.11Service systems175 Prerequisites for dairy processing175 Water supply equipment175 Water treatment176 Piping system design177 Heat production177 Steam production178 Steam boilers178 Collecting the condensate179 Other equipment179 The steam piping system179 Refrigeration180 The principle of refrigeration180 How refrigeration works180 The evaporator181 The compressor182 The condenser182 Other equipment183 Production of compressed air183 Demands on compressed air183 The compressed-air installation184 Air drying184 Pipe system185 Electric power185 High voltage switchgear185 Power transformer186 Low voltage switchgear186 Generating set187 Motor control centres, MCC187 Chapter 7Designing a process line189 Process design considerations190 Some legal requirements190 Equipment required191 Choice of equipment191 Silo tanks191 Plate heat exchanger192 Hot water heating systems192 Temperature control193 Holding193 Pasteurisation control193 Pasteuriser cooling system193 Booster pump to prevent reinfection193 The complete pasteuriser194 Balance tank194 Feed pump194 Flow controller195 Regenerative preheating195 Pasteurisation195 Flow diversion195 Cooling195 Centrifugal clarifier196 Design of piping system196 Laminar and turbulent flows196 Flow resistance196 Pressure drop197 Process control equipment198Transmitters 198Controllers199The regulating device200Automatic temperature control 200Chapter 8Pasteurised milk products201Processing of pasteurised market milk 202Standardisation 204Pasteurisation 204Homogenisation204Determining homogenisation efficiency 205Quality maintenance of pasteurised milk 205Shelf life of pasteurised milk 206“ESL” milk207Production of cream 207Whipping cream207The whipping method208The whipping-cream production line 209The Scania method 209Half and coffee cream 211Packaging213Chapter 9Long life milk215Raw material quality 216Sterilising efficiency 216Logarithmic reduction of spores 216Q 10 value 217F 0 value 218B * and C *values 218“The fastest particle”218Commercial sterility 218Chemical and bacteriological changes at high heat treatment 219Shelf life 220Nutritional aspects 220Production of long life milk 221In-container sterilisation 221Batch processing 221Continuous processing 222Hydrostatic vertical steriliser 222Horizontal steriliser 222UHT treatment 223The UHT processes 223Development of UHT 223UHT plants 224Various UHT systems 224General UHT operating phases 224Pre-sterilisation 224Production 225Aseptic intermediate cleaning 225CIP 225Direct UHT plant based on steam injection and plate heat exchanger 225Direct UHT plant based on steam injection and tubular heat exchanger 226Direct UHT plant based on steam infusion 227Indirect UHT plant based onplate heat exchangers 227Split heating228Indirect UHT plant based on tubular heat exchangers228Indirect UHT plant based on scraped surface heat exchangers 229Aseptic tank230Aseptic packaging 231UHT pilot plants231Chapter 10Cultures and starter manufacture233Stages of propagation 235Process technology 236Stages in the process236Heat treatment of the medium 237Cooling to inoculation temperature 237Inoculation 237Incubation237Cooling the culture 238Preservation of starters239Manufacture of cultures under aseptic conditions 239Bulk starter tanks240Chapter 11Cultured milk products241A legend242General requirements for cultured milk production 242Yoghurt243Flavoured yoghurt243Factors affecting the quality of yoghurt 244Choice of milk244Milk standardisation 244Fat244Dry matter (DM) content 244Milk additives245Sugar or sweetener 245Stabilisers 245Deaeration245Homogenisation 246Heat treatment 246Choice of culture 246Culture preparation 246Plant design 247Production lines 247Evaporation 247Homogenisation 248Pasteurisation 248Cooling the milk248Design of the yoghurt plant 249Stirred yoghurt249Cooling the coagulum 250Flavouring 250Packing 251Plant design 251Set yoghurt251Flavouring/Packaging251An alternative production system252 Flavouring/Packing252 Incubation and cooling253Incubation253Cooling253 Drinking yoghurt254 Long-life yoghurt254 Production under aseptic conditions254“Clean Room” production conditions255Heat treatment of yoghurt255 Frozen yoghurt255 Production of yoghurt mix256Hard-frozen yoghurt257Distribution257 Concentrated yoghurt257 Kefir257 Raw materials258 Production of starter culture258 Production of kefir258Fat standardisation259Homogenisation259Heat treatment259Inoculation259Incubation259The acidulation stage259The ripening stage259Cooling259 Alternative kefir production259 Cultured cream260 Production260Homogenisation260Heat treatment260Inoculation and packing260 Buttermilk261 Fermented buttermilk261 Recent developments in cultured milk products261 Chapter 12Butter and dairy spreads263 Definitions264 Butter265 Sweet and cultured (sour) cream butter266 Buttermaking266The raw material268Pasteurisation268Vacuum deaeration269 Bacterial souring269Culture preparation269Souring of the cream270 Temperature treatment270Butterfat crystallisation270Treatment of hard fat271Treatment of medium-hard fat272Treatment of very soft fat272 Churning272 Batch production272Butter formation272Churning recovery273Working273Vacuum working273 Continuous production273The manufacturing process273 New trends and possibilities foryellow fat products275 Bregott275 Lätt & Lagom275 The TetraBlend process275 The process line276 Packaging277 Cold storage277 Experimental buttermaking methods277 Chapter 13Anhydrous Milk Fat (AMF) (Butteroil)279 AMF characteristics280 Production of AMF281 Principles of production281 Manufacture of AMF from cream281 Manufacture of AMF from butter282 AMF refining283Polishing284Neutralisation284Fractionation284Decholesterolisation285 Packaging285 Chapter 14Cheese287 Tradition and basic knowledge287 T erminology for classification of cheese288 Definitions288 Classification of cheese288 Cheese production – general procedures forhard and semi-hard cheese289 Milk treatment prior to cheesemaking290 Milk collection291 Heat treatment andmechanical reduction of bacteria291 Thermisation291 Pasteurisation292 Mechanical reduction of bacteria293Bactofugation293Process alternatives293Microfiltration295 Standardisation296 Additives in cheesemilk296Starter296Disturbances in cultures297Calcium chloride (CaCl2)297 Carbon dioxide (CO2)297 Saltpetre (NaNO3or KNO3)298 Colouring agents298Rennet298Substitutes for animal rennet299Other enzymatic systems299 Cheesemaking modes299 Curd production299 Milk treatment299 Starter addition300 Additives and renneting300Cutting the coagulum301 Pre-stirring301 Pre-drainage of whey302 Heating/cooking/scalding302 Final stirring303 Final removal of whey andprinciples of curd handling303 Cheese with granular texture303 Round-eyed cheese303 Pre-pressing vats304 Continuous pre-pressing system304 Closed texture cheese305 Mechanised cheddaring machine306 Final treatment of curd307 Pressing307 Trolley table pressing307 Autofeed tunnel press307 Conveyor press308 The Block Former system308 Cooking and stretching ofPasta Filata types of cheese308 Moulding309 Salting309 Salting modes309Dry salting309Brine salting310Shallow or surface brining310Deep brining311Rack brining system311Some notes about the preparation of brine312Salt penetration in cheese312Brine treatment313 Ripening and storage of cheese314 Ripening (curing)314The lactose decomposition314The protein decomposition314 Storage315 Storage conditions315 Methods of air conditioning316 Storage layout and space requirements316 Processing lines for hard and semi-hard cheese317 Hard types of cheese317 Processing line for Emmenthal cheese317 Processing line for Cheddar cheese318 Semi-hard types of cheese318 Processing line for Gouda cheese318 Processing line for Tilsiter cheese319 Processing line for Mozzarella cheese320 Semi-hard, semi-soft and soft types of cheese321 Semi-hard and semi-soft cheese321 Blue veined cheese321 Semi-soft/soft cheese323 Camembert cheese323 Soft cheese323 Cottage cheese323 Quarg325 Ultrafiltration (UF) in cheese manufacture326 Cheesemaking using UF andcurdmaking machine327 New trends328 Processed cheese328 Manufacture328Chapter 15Whey processing331 Different whey processes333 Casein fines recovery and fat separation333Cooling and pasteurisation334 Concentration of total solids334Concentration334Drying334 Fractionation of total solids335Protein recovery335Protein recovery by UF335Defattening of whey proteinconcentrate (WPC)337 Recovery of denatured whey protein338Chromatographic isolation oflactoperoxidase and lactoferrin339Lactose recovery339Crystallisation340Lactose separation340Drying340Refining of lactose341Demineralisation (Desalination)341Principles of demineralisation341Partial demineralisation by NF341High degree demineralisation342Electrodialysis342Operating principle343Power supply and automation344Limiting factors in electrodialysis344lon exchange344lon exchange resin characteristics346Ion exchange processes fordemineralisation346Conventional ion exchange fordemineralisation347Process limitations348An alternative ion exchange process348Process limitations and costs349Lactose conversion350Lactose hydrolysis350Enzymatic hydrolysis350Acid hydrolysis351Chemical reaction351Lactosyl urea351Ammonium lactate351 Chapter 16Condensed milk353 Outline of condensed milk354 Raw material for condensed milk354 Bacteriological quality of the raw material355 Thermal stability of the raw material355 Pretreatment355 Standardisation355 Heat treatment355 Unsweetened condensed milk355 Evaporation355 Homogenisation356 Cooling and sample sterilisation356 Canning356 Sterilisation356UHT treatment357 Storage and inspection357 Sweetened condensed milk (SCM)357 Evaporation358 Cooling and crystallisation358 Packing and inspection359 Chapter 17Milk powder361 Drying362 Various uses of milk powder362 Skimmilk powder363 Whole milk powder363 Instant-milk powder364 Bulk density364 Definition364 Factors influencing bulk density364 Powder material density364 Occluded air content364 Interstitial air365 Production of milk powder365 Raw material365 General pre-treatment of the milk365 Roller or drum drying366 Spray drying366 Basic drying installations366 Single-stage drying366 Two-stage drying367 Three-stage drying367 Operating principle of spray drying367 Single-stage drying367 Milk atomising368 Two-stage drying368 Three-stage drying369 Production of instant powder371 Fluid-bed drying371 Heat recovery372 Packing milk powder372 Changes in milk powder during storage373 Dissolving milk powder373 Chapter 18Recombined milk products375 Definitions376 Raw material handling376 Milk powder376 Fats and oils377 Water378 Additives378 Dissolving of milk powder378 Wettability378 Ability to sink378 Dispersability378 Solubility379 Recombination temperature and hydration time379 Fat addition and emulsification379 Air content379 Powder handling380 Design of recombination plants380 Deaeration380Heat treatment380 Plant with fat supply to mixing tanks381 Small-scale production381 Large-scale production381 Plant with in-line fat mixing382 Large-scale production382 Milk handling383 Packing383 Storage383 Distribution384 Chapter 19Ice cream385 Categories of ice cream386 The ice cream process386 Reception and storage of raw materials386 Formulation387 Ingredients388 Fat388 Milk solids-non-fat (MSNF)388 Sugar388 Emulsifiers389 Stabilisers389 Flavouring389 Colouring389 Weighing, measuring and mixing389 Homogenisation and pasteurisation390 Ageing390 Continuous freezing390 Packing, extrusion and moulding390 Packing in cups, cones and containers390 Extrusion of sticks and stickless products391 Moulding of bars391 Hardening and cold storage392 Wrapping and packaging392 Examples of production plants392 Chapter 20Casein395 Types of casein396 Influence of raw material396 Rennet casein396 Batch washing396 Continuous washing397 Acid casein397 Biological acidification – lactic acid casein397 Mineral acidification – acid casein398 Co-precipitate398 Caseinate399 Sodium caseinate399 Calcium caseinate399 Other caseinates400 Extruded sodium caseinate400 Uses of caseins and caseinates400 Rennet casein400 Acid casein401 Sodium caseinate401 Calcium caseinate402 Calcium co-precipitate402Chapter 21Cleaning of dairy equipment403 Aspects of cleaning403 Trade obligations404 Moral obligation404 Legal obligation404 Cleaning objectives404 Dirt404 Heated surfaces404 Cold surfaces405 Cleaning procedures405 Recovery of product residues405 Prerinsing with water406 Cleaning with detergent406 Detergent concentration406 Detergent temperature406 Mechanical cleaning effect407 Duration of cleaning407 Rinsing with clean water407 Disinfection407 Cleaning-in-place systems408 CIP circuits408 Compatible materials and system design408 CIP programs409 Design of CIP systems409 Centralised CIP410 Decentralised CIP411 Verifying the cleaning effect412 Chapter 21Dairy effluents415 Organic pollutants416 Biological oxygen demand (BOD)416 Chemical oxygen demand (COD)416 Calcining loss416 Total organic carbon (TOC)416 Inorganic pollutants417 Dairy waste water417 Cooling water417 Sanitary waste water417 Industrial waste water417 pH of dairy effluent418 Reducing the quantity of pollutants in waste water418 General milk treatment418 Cheese production area419 Butter production area419 Milk powder production area419 Milk packaging area419 Outlet control419 Sewage treatment, a general survey420 Mechanical treatment421 Chemical treatment421 Biological treatment422 Sludge treatment422 Literature425 Index427。

化学反应工程英文课件Chapter 11

化学反应工程英文课件Chapter 11

化学反应工程
停留时间分布函数 — F(t) 函数
对于同时进入反应器入口的 N 个流体粒子,若在出口 处进行检测,则其中停留时间介于 0 ~ t 之间的流体粒 子所占的分率为 F(t) —— 我们定义 F(t) 为停留时间分 布函数。 如:在某时刻进入反应器入口的 100 个流体粒子,到 达出口时停留时间为 0 ~ 5 min 的粒子有 20 个,若取 t = 5 min,则此时 F(t) = 20 /100 = 0.2。 F(t) 是一个累积(如 t = 0~5 min )的分率。
化学反应工程
Figure 11.3Ex来自mples of macro- and microfluid behavior.
化学反应工程 Earliness of Mixing
The fluid elements of a single flowing stream can mix with each other either early or late in their flow through the vessel. For example, see Fig. 11.4. Usually this factor has little effect on overall behavior for a single flowing fluid. However, for a system with two entering reactant streams it can be very important. For example, see Fig. 11.5.
化学反应工程
11.1 E, THE AGE DISTRIBUTION OF FLUID, THE RTD
It is evident that elements of fluid taking different routes through the reactor may take different lengths of time to pass through the vessel. The distribution of these times for the stream of fluid leaving the vessel is called the exit age distribution E, or the residence time distribution RTD of fluid. E has the units of time-1.

《结构化学》教学大纲(英文版)

《结构化学》教学大纲(英文版)

‘Structural Chemistry ’Course SyllabusCourse Code:09040001Course Category:Major BasicMajors:ChemistrySemester:SpringTotal Hours:54 Hours Credit:3Lecture Hours:54 HoursTextbooks:《Structural Chemistry》孙墨珑编著,东北林业大学出版社。

I.Introduction to Structural ChemistryThe major targets this course includes the followings: (1) to introduce the material structure of the basic concepts, basic theory, and basic methods for learning “Structural Chemistry”; (2) to explore the relationship between the microstructures and properties of atoms, molecules, and crystals; (3) to systematically clarify the essence of the periodic law of elements; (4) to deeply and qualitatively clarify the essence of the chemical bonds. This course introduces the basic principles of quantum mechanics and their applications in simple systems, structure of atoms, molecules, and crystals, symmetry of molecular orbitals, molecular orbital theory, and ligand field theory, etc. After learning this course, the students should be able to analyze and solve the basic chemistry problems from the point of view of quantum mechanics.II.Table of contentsSection I (Chapter 1) Basic knowledge of quantum mechanics1.1 Failures of classical mechanics1)Black-body radiation & Planck’s solution;2)Ph otoelectric effect & Einstein’s theory;3)Hydrogen spectrum & Bohr’s model.1.2Characteristics of the motion of microscopic particles1)Wave-particle duality;2)Uncertainty principle.1.3The basic postulates of quantum mechanics1)Postulate 1: wavefunction;2)Postulate 2: Hermitian operators;3)Postulate 3: Schrödinger equation;4)Postulate 4: linearity and superposition;5)Postulate 5: Pauli exclusion principle.1.4Applications of quantum mechanics in simple cases1)Free particle in one-dimensional (1D) box;2)Applications of the 1D-box model in simple chemical systems;3)Free particle in two-dimensional (2D) & three-dimensional (3D) box;4)Tunneling & scanning tunneling microscopy (STM).Section II (Chapter 2) Structures and properties of atoms2.1 One-electron atom: H atom1)The Schrödinger equation of H atoms;2)Solution of the Schrödinger equation of H atom.2.2Quantum numbers1)Principle quantum number, n;2)Angular momentum quantum number, l;3)Magnetic quantum number, m;4)Zeeman effect.2.3Wavefunction and electron cloud1)Radial distribution;2)Angular distribution;3)Spatial distribution.2.4 Structure of multi-electron atoms1)The Schrödinger equation of multi-electron atoms•Self-consistent field method;•Central field approximation.2)The building-up principles and electron configuration of multi-electron atoms•Pauli exclusion principle;•Principle of minimum energy;Hund’s rule.2.5Electron spin and Pauli exclusion principle2.6Atomic spectroscopy1)Orbital-spin coupling;2)Spectroscopic terms & term symbol;3)Derivation of atomic term.4)Hund’s rule on the spectroscopic terms;2.7Atomic properties1)Energy of ionization;2)Electron affinity;3)Electronegativity.Section III (Chapters 3-6) Structures and properties of molecules Chapter 3 Geometric structure of molecules─Molecular symmetry & symmetry point group3.1Symmetry elements and symmetry operations1)Symmetry elements and symmetry operations;2)Combination rules of symmetry elements;3.2Point groups & symmetry classification of molecules3.3Point groups & groups multiplication3.4Applications of molecular symmetry1)Chirality & optical activity;2)Polarity & dipole moment.Chapter 4 S tructure of biatomic molecules (X2 & XY)4.1 Linear variation method and structure of H2+ ion1) Shrödinger equation of H2+ ion;2) Linear variation method;3) Treatment of H2+ ion using linear variation method;4) Solutions of H2+ ion.4.2 Molecular orbital theory and diatomic molecules1) Molecular orbital theory;2) Structure of homonuclear diatomic molecules (X2);3) Structure of heteronuclear diatomic molecules (XY).4.3 Valence bond (VB) theory and H2 moleculeChapter 5 Structure of polyatomic molecules (A)5.1 Structure of Methane (CH4)1) Delocalized molecular orbitals of methane (CH4);2) Localized molecular orbitals of methane (CH4).5.2 Molecular orbital hybridization1) Theory of molecular orbital hybridization;2) Construction of hybrid orbitals;3) Structure of AB n molecules;4) Molecular stereochemistry: valence shell electron-pair repulsion (VSEPR)model.5.3 Delocalized molecular orbital theory─Hückel molecular orbital (HMO) theory1) HMO method & conjugated systems;2) HMO treatment for butadiene;3) HMO treatment for cyclic conjugated polyene (C n H n);4) Molecular diagrams;5) Delocalized π bonds.5.4 Structure of electron deficient molecules5.5 Symmetry of molecular orbitals and symmetry rules for molecular reactions5.6 Molecular spectroscopy1)Infrared absorption spectroscopy: molecular vibrations;2)Raman scattering spectroscopy: molecular vibrations;3)Fluorescence spectroscopy: electronic transitions;4)NMR spectroscopy: nuclear magnetic resonances.Chapter 6 Structure of polyatomic molecules (B), coordination compounds 6.1 Crystal field theory6.2 CO and N2 coordination complexes6.3 Organic metal complexes1) Zeise’s salts;2) Sandwich complexes.6.4 Clusters1) Transition-metal cluster compounds2) Carbon clusters and nanotubesSection IV (Chapters 7-9) Structure of crystalsChapter 7 Basics of crystallography7.1 Periodicity and lattices of crystal structure1) Characteristics of crystal structure;2) Lattices and unit cells;3) Bravais lattices and unit cells of crystals;4) Real crystals & crystal defects.7.2 Symmetry in crystal structure1) Symmetry elements and symmetry operations;2) Point groups (32) and space groups (230).7.3 X-Ray diffraction of crystals1) X-ray diffraction of crystals•Laue equation;•Bragg’s law;•Reciprocal lattice.2) Instrumentation of X-ray diffraction;3) Applications of X-Ray diffraction•Single crystal diffraction: crystal structure determination;•Powder diffraction: qualitative & quantitative analysis of crystalline materialsChapter 8 Crystalline solids, I: metals and alloys8.1 Close Packing of Spheres1) Close packing of identical spheres;2) Packing density;3) Interstices.8.2 Structures and Properties of Pure Metals8.3 Structures and Properties of AlloyChapter 9 Crystalline solids, II: ionic crystals9.1 Packing of Ions;9.2 Crystal Structure of Some Typical Ionic Compounds9.3 Trend of Variation of Ionic Radii9.4 Pauling Rule of Ionic Crystal Structure9.5 Crystals of Functional Materials1) Nonlinear optical materials;2) Magnetic materials;3) Conductive polymers;4) Semiconductors: band gap and photocatalysisIII.Table of ScheduleReferences[1] 王荣顺主编,东北师范大学等,《结构化学》,高等教育出版社,2003年。

2021初中物理重点知识点汇总(中考必备)(完整版)

2021初中物理重点知识点汇总(中考必备)(完整版)

2021初中物理重点知识点汇总(中考必备)(完整版)Chapter 1: Mechanical n1.Units of Length: The unit of length in physics is meter (m)。

other units include kilometer (km)。

decimeter (dm)。

centimeter (cm)。

millimeter (mm)。

micrometer (μm)。

and nanometer (nm)。

XXX: 1km=10^3m。

1dm=10^-1m。

1cm=10^-2m。

1mm=10^-3m。

1μm=10^-6m。

and 1nm=10^-9m.2.Units of Time: The unit of time in physics is second (s)。

other units include minute (min) and hour (h)。

The n s are:1min=60s and 1h=3600s.3.Mechanical n:1) n: In physics。

the change in n of an object is called XXX.2) n: XXX。

and linear n can be further divided into uniform linear n and non-uniform linear n.4.XXX Frame:1) Concept: XXX whether an object is in n or at rest。

a reference frame needs to be selected as a standard。

The object selected as the reference frame is XXX and is called the reference object.2) How to study the n of an object: First。

材科基参考书目

材科基参考书目

参考书目第一章晶体学1.Б.К.因斯坦著吴自勤译《现代晶体学(第一卷)》中国科技大学出版社(1990)2. C.本斯 A.M.格莱泽著俞文海周贵恩译《固体科学中的空间群》高等教育出版社(1984)3.张克从著《近代晶体学基础(上册)》科学出版社(1987)4.晶王英华编著《晶体学导论》清华大学出版社(1989)5.Allen S M, Thomas E L. The Structure of Materials. New York: Wuley,1998.第二章固体材料中电子运动状态1.方俊鑫,陆栋编,《固体物理学》上海科学技术出版社(上海,1980年第一版,1993年第10次印刷)2.沈仲钧,冯茂仁,《量子力学》,上海科学技术出版社(上海,1988)3.陈端刚主编,《中华小百科全书――物理学卷》,四川教育出版社,四川辞书出版社,1994。

4.E. Arzt V orlesungsskript von Materialphysik III – Elektronische Eigenschaft, Universitaet Stuttgart第三章晶体结构1.T.B.Massalski,Structure of Solid Solutions in Physical Mwtallurgy,Third revised andenlarged,ed. by R.W.Cahn and P.Haasen. p.153. & p.219 North-Holland Physics Publishing, 1983.2.Kingery.W.D, Introduction to Ceramics, (chapter 2). John Wiley & Sons, Inc. New York.1976.3.张克从近代晶体学基础上册科学出版社19874.冯端冯步云放眼晶态之外湖南教育出版社19995.晶体化学6.M.V.斯温主编陶瓷的结构与性能第一章(材料科学与技术丛书第11卷)科学出版社1998第四章非晶态与半晶态1.Allen S M, Thomas E L. The Structure of Materials. New York: Wuley,1998.2.冯端,师昌绪刘治国材料科学导论化学工业出版社20023.余永宁强文江等译工程材料科学与设计机械出版社20034.张德庆张东兴刘立柱等编高分子材料科学导论哈尔滨工业大学出版社1999第五章相图1.张圣弼,李道子,相图−原理、计算及在冶金中的应用,冶金工业出版社,19862.Materials Science and Technology V ol 5, Phase Transformation in Materials, ed. by P.Haasen,New York, Basel, Cambridge:VCH, 19933. A.D. Pelton, Phase Diagrams in Physical Metallurgy,Third Ed. North-Holland PhysicsPublishing, 19834.M. Hansen, K. Anderko, Constitution of Binary Alloys, Mc-Graw-Hill, 1985第六章晶体中的点缺陷和线缺陷1.S.M.Allen, E.L.Thomas, The Structure of Materials. New York: Wuley, 19982.R.W.卡恩, P.哈森, E.J.克雷默, 主编;王佩璇等译, 材料科学与技术丛书, 第1卷, 第7章, 科学出版社, 19983.J.P.Hirth,Dislocation in Physical Metallurgy 3rd edition;North-Holland Physics Publishing,19834.冯顺华, 晶体位错理论基础, 第一卷, 科学出版社, 19885.W.F. Harris, Scientific American. 1977, 237; 666.余永宁, 毛卫民, 材料的结构, 冶金工业出版社, 2001第七章面缺陷和体缺陷1.S.M.Allen, E.L.Thomas. The Structure of Materials. New York: Wuley, 19982.James M. Howe. Interfaces in Materials. Wiley, 19993. F.J.Humphreys and M.Hatherly, Recrystallization and Related Annealing Phenomena,Galliard (Printers) Ltd. 19954.Materials Science and Technology, vol 1,Structure of Solids,ed. by V.Gerold,New York,Basel,Cambridge:VCH. 19935.李恒德,肖纪美主编,材料表面与界面,清华大学出版社,19906.R.E.Smallman, R.J.Bishop, Modern Physical Metallurgy and Materials Engineering, Sixth Ed,Oxford OX2 8DP 1999第八章材料中原子扩散1.J.L.Bocquet, J.Brebec and Y.Limoge Diffusion in Metals and Alloys, in Physical Metallurgy,Third Ed. North-Holland Physics Publishing, 19832.J. S. Kirkaldy, Diffusion in the Condensed State, The Universities Press (Belfast) Ltd. 19873.李长海,余永宁译, 金属和合金中的相变, 冶金工业出版社,19884.J. Crack, The Mathematics of Diffusion, Second Edition, Oxford University Press, 19755.Materials Science and Technology, V ol 5, Phase Transformation in Materials, ed. by P.Haasen,New York, Basel, Cambridge:VCH. 19936.W.D Kingery. Introduction to Ceramics, John Wiley & Sons, Inc. New York. 1976第九章材料的形变1. 哈宽富,金属力学性质的微观理论,科学出版社,19832. Richard W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials,JohnWiley & sons. 19833. B.Bay, N.Hansen, Acta Metall.Mater., 40, 1992, 205∼2194. F.J.Humphrey & M.Hatherly, Recrystallization and Related Annealing Phenomena,Pergamon,19955. R.W.卡恩,P.哈森,E.J.克雷默主编,颜鸣皋等译,材料科学与技术丛书,第6卷第1、2、3章,科学出版社,19986. 冯端,师昌绪,刘治国主编,材料科学导论,化学工业出版社,20027. R.W.Cahn and P.Haasen. Physical Metallurgy. Fourth, revised and enhanced edition. Elsevier Science BV. 1996, V ol.3, Chapter 32: A metallurgist’s guide to polymers. By A.H.Windel8.赵品,谢辅洲,孙文山,材料科学基础,哈尔滨工业大学出版社,19999. 刘智恩, 材料科学基础,西北工业大学出版社,200010. J.W.Christian and S.Mahajan. Deformation Twinning. Progress in materials science. 1995.V ol.39. 1-15711.余永宁,强文江等译,工程材料科学与设计,机械工业出版社,200312. J.Hirsch, K.Lücke and M.Hatherly. Mechanism of deformation and development of rollingtextures in polycrystalline F.C.C. metals---III. The influence of slip inhomogeneities and twinning. Acta metall. 36, 1988, No.11. 2905-2927第十章相变的基本原理1. D.A.Port, K.E.Eastering. Phase Transformations in metals and alloys. 19922.冯端,师昌绪,刘治国主编,材料科学导论,化学工业出版社,20023. R. W. Cahn,Physical Metallurgy,4rd,revised and enlarged ED.,ed. by R.W.Cahn andP.Haasen, Elsever Publishing, 19964. G.Gottstein. Physical foundations of materials science. Springer-V erlag, 2004第十一章凝固1.弗莱明斯著,关玉龙等译,凝固过程,冶金工业出版社, 19812.戴维斯著,舒震等译,凝固与铸造,机械工业出版社, 19813. D.A.Port, K.E.Eastering. Phase Transformations in metals and alloys. 19924.H.Boloni in Physical Metallury,Ed. by R.W.Cahn and P.Haasen, North-Holland Pub. 3rdedition, 477-579, 19835.I. Minkoff, Solidfication and Cast Structures, John Wiley and Sons Ltd., 19866.冯端,师昌绪,刘治国主编,材料科学导论,化学工业出版社,2002第十二章固态转变1. R. W. Cahn,Physical Metallurgy,4rd,revised and enlarged ED.,ed. by R.W.Cahn and P.Haasen,Elsever Publishing, 19962. Hsun Hu(胡郇),物理冶金进展评论,中国金属学会编译组译,冶金工业出版社,1985 ,pp.151-1873. R.K.Ray, J.J.Jonas and R.E.Hook. Cold rolling and annealing textures in low carbon and extralow carbon steels. International Materials Review. 1994. V ol.39. No.4. 129-1724. G.Gottstein. Rekristallisation metallischer Werkstoffe. Deutsche Gesellschaft fuer MetallkundeE.V. 19845. J.Hjelen, R.rsund and E.Nes. On the origin of recrystallization textures in Aluminium. Actametal. 39, 1991. No.7. 1377-14046. A.Berger, P.-J.Wilbrandt, F.Ernst, U.Klement and P.Haasen. On the generation of neworientations during recrystallization: Recent results on the recrystallization of tensile-deformed fcc single crystals. Progress in materials science. 32, 1988. 1-957.余永宁. 金属学原理. 冶金工业出版社,20008. D.A.Port, K.E.Eastering. Phase Transformations in metals and alloys. 19929.G.Gottstein. Physical foundations of materials science. 2004, Springer-V erlag 10. 徐恒均. 材料科学基础. 北京工业大学出版社,2001。

机械CADChapter 4 Modelling of Solids(2)

机械CADChapter 4  Modelling of Solids(2)

4.4.2 Boolean Operators
A solid can be considered as the result of applying Boolean operators to a set of instantiated and transformed CSG primitives. However, simple set operators may create problems as discussed in regularized Boolean operators. Let us just use set operations on following example.
A CSG tree is defined as an inverted ordered binary tree whose leafs are primitives and interior nodes are regularized set operations. The procedure to build the bracket with Boolean operators can be written as: union(diff(trans(block 1), trans(cylinder)), trans(block2)) , where union(A,B) and diff(A,B) are the union and difference of A and B, and trans( ) indicates appropriate transformations This procedure can be converted to a CSG tree of the design, as shown in Fig. 4. 16.

Chapter4翻译的基本技巧

Chapter4翻译的基本技巧

Chapter 4翻译的基本技巧1.增译法1.1增量词(名量词和动量词)1)To the east a faint pink is spreading.一抹浅红正向东方扩展。

2)I was extremely worried about her, but this was neither the place nor the time for a lecture or an argument.我真替她万分担忧,但此时次地既不不宜教训她一番,也不宜与她争论一通。

1.2.汉语中名词复数的增补1)The lion is the king of animals.百/万兽之王。

2)Fogs hid the mountain peaks.层层薄/云雾遮蔽了重重峰峦。

3)Reports of new successes keep pouring in.捷报频传。

4)Disappearances occurred with apparently increasing frequency…失踪事件/接连不断接二连三地发生,显然越来越频繁5)As soon as winter was over and the primroses began to bloom.冬天一过,迎春花竟相/便朵朵开放。

6)She warmly welcomed her guests in and brought them a cup of tea.她热情地将客人们迎了进来,然后给他们各/每人/一一端一杯水。

7)what you have been looking for, my friend, is the chance to throw yourself into the world of UniversitySocieties, and discover the huge range of activities .我的朋友,你一直在寻找的就是将你自己投身到大学社团中的机会,去发现丰富多彩的、各种各种的活动。

IBM Cognos Transformer V11.0 用户指南说明书

IBM Cognos Transformer V11.0 用户指南说明书
Dimensional Modeling Workflow................................................................................................................. 1 Analyzing Your Requirements and Source Data.................................................................................... 1 Preprocessing Your ...................................................................................................................... 2 Building a Prototype............................................................................................................................... 4 Refining Your Model............................................................................................................................... 5 Diagnose and Resolve Any Design Problems........................................................................................ 6

结构设计常用专业英语

结构设计常用专业英语

结构设计常用专业英语词汇汇编Chapter 1 Loads and Action (1)第一章荷载与作用 (1)Chapter 2 Seismic Design (8)第二章抗震设计 (8)Chapter 3 Foundation (14)第三章地基基础 (14)Chapter 4 Reinforcement Concrete (22)第四章钢筋混凝土结构 (22)Chapter 5 Steel Structure (28)第五章钢结构 (28)Chapter 6 Composite Structure (37)第六章组合结构 (37)Chapter 7 Masonry Structure (40)第七章砌体结构 (40)Chapter 8 Others (42)第八章其它 (42)第一章荷载与作用 (43)Chapter 1 Loads and Action (43)第二章抗震设计 (50)Chapter 2 Seismic Design (50)第三章地基基础 (56)Chapter 3 Foundation (56)第四章钢筋混凝土结构 (65)Chapter 4 Reinforcement Concrete (65)第五章钢结构 (71)Chapter 5 Steel Structure (71)第六章组合结构 (80)Chapter 6 Composite Structure (80)第七章砌体结构 (83)Chapter 7 Masonry Structure (83)第八章其它 (85)Chapter 8 Others (85)上册Chapter 1 Loads and Action 第一章荷载与作用Chapter 2 Seismic Design第二章抗震设计Chapter 3 Foundation 第三章地基基础Chapter 4 Reinforcement Concrete第四章钢筋混凝土结构Chapter 5 Steel Structure第五章钢结构Chapter 6 Composite Structure第六章组合结构Chapter 7 Masonry Structure第七章砌体结构Chapter 8 Others 第八章其它下册第一章荷载与作用Chapter 1 Loads and Action。

传热学专业英语词汇

传热学专业英语词汇

Chapter 1 Thermodynamics and Heat Transfer主要内容:heat (thermal energy)、heat transfer、thermodynamics、total amount of heat transfer、heat transfer rate、heat flux、conduction、convection、radiation:1) The first law of thermodynamics (conservation of energy principle)2) Heat balance equation: a) closed system; b) open system (steady-flow)3) Fourier’s law of heat conduction4) Newton’s law of cooling5) Stefan-Boltzmann law主要专业词汇heat transfer 传热、热传递、传热学 thermodynamics热力学caloric 热素specific heat 比热 mass flow rate 质量流率latent heat 潜热 sensible heat 显热 heat flux 热流密度heat transfer rate热流量total amount of heat transfer 总热量conduction导热 convection对流 radiation 辐射thermal conductivity 热导率 thermal diffusivity 热扩散率convection/combined heat transfer coefficient 对流/综合换热系数emissivity 发射率 absorptivity 吸收率simultaneous heat transfer 复合换热Chapter 2 Heat Conduction Equation主要内容:temperature field、temperature gradient、heat generation、initial condition、boundary condition、steady\transient heat transfer、uniform\nonuniform temperature distribution:1) Fourier’s law of heat conduction (§2-1)v1.0 可编辑可修改2) Heat conduction equation (inrectangular\cylindrical\spherical coordinates) (§2-2、§2-3)3) Boundary conditions: (§2-4)a)Specified temperature B. C.b) Specified heat flux B. C. [special case(dt/dx=0):insulation、thermal symmetry];c) Convection .d) Radiation .e) Interface .4) Average thermal conductivity k ave (§2-7)5) Solution of one-dimensional, steady heat conduction inplane walls、cylinders and spheres (k =const):a) no heat generation, specified .: T(x) or T(r) (§2-5)Q(x) or Q(r), Q=constb) with heat generation, Specified . or Convection . :(§2-6)∆T max=T o-T s= gs2/2nk ; q(x)=gx/n; T s=T+gs/nhcharacteristic length S, shape factor n:plane walls — s = L (half thickness), n = 1cylinders ——s =r o, n = 2spheres ——s =r o, n =3: Solve a heat transfer problem1) Mathematical formulation (differential equation & .)2) General solution of equation3) Application of Unique solution of the problem主要专业词汇temperature field\distribution温度场\分布 temperature gradient温度梯度heat generation热生成(热源) initial\boundary condition 初始\边界条件transient heat transfer瞬态(非稳态)传热 isothermal surface 等温面Heat conduction differential equation 导热微分方程trial and error method试算法iterate迭代convergence 收敛Chapter 3 Steady Heat Conduction主要内容:multilayer\composite wall overall heat transfer coefficient U thermal resistance R t thermal contact resistance R c critical radius of insulation R crfin efficiency fin effectiveness:Multiplayer plane wall、cylinders and spheres:Fin: fin equation——refer to the attachment.1) Uniform cross-section: refer to the attachment.2) Varying cross-section: refer to the attachment.主要专业词汇thermal resistance热阻 parallel 并联 in series串联thermal contact resistance 接触热阻 composite wall 复合壁面thermal grease 热脂 cross-section 横截面 temperature execess 过余温度hyperbolic 双曲线的 exponent 指数fin 肋(翅)片 fin base 肋基 fin tip 肋端fin efficiency 肋效率 fin effectiveness 肋片有效度Chapter 4 Transient Heat Conduction主要内容:lumped system analysis characteristic length (L c=V/A)Biot number (Bi=hL c /k) Fourier number ( τ = at/L):Bi≤0, lumped system analysis (§4-1)Bi>0, Heisler/Grober charts OR analytical expressions 1-D:a) infinite large plane walls, long cylinders and spheres (§4-2)b) semi-infinite solids (§4-3)multidimensional: product solution (§4-4)主要专业词汇lumped system analysis 集总参数法 characteristic length 特征长度(尺寸)dimension 量纲 nondimensionalize 无量纲化 dimensionless quantity 无量纲量semi-infinite solid 半无限大固体 complementary error function 误差余函数series 级数 production solution 乘积解Chapter 5 Numerical Methods in Heat Conduction主要内容:control volume (energy balance) method、 finite difference method、discretization、 node、space step、time step、mesh Biot number、mesh Fourier number、mirror image concept、explicit/implicit method、stability criterion (primary coefficients 0) Numerical error: 1) discretization/truncation error; 2) round-off error:Numerical solution:1) Discretization in space and time (x, t);2) Build all nodes’finite difference formulations (including interior and boundary nodes);difference methodbalance method . Control Volume method)3) Solution of nodal difference eqs. of heat conduction;method: Gaussian Eliminationmethod: Gauss-Seidel iteration主要专业词汇control volume 控制容积 finite difference有限差分Taylor series expression泰勒级数展开式mirror image concept 镜像法 Elimination method 消元法direct/iterative method 直接/迭代方法 explicit/implicit method 显式/隐式格式stability criterion 稳定性条件 primary coefficients 主系数unconditionally 无条件地 algebraic eq. 代数方程discretization/truncation error 离散/截断误差 round-off error 舍入误差Chapter 6、7 Forced Convection and NaturalConvection主要内容:Nu、Re、Gr、PrForce/natural convection、external/internal flow、velocity/thermal boundary layerflow regimes、laminar/turbulent flowhydrodynamic/thermal entry region、fully developed regionCritical Reynolds Number (Re c)、hydraulic diameter (D h)、film temperature (T f)、bulk mean fluid temperature (T b)logarithmic mean temperature difference ( T ln)volume expansion coefficient (β= 1/T)effective thermal conductivity (K eff = K Nu):Drag force :F D = C f AρV2/2Heat transfer rate:Q = hA(T s-T)3.Typical Convection Phenomena:1) Forced convection:external flow——flow over flat plates (§6-4)——flow across cylinders and spheres (§6-5)internal flow——flow in tubes (§6-6)2) Natural convection: flow over surfaces (§7-2)flow inside enclosures (§7-3)主要专业词汇Force/natural convection 自然/强制对流 laminar/turbulent flow 层/湍流boundary layer 边界层 laminar sublayer 层流底层 buffer layer 缓冲层transition region 过渡区 flow regimes 流态inertia/viscous force 惯性/粘性力 shear stress 剪切应力friction/drag coefficient 摩擦/阻力系数 friction factor 摩擦因子dynamic/kinematic viscous 动力/运动粘度wake 尾流 stagnation point 滞止点 flow separation 流体分离vortex 漩涡 rotational motion 环流 velocity fluctuation 速度脉动hydrodynamic 水动力学的 hydraulic diameter 水力直径fully developed region 充分发展段 volume flow rate 体积流量arithmetic/logarithmic mean temperature difference 算术/对数平均温差volume expansion coefficient 体积膨胀系数interferometer 干涉仪 asymptotic渐近线的effective thermal conductivity 有效热导率analogical method 类比法 integral approach 积分近似法order of magnitude analysis 数量级分析法 similarity principle 相似原理Chapter 9 Radiation Heat Transfer主要内容:black body、gray body、diffuse surface、emissive power (E)emissivity (ε)、absorptivity (α)、reflectivity (ρ)、transmissivity (τ) irradiation(G)、radiosity(J)、reradiating(adiabatic) surfaceview factor (F ij)、radiation network、space resistance、surface resistance radiation shieldgas radiation、transparent medium to radiation、absorbing and transmitting medium:Blackbody: (1) Plank’s law(2) Stefan-Boltzmann’s law(3) Wien’s displacement lawGraybody: (4) Kirchhoff’s lawActual body:E (T) = ε E b(T) = εσT4 W/m2Gas: (5) Beer’s law3.Calculation:1) View factor:reciprocity/summation/superposition/symmetry Rulecrossed-strings method2) Radiation heat transfer:Radiation networkOpen system: between two surface . two large parallel plates) Enclosure: 2-surface enclosure;3-surface enclosureRadiation shield主要专业词汇thermal radiation热辐射、quantum theory量子理论、index of refraction 折射系数electromagnetic wave/spectrum 电磁波/波谱、ultraviolet (UV) rays紫外线、infrared (IR) rays 红外线absorptivity 吸收率、reflectivity 反射率、transmissivity 透射率、emissivity (ε) 发射率(黑度)、specular/diffuse reflection 镜反射/漫反射irradiation (incident radiation) 投入辐射、radiosity 有效辐射spectral/directional/total emissive power单色/定向/总辐射力fraction of radiation energy 辐射能量份额(辐射比)、blackbody radiation function 黑体辐射函数view factor 辐射角系数、crossed-strings method交叉线法、reciprocity/summation/superposition/symmetry Rule相互/完整/和分/对称性net radiation heat transfer 净辐射热流量radiation network 辐射网络图、space/surface radiation resistance 空间/表面辐射热阻、reradiating surface重辐射面、adiabatic 绝热的radiation shield遮热板transparent medium to radiation辐射透热体、absorbing and transmitting medium吸收-透过性介质Chapter 10 Heat Exchangers主要内容:heat exchanger type---- double-pipe、compact、shell-and-tube、plate-and-frame、regenerative heat exchangerparallel/counter/cross/multipass flowoverall heat transfer coefficient (U) fouling factor (R f)heat capacity rate capacity rationlog mean temperature difference (ΔT lm)heat transfer effectiveness (ε)number of transfer units (NTU):1) heat balance eq.: Q = C h (T h,in - T h,out)=C c(T c,out - T c,in)2) heat transfer eq.: Q = UAΔT lm ( LMTD method)or Q = εQ max = εC min (T h,in C T c,in) ( ε-NTU method) 3.Methods:1) LMTD Method:select a heat exchangerKnown: C h、C c、3‘T’Predict: 1‘T’、Q、A2) ε-NTU Method:evaluate the performance of a specified heat exchangerKnown: C h、C c、UA、T h,in、T c,inPredict: Q、T h,out、T c,out主要专业词汇double-pipe/compact/shell-and-tube/plate-and-frame/regenerative heat exchanger套管式/紧凑式/壳管式/板式/蓄热(再生)式换热器parallel/counter/cross/multipass flow 顺流/逆流/叉流/多程流area density 面积密度tube/shell pass 管程/壳程 static/dynamic type 静/动态型baffle 挡板 header 封头 nozzle管嘴 guide bar 导向杆 porthole 孔口gasket 垫圈 lateral 侧面的/横向的fouling factor 污垢因子 heat capacity rate 水当量heat transfer effectiveness (ε) 传热有效度number of transfer units (NTU) 传热单元数。

传热学专业英语词汇

传热学专业英语词汇

Chapter 1 Thermodynamics and Heat Transfer 主要内容1.Concepts:heat (thermal energy)、heat transfer、thermodynamics、total amount of heat transfer、heat transfer rate、heat flux、conduction、convection、radiation2.Equations:1) The first law of thermodynamics (conservation of energy principle)2) Heat balance equation: a) closed system; b) open system (steady-flow)3) Fourier’s law of heat conduction4) Newton’s law of cooling5) Stefan-Boltzmann law主要专业词汇heat transfer 传热、热传递、传热学thermodynamics热力学caloric 热素specific heat 比热mass flow rate 质量流率latent heat 潜热sensible heat 显热heat flux热流密度heat transfer rate热流量total amount of heat transfer总热量conduction导热convection对流radiation辐射thermal conductivity 热导率thermal diffusivity 热扩散率convection/combined heat transfer coefficient 对流/综合换热系数emissivity 发射率absorptivity 吸收率simultaneous heat transfer 复合换热Chapter 2 Heat Conduction Equation主要内容1.Concepts:temperature field、temperature gradient、heat generation、initial condition、boundary condition、steady\transient heat transfer、uniform\nonuniform temperature distribution2.Equations:1) Fourier’s law of heat conduction (§2-1)2) Heat conduction equation (inrectangular\cylindrical\spherical coordinates) (§2-2、§2-3)3) Boundary conditions: (§2-4)a)Specified temperature B. C.b) Specified heat flux B. C. [special case(dt/dx=0):insulation、thermal symmetry];c) Convection B.C.d) Radiation B.C.e) Interface B.C.4) Average thermal conductivity k ave(§2-7)5) Solution of one-dimensional, steady heat conduction inplane walls、cylinders and spheres (k =const):a) no heat generation, specified B.C.: T(x) or T(r) (§2-5)Q(x) or Q(r), Q=constb) with heat generation, Specified B.C. or Convection B.C. : (§2-6)∆T max=T o-T s= gs2/2nk ; q(x)=gx/n; T s=T + gs/nh characteristic length S, shape factor n:plane walls —s = L (half thickness), n = 1cylinders ——s =r o, n = 2spheres ——s =r o, n =33.Methods: Solve a heat transfer problem1) Mathematical formulation (differential equation & B.C.)2) General solution of equation3) Application of B.C.s4) Unique solution of the problem主要专业词汇temperature field\distribution温度场\分布temperature gradient温度梯度heat generation热生成(热源)initial\boundary condition初始\边界条件transient heat transfer瞬态(非稳态)传热isothermal surface 等温面Heat conduction differential equation 导热微分方程trial and error method试算法iterate迭代convergence 收敛Chapter 3 Steady Heat Conduction主要内容1.Concepts:multilayer\composite wall overall heat transfer coefficient Uthermal resistance R t thermal contact resistance R c critical radius of insulation R crfin efficiency fin effectiveness2.Equations:✓Multiplayer plane wall、cylinders and spheres:✓Fin: fin equation——refer to the attachment.1) Uniform cross-section: refer to the attachment.2) Varying cross-section: refer to the attachment.主要专业词汇thermal resistance热阻parallel 并联in series串联thermal contact resistance 接触热阻composite wall 复合壁面thermal grease 热脂cross-section 横截面temperature execess 过余温度hyperbolic 双曲线的exponent 指数fin 肋(翅)片fin base 肋基fin tip 肋端fin efficiency 肋效率fin effectiveness 肋片有效度Chapter 4 Transient Heat Conduction主要内容1.Concepts:lumped system analysis characteristic length (L c=V/A)Biot number (Bi=hL c /k) Fourier number ( τ = at/L)2.Equations:●Bi≤0, lumped system analysis (§4-1)●Bi>0, Heisler/Grober charts OR analytical expressions1-D:a) infinite large plane walls, long cylinders and spheres (§4-2)b) semi-infinite solids (§4-3)multidimensional: product solution (§4-4)主要专业词汇lumped system analysis 集总参数法characteristic length 特征长度(尺寸)dimension 量纲nondimensionalize 无量纲化dimensionless quantity 无量纲量semi-infinite solid 半无限大固体complementary error function 误差余函数series 级数production solution 乘积解Chapter 5 Numerical Methods in Heat Conduction主要内容1.Concepts:control volume (energy balance) method、finite difference method、discretization、node、space step、time step、mesh Biot number、mesh Fourier number、mirror image concept、explicit/implicit method、stability criterion (primary coefficients ≥0)Numerical error: 1) discretization/truncation error; 2) round-off error2.Methods:Numerical solution:1) Discretization in space and time (∆x, ∆t);2) Build all nodes’finite difference formulations (including interior and boundary nodes);i.Finite difference methodii.Energy balance method (i.e.Control Volume method)3) Solution of nodal difference eqs. of heat conduction;i.Direct method: Gaussian Eliminationii.Iterative method: Gauss-Seidel iteration主要专业词汇control volume 控制容积finite difference有限差分Taylor series expression泰勒级数展开式mirror image concept 镜像法Elimination method 消元法direct/iterative method 直接/迭代方法explicit/implicit method 显式/隐式格式stability criterion 稳定性条件primary coefficients 主系数unconditionally 无条件地algebraic eq. 代数方程discretization/truncation error 离散/截断误差round-off error 舍入误差Chapter 6、7 Forced Convection and NaturalConvection主要内容1.Concepts:Nu、Re、Gr、PrForce/natural convection、external/internal flow、velocity/thermal boundary layerflow regimes、laminar/turbulent flowhydrodynamic/thermal entry region、fully developed regionCritical Reynolds Number (Re c)、hydraulic diameter (D h)、film temperature (T f)、bulk mean fluid temperature (T b)logarithmic mean temperature difference ( T ln)volume expansion coefficient (β= 1/T)effective thermal conductivity (K eff = K Nu)2.Equations:Drag force :F D = C f AρV2/2Heat transfer rate:Q = hA(T s-T )3.Typical Convection Phenomena:1) Forced convection:external flow——flow over flat plates (§6-4)——flow across cylinders and spheres (§6-5)internal flow——flow in tubes (§6-6)2) Natural convection:flow over surfaces (§7-2)flow inside enclosures (§7-3)主要专业词汇Force/natural convection 自然/强制对流laminar/turbulent flow 层/湍流boundary layer 边界层laminar sublayer 层流底层buffer layer 缓冲层transition region 过渡区flow regimes 流态inertia/viscous force 惯性/粘性力shear stress 剪切应力friction/drag coefficient 摩擦/阻力系数friction factor 摩擦因子dynamic/kinematic viscous 动力/运动粘度wake 尾流stagnation point 滞止点flow separation 流体分离vortex 漩涡rotational motion 环流velocity fluctuation 速度脉动hydrodynamic 水动力学的hydraulic diameter 水力直径fully developed region 充分发展段volume flow rate 体积流量arithmetic/logarithmic mean temperature difference 算术/对数平均温差volume expansion coefficient 体积膨胀系数interferometer 干涉仪asymptotic渐近线的effective thermal conductivity 有效热导率analogical method 类比法integral approach 积分近似法order of magnitude analysis 数量级分析法similarity principle 相似原理Chapter 9 Radiation Heat Transfer主要内容1.Concepts:black body、gray body、diffuse surface、emissive power (E)emissivity (ε)、absorptivity (α)、reflectivity (ρ)、transmissivity (τ) irradiation(G)、radiosity(J)、reradiating(adiabatic) surfaceview factor (F ij)、radiation network、space resistance、surface resistance radiation shieldgas radiation、transparent medium to radiation、absorbing and transmitting mediumws:Blackbody:(1) Plank’s law(2) Stefan-Boltzmann’s law(3) Wien’s displacement lawGraybody:(4) Kirchhoff’s lawActual body:E (T) = εE b(T) = εσT4W/m2Gas:(5) Beer’s law3.Calculation:1) View factor:reciprocity/summation/superposition/symmetry Rulecrossed-strings method2) Radiation heat transfer:Radiation networkOpen system:between two surface (e.g. two large parallel plates) Enclosure:2-surface enclosure;3-surface enclosureRadiation shield主要专业词汇thermal radiation热辐射、quantum theory量子理论、index of refraction 折射系数electromagnetic wave/spectrum 电磁波/波谱、ultraviolet (UV) rays紫外线、infrared (IR) rays 红外线absorptivity 吸收率、reflectivity 反射率、transmissivity 透射率、emissivity (ε) 发射率(黑度)、specular/diffuse reflection 镜反射/漫反射irradiation (incident radiation) 投入辐射、radiosity 有效辐射spectral/directional/total emissive power单色/定向/总辐射力fraction of radiation energy 辐射能量份额(辐射比)、blackbody radiation function 黑体辐射函数view factor 辐射角系数、crossed-strings method交叉线法、reciprocity/summation/superposition/symmetry Rule相互/完整/和分/对称性net radiation heat transfer 净辐射热流量radiation network 辐射网络图、space/surface radiation resistance 空间/表面辐射热阻、reradiating surface重辐射面、adiabatic 绝热的radiation shield遮热板transparent medium to radiation辐射透热体、absorbing and transmitting medium吸收-透过性介质Chapter 10 Heat Exchangers主要内容1.Concepts:heat exchanger type---- double-pipe、compact、shell-and-tube、plate-and-frame、regenerative heat exchangerparallel/counter/cross/multipass flowoverall heat transfer coefficient (U) fouling factor (R f)heat capacity rate capacity rationlog mean temperature difference (ΔT lm)heat transfer effectiveness (ε)number of transfer units (NTU)2.Equations:1) heat balance eq.: Q = C h (T h,in - T h,out)=C c(T c,out - T c,in)2) heat transfer eq.: Q = UAΔT lm( LMTD method)or Q = εQ max = εC min (T h,in ?C T c,in) ( ε-NTU method) 3.Methods:1) LMTD Method:select a heat exchangerKnown: C h、C c、3‘T’Predict: 1‘T’、Q、A2) ε-NTU Method:evaluate the performance of a specified heat exchangerKnown: C h、C c、UA、T h,in、T c,inPredict: Q、T h,out、T c,out主要专业词汇double-pipe/compact/shell-and-tube/plate-and-frame/regenerative heat exchanger套管式/紧凑式/壳管式/板式/蓄热(再生)式换热器parallel/counter/cross/multipass flow 顺流/逆流/叉流/多程流area density 面积密度tube/shell pass 管程/壳程static/dynamic type 静/动态型baffle 挡板header 封头nozzle管嘴guide bar 导向杆porthole 孔口gasket 垫圈lateral 侧面的/横向的fouling factor 污垢因子heat capacity rate 水当量heat transfer effectiveness (ε) 传热有效度number of transfer units (NTU) 传热单元数。

机械CADChapter 4 Modelling of Solids

机械CADChapter 4  Modelling of Solids

A solid model contains both the geometry data and topological data. Topological data describe the connectivity and associability of the object entities. Solid model generation is often not unique, that is, there are often several different ways to create a solid model. CAD users need to generate solid models which can make the computer storage small and suited for later utilize.
①Domain:
While no representation can describe all possible solids, a representation should be able to represent a useful set of geometric objects. Domain should give a useful set of physical objects that can be represented.
Boundary representation (B-rep) and Constructive Solid Geometry (CSG) are two most popular schemes for solid modeling. B-reps are based on the topological notion that an object is bounded by faces. CSG is based on that an object can be divided into a set of primitives. Table 4.1 shows some widely used CAD systems.

小学上册B卷英语第三单元自测题(有答案)

小学上册B卷英语第三单元自测题(有答案)

小学上册英语第三单元自测题(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1. A hamster sleeps in a cozy ______ (窝).2.I planted ______ (花) in my garden. I hope they bloom ______ (快).3.The __________ is a famous mountain in the United States. (洛基山)4.My guinea pig loves to eat _______ (新鲜的) vegetables.5.What is the name of the famous ancient city in Jordan?A. PetraB. BabylonC. AthensD. Rome答案:A6.The __________ (历史的洞察) opens eyes.7.aust was a tragic event in _____ history. The Inca8.I enjoy ______ in the sunshine. (playing)9.The first successful test of an atomic bomb was in _______.10.What is the name of the famous musician known as the "King of Pop"?A. Elvis PresleyB. Michael JacksonC. MadonnaD. Prince答案:B11.y of Tordesillas divided the New World between ________ (西班牙和葡萄牙). The Trea12.The boiling point of water is __________ degrees Celsius.13.The plant needs more ___ (water).14.The flower pot is ______ (colorful) and bright.15.My dad is my strong _______ who helps me overcome challenges.16.I want to grow a ________ that smells nice.17.The skunk's spray is a powerful ________________ (防御).18.t brothers' first flight took place in ________ (北卡罗来纳州). The ___19. A __________ is a reaction that absorbs heat.20.How many days are in a leap year?A. 365B. 366C. 367D. 364答案:B21.The first successful composite transplant was performed in ________.22.Which animal is known for building dams?A. BeaverB. OtterC. SquirrelD. Rabbit答案: A23. A ______ (园艺) hobby can be rewarding.24.I want to create a ________ with my toys.25.The asteroid belt is located between Mars and _______.26.历史上,________ (innovations) 常常引领着社会的变革。

材料科学与工程课堂PPT

材料科学与工程课堂PPT

(7.15)
Section 7.7
Furthermore, it is occasionally more convenient to represent strain as true strain T, defined by
(7.16)
If no volume change occurs during deformation, that is, if
前面内容 总结复习
固体中的原子有序 (Perfections in Solids) 固体中的原子无序 (Imperfections in Solids) 固体中的转变 (Transformations in Solids) 固体物质的表面结构 (Surface Structures of Solid Materials)
A standard tensile specimen
23
Sometimes it is more meaningful to use a true stress–true strain scheme. True stress T is defined as the load F divided by the instantaneous cross-sectional area Ai over which deformation is occurring (i.e., the neck, past the tensile point), or
Ai li = A0l0
(7.17)
true and engineering stress and strain are related according to
(7.18a) (7.18b)
Equations 7.18a and 7.18b are valid only to the onset of necking; beyond this point

小学上册第13次英语第3单元真题(有答案)

小学上册第13次英语第3单元真题(有答案)

小学上册英语第3单元真题(有答案)英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.ts can grow in _____ (水) like lotus. Some pla2.The flower blooms in the ______.3.Which of these is an insect?A. DogB. CatC. AntD. Rabbit答案:C Ant4.The __________ (历史的回想) brings clarity.5.Earth's atmosphere protects us from ______.6.Gases have a ______ density compared to solids and liquids.7.ssance brought new ideas in __________ (艺术). The Rena8.I like to eat ________ (水果) every day.9.I like to feed the _______ in the park (我喜欢在公园里喂_______).10. A __________ is a reaction that occurs slowly over time.11. A chipmunk stores ______ (食物) for winter.12.I love to go ______ (露营) in the summer.13.The _______ (World Health Organization) focuses on global health issues.14.The children are ___ a game. (playing)15.My brother loves to __________ (学习) about different cultures.16. A ______ is a systematic method for testing hypotheses.17.The _____ (假期) is fun.18. A _____ (狮子) is known as the king of the jungle.19.I love to explore with my __________. (家人)20.What is the opposite of 'big'?A. SmallB. TallC. WideD. Long答案: A21.I love to ______ (探索) the outdoors.22.The ancient __________ (中国) invented gunpowder.23.I saw a ________ perched on a branch.24.I talk to my friends about ____.25.为下列对话选择相符的图片。

赵杰材料科学基础部分课件

赵杰材料科学基础部分课件
复合:间隙原子落入空位,使两者都消失。由于 要求一定温度下的点缺陷平衡浓度保持一定,因此, 又会产生新的间隙原子、空位。
2.1.3 点缺陷的运动与材料行为
● 点缺陷的运动是晶体中原子扩散的主要原因, 是许多材料加工工艺的基础;
● 点缺陷引起材料的物理性能和力学性能的变化, 如电阻的增加
Chapter 2 Imperfections of crystalline solids
柏氏矢量的方向表示位错的性质与取向, 表示位错运动导致晶体滑移的方向; 柏氏矢量的模表示该位错畸变的程度(或称位错的强度), 也可表示该位错导致的晶体滑移的大小; ∣b∣ 位错的畸变能与柏氏矢量的模的平方的大小成正比;E ∝∣b∣2 2) 柏氏矢量的守恒性:柏氏矢量与回路起点及具体途径无关;
3) 一根不分叉的位错线具有唯一的柏氏矢量, 与位错的类型、形状、是否运动无关;
Chapter 2 Imperfections of crystalline solids
2.2.1 位错的基本类型和特征 1 刃型位错(edge dislocation) 1)刃型位错有一个额外的半原子面,如果半原子面在滑移面上面
称为正刃型位错, 记为┴;反之为负刃型位错;
2) 刃型位错线可以理解为已滑移 区和未滑移区的分界线,它不 一定是直线;
dislocation is a linear or one-dimensional defect around which some of the atoms are misaligned 3 面缺陷(planar defects):晶界等 interfacial defects, boundaries, defects that are two dimensional
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Shape Analysis for Holes
Projection Analysis
A composite solid may be considered as an enclose volume by many plane surfaces or curved surfaces. We analyze and identify the space shapes of individual surfaces and their relative locations following the principles of projection. We can further determine the intersection curves or lines.
Relative Position of Adjacent Surfaces
Tangent
Relative Position of Adjacent Surfaces
Intersection
Selection of Front View
The front view is the most important one in the three views since it usually shows the main shape of the composite solid. We usually choose the direction of projection that can mostly appear the important shapes and positions of the solid. The location of the front view should be natural or meet the special machining requirement. We should also consider the sheet of paper and the arrangement of top view and left-side view. The amount of dashed lines in the top view and leftside view should be minimum.
To draw three views of two supporting boards.
An Example of Shape Analysis
To check and darken.
Summery of Shape Analysis
Disassemble the composite solid to its basic geometric members. Analyze the shape and position of every basic member, and indentify the relative position of neighboring surfaces. Draw the three views of all basic members one by one. Modify three views according to the relative position of neighboring surfaces. Check and darken.
An Example of Shape Analysis
This object is composed of one base board, two vertical supporting boards and two short tubes. The Outside surfaces of two supporting board are aligned to the front and rear faces of base board. The left surfaces of two supporting board are tangent to the outside surfaces of two tubes.
Relative Position of Adjacent Surfaces
When two neighboring surfaces are in tangent condition, two surfaces are connected smoothly. So there is no visual boundary between two surfaces and there is no line between their projections. When two neighboring surfaces intersect, the projection of intersection line should be drawn.
An Example of Projection Analysis
Projection analysis can be used to draw the three views of subtraction solid and its procedure is similar to the process of drawing the intersection of planes and a solid. A subtraction solid can be considered as a solid cut by some cutting planes.。
An Example of Shape Analysis
To draw the datum line of each view, including symmetric plane, bottom plane, end faces, axes of revolution, center lines of circle.
Selection of Front View
Which one is the best front view?

Shape Analysis
A composite solid can be imagined to disassemble to individual members. These individual members are used to form the final object and identify the relative position of neighboring surfaces.
Chapter 4
Composite Solids
----Drawing Views
Presented by YANG Zhi-Ling
LOGO
Contents
Configuration of Composite Solids
Relative Positions of Adjacent Surfaces
Exercise of Shape Analysis
①Base board ②Vertical board ③Rib
Aligned surface, no line.
Shape Analysis for Holes
The holes in the composite solid can be considered as an individual virtual object. The intersection of hole and surfaces of other solid should be drawn carefully.
Selection of the Front View
Shape Analysis for Drawing Views
Projection Analysis for Drawing Views
Configuration of Composite Solids
From the view of geometry, all mechanical parts are composed of some basic geometrical bodies, such as columns, cones, spheres, etc. Generally such mechanical parts are called composite solids. Composite solids can be constructed through various Boolean operations, such as union, subtraction (cutting), and integration (hybrid construction).
Union
Subtraction
Integration
Union
Same Axis
Not symmetric Symmetric
Subtraction
_
_
_
=
Relative Position of Adjacent Surfaces
When neighboring parallel planes are aligned, there is no line between their projections in a view. When neighboring parallel planes are not aligned, there should be a line to separate their projection.
An Example of Projection Analysis
School of Energy Power & Mechanical Engineering
LOGO
An Example of Shape Analysis
To draw three views of base board.
相关文档
最新文档