2018-2019学年浙江省绍兴市八年级上册期末数学试卷(含答案解析)

合集下载

浙教版2018-2019学年八年级数学竞赛试卷(含答案)

浙教版2018-2019学年八年级数学竞赛试卷(含答案)

绝密★启用前浙教版2018-2019学年八年级数学竞赛试卷A题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,3*8=24)1.设a=﹣(﹣2)2,b=﹣(﹣3)3,c=﹣(﹣42),则﹣[a﹣(b﹣c)]=()A.15 B.7 C.﹣39 D.472.方程的解是x=()A.B.﹣C.D.﹣3.以下三个判断中,正确的判断的个数是()(1)x2+3x﹣1=0,则x3﹣10x=﹣3(2)若b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,则a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11 (3)若a2=a1q,a3=a2q,a4=a3q,则a1+a2+a3+a4=(q≠1)A.0 B.1 C.2 D.34.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36 B.32 C.30 D.285.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.B.C.D.以上都不对6.把红珠、蓝珠各四颗串成一条(项链可以旋转,翻转),则实质不同的串法数是()A.6 B.7 C.8 D.107.能整除任意5个连续整数之和的最大整数是()A.1 B.2 C.3 D.58.一个屏幕封闭图形,只要有一条边不是直线段,就称为曲边形,例如圆、弓形、扇形等都是曲边形,则如图中,可以数出()个不同的曲边形.A.42 B.36 C.30 D.28第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)9.已知a﹣b=4,ab+c2+4=0,则a+b+c的值为.10.已知,则的值为.11.在平面直角坐标系中,点P[m(m+1),m﹣1](m为实数)不可能在第象限.12.有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是.13.如图,P是平行四边形ABCD内一点,且S△P AB=5,S△P AD=2,则阴影部分的面积为.14.若10个数据的平均数是,平方和是10,则方差是.15.若直线323x+457y=1103与直线177x+543y=897的交点坐标是(a,b),则a2+2004b2的值是.16.某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金元.评卷人得分三.解答题(共4小题,52分)17.(10分)已知关于x、y的方程组:,求出所有整数a,使得方程组有整数解(即x、y都是整数),并求出所有的整数解.18.(12分)求出所有的正整数n,使得12+22+32+42+…+n2﹣(n+1)2﹣(n+2)2﹣(n+3)2﹣…﹣(2n﹣1)2﹣(2n)2=﹣10115.(参考公式:1+2+3+4+…+n=)19.(15分)某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.根据上表的表格中的数据,求a、b、c.20.(15分)如图,把一张长10cm,宽8cm的长方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使无盖长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你认为折合而成的无盖长方体盒子的侧面积有可能等于52cm2吗?请说明理由;(3)如果把长方形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,那么它的侧面积(指的是高为剪去的正方形边长的长方体的侧面积)可以达到30cm2吗?请说明理由.参考答案与试题解析1.解:a=﹣(﹣2)2=﹣4,b=﹣(﹣3)3=27,c=﹣(﹣42)=16,∴﹣[a﹣(b﹣c)],=﹣[﹣4﹣(27﹣16)],=15.故选:A.2.解:移项合并同类项得:﹣[﹣(﹣1﹣x)﹣]=,∴﹣(﹣1﹣x)﹣=﹣,移项合并同类项得:﹣(﹣1﹣x)=,∴﹣1﹣x=﹣,∴x=﹣,故选:D.3.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.4.解:①∵DE,EF,FD为等边△ABC三条中位线,∴AB=AC=BC,∴EF AB,ED AC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选:C.5.解:∵3a+2b=2c+3d,∵a>d,∴2a+2b<2c+2d,∴a+b<c+d,∴<,即>,故选:B.6.解:①第一个●和第二个●两珠间隔0个蓝珠,即●●…;②第一个●和第二个●两珠间隔1个蓝珠,即●○●…;③第一个●和第二个●两珠间隔2个蓝珠,即●○○●…;④第一个●和第二个●两珠间隔3个蓝珠,即●○○○●…;⑤第一个●和第二个●两珠间隔4个蓝珠,即●○○○○●…;⑥第二个●和第三个●两珠间隔2个蓝珠,即●●○○…;⑦第二个●和第三个●两珠间隔3个蓝珠,即●●○○○…;⑧第二个●和第三个●两珠间隔4个蓝珠,即●●○○○○••;∵项链可以旋转,翻转,∴第三个●和第四个●两珠间隔珠的情况和第一和第二红珠间隔相同,以此类推…∴共8种方法.故选:C.7.解:设五个连续整数分别为a﹣2,a﹣1,a,a+1,a+2,所以这五个数的和为a﹣2+a﹣1+a+a+1+a+2=5a,因为5a是5的倍数,所以不论a为何值,五个连续整数的和都可以被5整除.故选:D.8.解:数曲边形,一定要有弧,五角星把圆周分成5个弧,我们按含有1个弧、2个弧、…、5个弧来分类,仅含1个弧有两种情况,每种情况按5个弧转一圈各有5个曲边形,共有5+5个;仅含2个弧可以分相连和不相连2种情况,相连的2个弧,按5个弧转一圈有5个曲边形;不相连的2个弧,似乎又有2种情况,按5个弧转一圈各有5个曲边形,但实际上转圈数时这两种情况是重复的,故不相连的2个弧可数出5个曲边形;仅含3个弧可以分相连和不相连2种情况,每种情况按5个弧转一圈可数出有5个曲边形,共有5+5个;仅含4个弧的情况,每种情况按5个弧转一圈可数出有5个曲边形;含全部5个弧的情况,1个曲边形.综上,一共有5+5+5+5+5+5+5+1=36个.故选:B.9.解:∵a﹣b=4,∴a=b+4,代入ab+c2+4=0,可得(b+4)b+c2+4=0,(b+2)2+c2=0,∴b=﹣2,c=0,∴a=b+4=2.∴a+b+c=0.故答案为:0.10.解:根据非负数性质可知a﹣1=0且ab﹣2=0解得a=1 b=2则原式=裂项得;故答案为11.解:(1)当m(m+1)>0时,有或,所以m>0或m<﹣1,因此m﹣1>﹣1或m﹣1<﹣2,即P[m(m+1),m﹣1]可能经过第一或四象限.(2)当m(m+1)<0时,有或,所以﹣1<m<0,因此﹣2<m﹣1<﹣1,即P[m(m+1),m﹣1]经过第三象限.综合得,P[m(m+1),m﹣1]不经过第二象限.12.解:设标准时间经过了x分钟,则57:60=380:x.解得x=400.400分钟合6小时40分钟,再加4小时30分钟=11小时10分钟.所以准确时间应该是11:10.故应填:11:10.13解:∵S△P AB+S△PCD=S▱ABCD=S△ACD,∴S△ACD﹣S△PCD=S△P AB,则S△P AC=S△ACD﹣S△PCD﹣S△P AD,=S△P AB﹣S△P AD,=5﹣2,=3.故答案为:3.14.解:方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2﹣2(x1+x2+…+x n)+n2]=[x12+x22+…+x n2﹣2×n+n2]=[x12+x22+…+x n2]﹣2=×10﹣()2=.故填.15.解:把323x+457y=1103与177x+543y=897联立,解得,∴a=2,b=1,因此a2+2004b2=2008.故答案为:2008.16.解:设该校去参加春游的人数为a人,则有,解得:a=270设租用45座客车x辆,则租用60座客车(x+1)辆,由题意若单独租45座客车需要270÷45=6辆,租金250×6=1500元,若单独租60座客车需要(270+30)÷60=5辆,租金300×5=1500元,则有:,解得:2≤x<∵x为正整数∴x=2即租45座客车2辆,60座客车3辆,此时租金为:250×2+300×3=1400(元).故答案为270,1400.17.解:解原方程组得,,假设x=1时,可求得a=﹣7,y=﹣1;同样设x为其他整数,a、y的值都不能为整数,∴原方程组的整数解为.18.解:原式可化为:12﹣(n+1)2+22﹣(n+2)2+…n2﹣(2n)2=﹣10115,﹣n(n+2)﹣n(n+4)﹣n(n+6)﹣…﹣n(3n)=﹣10115,﹣n(n+2+n+4+n+6+…+3n﹣2+3n)=﹣10115,﹣n3﹣2n(1+2+3+…+n)=﹣10115,﹣n3﹣2n()=﹣10115,2n3+n2=10115∴n=17.19.解:设每月用水量为xm3,支付水费为y元.则y=,由题意知:0<c≤5∴8<8+c≤13从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得解得b=2,2a=c+19 ⑤再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9﹣a)+c,即2a=c+17 ⑥⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.答:a=10,b=2,c=1.20.解:(1)设剪去的正方形边长为xcm,由题意,得(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0解得x1=8(不合题意,舍去),x2=1.∴剪去的正方形的边长为1cm.…(2分)(2)折合而成的无盖长方体盒子的侧面积不可能等于52 cm2,理由如下:设剪去的正方形边长为xcm,由题意,得2[x(10﹣2x)+x(8﹣2x)]=52…(2分)整理得2x2﹣9x+13=0∵△=b2﹣4ac=81﹣4×2×13<0,∴原方程没有实数解.即折合而成的无盖长方体盒子的侧面积不可能等于52 cm2.…(2分)(3)设剪去的正方形边长为xcm,若按图1所示的方法剪折,解方程,得该方程没有实数解.…(3分)若按图2所示的方法剪折,解方程,得.∴当按图2所示的方法剪去的正方形边长为cm或3cm时,能使得到的有盖长方体盒子的侧面积达到30 cm2.…(3分)。

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.下列说法正确的是()A. 负数没有倒数B. 正数的倒数⽐⾃⾝⼩C. 任何有理数都有倒数D. 的倒数是2.下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有()A. 1个B. 2个C. 3个D. 4个3.在国家“⼀带⼀路”战略下,我国与欧洲开通了互利互惠的中欧班列.⾏程最长,途经城市和国家最多的⼀趟专列全程长13000km,将13000⽤科学记数法表⽰应为()A. B. C. D.4.若|b+2|与(a-3)2互为相反数,则b a的值为()A. B. C. D. 85.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A. 互为相反数B. 互为倒数C. 相等D. ⽆法确定6.下列计算正确的是()A. B. C. D.7.若⽅程(a+3)x|a|-2+6=0是关于x的⼀元⼀次⽅程,则a的值是()A. 3B.C.D.8.甲计划⽤若⼲个⼯作⽇完成某项⼯作,从第⼆个⼯作⽇起,⼄加⼊此项⼯作,且甲、⼄两⼈⼯作效率相同,结果提前3天完成任务,则甲计划完成此项⼯作的天数是()A. 5B. 6C. 7D. 89.某⼈沿电车路线⾏⾛,每隔12分钟有⼀辆电车从后⾯开来,每隔4分钟有⼀辆电车迎⾯开来,假设此⼈和电车都是匀速前进,车站的发车时间间隔相同,则发车时间间隔为()A. 6分钟B. 12分钟C. 8分钟D. 4分钟10.某企业接到为地震灾区⽣产活动房的任务,此企业拥有九个⽣产车间,现在每个车间原有的成品活动房⼀样多,每个车间的⽣产能⼒也⼀样.有A、B两组检验员,其中A组有8名检验员前两天时间将第⼀、⼆车间的所有成品(原来的和这两天⽣产的)检验完毕后,再去检验第三、四车间所有成品,⼜⽤去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度⼀样快,那么B组检验员⼈数为()A. 8⼈B. 10⼈C. 12⼈D. 14⼈⼆、填空题(本⼤题共10⼩题,共30.0分)11.的倒数是______.12.的平⽅根为______.13.3x m y4与x3y n是同类项,则2m-n=______.14.对于任意不相等的两个数a,b,定义⼀种运算*如下:a*b=,如3*2==,那么12*(3*1)=______.15.当x=1时,代数式px3+ax+1的值为2018,则当x=-1时,代数式px3+ax+1的值为______.16.化简(-)2+|1-|+的结果为______.17.若|2x-1|=7,则|5x+7|=______.18.观察算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,根据上述算式的规律,那么22018的个位数字是______.19.如图,已知OA⊥OB,点O为垂⾜,OC是∠AOB内任意⼀条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).20.如图,甲、⼄两动点分别从正⽅形ABCD的顶点,A,C同时沿正⽅形的边开始移动,甲点依顺时针⽅向环⾏,⼄点依逆时针⽅向环⾏,若⼄的速度是甲的速度的4倍,则它们第2019次相遇在______边上(填AB,BC,CD或AD).三、计算题(本⼤题共2⼩题,共14.0分)21.解下列⽅程:(1)-1=(2)=322.先化简,再求值(1)求代数式(4a2-2a-8)-(a-1),其中a=1;(2)求代数式x-2(x-y2)+(-x+y2)的值,其中x=,y=-2.四、解答题(本⼤题共3⼩题,共26.0分)23.已知多项式A=2x2-xy+my-8,B=-nx2+xy+y+7,A-2B中不含有x2项和y项,求n m+mn的值.24.某⽂艺团体为“希望⼯程”募捐义演,全价票为每张18元,学⽣享受半价,某场演出共售出966张票,收⼊15480元,问这场演出共售出学⽣票多少张.25.如图,P是线段AB上任⼀点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.答案和解析1.【答案】D【解析】解:A、负数有倒数,例如-1的倒数是-1,选项错误;B、正数的倒数不⼀定⽐⾃⾝⼩,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、-1的倒数是-1,正确.故选:D.根据倒数的定义可知.本题主要考查了倒数的定义及性质.乘积是1的两个数互为倒数,除0以外的任何数都有倒数,倒数等于它本⾝的数是±1.2.【答案】B【解析】解:|-2|=2,-(-2)2=-4,-(-2)=2,(-2)3=-8,-4,-8是负数,∴负数有2个.故选:B.先对每个数进⾏化简,然后再确定负数的个数.本题考查了去绝对值,有理数的乘⽅、正数和负数的意义,关键准确掌握.3.【答案】B【解析】解:将13000⽤科学记数法表⽰为:1.3×104.故选:B.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值≥1时,n 是⾮负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n 为整数,表⽰时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵|b+2|与(a-3)2互为相反数,∴|b+2|+(a-3)2=0,∴b+2=0,a-3=0,解得:b=-2,a=3.∴b a=(-2)3=-8.故选:C.先依据⾮负数的性质求得a、b的值,然后再利⽤乘⽅法则求解即可.本题主要考查的是偶次⽅的性质,依据⾮负数的性质求得a、b的值是解题的关键.5.【答案】A【解析】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.本题考查了代数式的换算,⽐较简单,容易掌握.6.【答案】C【解析】解:A、7a+a=8a,故本选项错误;B、5y-3y=2y,故本选项错误;C、3x2y-2yx2=x2y,故本选项正确;D、3a+2b=5ab,不是同类项,不能合并,故本选项错误;故选:C.根据合并同类项得法则依次判断即可.本题主要考查了合并同类项的法则,熟练掌握运算法则是解题的关键.7.【答案】A【解析】解:∵⽅程(x+3)x|a|-2+6=0是关于x的⼀元⼀次⽅程,∴|a|-2=1,且a+3≠0,解得:a=3,故选:A.利⽤⼀元⼀次⽅程的定义判断即可.本题考查的是⼀元⼀次⽅程的定义,根据题意列出关于a的不等式组是解答此题的关键.8.【答案】C【解析】解:(⽅法⼀)设甲计划完成此项⼯作的天数为x,根据题意得:x-(1+)=3,解得:x=7.(⽅法⼆)设甲计划完成此项⼯作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式⽅程的解,且符合题意.故选:C.(⽅法⼀)设甲计划完成此项⼯作的天数为x,根据甲先⼲⼀天后甲⼄合作完成⽐甲单独完成提前3天,即可得出关于x的⼀元⼀次⽅程,解之即可得出结论;(⽅法⼆)设甲计划完成此项⼯作的天数为x,根据甲完成的⼯作量+⼄完成的⼯作量=总⼯程量(单位1),即可得出关于x的分式⽅程,解之经检验后即可得出结论.本题考查了⼀元⼀次(分式)⽅程的应⽤,找准等量关系,正确列出⼀元⼀次(分式)⽅程是解题的关键.9.【答案】A【解析】解:设⼈步⾏的速度为x⽶/分钟,电车的速度为y⽶/分钟,根据题意得:12(y-x)=4(x+y),∴y=2x,∴=6.故选:A.设⼈步⾏的速度为x⽶/分钟,电车的速度为y⽶/分钟,根据路程=速度×时间结合相邻两辆电车之间的距离相等,即可得出关于x,y的⼆元⼀次⽅程,解之可得出y=2x,再利⽤发车间隔时间=相邻两车间的距离÷电车的速度即可求出发车间隔时间.本题考查了⼆元⼀次⽅程的应⽤,找准等量关系,正确列出⼆元⼀次⽅程是解题的关键.10.【答案】C解:设每个车间原有成品a件,每个车间每天⽣产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的⼈数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(⼈).故选:C.设A组所检验的每个车间原有成品a件,每个车间1天⽣产b件,可得A组前两天检验的总件数和后三天检验的总件数为.根据检验员的检验速度相同,可列式等式得到a和b的关系,即可得A组⼀名检验员每天检验的成品数.再根据B组检验员的⼈数=五个车间的所有成品÷A组⼀名检验员每天检验的成品数,列式即可得解.本题考查了⼀元⼀次⽅程的应⽤,本题是⼀道叙述⽐较长的题⽬,解题时应认真读题,理解各种量之间的关系列出等式.11.【答案】【解析】解:1÷(-)=-.故答案为:-.根据两个数的积为1,则两个数互为倒数,因此求⼀个数的倒数就是⽤1除以这个数求上即是.此题考查的知识点是倒数,关键是要明确倒数的意义.12.【答案】±3【解析】解:8l的平⽅根为±3.故答案为:±3.根据平⽅根的定义即可得出答案.此题考查了平⽅根的知识,属于基础题,掌握定义是关键.13.【答案】2【解析】解:∵3x m y4与x3y n是同类项,∴n=4,m=3,∴2m-n=2×3-4=6-4=2,故答案为2.根据3x m y4与x3y n是同类项,可以求得m、n的值,从⽽可以得到2m-n的值.本题考查同类项,解题的关键是明确同类项的定义,运⽤同类项的知识可以解答问题.【解析】解:∵3*1====1,∴12*(3*1)=12*1==,故答案为:.先依据定义列出算式,然后再进⾏计算即可.此题主要考查了实数运算,正确理解计算公式是解题关键.15.【答案】-2017【解析】解:解:将x=1代⼊px3+ax+1=2018,∴p+a+1=2018,∴p+a=2018,将x=-1代⼊px3+ax+1∴-p-a+1=-(p+a)+1=-2018+1=-2017,故答案为:-2017.将x=1代⼊px3+ax+1,求出p与a的关系式,然后将x=-1代⼊px3+ax+1即可求出答案.本题考查代数式求值,解题的关键是求利⽤的条件求出p+a的值,本题涉及整体的思想.16.【答案】-1【解析】解:原式=2+-1-2=-1,故答案为:-1.根据实数的混合运算顺序和运算法则计算可得.本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则.17.【答案】47或8【解析】解:∵|2x-1|=7,∴2x-1=±7,解得:x=8或x=-3,把x=8代⼊|5x+7|=47,把x=-3代⼊|5x+7|=8,故答案为:47或8.根据绝对值得出x的值,进⽽解答即可.此题考查绝对值问题,关键是根据绝对值得出x的值.18.【答案】4【解析】解:∵2n的个位数字是2,4,8,6四个⼀循环,∵2018÷4=504…2,∴22018的末位数字应该是4.故答案为:4.先找出规律,求出2018÷4=504…2,即可得出答案.本题考查了尾数特征的应⽤,能根据已知找出规律是解此题的关键.19.【答案】①②④【解析】解:①∵OB,OD分别平分∠COD,∠BOE,∴∠COB=∠BOD=∠DOE,设∠COB=x,∴∠COD=2x,∠BOE=2x,∴∠COD=∠BOE,故①正确;②∵∠COE=3x,∠BOD=x,∴∠COE=3∠BOD,故②正确;③∵∠BOE=2x,∠AOC=90°-x,∴∠BOE与∠AOC不⼀定相等,故③不正确;④∵OA⊥OB,∴∠AOB=∠AOC+∠COB=90°,∵∠BOC=∠BOD,∴∠AOC与∠BOD互余,故④正确,∴本题正确的有:①②④;故答案为:①②④.由⾓平分线将⾓分成相等的两部分.结合选项得出正确结论.本题考查了⾓平分线的性质,互余的定义,垂直的定义,掌握图形间⾓的和、差、倍、分关系是解题的关键.20.【答案】BC【解析】解:根据题意分析可得:⼄的速度是甲的速度的4倍,故第1次相遇,甲⾛了正⽅形周长的×=;从第2次相遇起,每次甲⾛了正⽅形周长的,从第2次相遇起,5次⼀个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.(2019-1)÷5=403…3,故它们第2019次相遇位置与第三次相同,在边BC上.故答案为BC.因为⼄的速度是甲的速度的4倍,所以第1次相遇,甲⾛了正⽅形周长的×=;从第2次相遇起,每次甲⾛了正⽅形周长的,从第2次相遇起,5次⼀个循环,从⽽不难求得它们第2019次相遇位置.此题主要考查了⾏程问题中的相遇问题及按⽐例分配的运⽤,通过计算发现规律是解题关键.21.【答案】解:(1)2(x-3)-6=3(2x+4),2x-6-6=6x+12,2x-6x=12+6+6,-4x=24,x=-6;(2)-=3,5x-10-(2x+2)=3,5x-10-2x-2=3,5x-2x=3+10+2,3x=15,x=5.【解析】(1)依次去分母、去括号、移项、合并同类项、系数化为1求解可得;(2)先将分母化为整数,再依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解⼀元⼀次⽅程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解⼀元⼀次⽅程的⼀般步骤,针对⽅程的特点,灵活应⽤,各种步骤都是为使⽅程逐渐向x=a形式转化.22.【答案】解:(1)原式=a2-a-2-a+1=a2-a-1,当a=1时,原式=1-1-1=-1;(2)原式=x-2x+y2-x+y2=y2-3x,当x=,y=-2时,原式=(-2)2-3×=4-2=2.【解析】(1)原式去括号合并得到最简结果,将a的值代⼊计算即可求出值.(2)原式去括号合并得到最简结果,将x和y的值代⼊计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:∵A=2x2-xy+my-8,B=-nx2+xy+y+7,∴A-2B=2x2-xy+my-8+2nx2-2xy-2y-14=(2+2n)x2-3xy+(m-2)y-22,由结果不含有x2项和y项,得到2+2n=0,m-2=0,解得:m=2,n=-1,则原式=1-2=-1.【解析】把A与B代⼊A-2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代⼊原式计算即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.24.【答案】解:设这场演出共售出学⽣票x张,则全票为(966-x)张,根据题意可得:9x+18(966-x)=15480,解得:x=212,答:这场演出共售出学⽣票212张.【解析】直接设这场演出共售出学⽣票x张,则全票为(966-x)张,利⽤收⼊15480元,得出等式求出答案.此题主要考查了⼀元⼀次⽅程的应⽤,正确得出等式是解题关键.25.【答案】解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm∵AP=8cm,AB=12cm∴PB=AB-AP=4cm∴CD=CP+PB-DB=2+4-3=3cm②∵AP=8,AB=12,∴BP=4,AC=8-2t,∴DP=4-3t,∴CD=DP+CP=2t+4-3t=4-t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所⽰:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB-CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所⽰:∴AD=AB-DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9或11【解析】(1)①先求出PB、CP与DB的长度,然后利⽤CD=CP+PB-DB即可求出答案.②⽤t表⽰出AC、DP、CD的长度即可求证AC=2CD;(2)当t=2时,求出CP、DB的长度,由于没有说明D点在C点的左边还是右边,故需要分情况讨论.本题考查两点间的距离,涉及列代数式,分类讨论的思想,属于中等题型.。

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)—、选择题1.如图.在正方形网格中,若点A(U),点C(3,-2),则点3的坐标为()ABC2・下列运算正确的是()A.屮=2B. ∣∙3∣=∙ 3 C・ \阿=±2 D・导=33・下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()4.甲竹文是我国的一种古代文字,是汉字的早期形式,下列甲竹文中,不是轴对称的是A.甲和乙B.甲和丙C.乙和丙D.只有乙7.已知:如图,Z I = Z 2,则不一左能使AABD旻AACD的条件是()A. (1,2)B. (0,2)C. (2,0)D. (2J)5.下列根式中是最简二次根式的是(A- J^ B. √Jc. √9D. √126.如图,已知AABC的三条边和三个角,则职乙.丙三个三角形中和AABC全等的是( )8. 在平而直角坐标系中,将函数y = 3x 的图象向上平移6个单位长度,则平移后的图象与 X 轴的交点坐标为()A. (2,0) B ・(-2,0) C. (6z 0) D ・卜6,0)9. 在"BC 中,ZACB = 90°, CD 丄于点6 ZA = 30。

,以下说法错误的是()10.正比例函数y^kx ( ∕c≠0)的函数值y 随着X 增大而减小,则一次函数y=x÷k 的图象大致二. 填空题12・如图,在四边形ABCD 中,ZA=90°, AD=A 9连接BD, BD 丄CD, Z ADB=A C.若P 是BC 13.如图,一艘轮船由海平而上的人地出发向南偏西459的方向行驶50海里到达8地, 再由B地向北偏西159的方向行驶50海里到达C 地,则久C 两地相距 海里.B ・ BD = CD C. Z B = ZCD ・ Z BDA = Z CDA A. AC=2CD B. AD=2CD C. AD=3BD D ・ AB=2BC11∙若关于”的分式方程口一药 =1有增根,边上一动点,则DP 长的最小值为DA ・ AB =北14・如图,等边AOAB的边长为2,以它的顶点O为原点,03所在的直线为X轴,建立平而直角坐标系•若直线尸x+b与A0A3的边界总有两个公共点,则实数b的范帀是—・15.在一次函数歹=伙一l)x + 5中,)'随X的增大而增大,贝%的取值范围__________ ・16.如图「匸比例函数y=kx与反比例函数y=9的图象有一个交点A(2 , m) , AB丄X轴于点XB,___________________________________________________________________ 平移直线y=kx使其经过点B,得到直线I ,则直线I对应的函数表达式是__________________ ・17.已知一次函数y=mχ-3的图像与X轴的交点坐标为(畑0),且2≤x0≤3,则m的取值范围是________ .18.小明体重约为62.36千克,如果精确到0.1千克,其结果为_千克.19.已知函数y=×+m-2019 (m是常数)是正比例函数,则m= ________________20・如图,在2∖A3C中,ZC= 90% Z8 = 22.5o, DE垂直平分&3交BC于点& EC=I,则三角形ACE的面积为_・21.(1)计算:√16-√^8 :(2)求X 的值:(X +2)2-9 二0・22.已知2α-1的算术平方根是3, 3a + b-∖的平方根是±4,C是2√T的整数部分,求a +2b-c的平方根.23.某列车平均提速vkm∕h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶5Okm,提速前列车的平均速度为多少?(用含V的式子表示)24.某商店准备购进A,B两种商品,A种商品毎件的进价比3种商品每件的进价多20元用3000元购进A种商品和用1800元购进3种商品的数量相同.商店将A种商品每件的售价建为80元,〃种商品每件的售价建为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店汁划用不超过2560元的资金购两种商品共40件,苴中A种商品的数量不低于3种商品数疑的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决圧对每件A种商品售价优惠川 (10<w<20)元,〃种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.25.如图,点D是AABC内部的一点,BD=CD,过点D作DE丄AB , DF丄AC,垂足分别为 E X F,且 BE=CF.求证:AB=AC .四、压轴题26.如图,已知等^AABC中,AB=AC, ZA<90o, CD是"8C的高,BF是MBC的角平分线,CD与BE交于点P.当ZA的大小变化时,HPC的形状也随之改变.(1)当ZA=44。

浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷 解析版

浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷  解析版

2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或163.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6二.填空题(共6小题)11.下列图形中全等图形是(填标号).12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三.解答题(共7小题)17.解不等式组18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或16【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【分析】利用反例判断命题为假命题的方法对各选项进行判断.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称【分析】根据轴对称的性质解决问题即可.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°【分析】此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二.填空题(共6小题)11.下列图形中全等图形是⑤和⑦(填标号).【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).【分析】由图知1号同学比2号同学矮,据此可解答.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为(,);(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为(0,)或(0,)或(0,).【分析】(1)解析式联立,解方程即可求得;(2)求得BM的长,分两种情况讨论即可.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三.解答题(共7小题)17.解不等式组【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:如图所示:.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC =∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

2020 学年第一学期八年级期终学业评价调测试卷(2021.1)数学(满分:100 分 考试时间:120 分钟 考试中不允许使用计算器 命题人:姚志敏)一、选择题(每小题 2 分,共 20 分)1.下列二次根式中,是最简二次根式的是( ▲ )A .B . bC .D .2.如果 a >b ,那么下列各式中正确的是( ▲ ) A .a +1<b +1 B .-a+3<-b+3 C .-a >-b D .22a b 3. 如图,点 C ,D 在线段 AB 的同侧,如果∠CAB =∠DBA ,那么下列条件中不能..判定△ABD ≌△BAC 的是( ▲ )A .∠D =∠CB .∠CAD =∠DBC C .AD =BC D .BD =AC4.下列选项中,可以用来证明命题“若 a > 0 ,则 a > 0 ”是假命题的反例的是( ▲ ) A .a=-1 B .a=0 C .a=1 D .a=2 5.关于一次函数 y =5x ﹣3 的描述,下列说法正确的是( ▲ ) A .图象经过第一、二、三象限 B .向下平移 3个单位长度,可得到 y =5x C .函数的图象与 x 轴的交点坐标是(0,﹣3) D .图象经过点(1,2)6.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( ▲ ) A .55°,55° B .70°,40°或 70°,55° C .70°,40° D .55°,55°或 70°,40°7.如图,直线 y 1=x +b 与 y 2=kx -1 相交于点 P ,点 P 的横坐标为-1,则关于 x 的不等式 x +b >kx -1 的解集在数轴上表示正确的是(▲)A. B. C. D.8.如图,已知矩形OABC,A(4,0),C(0,4),动点P 从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P 的运动路程为t,△OAP 的面积为S,则下列能大致反映S 与t 之间关系的图象是(▲)A.B.C.D.9. 如图,在△ABC 中,已知点D,E,F 分别是BC,AD,CE 的中点,且SΔABC=8,则SΔBEF的值是(▲)A.2B. 3C.4D. 510. 已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC 中,当∠APB=∠APC=∠BPC=1200 时,P 就是△ABC 的费马点.若点P 是腰长为6 的等腰直角三角形DEF 的费马点,则PD+PE+PF=(▲)A .6B + 3C .D .9 二、填空题(每小题 3 分,共 30 分) 11.“对顶角相等”的逆命题是 ▲ .12.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为 ▲ . 13.若点 B (7a +14,a -3)在第四象限,则 a 的取值范围是 ▲ .14.如图,在平面直角坐标系中,已知点 A (1,1),B (- 1,1),C (-1,-2),D (1,-2).现把一条长为 2021 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A 处,并按A -B -C -D -A - …的顺序紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐标是 ▲ .15. 如果三角形三边长分别为12,k ,7225k -的结果是 ▲ . 16.2002 年 8 月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图 1),且大正方形的面积是 15,小正方形的面积是 3,直角三角形的较短直角边为 a ,较长直角边为 b .如果将四个全等的直角三角形按如图 2 的形式摆放,那么图 2 中最大的正方形的面积为 ▲ .17.如图,等边三角形纸片 ABC ,点 E 在 AC 边上,点 F 在 AB 边上,沿 EF 折叠,使点A 落在 BC 边上的点 D 的位置,且 ED ⊥BC ,则∠EFD = ▲ .18.已知点 P 是直线 y = −2x + 4 上的一个动点,若点 P 到两坐标轴的距离相等,则点 P 的坐标是 ▲ . 19.如图,在△ABC 中,∠ABC 的平分线与 AC 的垂直平分线相交于点 D ,过点 D 作DF ⊥BC ,DG ⊥AB ,垂足分别为 F 、G .若 BG =5,AC =6,则△ABC 的周长是 ▲ .20.如图,在 Rt △ABC 中,CA =CB ,M 是 AB 的中点,点 D 在 BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为 E ,F ,连接 EM .则下列结论中:①BF =CE ; ②∠AEM =∠DEM ;③AE ﹣CE= 2 ME ;④DE 2+DF 2=2DM 2; ⑤若 AE 平分∠BAC ,则 EF :BF=:1; 正确的有 ▲ .(只填序号)三、解答题(本大题共 7 小题 , 共 50 分) 21.(本小题满分 6 分) (1)化简:)11(2)解不等式组 363104x x ⎧<⎪⎨-+≥⎪⎩①②22. (本小题满分 6 分)如图,是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为 1,线段 AC 的两个端点均在小正方形的顶点上.(1)在图1 中画出以AC 为底边的等腰直角三角形ABC,点B 在小正方形顶点上;(2)在图2 中画出以AC 为腰的等腰三角形ACD,点D 在小正方形的顶点上,且△ACD 的面积为8.23.(本小题满分7 分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为▲L,机器工作的过程中每分钟耗油量为▲L.(2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.24.(本小题满分5 分)如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D 在同一直线上.(1)求证:△ABC≌△ADE;(2)若∠B=30°,∠BAC=100°,点F 是CE 的中点,连结AF,求∠F AE 的度数.25.(本小题满分8 分)某商店销售A 型和B 型两种型号的平板,销售一台A 型平板可获利120 元,销售一台 B 型平板可获利140 元.该商店计划一次购进两种型号的平板共100 台,其中 B 型平板的进货量不超过A 型平板的3 倍.设购进 A 型平板x 台,这100 台平板的销售总利润为y 元.(1)求 A 型平板至少多少台?(2)该商店购进A 型、B 型平板各多少台,才能使销售利润最大?(3)若限定商店最多购进A 型平板60 台,则这100 台平板的销售总利润能否为13600元?若能,请求出此时该商店购进A 型平板的台数;若不能,请求出这100 台平板销售总利润的范围.26.(本小题满分8 分)定义:若一个三角形两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边的交点称为勾股顶点.(1)如图①,已知△ABC 为勾股高三角形,其中 A 为勾股顶点,AD 是BC 边上的高.若BD=1,CD=2,求高AD 的长;(2)如图②,△ABC 中,AB=AC=3,BC=3 3 -3,求证:△ABC 是勾股高三角形.①②27.(本小题满分10 分)如图,平面直角坐标系中,直线m 交x 轴于点A,交y 轴于点B.且点 A (),∠BAO = 60° .点C 为AB 中点,过点C 作直线n 垂直于m,交x轴于点D.(1)请直接写出B、C、D 的坐标.(2)在x 轴上找一点E, 使得S△BCE=6,求点E 的坐标.(3)直线m 上有一点M, y 轴上有一点N, 若△DMN 是等腰直角三角形,求出点M 的坐标.第27 题备用图1 备用图22020学年第一学期期末学业评价调测试卷八年级数学参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共30分)11、 相等的角是对顶角 12、 5 13、 -2<a <3 14、 (0,1) 15、 11-3k 16、 27 17、 45° 18、()444,433⎛⎫- ⎪⎝⎭,, 19、16 20、①②③④⑤ 三、解答题(本大题共7小题 , 共50分)21、 (1)31=--2=(2) 解①得2x <,….1’,解②得:1x ≥- ….1’,∴12x -≤<22、(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B ; (2)以C 为圆心,AC 为半径作圆,格点即为点D ;23、解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L ),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L ), 故答案为:3,0.5;(2)当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,1030605a b a b +=⎧⎨+=⎩,解得,0.535a b =-⎧⎨=⎩, 即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40. 24、(1)∵∠BAD=∠CAE ∴∠BAD+∠DAC=∠CAE+∠DAC 即∠BAC=∠DAE ∵AB=AD ,AC=AE∴△ABC ≌△ADE (SAS ) (2)∵∠B +∠ACB +∠BAC=180° ∴∠ACB=180°-∠B -∠BAC=50° ∵△ABC ≌△ADE∴∠ACB=∠AED=50° ∵点F 是CE 的中点 ∴AF ⊥CE∴∠F AE=90°-∠E=40°25、解:(1)100﹣x ≤3x ,解得x ≥25 ∴A 型平板至少25台。

2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷(解析版)

2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷(解析版)

2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣23.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2 6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥2710.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是.13.(3分)命题“对顶角相等”的逆命题是.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是.(只需添加一个即可)15.(3分)小明从A 处出发沿北偏东40°的方向走了30米到达B 处:小军也从A 处出发,沿南偏东α°(0<α<90)的方向走了40米到达C 处,若B 、C 两处的距离为50米,则α= .16.(3分)已知等腰三角形的周长为20,腰长为x ,x 的取值范围是 . 17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t (min ),汽车离抗州的距离为s (km ),则s 关于t 的函数表达式为 .18.(3分)如图,在Rt △ABC 中,∠C =90°,DE 垂直平分AB ,连结AD ,若AC =6,BC =8,则CD 的长为.19.(3分)如图,一次函数y =kx +b 的图象经过点(﹣2,0),则关于x 的不等式k (x ﹣3)+b >0的解集为 .20.(3分)如图,在一张直角三角形纸片ABC 中,∠ACB =90°,BC =1,AC =,P 是边AB 上的一动点,将△ACP 沿着CP 折叠至△A 1CP ,当△A 1CP 与△ABC 的重叠部分为等腰三角形时,则∠ACP 的度数为 .三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选:A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据有理数的乘方法则、假命题的概念解答.【解答】解:(﹣2)2=4>1,﹣2<1,∴当x=﹣2时,说明命题“若x2>1,则x>1”是假命题,故选:D.【点评】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>【分析】直接利用不等式的基本性质分别判断得出答案.【解答】解:A、∵a>b,∴a+1>b+1,故此选项错误;B、∵a>b,∴a﹣5>b﹣5,故此选项错误;C、∵a>b,∴﹣3a<﹣3b,故此选项错误;D、∵a>b,∴>,故此选项正确;故选:D.【点评】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【分析】根据一次函数图象的增减性,结合横坐标的大小,可判断纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+1的图象y随着x的增大而较小,又∵﹣1<﹣0.5<1.5,∴y1>y2>y3,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据两角互余求出∠DCB的度数即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=36°,∴∠DCB=90°﹣∠DCA=54°.故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)【分析】根据一次函数图象的性质进行逐一分析解答即可.【解答】解:A、∵m>0,∴﹣m<0,∴一次函数y=mx﹣m(m>0)的图象在一、三、四象限,故本选项错误;B、∵m>0,∴一次函数y=mx﹣m(m>0)的图象y随x的增大而增大,故本选项错误;C、∵x=0时,y=﹣m<0,∴函数图象一定交于y轴的负半轴,故本选项正确;D、∵x=﹣1时,y=﹣m﹣m=﹣2m<0,∴函数图象不经过点(﹣1,0),故本选项错误.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形【分析】依据作图可得CA=CD,BA=BD,即可得到CB是AD的垂直平分线,依据线段垂直平分线的性质以及三角形内角和定理,即可得到结论.【解答】解:由题可得,CA=CD,BA=BD,∴CB是AD的垂直平分线,即CE垂直平分AD,故A选项正确;∴∠CAD=∠CDA,∠CEA=∠CED,∴∠ACE=∠DCE,即CE平分∠ACD,故B选项正确;∵DB=AB,∴△ABD是等腰三角形,故C选项正确;∵AD与AC不一定相等,∴△ACD不一定是等边三角形,故D选项错误;故选:D.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的判定,解题时注意:垂直平分线上任意一点,到线段两端点的距离相等.9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【解答】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB【分析】如图,作DH⊥CF交CF的延长线于H,连接EH.想办法证明△BCA≌△AHD (AAS),四边形ADHE是平行四边形,即可解决问题.【解答】解:如图,作DH⊥CF交CF的延长线于H,连接EH.∵∠ACB=∠BAD=∠DHA=90°,∴∠BAC+∠DAH=90°,∠DAH+∠ADH=90°,∴∠BAC=∠ADH,∵AB=AD,∴△BCA≌△AHD(AAS),∴AC=DH,BC=AH,∵∠DHA=∠EAH=90°,AC=AE,∴DH∥AE,DH=AE,∴四边形ADHE是平行四边形,∴AF=FH,∴AF=AH=BC,故选:C.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是2.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点A(1,﹣2)到x轴的距离是|﹣2|=2,故答案为:2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是﹣1,0,1.【分析】首先确定不等式组的解集,找出不等式组解集内的整数就可以.【解答】解:因为是整数,且在﹣1处和2处分别是实心和空心,所以整数有﹣1,0,1,故答案为:﹣1,0,1.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.(3分)命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是AB=DE或∠B=∠E或∠ACB=∠F.(只需添加一个即可)【分析】利用全等三角形的判定定理,AAS定理,ASA定理,SAS定理可得结果.【解答】解:①添加AB=DE,∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,∴AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS);②添加∠B=∠E,,∴△ABC≌△DEF(AAS);③添加∠ACF=∠F,,△ABC≌△DEF(ASA),故答案为:AB=DE或∠B=∠E或∠ACB=∠F.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,注意AAA、SSA不能判定两个三角形全等是解答此题的关键.15.(3分)小明从A处出发沿北偏东40°的方向走了30米到达B处:小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=50.【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解答】解:∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.【点评】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键.16.(3分)已知等腰三角形的周长为20,腰长为x,x的取值范围是5<x<10.【分析】利用三角形的三边关系解决问题即可.【解答】解:根据三角形的三边关系,x+x>20﹣2x,解得x>5,又∵x+x<20,∴x<10,所以,5<x<10.故答案为:5<x<10.【点评】本题考查了等腰三角形的性质,利用三角形的三边关系得到关于x的不等式是解题的关键.17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t(min),汽车离抗州的距离为s(km),则s关于t的函数表达式为=﹣t.【分析】由汽车每6min行驶10km知汽车的速度为=(km/min),根据距离=90﹣行驶的路程可得函数解析式.【解答】解:由表知,汽车每6min行驶10km,∴汽车的速度为=(km/min),则s=90﹣t,故答案为:s=90﹣t.【点评】本题主要考查函数关系式,解题的关键是根据表格得出汽车的速度及关于距离的相等关系.18.(3分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.【分析】先根据线段的垂直平分线的性质得DA=DB,设AD=x,则DB=x,CD=BC ﹣BD=8﹣x,则在Rt△ACD中利用勾股定理得到62+(8﹣x)2=x2,解得x的值即可得到CD的长.【解答】解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.【点评】本题考查了勾股定理以及线段垂直平分线的性质,依据勾股定理列方程是解决问题的关键.19.(3分)如图,一次函数y=kx+b的图象经过点(﹣2,0),则关于x的不等式k(x﹣3)+b>0的解集为x>1.【分析】观察函数图象得到即可.【解答】解:由图象可得:当x>﹣2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x>﹣2,所以关于x的不等式k(x﹣3)+b>0的解集为x﹣3>﹣2,即:x>1,故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.(3分)如图,在一张直角三角形纸片ABC中,∠ACB=90°,BC=1,AC=,P 是边AB上的一动点,将△ACP沿着CP折叠至△A1CP,当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP的度数为40°或70°.【分析】分两种情形画出图形分别求解即可.【解答】解:如图1中,当PC=CE时,设∠ACP=x.∵CP=CE,∴∠CPE=∠CEP,∵∠CPE=∠ACP+∠A=x+30,∴x+x+30+x+30=180°,∴x=40°.如图2中,当CP=CE时,设∠ACP=x.则∠CPE=∠CEP=2x﹣90°+30°=2x﹣60°,在△CPE中,90°﹣x+2(2x﹣60°)=180°,解得x=70°,PE=PC不成立(因为∠CPE=x+30°>x,此时求得x=50°,点E应该在AB延长线上).综上所述,∠ACP的度数为40°或70°,故答案为40°或70°.【点评】本题考查翻折变换,等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x,移项,得5x﹣3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.【分析】(1)根据AAS证明△ADE≌△CFE即可;(2)利用全等三角形的性质即可解决问题;【解答】(1)证明:∵AB∥CF,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,∴AD=CF=4,∴BD=AB﹣AD=7﹣4=3.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.【分析】(1)把B点坐标代入y=x+b中求出b即可;(2)先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.【解答】解:(1)把B(0,2)代入y=x+b得b=2,所以该直线的函数表达式为y=x+2;(2)当x=0时,x+2=0,解得x=﹣2,则A(﹣2,0),所以AB的长==2.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.【分析】(1)根据轴对称的性质分别作出点A,B,C关于x轴的对称点,再顺次连接可得.(2)根据平移变换的定义和性质分别作出三顶点向右平移6个单位后所得对应点,据此可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图知,对应点A2的坐标为(2,﹣1).【点评】本题主要考查作图﹣轴对称变换和平移变换,解题的关键是掌握轴对称变换和平移变换的定义与性质,并据此得出变换后的对应点.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.【分析】(1)证明△ABD≌△CAE,可得∠ABD=∠CAE,再利用三角形外角的性质可以得出∠BME的度数;(2)①由(1)可得∠MBH=30°,BD=AE,根据BD=BM+DM即可获证;②作AF⊥BC于F,在△ABE中,利用面积法即可得出BH的长.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABD和△CAE中,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∴∠BME=∠ABM+∠MAB=∠CAE+∠MAB=∠BAC=60°,(2)①∵BH⊥AE,∠BMH=60°,∴∠MBH=30°,∴BM=2MH,∵△ABD≌△CAE,∴BD=AE,∴2MH+DM=BM+DM=BD,∴2MH+DM=AE;②如图,作AF⊥BC于F,∵△ABC是等边三角形,BE=2EC=2,∴AB=3,BF=1.5,EF=0.5,∴AF=,AE=,∴△ABE面积=,解得BH=【点评】本题考查了等边三角形性质,全等三角形的性质和判定,三角形外角性质,含30度角的直角三角形性质的应用.涉及高的问题可以考虑面积法.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.【分析】(1)根据待定系数法求解;(2)设甲出发x分钟后相遇,列方程,计算相遇时的时间,可补全图象;(3)分相遇前后两种可能列不等式求解.【解答】解:(1)设AC表达式为y=kx+b,把(6,0)、(21,25)代入得解得k=100,b=﹣600,所以AC所在直线的函数表达式y=100x﹣600;(2)设甲出发x分钟后两人相遇,则解得x=15,即甲出发15分钟后两人相遇,此时d=0,21分钟后乙到图书馆,甲距图书馆1500﹣60×21=240米,因此图象如下:(3)设甲出发x分钟甲、乙两人之间的路程至少为180m.①当乙没出发时,60x≥180,解得x≥3;当甲乙相遇前,即x≤15时60x﹣(100x﹣600)≥180解得x≤10.5,即3≤x≤10.5时甲、乙两人之间的路程至少为180m;③当甲乙相遇后,即x>15时100x﹣600﹣60x≥180,解得x≥19.5,即19.5≤x≤21时甲、乙两人之间的路程至少为180m;④乙到达终点后,1500﹣60x≥180,解得≤22;综上当3<x≤10.5或19.5≤x≤22分钟时甲、乙两人之间的路程至少为180m.【点评】本题考查一次函数,方程和不等式应用,确定数量关系或不等量关系是解答关键.。

2021-2022学年浙江省绍兴市嵊州市八年级(上)期末数学试题及答案解析

2021-2022学年浙江省绍兴市嵊州市八年级(上)期末数学试题及答案解析

2021-2022学年浙江省绍兴市嵊州市八年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列长度的三条线段,首尾相接能构成三角形的是( )A. 1cm,2cm,3cmB. 5cm,5cm,5cmC. 2cm,5cm,8cmD. 1.5cm,1.4cm,2.9cm2.下列交通标志是轴对称图形的是( )A. B. C. D.3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短4.如果m>n,那么下列结论错误的是( )A. m+2>n+2B. m−2>n−2C. 2m>2nD. −2m>−2n5.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A. AB=DEB. ∠A=∠DC. AC=DFD. AC//FD6.下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是( )A. 9B. 16C. 8D. 47.如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是( )A. (2,2)B. (1,2)C. (1,1)D. (2,1)8.已知点A(2,y1)和点B(a,y2)在一次函数y=−3x−b的图象上,且y1>y2,则a的值可能是( )A. 3B. 0C. −1D. −29.如图,在△ABC中,CA=CB,∠ACB=110°,延长BC到D,在∠ACD内作射线CE,使得∠ECD=15°.过点A作AF⊥CE,垂足为F.若AF=√5,则AB的长为( )A. √10B. 2√5C. 4D. 610.如图1,在平面直角坐标系中,长方形ABCD在第一象限,且BC//x轴,直线y=1x−3沿2 x轴负方向平移,在平移过程中,直线被长方形ABCD截得的线段长为l,直线在x轴上平移的距离为m.图2是l与m之间的函数图象,则长方形ABCD的面积为( )A. 2√5B. 6C. 8D. 12二、填空题(本大题共10小题,共30.0分)11.平面直角坐标系中,点(1,−2)在第______象限.12.命题“两个全等三角形面积相等”的逆命题是______命题(填“真”或“假”).13.如图,两根竹竿AB和DB斜靠在墙CE上,量得∠CAB=33°,∠CDB=21°,则∠ABD的度数为______.14. 已知:等腰三角形的两边长分别为6和4,则此等腰三角形的周长是______.15. 如图,由图象得方程组{3x +y =0y =x +4的解为______.16. 如图,在△ABC 中,AD ⊥BC 于点D ,AD 与BE 相交于点F ,且AC =BF ,DF =DC.若∠ABE =15°,则∠DBF 的度数为______.17. 在平面直角坐标系中,A(2,3),B(−2,1),在x 轴上求一点C ,使CA +CB 最小,则点C 的坐标为______ .18. 关于x 的不等式组{3x −a ≥02x −b ≤0只有一个解,则a 与b 的关系是______. 19. 如图,在△ABC 中,∠BAC >90°,分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点D ,E.作直线DE ,交BC 于点M.分别以点A ,C 为圆心,以大于12AC 长为半径画弧,两弧交于点F ,G.作直线FG ,交BC 于点N.连接AM ,AN.若∠BAC =α,则∠MAN = ______ .20. 如图,在△ABC 中,∠ACB =90°,AC =8,BC =6,D 是线段AB 的中点,P 为直线BC 上的一动点,连结DP.过点D 作ED ⊥DP ,交直线AC 于点E ,连结EP.若CP =3,则AE 的长为______.三、解答题(本大题共6小题,共50.0分。

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。

人教版2018-2019年八年级上期末数学试卷含答案解析

人教版2018-2019年八年级上期末数学试卷含答案解析

八年级(上)期末数学试卷一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A .函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C .函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b 的值为( )A .﹣1B .2C .1D .011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a+b )2的值为( )A .49B .25C .13D .112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是( )A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.B.C.D.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第象限.17.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.18.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= .20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB∥CD,点P在AB、CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,如图③,则∠BPD﹑∠B﹑∠PDQ﹑∠BQD之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:册数0 1 2 3 4人数 3 13 16 17 1则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B. C. D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.15.如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b 的不等式,根据不等式的性质,可得b 的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A (﹣2,b )在第三象限,得b <0,两边都除以﹣1,得﹣b >0,4>0,B (﹣b ,4)在第 一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是 2 .【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为, =(x 1+x 2+…+x n ),则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是 80° .【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x= 4 .【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4 .【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;=AP•OB=,则AP=.设(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;。

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。

2018-2019学 年八年级上学期期中考试数学试题(含答案)

2018-2019学 年八年级上学期期中考试数学试题(含答案)

2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019学年八年级上期末数学试卷(含答案解析)(可编辑修改word版)

2018-2019 学年八年级(上)期末数学试卷一、选择题:(本大题共8 小题,每小题3 分,共24 分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.4的平方根是()A.±2 B.2 C.±D.2.下列图形中,不是轴对称图形的是()A.B.C.D.3.下列各组数中,可以构成直角三角形的是()A.2,3,5 B.3,4,5 C.5,6,7 D.6,7,84.点A(﹣3,2)关于x 轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.一次函数y=x+1 不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3 7.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD,则CE 的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB,过O 作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE 的长为()A.3 B.1 C.2 D.4二、填空题:(共8 小题,每题3 分,共24 分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5 和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.1.函数y=kx 的图象过点(﹣1,2),那么k= .12.取=1.4142135623731…的近似值,若要求精确到0.01,则= .13.如图,AB 垂直平分CD,AD=4,BC=2,则四边形ACBD 的周长是.14.将函数y=2x 的图象向下平移3 个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3 上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x、y轴的正半轴上,OA=3,OB=4,D 为OB 边的中点,E 是OA 边上的一个动点,当△CDE 的周长最小时,E 点坐标为.三、解答题(共10 小题,共102 分。

历年浙江省绍兴市中考数学试卷(含答案)

历年浙江省绍兴市中考数学试卷(含答案)

2017 年浙江省绍兴市中考数学试卷一、选择题(本大题共 10 小题,每小题 4 分,共 40 分。

请选出每小题中一个 最符合题意的选项,不选、多选、错选,均不给分) 1.(4分)﹣5 的相反数是( )B .5C .﹣D .﹣5 2.(4 分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已 探明的可燃冰存储量达 150000000000立方米,其中数字 150000000000 用科学 记数法可表示为( )A .15×1010B .0.15×1012C . 1.5× 1011D .1.5×10123.(4 分)如图的几何体由五个相同的小正方体搭成,它的主视图是( )4.(4分)在一个不透明的袋子中装有 4个红球和 3 个黑球,它们除颜色外其他 均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A . B . C . D .5.(4 分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平 均数和方差: 甲乙 丙 丁 平均数(环) 9.149.15 9.14 9.15 方差6.6 6.8 6.7 6.6 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A . A .A.甲B.乙C.丙D.丁6.(4 分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4 米7.(4 分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是)D8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ ACB=2°1,则∠ ECD的度数是()A.7° B.21°C.23°D.24°9.(4 分)矩形ABCD的两条对称轴为坐标轴,点 A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点 C 重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.( 4 分)一块竹条编织物,先将其按如图MN 翻转180°,再将它所示绕直线按逆时针方向旋转90°,所得的竹条编织物是()二、填空题(本大题共 6 小题,每小题5分,共30 分)11.( 5 分)分解因式:x2y﹣y= .12.(5 分)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O上,边AB,AC分别与⊙ O交于点D,E,则∠ DOE的度数为.13.(5 分)如图,Rt△ABC的两个锐角顶点A,B 在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5 分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G 在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→ A→ D→ E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ ADB=6°0 ,点D到AC的距离为2,则AB 的长为.16.(5 分)如图,∠ AOB=45°,点M,N 在边OA上,OM=x,ON=x+4,点P 是边OB上的点,若使点P,M,N 构成等腰三角形的点P 恰好有三个,则x 的值是.三、解答题(本大题共8小题,第17-20小题每小题8分,第21题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:(2 ﹣π)0+|4﹣3 | ﹣.(2)解不等式:4x+5≤2(x+1)18.(8 分)某市规定了每月用水18 立方米以内(含18 立方米)和用水18 立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18 立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8 分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图 2 两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在 3 小时以内(不含 3 小时)的人数.20.(8 分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼顶部 D 的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠ BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20 °≈0.36,tan1821.(10 分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.22.(12 分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ ABC=9°0,①若AB=CD=1,AB∥CD,求对角线BD 的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P 是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE 的长.23.(12 分)已知△ ABC,AB=AC,D 为直线BC上一点,E为直线AC 上一点,AD=AE,设∠ BAD=α,∠ CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ ABC=6°0,∠ ADE=7°0,那么α=°,β= °,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知?ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点 D 的坐标为(﹣3,4),点 B 在第四象限,点P 是?ABCD边上的一个动点.(1)若点P 在边BC上,PD=CD,求点P 的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1 上,求点P 的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y 轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x 轴的平行线GM,它们相交于点M,将△ PGM 沿直线PG翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出2017 年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10 小题,每小题 4 分,共40 分。

浙江省宁波市奉化区2018-2019学年八年级(上)期末数学试卷-解析版

浙江省宁波市奉化区2018-2019学年八年级(上)期末数学试卷-解析版

2018-2019学年浙江省宁波市奉化区八年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下面四个汽车标志图标中,不是轴对称图形的为()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,4,5C. 5,6,11D. 4,5,103.已知a>b,则下列不等式变形正确的是()A. B. C. D.4.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是()A. ,B. ,C. ,D.6.如图,已知∠1=∠2,欲得到△ABD≌△ACD,则从下列条件中补选一个,错误的选法是()A. B. C. D.7.如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A. ,B. ,C. ,D. ,8.将一个有45°角的三角板的直角顶点C放在一张宽为5cm的纸带边沿上,另一个顶点B在纸带的另一边沿上,测得∠DBC=30°,则三角板的最大边的长为()A. 5cmB. 10cmC.D.9.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A. 1个B. 2个C. 3个D. 4个10.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了()道题.A. 13B. 14C. 15D. 1611.直角三角形纸片的两直角边长分别为6,8,现将△ABC按如图那样折叠,使点A与点B重合,折痕为DE,则DE的长为()A. B. 5 C. D.12.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是______.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第______象限.15.如图,已知Rt△ABC,∠C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是______.16.已知一次函数y=kx+b的图象如图所示,则不等式kx+b≥4的解是______.17.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.18.如图,在平面直角坐标系中,点A(0,),B(,0),C是线段AB的中点,D是x轴上的一个动点,以AD为直角边作等腰直角△ADE,其中∠DAE=90°,连结CE.当CE为最小值时,此时△ACE的面积是______.三、解答题(本大题共7小题,共66.0分)19.解不等式组><,并把不等式组的解在数轴上表示出来.20.如图所示,在△ABC中,AB=AC,∠1=∠2,AD⊥CD于点D,AE⊥BE于点E,BE,CD交于点O.求证:(1)△ABE≌△ACD;(2)OD=OE.21.某两个城中村A,B与两条公路l1,l2位置如图所示,因城市拆迁安置需要,在C处新建安置小区,要求小区与两个村A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图,找出所有符合条件的C点.(不写已知,求作,作法,只保留作图痕迹)22.如图,一次函数y=-x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)求点A、B的坐标;(2)求过B、C两点的直线的解析式.23.浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题.(1)请写出y与x的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?24.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.25.定义:若以三条线段a,b,c为边能构成一个直角三角形,则称线段a,b,c是勾股线段组.(1)如图①,已知点M,N是线段AB上的点,线段AM,MN,NB是勾股线段组,若AB=12,AM=3,求MN的长;(2)如图②,△ABC中,∠A=18°,∠B=27°,边AC,BC的垂直平分线分别交AB于点M,N,求证:线段AM,MN,NB是勾股线段组;(3)如图③,在等边△ABC中,P为△ABC内一点,线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,求∠APB的度数.答案和解析1.【答案】A【解析】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:A.直接根据轴对称图形的概念分别解答得出答案.本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A.∵1+2=3,∴1,2,3不能组成三角形;B.∵3+4>5,∴3,4,5能组成三角形;C.∵5+6=11,∴5,6,11不能组成三角形;D.∵4+5<10,∴4,5,10不能组成三角形;故选:B.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.3.【答案】D【解析】解:A、不等式的两边都乘以不为0的数,不等号的方向不变,故A错误;B、不等式的两边都乘以-2,不等号的方向改变,故B错误;C、不等式的两边都乘以-1,不等号的方向改变,故C错误;D、不等式的两边都减去2,不等号的方向不改变,故D正确;故选:D.根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.【答案】A【解析】解:观察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型,故选:A.根据三角形按角分类的方法一一判断即可.本题考查三角形的分类,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】D【解析】解:“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题为∠1=∠2=45°.故选:D.写反例时,满足条件但不能得到结论.本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】B【解析】解:A正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(ASA);B不正确,由这些条件不能判定三角形全等;C正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(AAS);D正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(SAS);故选:B.由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法得出B不正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出C正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出D正确.本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.7.【答案】C【解析】解:∵一次函数经过二、四象限,∴k<0,∵一次函数与y轴的交于正半轴,∴b>0.故选:C.根据一次函数经过的象限可得k和b的取值.考查一次函数的图象与系数的关系的知识;用到的知识点为:一次函数经过一三象限或二四象限,k>0或<0;与y轴交于正半轴,b>0,交于负半轴,b<0.8.【答案】C【解析】解:如图:作BE⊥CE与E点,BE=5cm,∵DB∥CE,∴∠2=∠1=30°,BC=2BE=2×5=10cm,在等腰直角三角形ABC中,由勾股定理得AB=,故选:C.根据平行线的性质,可得∠1与∠2的关系,根据30°的角所对的直角边是斜边的一半,可得BC 与CE的关系,根据等腰直角三角形的性质,可得AC与BC的关系,根据勾股定理,可得答案.本题考查了等腰直角三角形的性质,先求出BC的长,再求出AB的长.9.【答案】C【解析】解:①正确,符合等边三角形的判定定理;②正确,因为12+32=()2,所以三边分别是1,,3的三角形是直角三角形;③正确,根据矩形对角线的性质的逆命题;④错误,三边之比为3:4:5的三角形是直角三角形.故选:C.分别根据等边三角形及直角三角形的判定定理解答.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.【答案】B【解析】解:设小明答对x道题,则打错20-3-x=17-x道题.根据题意得:5x-2(17-x)>60即7x>94∴x>13.∴13<x≤17.成绩超过60分,则小明至少答对了14道题.故选:B.根据成绩超过了60分,即可得到一个关于答对题目数的不等式,从而求得答对题数x的范围,即可判断.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.11.【答案】A【解析】解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵折叠∴BE=AE,AD=BD=5,DE⊥AB,在Rt△BEC中,BE2=BC2+CE2,∴BE2=36+(8-BE)2,∴BE=在Rt△BDE中,DE==故选:A.根据勾股定理可求AB=10,由折叠的性质可得BE=AE,AD=BD=5,DE⊥AB,根据勾股定理可求BE的长,DE的长.本题考查了翻折变换,勾股定理熟练运用折叠的性质是本题的关键.12.【答案】B【解析】解:如图,满足条件的所有点P的个数为2,故选:B.根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.13.【答案】y=-2x【解析】解:设该正比例函数的解析式为y=kx,根据题意,得-2k=4,k=-2.则这个正比例函数的表达式是y=-2x.故答案为y=-2x.本题可设该正比例函数的解析式为y=kx,然后根据该函数图象过点(-2,4),由此可利用方程求出k的值,进而解决问题.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.14.【答案】四【解析】解:∵点A(2,n)在x轴上,∴n=0,则点B(n+2,n-5)的坐标为:(2,-5)位于第四象限.故答案为:四.直接利用x轴上点的坐标特点得出n的值,进而得出答案.此题主要考查了点的坐标,正确得出n的值是解题关键.15.【答案】3【解析】解:如图,过D作DE⊥AB于E,∵∠C=90°,BD=5,BC=4,∴由勾股定理得:CD=3,又∵BD是∠ABC的平分线,∴DE=DC=3,即点D到AB的距离是3.故答案为:3.依据角平线的性质可得点D到AB和BC的距离相等,求出CD的长度即可得到D点到AB的距离.本题主要考查了角平分线的性质,解题时注意:角平分线上点到角两边距离相等.16.【答案】x≤0【解析】解:∵从图象可知:k<0,直线与y轴交点的坐标为(0,4),∴不等式kx+b≥4的解集是x≤0,故答案为x≤0.根据图形得出k<0和直线与y轴交点的坐标为(0,4),即可得出不等式的解集.本题考查了一次函数与一元一次不等式,能根据图形读出正确信息是解此题的关键.17.【答案】5【解析】解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.18.【答案】【解析】解:如图,把线段AC绕点A顺时针旋转90°,得到AC′,连接C′D,则C′为定点(-,)在△ACE和△AC′D中∴△ACE≌△AC′D(SAS)∴C′D=CE.当C′D⊥OD时,C′D最小,CE最小值为,此时△ACE面积等于△AC′D=××=.故答案为.把线段AC绕点A顺时针旋转90°,得到AC′,连接C′D,则C′为定点求出坐标,证明△ACE≌△AC′D,把CE转化为C′D,当C′D⊥OD时,C′D最小,即CE最小,求△AC′D面积即可.本题主要考查旋转的性质、全等三角形的判定和性质,正确作出辅助线是解题的关键.19.【答案】解:>①<②,解①得x>-;解②得x<4,把不等式的解集表示在数轴上:,所以不等式组的解集为-<x<4.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.【答案】证明:(1)∵AD⊥DC,AE⊥BE ,∴∠ADC=∠AEB=90°,∵∠DAC=∠DAE+∠2,∠EAB=∠EAD+∠1,∵∠1=∠2,∴∠DAC=∠EAB,在△ADC与△AEB中,∴△ADC≌△AEB(AAS);(2)连接AO,∵△ADC≌△AEB,∴AE=AD,在Rt△ADO和Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴OD=OE.【解析】(1)根据垂直的定义和全等三角形的判定证明即可;(2)根据全等三角形的性质和判定解答即可.考查了全等三角形的判定与性质;熟练掌握全等三角形的判定和性质是解答本题的关键.21.【答案】解:如图所示,点C1和点C2即为所求.【解析】分别作直线l1,l2夹角的平分线和线段AB的中垂线,交点即为所求.本题主要考查作图-应用与设计作图,解题的关键是掌握角平分线和线段中垂线的尺规作图及其性质.22.【答案】解:(1)∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=3,∴B的坐标是(0,2),A的坐标是(3,0);(2)如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=2,OA=CD=3,OD=OA+AD=5,则C的坐标是(5,3),设直线BC的解析式是y=kx+b,根据题意得:,解得:k=,b=2,∴直线BC的解析式是y=x+2.【解析】(1)先根据一次函数的解析式把x=0或y=0代入,即可求出A、B两点的坐标;(2)作CD⊥x轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式.本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.23.【答案】解:(1)当0≤x≤5时,设y=kx,5k=8,得k=1.6,即当0≤x≤5时,y=1.6x,当x>5时,设y=ax+b,,得,即当x>5时,y=2.4x-4,由上可得,y=>;(2)令2.4x-4≤,解得,x≤8,5×8=40,答:该家庭这个月最多可以用40吨.【解析】(1)根据函数图象中的数据可以求得y与x的函数关系式;(2)根据(1)中的函数解析式和题意,可以得到关于x的不等式,从而可以求得该家庭这个月最多可以用多少吨水,注意(1)求得的是人均月生活用水费,本题中家庭有5人.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.【答案】解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.【解析】(1)由平行线得到∠CAB+∠ABD=180°,根据角平分线定义表示出∠EAB、∠EBA,计算这两个的和,便可求∠AEB度数;(2)在AB上截取AF=AC,连接EF,分别证明△ACE≌△AFE,△DEB≌△FEB,借助CE=EF,DE=EF,可证CE=DE.本题主要考查了角平分线的定义以及全等三角形的判定和性质.25.【答案】解:(1)由AB=12,AM=3,根据三角形三边关系可得AM不可能为最大边,设MN=x,则BN=9-x,①当MN为最大线段时,依题意得MN2=BN2+AM2,即x2=(9-x)2+32,解得x=5;②当BN为最大线段时,依题意得BN2=MN2+AM2,即(9-x)2=x2+32,解得x=4;∴MN的长为5或4;(2)如图②,连接CM,CN,∵边AC,BC的垂直平分线分别交AB于点M,N,∴CM=AM,BN=CN,∴∠1=∠A=18°,∠2=∠B=27°,∵∠ACB=180°-18°-27°=135°,∴∠MCN=135°-18°-27°=90°,∴MN2=MC2+CN2,∴MN2=MA2+BN2,∴线段AM,MN,NB是勾股线段组;(3)如图③,以BP为边向下作等边三角形BDP,连接CD,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,由作法可知∠PBD=60°,BP=BD=PD,∵∠ABP=∠ABC-∠PBC,∠CBD=∠BPD-∠PBC,∴∠ABP=∠CBD,∴△ABP≌△CBD(SAS),∴AP=CD,∵线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,∴△PCD是直角三角形,∠PDC=90°,∵∠PDB=60°,∴∠BDC=60°+90°=150°,∵△ABP≌△CBD,∴∠APB=∠CDB=150°.【解析】(1)设MN=x,则BN=9-x,分两种情况讨论,即可得到MN的长;(2)连接CM,CN,依据边AC,BC的垂直平分线分别交AB于点M,N,即可得到∠MCN=90°,进而得出MN2=MC2+CN2,根据MN2=MA2+BN2,可得线段AM,MN,NB是勾股线段组;(3)以BP为边向下作等边三角形BDP,连接CD,判定△ABP≌△CBD(SAS),可得AP=CD,再根据线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,即可得出△PCD是直角三角形,进而得到∠BDC=150°,依据△ABP≌△CBD,可得∠APB=∠CDB=150°.本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形、等腰三角形的性质以及勾股定理等的综合运用,解题的关键是学会利用旋转变换添加辅助线,构造全等三角形来解决问题.。

浙江省绍兴市八年级上学期数学第一次月考试卷

浙江省绍兴市八年级上学期数学第一次月考试卷

浙江省绍兴市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2017九下·江阴期中) 下列运算正确的是()A . (﹣2x2)3=﹣8x6B . (a3)2=a5C . a3•(﹣a)2=﹣a5D . (﹣x)2÷x=﹣x2. (2分)(2019·广州模拟) 下列运算正确是()A .B .C .D .3. (2分)一个长方体的长、宽、高分别为5x-3,4x和2x,则它的体积等于()A . (5x-3)·4x·2x=20x3-12x2B . ·4x·2x=4x2C . (5x-3)·4x·2x=40x3-24x2D . (5x-3)·4x=20x2-12x4. (2分)长方形面积是,一边长为3a,则它周长()A . 2a-b+2B . 8a-2C . 8a-2b+4D . 4a-b+25. (2分) (2018八上·宽城月考) 若的计算结果中不含x的一次项,则m的值是()A . 1B . -1C . 2D . -2.6. (2分)下列计算正确的是()A .B .C .D .7. (2分)下列因式分解正确的是()A . 15x2﹣12xz=3xz(5x﹣4)B . x2﹣2xy+4y2=(x﹣2y)2C . x2﹣xy+x=x(x﹣y)D . x2+4x+4=(x+2)28. (2分)已知实数满足,则的值是().A . -2B . 1C . -1或2D . -2或1二、填空题 (共6题;共6分)9. (1分) (2019九下·常德期中) 计算:=________.10. (1分) (2018八上·仁寿期中) 已知 , ,则的值为________。

11. (1分)分解因式:x(x﹣2)(x+3)(x+1)+8=________ .12. (1分)若a+b=5,ab=3,则(a﹣2)(b﹣2)=________.13. (1分) (2017八上·康巴什期中) 若am=2,an=8,则am+n=________14. (1分)如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形.这一过程所揭示的乘法公式是________.三、解答题 (共9题;共63分)15. (6分) (2018八上·南召期末) 因式分解:a2+4a(b+c)+4(b+c)2.16. (15分) (2016七上·夏津期末) 先化简,再求值:,其中、满足.17. (6分) (2018七下·灵石期中) 王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部份铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?18. (5分)若(x﹣1)(x+1)(x+5)=x3+bx2+cx+d,求b+d的值.19. (5分) (2019八上·孝感月考) 先化简,再求值:(1),其中,;(2),其中 .20. (10分)一根弹簧原来的长度是10厘米,当弹簧受到拉力F千克(F在一定范围内)时,弹簧的长度用l表示,测得有关数据如下表:拉力F(kg)弹簧长度l(cm)110+0.5210+1310+1.5410=2……思考:(1)写出当F=7 kg时,弹簧的长度l为多少厘米?(2)写出拉力为F时,弹簧长度l与F的关系式.(3)计算当拉力F=100 kg时弹簧的长度l为多少厘米?21. (5分)(2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= .例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)= .(Ⅰ)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(Ⅱ)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(Ⅲ)在(2)所得“吉祥数”中,求F(t)的最大值.22. (5分)如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?三个代数式:(m+n)2 ,(m﹣n)2 , mn.(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2的值.23. (6分) (2016七上·开江期末) 现用棱长为1cm的若干小立方体,按如图所示的规律在地上搭建若个几何体.图中每个几何体自上而下分别叫第一层,第二层…第n层(n为正整数),其中第一层摆放一个小立方体,第二层摆放4个小立方体,第三层摆放9个小立方体…,依次按此规律继续摆放.(1)求搭建第4个几何体需要的小立方体个数;(2)为了美观,若将每个几何体的所有露出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要油漆0.2g.①求喷涂第4个几何体需要油漆多少g?②求喷涂第n个几何体需要油漆多少g?(用含n的代数式表示)参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共63分)15-1、16-1、17-1、17-2、18-1、19-1、19-2、20-1、20-2、20-3、21-1、22-1、23-1、23-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.(3 分)如图,平面直角坐标系中有一正方形 OABC,点 C 的坐标为(﹣2,﹣1),则点 A 坐 标为 ,点 B 坐标为 .
17.(3 分)如图,在平面直角坐标系中,以 O 为圆心,适当长为半径画弧,交 x 轴于点 M, 交 y 轴于点 N,再分别以点 M,N 为圆心,大于 MN 的长为半径画弧,两弧在第二象限交于 点 P,若点 P 的坐标为(2a,b+1),则 a 与 b 的数量关系为 .
同理 A2B3=8=23,…,An﹣1Bn=2n,
则 A8B9 的长为 29=512. 故选:D. 二、填空题(本题共有 8 小题,每小题 3 分,共 24 分)
11.(3 分)函数
中,自变量 x 的取值范围是 x≥3 .
【解答】解:根据题意得:x﹣3≥0,
解得:x≥3. 故答案是:x≥3.
C、不是轴对称图形,故本选项不符合题意;
D、是轴对称图形,故本选项符合题意.
故选:D.
2.(3 分)不等式 x+3<5 的解集在数轴上表示为( )
A.
B.
C.
D.
【解答】解:不等式 x+3<5, 解得:x<2,
. 故选:B. 3.(3 分)能说明命题“对于任何实数 a,|a|>﹣a”是假命题的一个反例可以是( )
18.(3 分)沿河岸有 A,B,C 三个港口,甲乙两船同时分别从 AB 港口出发,匀速驶向 C 港,最终到达 C 港.设甲、乙两船行驶 x(h)后,与 B 港的距离分别为 y1、y2(km),y1、y2 与 x 的函数关系如图所示.考察下列结论:
.
.
①乙船的速度是 25km/h;②从 A 港到 C 港全程为 120km; ③甲船比乙船早 1.5 小时到达终
把 P(1,2)和 Q(0,4)代入得

解得

故所求的一次函数解析式为 y=﹣2x+4.
故选:B. 5.(3 分)以下命题的逆命题为真命题的是( ) A.对顶角相等 B.同旁内角互补, 两直线平行 C.若 a=b,则 a2=b2D.若 a>0,b>0,则 a2+b2>0 【解答】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故 A 选项错 误; B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题, 故 B 选项正确; C、若 a=b,则 a2=b2 的逆命题为若 a2=b2,则 a=b,此逆命题为假命题,故 C 选项错误; D、若 a>0,b>0,则 a2+b2>0 的逆命题为若 a2+b2>0,则 a>0,b>0,此逆命题为假命 题,故 D 选 项错误. 故选:B. 6.(3 分)点 M(﹣5,y)向下平移 5 个单位所得的像是关于 x 轴对称,则 y 的值是( )
.
2017-2018 学年浙江省绍兴市八年级(上)期末
数学试卷
一、选择题(本题共有 10 小题,每小题 3 分,共 30 分) 1.(3 分)下列交通标志图案是轴对称图形的是( )
A.
B.
C.
D.
2.(3 分)不等式 x+3<5 的解集在数轴上表示为( )
A.
B.
C.
D.
3.(3 分)能说明命题“对于任何实数 a,|a|>﹣a”是假命题的一个反例可以是( )
21.(6 分)方格纸中小正方形的顶点叫格点.点 A 和点 B 是格点,位置如图. (1)在图 1 中确定格点 C 使△ABC 为直角三角形,画出一个这样的△ABC; (2)在图 2 中确定格点 D 使△ABD 为等腰三角形,画出一个这样的△ABD; (3)在图 2 中满足题(2)条件的格点 D 有 个.
A.64 B.128 C.256 D.512 二、填空题(本题共有 8 小题,每小题 3 分,共 24 分)
11.(3 分)函数
中,自变量 x 的取值范围是 .
12.(3 分)若二次根式
是最简二次根式,则最小的正整数 a= .
.
.
13.(3 分)一次函数 y=(k﹣3)x﹣k+2 的图象经过第一、三、四象限.则 k 的取值范围 是 . 14.(3 分)若线段 AB 平行 y 轴,AB 长为 5,若 A 的坐标为(4,5),则 B 的坐标 为 . 15.(3 分)已知函数 y1=k1x+b1 与函数 y2=k2x+b2 的图象如图所示,则不等式 k1x+b1<k2x+b2 的 解集是 .
A.64 B.128 C.256 D.512 【解答】解:对于直线 y=x+2,令 x =0,求出 y=2,即 A0(0,2),
.
.
∵A0B1∥x 轴,∴B1 的纵坐标为 2, 将 y=2 代入 y=0.5x+1 中得:x=2,即 B1(2,2), ∴A0B1=2=21, ∵A1B1∥y 轴,∴A1 的横坐标为 2, 将 x=2 代入直线 y=x+2 中得:y=4,即 A1(2,4), ∴A1 与 B2 的纵坐标为 4, 将 y=4 代入 y=0.5x+1 中得:x=6,即 B2(4,6), ∴A1B2=4=22,
点;④若设图中两者相遇的交点为 P 点,P 点的坐标为( , );⑤如果两船相距小于
10km 能够相互望见,那么甲、乙两船可以相互望见时,x 的取值范围是 <x<2.其中正确 的结论有 .
三、解答题(本题共有 6 小题,共 46 分)
19.(6 分)计算:(
)•
20.(6 分)解不等式组
,并将其解集表示在数轴上.
故选:B.
8.(3 分)化简: A.2x﹣6 B.0 C.6﹣2x D.2x+6
=( )
【解答】解:由题意可知: 3﹣x>0,
∴原式=
﹣(3﹣x)
=|x﹣3|+(x﹣3)
=﹣(x﹣3)+(x﹣3)
.
.
=0 故选:B. 9.(3 分)如图,在△ABC 中,∠C=90°,AC=2,点 D 在 BC 上,∠ADC=2∠B,AD= ,则 BC 的长为( )
A.a=﹣2 B.a= C.a=1 D.a=
【解答】解:说明命题“对于任何实数 a,|a|>﹣a”是假命题的一个反例可以是 a=﹣2, 故选:A. 4.(3 分)过点 Q(0,4)的一次函数的图象与正比例函数 y=kx 的图象相交于点 P(1,2), 则这个一次函数图象的解析式是( )
.
.
A.y=2x+4 B.y=﹣2x+4 C.y=2x﹣4 D.y=﹣2x﹣4 【解答】解:设一次函数的解析式为 y=kx+b,
A. ﹣1 B. +1 C. ﹣1D. +1
【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD, ∴∠B=∠DAB, ∴DB=DA= , 在 Rt△ADC 中,
DC=
= =1,
∴BC= +1.
故选:D.
10.(3 分)如图,直线 y=x+2 与 y 轴相交于点 A0,过点 A0 作 x 轴的平行线交直线 y=0.5x+1 于点 B1,过点 B1 作 y 轴的平行线交直线 y=x+2 于点 A1,再过点 A1 作 x 轴的平行线交直线 y=0.5x+1 于点 B2,过点 B2 作 y 轴的平行线交直线 y=x+2 于点 A2,…,依此类推,得到直线 y=x+2 上的点 A1,A2,A3,…,与直线 y=0.5x+1 上的点 B1,B2,B3,…,则 A8B9 的长为 ( )#F8
A.﹣5 B.5 C. D. 【解答】解:此题平移规律是(x,y﹣5),因为点 M(﹣5,y)向下平移 5 个单位的像关于 x 轴
..ຫໍສະໝຸດ 对称,所以 y 的值是(y﹣y+5)÷2= . 故选:C. 7.(3 分)如图,将△ABC 沿 DE、HG、EF 翻折,三个顶点均落在点 O 处,且 EA 与 EB 重合 于线段 EO,若∠DOH=78°,则∠FOG 的度数为( )
=( )
9.(3 分)如图,在△ABC 中,∠C=90°,AC=2,点 D 在 BC 上,∠ADC=2∠B,AD= ,则 BC 的长为( )
A. ﹣1 B. +1 C. ﹣1D . +1
10.(3 分)如图,直线 y=x+2 与 y 轴相交于点 A0,过点 A0 作 x 轴的平行线交直线 y=0.5x+1 于点 B1,过点 B1 作 y 轴的平行线交直线 y=x+2 于点 A1,再过点 A1 作 x 轴的平行线交直线 y=0.5x+1 于点 B2,过点 B2 作 y 轴的平行线交直线 y=x+2 于点 A2,…,依此类推,得到直线 y=x+2 上的点 A1,A2,A3,…,与直线 y=0.5x+1 上的点 B1,B2,B3,…,则 A8B9 的长为 ( )#F8
A.a=﹣2 B.a= C.a=1 D.a= 4.(3 分)过点 Q(0,4)的一次函数的图象与正比例函数 y=kx 的图象相交于点 P(1,2), 则这个一次函数图象的解析式是( )
A.y=2x+4 B.y=﹣2x+4 C.y=2x﹣4 D.y=﹣2x﹣4 5.(3 分)以下命题的逆命题为真命题的是( ) A.对顶角相等 B.同旁内角互补,两直线平行 C.若 a=b,则 a2=b2D.若 a>0,b>0,则 a2+b2>0 6.(3 分)点 M(﹣5,y)向下平移 5 个单位所得的像是关于 x 轴对称,则 y 的值是( )
12.(3 分)若二次根式
是最简二次根式,则最小的正整数 a= 2 .
【解答】解:二次根式 故答案为:2.
是最简二次根式,则最小的正整数 a=2,
13.(3 分)一次函数 y=(k﹣3)x﹣k+2 的图象经过第一、三、四象限.则 k 的取值范围是 k>
相关文档
最新文档