Collective Dynamics of “Small-world” Networks

合集下载

2014美赛ICM翻译

2014美赛ICM翻译

2014 ICM ProblemUsing Networks to Measure Influence and Impact One of the techniques to determine influence of academic research is to build and measure properties of citation or co-author networks. Co-authoring a manuscript usually connotes a strong influential connection between researchers. One of the most famous academic co-authors was the 20th-century mathematician Paul Erdös who had over 500co-authors and published over 1400 technical research papers. It is ironic, or perhapsnot, that Erdös is also one of the influencers in building the foundation for the emerging interdisciplinary science of networks, particularly, through his publication with AlfredRényi of the paper “On Random Graphs” in 1959. Erdös’s role as a collaborator was sosignificant in the field of mathematics that mathematicians often measure their closeness to Erdös through analysis of Erdös’s amazingly large and robust co-authornetwork (see the website /enp/ ). The unusual and fascinatingstory of Paul Erdös as a gifted mathematician, talented problem solver, and mastercollaborator is provided in many books and on-line websites(e.g.,/Biographies/Erd os.html). Perhaps his itinerantlifestyle, frequently staying with or residing with his collaborators, and giving much of hismoney to students as prizes for solving problems, enabled his co-authorships to flourishand helped build his astounding network of influence in several areas of mathematics.In order to measure such influence as Erdös produced, there are network-basedevaluation tools that use co-author and citation data to determine impact factor ofresearchers, publications, and journals. Some of these are Science Citation Index, Hfactor,Impact factor, Eigenfactor, etc. Google Scholar is also a good data tool to use fornetwork influence or impact data collection and analysis. Your team’s goal for ICM2014 is to analyze influence and impact in research networks and other areas of society. Your tasks to do this include:1) Build the co-author network of the Erdos1 authors (you can use the file from thewebsitehttps:///users/grossman/enp/Erdos1. html or the one weinclude at Erdos1.htm ). You should build a co-author network of theapproximately 510 researchers from the file Erdos1, who coauthored a paperwith Erdös, but do not include Erdös. This will take some skilled data extractionand modeling efforts to obtain the correct set of nodes (the Erdös coauthors) andtheir links (connections with one another as coauthors). There are over 18,000lines of raw data in Erdos1 file, but many of them will not be used since they arelinks to people outside the Erdos1 network. If necessary, you can limit the size ofyour network to analyze in order to calibrate your influence measurementalgorithm. Once built, analyze the properties of this network. (Again, do notinclude Erdös --- he is the most influential and would be connected to all nodes inthe network. In this case, it’s co-authorship with him that builds the network, buthe is not part of the network or the analysis.)2) Develop influence measure(s) to determine who in this Erdos1 network hassignificant influence within the network. Consider who has published importantworks or connects important researchers within Erdos1. Again, assume Erdös isnot there to play these roles.3) Another type of influence measure might be to compare the significance of aresearch paper by analyzing the important works that follow from its publication.Choose some set of foundational papers in the emerging field of network scienceeither from the attached list (NetSciFoundation.pdf) or papers you discover.Use these papers to analyze and develop a model to determine their relativeinfluence. Build the influence (coauthor or citation) networks and calculateappropriate measures for your analysis. Which of the papers in your set do youconsider is the most influential in network science and why? Is there a similarway to determine the role or influence measure of an individual networkresearcher? Consider how you would measure the role, influence, or impact of aspecific university, department, or a journal in network science? Discussmethodology to develop such measures and the data that would need to becollected.4) Implement your algorithm on a completely different set of network influence data--- for instance, influential songwriters, music bands, performers, movie actors,directors, movies, TV shows, columnists, journalists, newspapers, magazines,novelists, novels, bloggers, tweeters, or any data set you care to analyze. Youmay wish to restrict the network to a specific genre or geographic location orpredetermined size.5) Finally, discuss the science, understanding and utility of modeling influence andimpact within networks. Could individuals, organizations, nations, and society useinfluence methodology to improve relationships, conduct business, and makewise decisions? For instance, at the individual level, describe how you could useyour measures and algorithms to choose who to try to co-author with in order toboost your mathematical influence as rapidly as possible. Or how can you useyour models and results to help decide on a graduate school or thesis advisor toselect for your future academic work?6) Write a report explaining your modeling methodology, your network-basedinfluence and impact measures, and your progress and results for the previousfive tasks. The report must not exceed 20 pages (not including your summarysheet) and should present solid analysis of your network data; strengths,weaknesses, and sensitivity of your methodology; and the power of modelingthese phenomena using network science.*Your submission should consist of a 1 page Summary Sheet and your solution cannotexceed 20 pages for a maximum of 21 pages.This is a listing of possible papers that could be included in a foundational set ofinfluential publications in network science. Network science is a new, emerging, diverse, interdisciplinary field so there is no large, concentrated set of journals that are easy touse to find network papers even though several new journals were recently establishedand new academic programs in network science are beginning to be offered inuniversities throughout the world. You can use some of these papers or others of yourown choice for your team’s set to analyze and compare for influence or impact innetwork science for task #3.Erdös, P. and Rényi, A., On Random Graphs, Publicationes Mathematicae, 6: 290-297,1959.Albert, R. and Barabási, A-L. Statistical mechanics of complex networks. Reviews ofModern Physics, 74:47-97, 2002.Bonacich, P.F., Power and Centrality: A family of measures, Am J. Sociology. 92: 1170-1182, 1987.Barabási, A-L, and Albert, R. Emergence of scaling in random networks. Science, 286:509-512, 1999.Borgatti, S. Identifying sets of key players in a network. Computational andMathematical Organization Theory, 12: 21-34, 2006. Borgatti, S. and Everett, M. Models of core/periphery structures. Social Networks, 21:375-395, October 2000Graham, R. On properties of a well-known graph, or, What is your Ramseynumber? Annals of the New York Academy of Sciences, 328:166-172, June 1979.Kleinberg, J. Navigation in a small world. Nature, 406: 845, 2000.Newman, M. Scientific collaboration networks: II. Shortest paths, weightednetworks, and centrality. Physical Review E, 64:016132, 2001.Newman, M. The structure of scientific collaboration networks. Proc. Natl.Acad. Sci. USA, 98: 404-409, January 2001. Newman, M. The structure and function of complex networks. SIAM Review,45:167-256, 2003.Watts, D. and Dodds, P. Networks, influence, and public opinion formation. Journal ofConsumer Research, 34: 441-458, 2007.Watts, D., Dodds, P., and Newman, M. Identity and search in social networks. Science,296:1302-1305, May 2002.Watts, D. and Strogatz, S. Collective dynamics of `small-world' networks. Nature, 393:440-442, 1998.Snijders, T. Statistical models for social networks. Annual Review of Sociology, 37:131–153, 2011.Valente, T. Social network thresholds in the diffusion of innovations, Social Networks,18: 69-89, 1996.Erdos1, V ersion 2010, October 20, 2010This is a list of the 511 coauthors of Paul Erdos, together with their coauthors listed beneath them. The date of first joint paper with Erdos is given, followed by the number of joint publications (ifit is more than one). An asterisk following the name indicates that this Erdos coauthor is known to be deceased; additional information about the status of Erdos coauthors would be most welcomed. (This convention is not used for those with Erdos number 2, as to do so would involve too much work.) Numbers preceded by carets follow the convention used by Mathematical Reviews in MathSciNet to distinguish people with the same names.Please send corrections and comments to grossman@The Erdos Number Project Web site can be found at the following URL:/enpABBOTT, HARVEY LESLIE 1974Aull, Charles E.Brown, Ezra A.Dierker, Paul F.Exoo, GeoffreyGardner, BenHANSON, DENISHare, Donovan R. Katchalski, MeirLiu, Andy C. F.MEIR, AMRAMMOON, JOHN W.MOSER, LEO*Pareek, Chandra MohanRiddell, JamesSAUER, NORBERT W.SIMMONS, GUSTA VUS J.Smuga-Otto, M. J.SUBBARAO, MA TUKUMALLI VENKATA* Suryanarayana, D.Toft, BjarneWang, Edward Tzu HsiaWilliams, Emlyn R.Zhou, BingACZEL, JANOS D. 1965Abbas, Ali E.Aczel, S.Alsina Catala, ClaudiBaker, John A.Beckenbach, Edwin F.Beda, GyulaBelousov, Valentin DanilovichBenz, WalterBerg, LotharBoros, ZoltanChudziak, JacekDaroczy, ZoltanDhombres, Jean G.Djokovic, Dragomir Z.Egervary, Jeno2014 ICM问题使用网络来测量的影响和冲击其中一项技术来确定学术研究的影响力是建立和测量引文或合著者网络的性能。

复杂网络研究简介

复杂网络研究简介

∑d
i> j
ij
d12 = 1
d13 = 1 d 23 = 1
d14 = 2 d 24 = 1 d 34 = 2
d15 = 1 d 25 = 2 d 35 = 2 d 45 = 3
Total = 16 Average:
L = 16 / 10 = 1.6
聚类系数
• 一个网络的聚类系数 C满足:
0<C<1
规则网络
(a) 完全连接;
(b) 最近邻居连接;
(c) 星形连接
规则网络
... ...
(d) Lattice
(z) Layers
随机图理论
• 随机图论 - Erdös and Rényi (1960) • ER 随机图模型统治四十余年…… 直到今天 …… • 当今大量可获取的数据+高级计算工具,促使人们 重新考虑随机图模型及其方法
“图论之父”
看作4个节点,7条边的 图
路必须有起点和终点。 一次走完所有的桥,不重复,除起点与终点外,其余点必须有偶数 条边,所以七桥问题无解。 1875年, B 与 C 之间新建了一条桥解决了该问题!☺
Euler 对复杂网络的贡献
Euler 开启了数学图论,抽象为顶点与边的集 合 图论是网络研究的基础 网络结构是理解复杂世界的关键
电信网络
(Stephen G. Eick)
美国航空网
世界性的新闻组网络
(Naveen Jamal)
生物网络
人际关系网络
复杂网络概念
• • • • • • 结构复杂:节点数目巨大,网络结构呈现多种不同特征。 节点多样性:同一网络中可能有多种不同的节点。 连接多样性:节点之间的连接权重存在差异,且有可能存在方向性。 网络进化:表现在节点或连接的产生与消失。例如WWW,网页或链 接随时可能出现或断开,导致网络结构不断发生变化。 动力学复杂性:节点集可能属于非线性动力学系统,例如节点状态随 时间发生复杂变化。 多重复杂性融合:即以上多重复杂性相互影响,导致更为难以预料的 结果。例如,设计一个电力供应网络需要考虑此网络的进化过程,其 进化过程决定网络的拓扑结构。当两个节点之间频繁进行能量传输时, 他们之间的连接权重会随之增加,通过不断的学习与记忆逐步改善网 络性能。 复杂网络简而言之即呈现高度复杂性的网络。

小世界网络综述

小世界网络综述

关于小世界网络的文献综述一、小世界网络概念方面的研究Watts和Strogatz开创性的提出了小世界网络并给出了WS小世界网络模型。

小世界网络的主要特征就是具有比较小的平均路径长度和比较大的聚类系数。

所谓网络的平均路径长度,是指网络中两个节点之间最短路径的平均值。

聚类系数被用来描述网络的局部特征,它表示网络中两个节点通过各自相邻节点连接在一起的可能性,以及衡量网络中是否存在相对稳定的子系统。

规则网络具有大的特征路径长度和高聚类系数,随机网络则有短的特征路径长度和比较小的聚类系数[1]。

Guare于1967年在《今日心理学》杂志上提出了“六度分离”(Six Degrees of Separation) 理论,即“小世界现象”。

该理论认为,在社交网络中存在短路径,即人们只要知道自己认识的人,就能很快地把信息传递到任何远方目标[2]。

.Stanleymilgram的邮件试验,后来的“培根试验”,以及1998年《纽约时代周刊》的关于莱温斯基的讽刺性游戏,都表现出:似乎在庞大的网络中各要素之间的间隔实际很“近”,科学家们把这种现象称为小世界效应[3]。

研究发现,世界上任意两个人可以平均通过6个人联系在一起,人们称此现象为“六度分离”[2]。

二、小世界网络模型方面的研究W-S模型定义了两个特征值:a.特征路径的平均长度L。

它是指能使网络中各个结点相连的最少边长度的平均数,也就是上面说的小世界网络平均距离。

b.集团化系数C。

网络结点倾向于结成各种小的集团,它描述网络局部聚类特征。

稍后,Newman和WattS对上述的WS模型作了少许改动,提出了另一个相近但较好的(NW)小世界网络模型[5],其做法是不去断开原来环形初始网络的任何一条边、而只是在随机选取的节点对之间增加一条边(这时,新连接的边很可能是长程边)。

这一模烈比WS模型容易分析,因为它在形成过程中不会出现孤立的竹点簇。

其次,还有Monasson小世界网络模型[6]以及一些其它的变形模型包括BW 小世界网络模型等等[7]。

第20章 小世界现象_59608478

第20章 小世界现象_59608478

15
Watts-Strogatz模型Байду номын сангаасin paper)
The different characteristics among the three
type networks

a perfectly ordered network: a high L and a high C a randomly connected network: a low L and a low C a small world network: a low L and a relatively high C
想象大量节点排布成均匀网格状
连接近邻:确定性,连接远程:随机性
19
Watts-Strogatz模型
模型体现了同质连接和弱关系连接的概念,可
以看成是现实社会网络的一个合理近似
可以证明:在这样的网络中,任意两点之间存
在短路径的概率很高 也可以证明,Watts-Strogatz模型不能很好 地体现第二个要求
Jon Kleinberg (网络、群体与市场)
Navigation in a Small World Nature. 2000, 406(6789): 845. (被引用1227次)
WSK模型引入一个衡量远程弱连接跨越距离的
“尺度”
节点在r个网格步内与其他节点相互连接 节点的k个随机边以到该节点的距离衰减的方式生 成,由聚集指数q控制
14
Watts-Strogatz模型(in paper)
Two characteristics distinguish a small-
world network

a low average path length L

复杂网络中聚类算法总结

复杂网络中聚类算法总结

复杂⽹络中聚类算法总结⽹络,数学上称为图,最早研究始于1736年欧拉的哥尼斯堡七桥问题,但是之后关于图的研究发展缓慢,直到1936年,才有了第⼀本关于图论研究的著作。

20世纪60年代,两位匈⽛利数学家Erdos和Renyi建⽴了随机图理论,被公认为是在数学上开创了复杂⽹络理论的系统性研究。

之后的40年⾥,⼈们⼀直讲随机图理论作为复杂⽹络研究的基本理论。

然⽽,绝⼤多数的实际⽹络并不是完全随机的。

1998年,Watts及其导师Strogatz在Nature上的⽂章《Collective Dynamics of Small-world Networks》揭⽰了复杂⽹络的⼩世界性质。

随后,1999年,Barabasi及其博⼠⽣Albert在Science上的⽂章《Emergence of Scaling in Random Networks》⼜揭⽰了复杂⽹络的⽆标度性质(度分布为幂律分布),从此开启了复杂⽹络研究的新纪元。

随着研究的深⼊,越来越多关于复杂⽹络的性质被发掘出来,其中很重要的⼀项研究是2002年Girvan和Newman在PNAS上的⼀篇⽂章《Community structure in social and biological networks》,指出复杂⽹络中普遍存在着聚类特性,每⼀个类称之为⼀个社团(community),并提出了⼀个发现这些社团的算法。

从此,热门对复杂⽹络中的社团发现问题进⾏了⼤量研究,产⽣了⼤量的算法,本⽂试图简单整理⼀下复杂⽹络中聚类算法,希望对希望快速了解这⼀部分的⼈有所帮助。

本⽂中所谓的社团跟通常我们将的聚类算法中类(cluster)的概念是⼀致的。

0. 预备知识为了本⽂的完整性,我们⾸先给出⼀些基本概念。

⼀个图通常表⽰为G=(V,E),其中V表⽰点集合,E表⽰边集合,通常我们⽤n表⽰图的节点数,m表⽰边数。

⼀个图中,与⼀个点的相关联的边的数量称为该点的度。

基于小世界现象的学科信息门户链接设计优化策略

基于小世界现象的学科信息门户链接设计优化策略

基于小世界现象的学科信息门户链接设计优化策略肖雪2012-9-25 9:14:40 来源:《情报杂志》(西安)2011年10期【英文标题】Design Optimization Strategies of the Hyperlink of Subject Information Gateways Based on Small-world Phenomenon【作者简介】肖雪(1979-),女,讲师,研究方向:信息服务与用户研究,南开大学商学院信息资源管理系,天津300071【内容提要】从平均最短路径、集团系数、对数路径和中心节点描述了小世界网络的特性和模型,从知识组织和用户行为的角度指出学科信息网络具有更为明显的小世界现象。

采用小世界度量指标对CSDL4个学科信息门户进行分析,发现网络链接存在的问题。

据此提出学科信息门户链接设计的优化策略:采用知识链接技术发展多重链接、基于凝聚子群分析和语义网确定链接集合边界、基于数据挖掘和知识地图技术寻找捷径、运用信息计量和社会网络分析方法识别中心节点。

This paper describes the mode of small-world network from characteristic path length, clustering coefficient, short cut and central node. And it further points out the small-world phenomenon also exists in subject based information gatewaysfrom perspective of knowledge organization and user behavior. Using factors of social network analysis, the hyperlinks in four subject based information gateways of CSDL are analyzed and problems are found. Then the paper proposes optimized strategies for hyperlink design, including developing multiple links, determining link set boundaries based on cohesive subgroup and semantic web analysis, seeking shortcut with the help of data mining and knowledge map, identifying central node using informetrics and social network analysis method.【关键词】小世界现象/学科信息门户/网络链接/社会网络分析/知识链接Small-world phenomenon/Subject based information gateways/Network hyperlink/Social network analysis/Knowledge linkage0、引言1967年,美国社会心理学家Milgram通过著名的发信试验,发现任意两个人之间最多通过6个人就能取得联系,由此提出了“六度分离”理论。

六度间隔理下学习方式变革论文

六度间隔理下学习方式变革论文

六度间隔理论下的学习方式变革【摘要】本文从“六度间隔理论”的提出、验证、概念出发,揭示了“六度分离理论”的有关内容,并提出了其对我们的学习启示。

【关键词】六度间隔理论;学习方式在讨论该理论之前,请问你有没有想过与史蒂芬·霍金、美男子普京或者阿诺德·施瓦辛格是朋友吗?你应该有过无数这样的偶遇和巧合:我们和一个陌生人成为了朋友,聊着聊着,却发现原来你们认识同一个人,或者你认识一个人和他认识的一个人是好朋友,于是你们马上会觉得对方更加亲切,然后同时感叹:世界是如此的小。

近年来,出现了大量类似的问题。

为什么计算机病毒在互联网上传播得那么快,二十四小时能感染几千万台主机?为什么sars病毒很难遏制住传播,总是逃开人们的封锁扩散开?……这不禁让我们想这个拥有两百多个国家和地区、5.1亿多平方公里、几十亿人口的地球,小吗?六度分离理论(six degrees of separation)将给出答案。

首先,六度分离理论的提出1967年,美国哈佛大学社会心理学教授斯坦利·米尔格兰姆对这个问题做了一个著名的实验,他从内布拉斯加州和堪萨斯州招募到一批志愿者,随机选择出其中的三百多名,请他们邮寄一个信函。

信函的最终目标是米尔格兰姆指定的一名住在波士顿的股票经纪人。

由于几乎可以肯定信函不会直接寄到目标,米尔格兰姆就让志愿者把信函发送给他们认为最有可能与目标建立联系的亲友,并要求每一个转寄信函的人都回发一封信件给米尔格兰姆本人。

出人意料的是,有六十多封信最终到达了目标股票经济人手中,并且这些信函经过的中间人的数目平均只有5个。

也就是说,陌生人之间建立联系的最远距离是6个人。

六度空间理论的概念由此而来。

1967年5月,米尔格兰姆在《今日心理学》杂志上发表了实验结果,并提出了著名的“六度分离”理论。

然而,实验的规模和结果在支持“六度分离理论”方面都不太乐观。

此时的六度空间理论还只能是一个假说,而不能称为理论。

自组织理论及其在电力系统中的应用

自组织理论及其在电力系统中的应用

万方数据万方数据万方数据自组织理论及其在电力系统中的应用作者:龚立, 阮仁俊, 孔德诗, 吴春林作者单位:龚立,孔德诗,吴春林(成都电业局营销部), 阮仁俊(成都电业局客户服务中心,四川成都,610021)刊名:中国电力教育英文刊名:CHINA ELECTRIC POWER EDUCATION年,卷(期):2011(15)被引用次数:2次1.甘德强,胡江溢,韩祯祥2003年国际若干停电事故思考[期刊论文]-电力系统自动化 2004(3)2.张文亮,周孝信,白晓民,汤涌城市电网应对突发事件保障供电安全的对策研究[期刊论文]-中国电机工程学报2008(22)3.梅生伟;薛安成;张雪敏电力系统自组织临界特性与大电网安全 20094.G.尼科利斯;I.普里戈金非平衡系统的自组织 19865.H.哈肯信息与自组织 19886.R.托姆突变论:思想与应用 19897.M.艾根;P.舒斯特尔超循环论 19798.朱丽琴基于分形理论的刀具磨损状态识别研究[学位论文] 20099.杨辉基于混沌优化理论的复杂热工系统控制研究[学位论文] 200710.Chen Jie;Thorp J S;Parashar M Analysis of electric power system disturbance data 200111.Dobson I;Carreras B A;Lynch V E An initial model for complex dynamics in electric power system blackouts 200112.Carreras BA;Lynch VE;Dobson I;Newman DE Complex dynamics of blackouts in power transmission systems[外文期刊] 2004(3)13.邓慧琼,艾欣,赵亮,滦辉庭大停电自组织临界特征的若干问题探讨[期刊论文]-电网技术 2007(8)14.曹一家,江全元,丁理杰电力系统大停电的自组织临界现象[期刊论文]-电网技术 2005(15)15.Carreras B A;Lynch V E;Newman D E Dynamic,criticality and self-organization in a model for blackouts in power transmission systems 200216.Rio M A;Kirschen D S;Jayaweera D Value of security:modelling time dependent phenomena and weather conditions 2002(03)17.Daniel S. Kirschen;Dilan Jayaweera;Dusko P. Nedic;Ron N. Allan A Probabilistic Indicator of System Stress[外文期刊] 2004(3)18.Jie Chen;James S. Thorp;Ian Dobson Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model[外文期刊] 2005(4)19.Watts D J;Strogatz S H Collective dynamics of small-world networks 1998(6684)20.Home P Edge overload breakdown in evolving network 2002(02)i Y C;Motter A E;Nishikawa T Attacks and cascades in complex networks 2004(650)22.李洁,李仕雄,刘年平电力系统不是自组织临界性系统[期刊论文]-电力学报 2009(3)23.吴彤自组织方法论研究 20011.李海基于协同学的小电流接地系统故障测距的研究[学位论文]20082.朱旭凯.刘文颖.杨以涵.ZHU Xu-kai.LIU Wen-ying.YANG Yi-han基于协同学思想的电网连锁反应故障预防模型[期刊论文]-电网技术2007,31(23)3.朱浩从协同学看我国大学学术竞争力的打造与提升[期刊论文]-学术论坛2007(4)4.易俊.周孝信.肖逾男.YI Jun.ZHOU Xiao-xin.XIAO Yu-nan电力系统自组织临界特性分析与仿真模型[期刊论文]-电网技术2008,32(3)5.刘映尚.吴文传.冯永青.张伯明.吕颖.LIU Ying-shang.WU Wen-chuan.FENG Yong-qing.ZHANG Bo-ming.LU Ying 基于自组织临界理论的南方电网停电事故宏观规律研究[期刊论文]-中国电力2007,40(7)6.杨曼丽.武志刚加州能源危机的协同学思考[期刊论文]-科技进步与对策2004,21(7)7.邱红用自组织临界理论分析电网的停电事故[期刊论文]-广播电视信息2010(9)8.王浩锐.艾欣.徐鹏电网大停电的自组织临界理论现象[会议论文]-20079.蒋国瑞.杨晓燕.赵书良.JIANG Guo-rui.YANG Xiao-yan.ZHAO Shu-liang基于协同学的Multi-Agent合作系统研究[期刊论文]-计算机应用研究2007,24(5)10.洪晓斌.刘桂雄.程韬波.陈铁群.HONG Xiao-bin.LIU Gui-xiong.CHENG Tao-bo.CHEN Tie-qun协同学理论在多传感测量系统中的潜在发展[期刊论文]-现代制造工程2009(4)1.张波,李玲华自组织理论视野下高校体育文化的构建[期刊论文]-吉林体育学院学报 2012(01)2.郑文兵私有制起源中的自然基础及其哲学本质[期刊论文]-湛江师范学院学报 2013(04)引用本文格式:龚立.阮仁俊.孔德诗.吴春林自组织理论及其在电力系统中的应用[期刊论文]-中国电力教育2011(15)。

2014年美国大学生数学建模竞赛ICM(C题)一等奖

2014年美国大学生数学建模竞赛ICM(C题)一等奖

2 Assumptions
All the data given and found is valid and believable We don’t take the people with Erdos number>1 or Erdos number=0 (being Erdos himself) into account. The timeline of cooperation can be neglected. Neglecting the isolated node does not influence the accurate result.
Team # 25072Байду номын сангаас
Page 1 of 20
1 Introduction
Network science is an interdisciplinary academic field which studies complex networks [1]. One of the techniques to determine influence of academic research is to build a citation or co-author networks and analyze its properties. Erdos is the most famous academic co-authors on account of his over 500 co-author and over 1400 papers published. So it is of great significance to analyze the co-author data within Erdos1. How to build the co-author network and develop influence measures to determine the most influential one? It requires us some skills for data extraction in order to remove the invalid data and limit the size of the network that we are going to research. Also, ability to analyze the properties of the network is needed so as to figure out the feature of the network. On one hand our goal is to establish a mathematics model to determine the most significant author. There is no need to consider Erdos since he will link to all nodes in Erdos1. On the other hand we are required to develop another different model to determine the most important works. Moreover, we will implement our algorithm on a completely different set of network influence data –for instance, influential songwriters, music bands, performers, movie actors, directors, movies, TV shows, columnists, journalists, newspapers, magazines, novelists, novels, bloggers, tweeters and so on. Finally, we will discuss the science, understanding and utility of modeling influence and impact within networks and draw some conclusion. What’s more, we can also try to apply our model to the network of university, department, nation and society to demonstrate our models have good practicability and adaptability.

社会网络理论PKSNS网站

社会网络理论PKSNS网站

官方格式的自我介绍
o o o 阳志平,安人测评总经理。 职业背景:首都师范大学心理系学士毕业,在加入安人测评之前,曾 任清华大学与企业合作委员会、和君创业、华夏基石人力资源高级咨 询师,现任安人测评总经理。 实践经验:阳志平主持过上百家机构与数百万人次的心理测评项目, 带领团队创造了中国心理测评历 史上众多的第一。马加爵事件发生之 后,阳志平与云南省教育系统合作,成功建立十万大学生的心理档 案,为中国历史上第一次大规模大学生心理健康测评。不仅是 教育行 业与传统的企业人才测评领域,在团队的支持之下,阳志平在中国首 次大规模地将心理测评技术引入到消防、武警、司法、陆军等行业。 学术专长:阳志平在心理测量与社会心理学上拥有较高造诣,已在 《心理科学》等核心刊物上发表论文二十余篇,出版《工作评价》等 著作三本,主持与参与过“大学生职业生涯发展阻碍因素”等多项国家 自然科学基金委、国家教育部社科基金研究课题。 业余感兴趣的事情:美食+美女(给美女做咨询比较提神^^)、科 幻小说(收集了几乎所有国内能找到的科幻小说)、思考(就是发 呆)
ü 二三十年代产生于英国人类学
拉德克利夫布朗(首次使用其概念); 巴恩斯(渔村,比喻〉系统研究); 鲍特:《家庭与社会网络》
ü 三十年代美国心理学奠定计量分析基础:
莫雷诺
ü 六十年代至今,在社会学、经济学得到长足 发展(一门 新学科:新经济社会学)

4、社会网络分析的基本原则
ü 对行为的解释由个体属性转向限制行为主体 的网络特征 ü 规则来自于社会关系结构体系中的位置 ü 社会结构决定二人关系的运作 ü 世界是由网络而非群体构成的 ü 网络方法取代和补充个体方法
1、什么是社会网络?

1、什么是社会网络?
RogerBrown:

Collective-dynamics-of-'small-world'-networks阅读报告

Collective-dynamics-of-'small-world'-networks阅读报告

Collective dynamics of 'small-world' networks 本篇论文中瓦茨和斯特罗加茨提出许多生物网络、技术网络和社会网络介于完全规则网和完全随机网之间,因此他们提出了一个模型来解释,后来被称为瓦茨-斯特罗加茨模型(简称WS模型),模型从一个完全的规则网络出发,以一定的概率将网络中的连接打乱重连。

WS模型以传染病为例提出:1、从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的K个节点相连2、随机化重连:以概率p随机地重新连接网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。

其中规定,任意两个不同的节点之间至多只能有一条边,并且每一个节点都不能有边与自身相连。

如果概率P=0,那么重连永远不会发生,最后得到的是原来的规则网络。

如果概率,那么所有的连接都被重连了一次,最后得到的是一个完全的随机网络。

而对于概率的情况,瓦茨和斯特罗加茨考察了集聚系数和平均路径长度与的关系,将这两者看作是关于P的函数:集聚系数C=C(P),平均路径长度L=L(P)。

他们发现,在P从0变到1的过程中,L(P)下降得很快,而C(P)下降的比较慢。

图中的横轴是P(使用对数坐标轴表示),纵轴是比值(介乎0与1之间)。

从右图可以看到,L(P)/L(0)曲线很快就逐渐下降到0.2以下,而C(P)/C(0)曲线则超过P=0.1后才开始有显著下降。

所以对于很小的P,L(P)可以很小,但C(P)可以很大,这正是小世界网络的特征。

通过本篇论文的阅读,主要了解了描述小世界现象的Watts-Strogatz 模型,该模型指出小世界网络同时具有特征路径长度短和集群程度高的特点,它们并不能从规则网络或随机网络中推导出来,因此引入随机重连概率P模拟了规则网络和随机网络之间的情况,验证了小世界网络中短路径的存在性。

虽然模型较好地验证了短路径的存在,但是并没有具体指出如何找到这些短路径,因此还需要在进一步优化模型来找到短路径。

WS以及NW小世界网络的生成(MATLAB)

WS以及NW小世界网络的生成(MATLAB)

WS以及NW⼩世界⽹络的⽣成(MATLAB)WS⼩世界⽹络⽣成算法,⼀般⼩世界⽹络⽣成算法速度慢,节点度分布与数学推导不符,在⽹络仿真中造成不便,这⾥针对实际⽹络动⼒学仿真过程撰写了WS⼩世界⽹络的MATLAB⽣成算法,并考虑了矩阵化,具有较⾼的速度。

以下是対应的代码:% The simulation of WS-smallworld network% the algorithm of WS-smallworld's generation has been improved in speed,% and tend to be easily understood% writen by winter-my-dream@% Example:% N = 100; %network size (number of nodes)% m = 6; %2*m is the average edges of each nodes% p = 0.1; %rewiring probability% matrix = small_world_WS_new(N,m,p);function matrix = small_world_WS_new(N,m,p)rng('default')rng('shuffle')matrix=zeros(N,N);% generate regular networkfor i=m+1:N-mmatrix(i,i-m:i+m)=1;endfor i=1:mmatrix(i,1:i+m)=1;endfor i=N-m+1:Nmatrix(i,i-m:N)=1;endfor i=1:mmatrix(i,N-m+i:N)=1;matrix(N-m+i:N,i)=1;end% rewiring the networkfor i = 1:N% then rewiring the edges with the probability of p[series1,series2] = range_sort(N,m,i);index0 = series1(rand(2*m,1)>1-p);if(~isempty(index0))matrix(i,index0) = 0;matrix(i,series2(randperm(length(series2),length(index0))))=1;endendmatrix = matrix -diag(diag(matrix));endfunction [series1,series2] = range_sort(N,m,i)% select the index of nodes in row i for rewiringif(i-m>0 && i+m<=N)series1 = i-m:i+m;series2 = setdiff(1:N,series1);elseif(i-m<=0)series1 = [1:i+m,N-m+i:N];series2 = setdiff(1:N,series1);elseseries1 = [1:m-N+i,i-m:N];series2 = setdiff(1:N,series1);end% Without considering the connection of diagonal elementsseries1(series1==i) = [];end参考⽂献:Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J]. nature, 1998, 393(6684): 440-442.NW⼩世界⽹络的⽣成⽅法相对简单,我这⾥附加对应代码:% 基于Matlab 的⼩世界⽹络仿真% 经过矩阵化修改后,⽣成速度已经⼤⼤加快function matrix = small_world_NW(N,m,p)% N=50;m=3;p=0.1;% matrix=sparse([]);matrix = zeros(N,N);for i=m+1:N- mmatrix(i,i- m:i+m)=1;endfor i=1:mmatrix(i,1:i+m)=1;endfor i=N- m+1:Nmatrix(i,i- m:N)=1;endfor i=1:mmatrix(i,N- m+i:N)=1;matrix(N- m+i:N,i)=1;end% Random add edgekk=(rand(N,N)<p);matrix = logical(matrix + kk);matrix = matrix -diag(diag(matrix));对应⽣成⽹络的测试图的代码:clear,clc,close all% load A.txtN=10;m=2;p=0.1;% A= small_world_WS_new(N,m,p);A = small_world_NW(N, m, p);t=linspace(0,2*pi,N+1);x=sin(t);y=cos(t);figureset(gcf,'color','w')plot(x,y,'o','markerfacecolor','k'),hold onfor i=1:Nfor j=1:Nif (A(i,j)==1)fp1=plot([x(i),x(j)],[y(i),y(j)],'r-'); hold on set(fp1,'linesmoothing','on')endendendaxis([-1.05,1.05,-1.05,1.05])axis squareaxis offsum(sum(A))。

静息态脑功能网络的小世界属性研究

静息态脑功能网络的小世界属性研究

静息态脑功能网络的小世界属性研究郁芸;钱志余;陶玲;俞宙;宋健太【摘要】人脑是一个复杂的网络,不同的功能区域相互作用、相互协调.本文综述了静息态脑功能网络的小世界属性研究方法,首先介绍了基于图论的复杂网络模型的基本概念和特征度量,然后介绍了基于功能磁共振成像数据构建脑功能网络的方法,最后分析了构建的脑功能网络的小世界属性.【期刊名称】《北京生物医学工程》【年(卷),期】2016(035)001【总页数】4页(P105-108)【关键词】功能磁共振成像;脑功能网络;小世界属性【作者】郁芸;钱志余;陶玲;俞宙;宋健太【作者单位】南京航空航天大学(南京210016);南京医科大学(南京210029);南京航空航天大学(南京210016);南京航空航天大学(南京210016);南京航空航天大学(南京210016);南京航空航天大学(南京210016)【正文语种】中文【中图分类】R318.04人脑由数量巨大的神经元以及它们之间的稀疏连接构成,各种信息可以在人脑局部和全体进行快速地传递和处理。

大脑通过多个脑区的协调工作,对信息进行加工、处理来完成脑的高级功能,其复杂程度难以想象。

近年来,许多研究者认为网络模型和基于图论的拓扑方法可以帮助理解大脑组织结构和功能机制[1-2]。

除了脑功能网络,客观世界中还存在着许多诸如交通网络、因特网等其他复杂网络,相关网络研究已经发现它们都具有小世界特性。

所谓小世界属性,即构建的复杂网络具有较大的簇系数和较小的平均路径长度。

小世界属性既有局部功能模块化的信息处理功能,又具有整个网络内进行分布式交互处理功能。

目前基于各种脑功能成像技术的脑功能网络研究,表明大脑网络具有小世界属性 [3-5]。

Fabrice Bartolomei等[6]通过分析静息态下脑磁图信号之间的统计相关性构建了人脑功能网络,定量分析后证明了人脑的功能网络具有小世界属性。

Ni Shu等[7]利用弥散张量成像(diffusion tensor imaging,DTI)技术构造了人脑结构网络,结合图论知识进行分析后,同样发现了人脑的小世界属性。

复杂网络的稳定性

复杂网络的稳定性

784A study of the stability of deterministic complex networksBoming Yu and Xuewei Cui School of Physics,Huazhong University of Science and Technology,Wuahn,430074,P.R.ChinaBoming Yu.yuboming2003@ Study of complex networks and their models has made great progresses in the past decades.Scientists proposed small network model[1],random network model and scale-free network model[2].The stability of scale-free network is good to random attack but is poor to malicious attack,and the one of goals for studying complex networks is to make the real networks not influenced by external different attacks.Real networks should work with good stability,and the function of network should not be weakened and disappeared even if it is attacked and destroyed.Therefore,the networks with better stability should endure external attacks.Mu Chen[3]proposed the deterministic complex network(DCN)model in2007. The hierarchical structure of DCN displays the role of center nodes in the complex network.These center nodes play an important role in keeping the integrity of DCN. However,their directed connection between nodes performs alienation and no cohesion force.These nodes that have little connected side have large group coefficients.When every node connects with its relative nodes,the invulnerability of DCN is built up.The stability of DCN is analyzed from both random attacks and layer-layer against in this paper.In this work we study the variation of average path length and groupcoefficients under layer by layer attack by removing one node in each layer of DCN or several nodes in the DCN and compare the stability changes.This work also uses the Monte Carlo method to study the stability of complicated networks under random attacks.Then,we study the average path length changes and group coefficient changes under random attacks.The changes of the average path length and group coefficient are also compared with those of BA networks,random networks and small-world networks,and the present results show that the DCN has good stabilities and robustness either against random attacks or layer-layer against.It is found that the DCN is better applicable to describe real complex networks.Fig.1depicts the DCN model,which shows the procedures for generating a pseudo tree-like hierarchical structure.The construction procedures (n )are as follows:n =0:We start with a single node,which is the main root of the whole network.n =1:Two leaf nodes are added and connected to the main root.n =2:Four leaf nodes are added below the previous rim nodes.Each new node is connected to its all root nodes.Therefore,there exist 4×2=8new edges.After n steps,we have 2n new nodes added into this model,each of which is connected to its n root nodes,including one main root and n -1subordinateroots.Figure 1.The generation process of the deterministic complex network (DCN)model.The total nodes of the network with n layers is 1()21n N n +=−,and the total number of sides is ()()1122n E n n +=−+.The average path length of the network is 231112(24)2(21)(22)n n n n n L ++++−+=−−,and path length of the th j node on the th i row is 22221n i n j L i −++=−+−−.The global efficiency is defined as the reciprocal of the average path length,i.e.7851,11(1)i j ijE L N N d −==−∑,and the global efficiency can be used to better describe the functional properties of the networks.Robustness analysis is made for n =21and n =11layers.The DCN network is of hierarchical structure and has the good hierarchy,moreover,every node is the same at different layers,so layer by layer attacks can be used.The method is described as follows:from n =20,one node on every layer of the DCN network is destroyed/removed.After every attacking,calculating the total average path length of the DCN network (the node will be recovered after attacking).If change of average path length is small,the stability of DCN network is good.On the contrary,the stability of DCN network is poor.Then,we study the stability of the DCN network if several nodes are attacked continuously.The results show that the average path length remain almost unchanged,which demonstrate the good stability of the network.In this work,we also calculate the group coefficient change under the attacks mentioned above.The group coefficient is an important factor to characterize complicated network,the group coefficient can be deduced after n layer iteration.It is found that under the layer by layer attack,the average path length and group coefficient of the DCN networks remain good stability,and not affected strongly by vicious attack,so the DCN networks show good stability under vicious attack.Random attack is frequently used when studying network stabilities,and it can be obtained through computer simulation.The Monte Carlo method is also used to simulate the stability of the DCN network under random attacks.The attacked particle (randomly chosen)will disappear,and then the average path length and the group coefficient of the rest particles are calculated and the stability of the network will be analyzed by selecting certain number of layers such as n =21and n =13,respectively.The results also show that the DCN networks have good stability under random attacks.Finally,we compare the stabilities among the different networks:random network,scale-free network and DCN network.The results indicate that the diameter of the scale-free network is bigger than that of the random network,but the diameter of the DCN network is bigger than that of the random network and scale-free network.The tolerance of the random network is comparable to that of invulnerability and has a little trend of growth,but not very stable.The scale-free network has strong tolerance but weak invulnerability.While the DCN network has both good tolerance and invulnerability as well as is stable.References[1]Watts D J.,Strogatz S H.,Collective dynamics of "small-world"networks,Nature393,440(1998).[2]Barabási A L.,Albert R.,Emergence of scaling in random networks,Science 286,509(1999).[3]Chen M.,Yu B.M.,Xu P.,Chen J.,A new deterministic complex network model with hierarchical structure,Physica A 385(2007)707-317.786。

社交网络中的信息对抗过程仿真

社交网络中的信息对抗过程仿真

社交网络中的信息对抗过程仿真王晓煜;牟向伟;蒋晶晶【摘要】社交网络已经成为目前最快、最有效的信息传播媒介,为了分析社交网络中对立信息在传播时互相竞争对抗的演化过程,本文首先利用小世界网络模型来模拟社交网络中人际关系与信息传播环境,并基于一定假设条件提出一种信息对抗演化过程模型,通过对该模型进行分析,揭示了两种对立态度的信息在社交网络传播时互相影响与互相竞争的演化过程.在实验中,对不同初始状态的信息对抗过程进行了仿真模拟,并使用信息对抗演化过程模型对整个过程进行预测,实验结果表明,总体演化趋势与预测结果相符.对实验结果的分析还表明该模型可以从理论角度解释某些网络推广手段的可行性.【期刊名称】《河北工业大学学报》【年(卷),期】2014(043)001【总页数】4页(P24-27)【关键词】信息对抗;社交网络;信息传播;模拟仿真【作者】王晓煜;牟向伟;蒋晶晶【作者单位】大连东软信息学院信息技术与商务管理系,辽宁大连116033;大连海事大学交通运输管理学院,辽宁大连116026;大连东软信息学院信息技术与商务管理系,辽宁大连116033【正文语种】中文【中图分类】TP391.9近年来,社交网络作为信息传播最有效的媒介已成为人们获得信息和传播信息的重要方式.社交网络媒介通过人与人之间的关系来传播信息,与传统传播媒介相比,最显著的特点就是“去中心化”,在社交网络媒介中每一个人都是“自媒体”,“去中心化”的特征为消息高速传播创造了有利条件.目前对社交网络的研究,大多集中在对社交网络结构[1-5]和信息传播机理的研究[6-10].对社交网络中人们的态度或观点的扩散与演化涉及不多,尤其当有两种对立的态度同时传播的时候,其演化过程是如何互相竞争并互相影响,是基于社交网络的舆论传播研究工作面临的重大学术和技术问题,对研究社交网络中的信息传播规律和舆论观点的形成具有重要的理论意义.针对该问题,本文的研究是把对立态度在传播中争取更多个体认同的动态过程进行理论建模和数值仿真研究,具体步骤是首先利用复杂网络理论并基于一定信息传播假设条件模拟社交网络信息传播环境,其次建立信息对抗演化模型并利用传播动力学相关理论对演化模型进行分析,最后利用该模型在数值仿真实验中预测信息对抗演化的状态和趋势.1.1 基于小世界网络的社交网络结构模型复杂网络的研究成果表明,人际关系网络既不是完全规则的,也不是完全随机的,而是“小世界”网络.小世界网络是Watts和Strogatz于1998年提出的一个基于人类社会网络的模型,该网络既有与规则网络类似的较大的集聚系数,又具有与随机网络类似的较小的平均距离[11],这两种特性综合在一起被称为“小世界效应”.小世界模型已经在许多领域得到应用.如互联网控制,计算机病毒传播,传染病的传播预测等等.小世界网络主要有两种生成演化算法;1.1.1 Watts-Strogatz模型(WS模型)1)初始为一个排成环形的包含N个节点的规则网络,每个节点的度为k,即每个顶点同它的k个邻居相连(每一侧有k/2个连接);2)以某个很小的概率p断开规则网络中的边,并随机选择新的端点重新连接,排除自环和重连边;3)重复2),直到遍历所有的边.1.1.2 Newman-Watts模型(NW模型)1)初始为一个排成环形的包含N个节点的规则网络,每个节点的度为k,即每个顶点同它的k个邻居相连(每一侧有k/2个连接);2)对规则网络中的节点,以概率p随机选择新的节点重新连接,排除自环和重连边;3)重复2),直到遍历所有节点.小世界模型与现实生活中的人际关系网络很类似,一个人的朋友多是自己身边的人,主要集中在邻居,学校,工作单位等地点,但也会有少数好朋友在外地甚至是国外等,在社交网络中人际关系网是舆论人际传播的载体,许多相关研究针对不同类型的社交网络进行实证分析后发现多数社交网络具有小世界、层次性和社团结构等共性[12-16].本文利用NW模型来构建具有小世界特性的人际关系网络,并对具有小世界特征的社交网络媒介中的信息对抗现象进行分析.1.2 社交网络中的信息传播环境假设在信息传播中,能够影响传播效果的因素很多.个体本身的意识形态、利益背景甚至心理因素,媒体与个体间的相互影响,个体间大量意见的交换与态度的改变等等,都体现了复杂性与不确定性特征[17].本文通过建立以下传播假设条件并结合社交网络结构模型,来模拟社交网络中的信息传播环境.1)态度假设:关于某个主题的信息开始传播的时候,个体会拥有不同的态度,包括支持,中立和反对3种态度;2)传播假设:个体通过社交网络除了传播信息,同时也将自己对信息的支持和反对态度传播给邻居,邻居有一定的概率接受该态度,并可进行再次传播,并且不同态度的信息传播概率不同;3)趋同性假设:在信息的传播过程中,持有某种态度个体对信息的态度会随着邻居的不同态度而发生改变,变化为某种态度概率与持该态度的邻居数量和该态度的传播概率成正比;4)态度转化假设;态度持有者的转化过程会经历”持有某种态度”到”怀疑持有态度”再到”转化为对立态度”的过程,用于模拟人们从相信到怀疑最后改变自己态度的心理过程.本文提出的信息传播模型是由社交网络结构模型以及传播假设条件共同组成.基于社会影响理论,在舆论的演化与形成过程中,大多数人最终会形成的态度倾向往往更容易受周围人际关系的影响[18].因此在在以上假设中,简化了信息传播中个体的意识形态、知识背景等因素对态度产生和传播的影响,强调的是人际交流对个体态度产生的影响.根据态度假设,设某一时刻有支持态度I+、反对态度I和中立态度S在整个网络中的密度分别为和s,i+和i个体分别持有关于某个主题内容的两种对立态度,s 代表不了解此主题内容有关信息或不确定应该接受某种态度的个体成员.根据传播假设,关于信息的态度由I+态个体或I态个体开始向邻居传播,设I+的传播概率为,I传播概率为.过程如公式(1)所示根据趋同性假设,在某一时刻,密度i+会随着I+态度在网络中的传播而增加,增加的数量与当前时刻密度i+以及与这些个体直接连接的S态邻居的数量以及i+的传播概率成正比.同时,密度i+也会随着I态度在网络中的传播而减少,减少的数量与当前时刻密度i以及与这些个体直接连接的I+态邻居的数量以及i的传播概率成正比,根据态度转化假设,被转化的I+态个体并没有直接转化为I态,而是先转化为S态个体.对密度i可得相似的分析结果.因此,i+,i和s随时间的演化模型方程,如式(2)所示.其中:<k>为社交网络的平均度,本文以均匀网络模型小世界网络来建立社交网络结构模型,因此使用平均度可以用来代表个体的平均邻居数量,值得注意的是在非均匀网络中不能以平均度来刻画整个网络的度分布情况,需要将网络中的节点按度进行分组之后再进行演化分析,演化模型会有所不同.式(2)所描述的演化过程类似于不同态度信息利用社交网络中的人际关系进行传播以争取更多个体的过程,可以看做是一个动态的竞争或两种态度的对抗过程.首先在社交网络信息传播模型的基础上进行信息传播仿真实验,用于跟踪不同态度在社交网络中的传播效果,之后根据信息对抗演化模型及其趋势分析的结果对不同态度信息的传播效果进行预测,并与信息传播仿真实验中记录的结果进行比较,以验证模型的可行性.仿真所使用的社交网络数据是根据某个虚拟社区中的人际关系特点建立的仿真网络模型,把个体看成是网络中的节点,把个体之间的人际关系(关注,好友等)视为结点间的连接或者边,并定义该网络为有向网络,方向由被关注方指向关注方,节点数为2 000,该网络的度分布近似泊松分布,其平均度为4.该网络中的度分布如图1所示.3.1 信息传播仿真实验当信息开始传播的初期,可以通过跟踪传播的效果和范围来估计该主题传播时不同态度的传播概率,如定义it+为t时刻,对主题信息持有正态度的人数,如对某个话题的评论和转发过程中表示支持的人,Nti+为接触过该主题正面信息的人数,这些个体接触过信息后但是没有做出任何反应.同样的,的获得是通过统计对该话题持负态度的人数以及接触过负态度的总人数之间的比值.仿真实验中,测定i+传播的概率为0.2,i的传播概率为0.26,即=0.2,=0.26.实验中以测定,的时刻t0为初始状态,i+和i 都有非零初始值.当信息开始传播时,持有i+或i的节点向自己的邻居传播自己的态度,之后根据邻居向它传播的态度信息来决定是否改变自己的态度,此态度改变的过程符合态度转变假设,如果网络中的所有节点都经历了以上过程后,则称该网络经历了一个传播步长t.在不同初始状态下,持不同态度的节点密度影响了最后信息传播态度的最终效果,选取4个有代表性的初始状态,并跟踪记录它们经历了100个传播步长的演化过程,如图2所示.其中不同初始状态的数据值如表1所示.3.2 实验结果分析1)信息传播对抗演化的结果取决于两种对抗态度的传播概率和初始状态下持不同态度个体数量.2)低传播效率的信息同样可以通过增加个体数量的方式,最终在信息的对抗过程中最终取得优势(如初始状态3),这也解释了某些网络推广手段的可行性,如通过在社交网络上建立大量的”僵尸用户”或通过”转发协议”的形式制造大量的对某种主题信息态度”认可”的群体,实际上这个群体未必真正认可对此信息的态度,但最终结果是使得传播效率较低或不容易被公众认可的信息反而在传播竞争中取得优势.本文对社交网络信息对抗演化过程进行建模与分析,仿真实验结果表明该模型能够描述信息对抗演化过程的总体趋势,该模型揭示了两种对立态度信息在传播对抗过程中互相影响的基本特征,有助于进一步理解信息在社交网络中的传播规律.本文提出的信息对抗演化模型建立在一定的假设条件或演化规则之上,对于现实信息传播环境的某些特定问题无法给出确定性的回答,或者做出精确地预测.在以后的研究中这些假设和规则都需要深入细化研究,才能更好地解释和分析社交网络中信息的传播规律与特点.【相关文献】[1]KumarR,Novak J.Tomkins A 2006 The12th ACM SIGKDD InternationalConferenceon Know ledge Discovery and DataM ining Philadelphia[C].USA:2006.[2]Ahn Y Y,Han S,Kwak H,etal.Jeong H 2007Proceedingsof the16th InternationalConferenceonWorldWideWeb Banff[C].Canada:2007.[3]M islove A,Marcon M,Gummadi K P,et al.Bhattacharjee B 2007 The 7th ACMSIGCOMM Conference on Internet Measurement[C].San Diego,USA:2007.[4]Fu F,Liu LH,Wang L.Empiricalanalysisofonlinesocialnetworksin theageofWeb2.0[J].PhysicaA:StatisticalMechanicsand itsApplications,2008,387(2-3):675-684.[5]Hu H B,Wang X F.Evolution ofa largeonline socialnetwork[J].Physical Letters A,2009,373(12/13):1105-1110.[6]PASTOR-SATORRASR,VESPIGNANIA.Epidemic spreading in scale-freenetworks[J].PhysRev Lett,2001,86:3200-3203.[7]Kitsak M,Gallos L K,Havlin S,et,al.Identifying Influential Spreaders in Comp lex Network[J].Nature Physics,2010,6:888.[8]Borge-Holthoefer J,Moreno Y.Absenceof influentialspreaders in rumordynamics[J].PhysRev EStatNonlin SoftM atterPhys,2012,85(2):26-116.[9]张彦超,刘云,张海峰,等.基于在线社交网络的信息传播模型[J].物理学报,2011,5,60-61.[10]熊熙,胡勇.基于社交网络的观点传播动力学研究[J].物理学报,2012,15,61-62.[11]Watts D J,Strogatz SH.Collective dynamicsof'small-world'networks[J].Nature,1998,393(6684):440-442.[12]Kumar R,Novak J,Tomkins A 2006 The 12th ACM SIGKDD International Conference on Know ledge Discovery and Data M ining Philadelphia [C].USA:2006.[13]Ahn Y Y,Han S,Kwak H,etal.JeongH 2007Proceedingsof the16th InternationalConferenceonWorldWideWeb Banff[C].Canada:2007.[14]Mislove A,Marcon M,GummadiK P,etal.Bhattacharjee B 2007The7th ACM SIGCOMM Conferenceon InternetMeasurement[C].USA:San Diego,2007.[15]Java A,Song X,Finin T.Tseng B 2007 Proceedingsof the9thWeb KDD and 1stSNA-KDD 2007Workshop onWebMining and SocialNetwork Analysis[C].USA:San Jose,12,2007.[16]Kwak H,Lee C,Park H.M oon S 2010 Proceedings of the 19th International Conference onWorldWideWeb[C].Raleigh,Toronto,2010.[17]刘常昱,胡晓峰,司光亚,等.基于小世界网络的舆论传播模型研究[J].系统仿真学报,2006,18(12):36.[18]罗家德.社会网分析讲义(上卷)[M].北京:社会科学文献出版社,2005.。

模块化复杂网络及其构造方法概述

模块化复杂网络及其构造方法概述

入到学校的交通组织规划中去,以便保证校园交通的安全 性和舒适性。因此,设计的时候需要尽量设计成环形的道 路,并且将机动车道路规划在人流比较集中的核心教学区 域之外。
5.3 适应大型赛事的体育建筑设计 大型竞技赛事对于交通情况的要求非常高,不仅要 求体育场馆容易到达,而且也必须要具备非常强的疏散能 力。为此,需要校园布局的整体性考虑,分析校园内的人流 的复杂程度。体育场馆还需要做到出入口相对独立,减少 相互的交叉,以便确保人员的出入。 6 结束语 高校的体育建筑所处的环境、服务对象都比较特殊, 对于高校而言,必须要满足当前教学和学生活动的需求, 同时也需要进行合理经营保证维护。为此,必须要充分结
.同A的l复l杂R网i络gh模t型s ,早Re在se20rv世e纪d.50 年代,科学家就已着
手研究。初期主要集中在单独复杂网络的研究,最具代表 性的模型有三类,即随机网络[1]、小世界网络[2]和无标度网 络[3]。这三类复杂网络模型度的概率密度分布各不相同,随 机网络服从泊松分布,无标度网络为幂律分布,而小世界 要要要要要要要要要要要要要要要要要要要要要要要
2020.100003 [6]Dickison M , Havlin S , Stanley H E . Epidemics on
interconnected networks[J]. Physical Review E, 2012, 85(6):066109.
[7]Yuan, Xin, Hu, Yanqing, Stanley, H. Eugene, et al. Eradicating
第四步,将网络 A 中的节点随机连接到网络 B 中的 节点,形成相互连接的网络系统。
该方法能够生成具有特定网络模块之间和网络模块 内部度分布随机、不相关、互连的网络系统,并适用于任意 度分布 Px(k)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nature © Macmillan Publishers Ltd 19988typically slower than ϳ1km s −1)might differ significantly from what is assumed by current modelling efforts 27.The expected equation-of-state differences among small bodies (ice versus rock,for instance)presents another dimension of study;having recently adapted our code for massively parallel architectures (K.M.Olson and E.A,manuscript in preparation),we are now ready to perform a more comprehensive analysis.The exploratory simulations presented here suggest that when a young,non-porous asteroid (if such exist)suffers extensive impact damage,the resulting fracture pattern largely defines the asteroid’s response to future impacts.The stochastic nature of collisions implies that small asteroid interiors may be as diverse as their shapes and spin states.Detailed numerical simulations of impacts,using accurate shape models and rheologies,could shed light on how asteroid collisional response depends on internal configuration and shape,and hence on how planetesimals evolve.Detailed simulations are also required before one can predict the quantitative effects of nuclear explosions on Earth-crossing comets and asteroids,either for hazard mitigation 28through disruption and deflection,or for resource exploitation 29.Such predictions would require detailed reconnaissance concerning the composition andinternal structure of the targeted object.ⅪReceived 4February;accepted 18March 1998.1.Asphaug,E.&Melosh,H.J.The Stickney impact of Phobos:A dynamical model.Icarus 101,144–164(1993).2.Asphaug,E.et al .Mechanical and geological effects of impact cratering on Ida.Icarus 120,158–184(1996).3.Nolan,M.C.,Asphaug,E.,Melosh,H.J.&Greenberg,R.Impact craters on asteroids:Does strength orgravity control their size?Icarus 124,359–371(1996).4.Love,S.J.&Ahrens,T.J.Catastrophic impacts on gravity dominated asteroids.Icarus 124,141–155(1996).5.Melosh,H.J.&Ryan,E.V.Asteroids:Shattered but not dispersed.Icarus 129,562–564(1997).6.Housen,K.R.,Schmidt,R.M.&Holsapple,K.A.Crater ejecta scaling laws:Fundamental forms basedon dimensional analysis.J.Geophys.Res.88,2485–2499(1983).7.Holsapple,K.A.&Schmidt,R.M.Point source solutions and coupling parameters in crateringmechanics.J.Geophys.Res.92,6350–6376(1987).8.Housen,K.R.&Holsapple,K.A.On the fragmentation of asteroids and planetary satellites.Icarus 84,226–253(1990).9.Benz,W.&Asphaug,E.Simulations of brittle solids using smooth particle put.mun.87,253–265(1995).10.Asphaug,E.et al .Mechanical and geological effects of impact cratering on Ida.Icarus 120,158–184(1996).11.Hudson,R.S.&Ostro,S.J.Shape of asteroid 4769Castalia (1989PB)from inversion of radar images.Science 263,940–943(1994).12.Ostro,S.J.et al .Asteroid radar astrometry.Astron.J.102,1490–1502(1991).13.Ahrens,T.J.&O’Keefe,J.D.in Impact and Explosion Cratering (eds Roddy,D.J.,Pepin,R.O.&Merrill,R.B.)639–656(Pergamon,New York,1977).14.Tillotson,J.H.Metallic equations of state for hypervelocity impact.(General Atomic Report GA-3216,San Diego,1962).15.Nakamura,A.&Fujiwara,A.Velocity distribution of fragments formed in a simulated collisionaldisruption.Icarus 92,132–146(1991).16.Benz,W.&Asphaug,E.Simulations of brittle solids using smooth particle put.mun.87,253–265(1995).17.Bottke,W.F.,Nolan,M.C.,Greenberg,R.&Kolvoord,R.A.Velocity distributions among collidingasteroids.Icarus 107,255–268(1994).18.Belton,M.J.S.et al .Galileo encounter with 951Gaspra—First pictures of an asteroid.Science 257,1647–1652(1992).19.Belton,M.J.S.et al .Galileo’s encounter with 243Ida:An overview of the imaging experiment.Icarus120,1–19(1996).20.Asphaug,E.&Melosh,H.J.The Stickney impact of Phobos:A dynamical model.Icarus 101,144–164(1993).21.Asphaug,E.et al .Mechanical and geological effects of impact cratering on Ida.Icarus 120,158–184(1996).22.Housen,K.R.,Schmidt,R.M.&Holsapple,K.A.Crater ejecta scaling laws:Fundamental forms basedon dimensional analysis.J.Geophys.Res.88,2485–2499(1983).23.Veverka,J.et al .NEAR’s flyby of 253Mathilde:Images of a C asteroid.Science 278,2109–2112(1997).24.Asphaug,E.et al .Impact evolution of icy regoliths.Lunar Planet.Sci.Conf.(Abstr.)XXVIII,63–64(1997).25.Love,S.G.,Ho¨rz,F.&Brownlee,D.E.Target porosity effects in impact cratering and collisional disruption.Icarus 105,216–224(1993).26.Fujiwara,A.,Cerroni,P .,Davis,D.R.,Ryan,E.V.&DiMartino,M.in Asteroids II (eds Binzel,R.P .,Gehrels,T.&Matthews,A.S.)240–265(Univ.Arizona Press,Tucson,1989).27.Davis,D.R.&Farinella,P.Collisional evolution of Edgeworth-Kuiper Belt objects.Icarus 125,50–60(1997).28.Ahrens,T.J.&Harris,A.W.Deflection and fragmentation of near-Earth asteroids.Nature 360,429–433(1992).29.Resources of Near-Earth Space (eds Lewis,J.S.,Matthews,M.S.&Guerrieri,M.L.)(Univ.ArizonaPress,Tucson,1993).Acknowledgements.This work was supported by NASA’s Planetary Geology and Geophysics Program.Correspondence and requests for materials should be addressed to E.A.(e-mail:asphaug@).letters to nature440NATURE |VOL 393|4JUNE 1998Collective dynamics of ‘small-world’networksDuncan J.Watts *&Steven H.StrogatzDepartment of Theoretical and Applied Mechanics,Kimball Hall,Cornell University,Ithaca,New York 14853,USA.........................................................................................................................Networks of coupled dynamical systems have been used to model biological oscillators 1–4,Josephson junction arrays 5,6,excitable media 7,neural networks 8–10,spatial games 11,genetic control networks 12and many other self-organizing systems.Ordinarily,the connection topology is assumed to be either completely regular or completely random.But many biological,technological and social networks lie somewhere between these two extremes.Here we explore simple models of networks that can be tuned through this middle ground:regular networks ‘rewired’to intro-duce increasing amounts of disorder.We find that these systems can be highly clustered,like regular lattices,yet have small characteristic path lengths,like random graphs.We call them ‘small-world’networks,by analogy with the small-world phenomenon 13,14(popularly known as six degrees of separation 15).The neural network of the worm Caenorhabditis elegans ,the power grid of the western United States,and the collaboration graph of film actors are shown to be small-world networks.Models of dynamical systems with small-world coupling display enhanced signal-propagation speed,computational power,and synchronizability.In particular,infectious diseases spread more easily in small-world networks than in regular lattices.To interpolate between regular and random networks,we con-sider the following random rewiring procedure (Fig.1).Starting from a ring lattice with n vertices and k edges per vertex,we rewire each edge at random with probability p .This construction allows us to ‘tune’the graph between regularity (p ¼0)and disorder (p ¼1),and thereby to probe the intermediate region 0Ͻp Ͻ1,about which little is known.We quantify the structural properties of these graphs by their characteristic path length L (p )and clustering coefficient C (p ),as defined in Fig.2legend.Here L (p )measures the typical separation between two vertices in the graph (a global property),whereas C (p )measures the cliquishness of a typical neighbourhood (a local property).The networks of interest to us have many vertices with sparse connections,but not so sparse that the graph is in danger of becoming disconnected.Specifically,we require n q k q ln ðn Þq 1,where k q ln ðn Þguarantees that a random graph will be connected 16.In this regime,we find that L ϳn =2k q 1and C ϳ3=4as p →0,while L ϷL random ϳln ðn Þ=ln ðk Þand C ϷC random ϳk =n p 1as p →1.Thus the regular lattice at p ¼0is a highly clustered,large world where L grows linearly with n ,whereas the random network at p ¼1is a poorly clustered,small world where L grows only logarithmically with n .These limiting cases might lead one to suspect that large C is always associated with large L ,and small C with small L .On the contrary,Fig.2reveals that there is a broad interval of p over which L (p )is almost as small as L random yet C ðp Þq C random .These small-world networks result from the immediate drop in L (p )caused by the introduction of a few long-range edges.Such ‘short cuts’connect vertices that would otherwise be much farther apart than L random .For small p ,each short cut has a highly nonlinear effect on L ,contracting the distance not just between the pair of vertices that it connects,but between their immediate neighbourhoods,neighbourhoods of neighbourhoods and so on.By contrast,an edge*Present address:Paul zarsfeld Center for the Social Sciences,Columbia University,812SIPA Building,420W118St,New York,New York 10027,USA.Nature © Macmillan Publishers Ltd 19988letters to natureNATURE |VOL 393|4JUNE 1998441removed from a clustered neighbourhood to make a short cut has,at most,a linear effect on C ;hence C (p )remains practically unchanged for small p even though L (p )drops rapidly.The important implica-tion here is that at the local level (as reflected by C (p )),the transition to a small world is almost undetectable.To check the robustness of these results,we have tested many different types of initial regular graphs,as well as different algorithms for random rewiring,and all give qualitatively similar results.The only requirement is that the rewired edges must typically connect vertices that would otherwise be much farther apart than L random .The idealized construction above reveals the key role of short cuts.It suggests that the small-world phenomenon might be common in sparse networks with many vertices,as even a tiny fraction of short cuts would suffice.To test this idea,we have computed L and C for the collaboration graph of actors in feature films (generated from data available at ),the electrical power grid of the western United States,and the neural network of the nematode worm C.elegans 17.All three graphs are of scientific interest.The graph of film actors is a surrogate for a social network 18,with the advantage of being much more easily specified.It is also akin to the graph of mathematical collaborations centred,traditionally,on P.Erdo¨s (partial data available at /ϳgrossman/erdoshp.html).The graph of the power grid is relevant to the efficiency and robustness of power networks 19.And C.elegans is the sole example of a completely mapped neural network.Table 1shows that all three graphs are small-world networks.These examples were not hand-picked;they were chosen because of their inherent interest and because complete wiring diagrams were available.Thus the small-world phenomenon is not merely a curiosity of social networks 13,14nor an artefact of an idealizedmodel—it is probably generic for many large,sparse networks found in nature.We now investigate the functional significance of small-world connectivity for dynamical systems.Our test case is a deliberately simplified model for the spread of an infectious disease.The population structure is modelled by the family of graphs described in Fig.1.At time t ¼0,a single infective individual is introduced into an otherwise healthy population.Infective individuals are removed permanently (by immunity or death)after a period of sickness that lasts one unit of dimensionless time.During this time,each infective individual can infect each of its healthy neighbours with probability r .On subsequent time steps,the disease spreads along the edges of the graph until it either infects the entire population,or it dies out,having infected some fraction of the population in theprocess.p = 0p = 1Regular Small-worldRandomFigure 1Random rewiring procedure for interpolating between a regular ring lattice and a random network,without altering the number of vertices or edges in the graph.We start with a ring of n vertices,each connected to its k nearest neighbours by undirected edges.(For clarity,n ¼20and k ¼4in the schematic examples shown here,but much larger n and k are used in the rest of this Letter.)We choose a vertex and the edge that connects it to its nearest neighbour in a clockwise sense.With probability p ,we reconnect this edge to a vertex chosen uniformly at random over the entire ring,with duplicate edges forbidden;other-wise we leave the edge in place.We repeat this process by moving clockwise around the ring,considering each vertex in turn until one lap is completed.Next,we consider the edges that connect vertices to their second-nearest neighbours clockwise.As before,we randomly rewire each of these edges with probability p ,and continue this process,circulating around the ring and proceeding outward to more distant neighbours after each lap,until each edge in the original lattice has been considered once.(As there are nk /2edges in the entire graph,the rewiring process stops after k /2laps.)Three realizations of this process are shown,for different values of p .For p ¼0,the original ring is unchanged;as p increases,the graph becomes increasingly disordered until for p ¼1,all edges are rewired randomly.One of our main results is that for intermediate values of p ,the graph is a small-world network:highly clustered like a regular graph,yet with small characteristic path length,like a random graph.(See Fig.2.)T able 1Empirical examples of small-world networksL actual L random C actual C random.............................................................................................................................................................................Film actors 3.65 2.990.790.00027Power grid 18.712.40.0800.005C.elegans 2.65 2.250.280.05.............................................................................................................................................................................Characteristic path length L and clustering coefficient C for three real networks,compared to random graphs with the same number of vertices (n )and average number of edges per vertex (k ).(Actors:n ¼225;226,k ¼61.Power grid:n ¼4;941,k ¼2:67.C.elegans :n ¼282,k ¼14.)The graphs are defined as follows.Two actors are joined by an edge if they have acted in a film together.We restrict attention to the giant connected component 16of this graph,which includes ϳ90%of all actors listed in the Internet Movie Database (available at ),as of April 1997.For the power grid,vertices represent generators,transformers and substations,and edges represent high-voltage transmission lines between them.For C.elegans ,an edge joins two neurons if they are connected by either a synapse or a gap junction.We treat all edges as undirected and unweighted,and all vertices as identical,recognizing that these are crude approximations.All three networks show the small-world phenomenon:L ՌL random but C q C random.00.20.40.60.810.00010.0010.010.11pFigure 2Characteristic path length L (p )and clustering coefficient C (p )for the family of randomly rewired graphs described in Fig.1.Here L is defined as the number of edges in the shortest path between two vertices,averaged over all pairs of vertices.The clustering coefficient C (p )is defined as follows.Suppose that a vertex v has k v neighbours;then at most k v ðk v Ϫ1Þ=2edges can exist between them (this occurs when every neighbour of v is connected to every other neighbour of v ).Let C v denote the fraction of these allowable edges that actually exist.Define C as the average of C v over all v .For friendship networks,these statistics have intuitive meanings:L is the average number of friendships in the shortest chain connecting two people;C v reflects the extent to which friends of v are also friends of each other;and thus C measures the cliquishness of a typical friendship circle.The data shown in the figure are averages over 20random realizations of the rewiring process described in Fig.1,and have been normalized by the values L (0),C (0)for a regular lattice.All the graphs have n ¼1;000vertices and an average degree of k ¼10edges per vertex.We note that a logarithmic horizontal scale has been used to resolve the rapid drop in L (p ),corresponding to the onset of the small-world phenomenon.During this drop,C (p )remains almost constant at its value for the regular lattice,indicating that the transition to a small world is almost undetectable at the local level.Nature © Macmillan Publishers Ltd 19988letters to nature442NATURE |VOL 393|4JUNE 1998Two results emerge.First,the critical infectiousness r half ,at which the disease infects half the population,decreases rapidly for small p (Fig.3a).Second,for a disease that is sufficiently infectious to infect the entire population regardless of its structure,the time T (p )required for global infection resembles the L (p )curve (Fig.3b).Thus,infectious diseases are predicted to spread much more easily and quickly in a small world;the alarming and less obvious point is how few short cuts are needed to make the world small.Our model differs in some significant ways from other network models of disease spreading 20–24.All the models indicate that net-work structure influences the speed and extent of disease transmis-sion,but our model illuminates the dynamics as an explicit function of structure (Fig.3),rather than for a few particular topologies,such as random graphs,stars and chains 20–23.In the work closest to ours,Kretschmar and Morris 24have shown that increases in the number of concurrent partnerships can significantly accelerate the propaga-tion of a sexually-transmitted disease that spreads along the edges of a graph.All their graphs are disconnected because they fix the average number of partners per person at k ¼1.An increase in the number of concurrent partnerships causes faster spreading by increasing the number of vertices in the graph’s largest connected component.In contrast,all our graphs are connected;hence the predicted changes in the spreading dynamics are due to more subtle structural features than changes in connectedness.Moreover,changes in the number of concurrent partners are obvious to an individual,whereas transitions leading to a smaller world are not.We have also examined the effect of small-world connectivity on three other dynamical systems.In each case,the elements were coupled according to the family of graphs described in Fig.1.(1)For cellular automata charged with the computational task of density classification 25,we find that a simple ‘majority-rule’running on a small-world graph can outperform all known human and genetic algorithm-generated rules running on a ring lattice.(2)For the iterated,multi-player ‘Prisoner’s dilemma’11played on a graph,we find that as the fraction of short cuts increases,cooperation is less likely to emerge in a population of players using a generalized ‘tit-for-tat’26strategy.The likelihood of cooperative strategies evolving out of an initial cooperative/non-cooperative mix also decreases with increasing p .(3)Small-world networks of coupled phase oscillators synchronize almost as readily as in the mean-field model 2,despite having orders of magnitude fewer edges.This result may be relevant to the observed synchronization of widely separated neurons in the visual cortex 27if,as seems plausible,the brain has a small-world architecture.We hope that our work will stimulate further studies of small-world networks.Their distinctive combination of high clustering with short characteristic path length cannot be captured by traditional approximations such as those based on regular lattices or random graphs.Although small-world architecture has not received much attention,we suggest that it will probably turn out to be widespread in biological,social and man-made systems,oftenwith important dynamical consequences.ⅪReceived 27November 1997;accepted 6April 1998.1.Winfree,A.T.The Geometry of Biological Time (Springer,New Y ork,1980).2.Kuramoto,Y.Chemical Oscillations,Waves,and Turbulence (Springer,Berlin,1984).3.Strogatz,S.H.&Stewart,I.Coupled oscillators and biological synchronization.Sci.Am.269(6),102–109(1993).4.Bressloff,P .C.,Coombes,S.&De Souza,B.Dynamics of a ring of pulse-coupled oscillators:a group theoretic approach.Phys.Rev.Lett.79,2791–2794(1997).5.Braiman,Y.,Lindner,J.F.&Ditto,W.L.Taming spatiotemporal chaos with disorder.Nature 378,465–467(1995).6.Wiesenfeld,K.New results on frequency-locking dynamics of disordered Josephson arrays.Physica B 222,315–319(1996).7.Gerhardt,M.,Schuster,H.&Tyson,J.J.A cellular automaton model of excitable media including curvature and dispersion.Science 247,1563–1566(1990).8.Collins,J.J.,Chow,C.C.&Imhoff,T.T.Stochastic resonance without tuning.Nature 376,236–238(1995).9.Hopfield,J.J.&Herz,A.V.M.Rapid local synchronization of action potentials:Toward computation with coupled integrate-and-fire neurons.Proc.Natl A 92,6655–6662(1995).10.Abbott,L.F.&van Vreeswijk,C.Asynchronous states in neural networks of pulse-coupled oscillators.Phys.Rev.E 48(2),1483–1490(1993).11.Nowak,M.A.&May,R.M.Evolutionary games and spatial chaos.Nature 359,826–829(1992).12.Kauffman,S.A.Metabolic stability and epigenesis in randomly constructed genetic nets.J.Theor.Biol.22,437–467(1969).gram,S.The small world problem.Psychol.Today 2,60–67(1967).14.Kochen,M.(ed.)The Small World (Ablex,Norwood,NJ,1989).15.Guare,J.Six Degrees of Separation:A Play (Vintage Books,New Y ork,1990).16.Bollaba´s,B.Random Graphs (Academic,London,1985).17.Achacoso,T.B.&Yamamoto,W.S.AY’s Neuroanatomy of C.elegans for Computation (CRC Press,BocaRaton,FL,1992).18.Wasserman,S.&Faust,K.Social Network Analysis:Methods and Applications (Cambridge Univ.Press,1994).19.Phadke,A.G.&Thorp,puter Relaying for Power Systems (Wiley,New Y ork,1988).20.Sattenspiel,L.&Simon,C.P .The spread and persistence of infectious diseases in structured populations.Math.Biosci.90,341–366(1988).21.Longini,I.M.Jr A mathematical model for predicting the geographic spread of new infectious agents.Math.Biosci.90,367–383(1988).22.Hess,G.Disease in metapopulation models:implications for conservation.Ecology 77,1617–1632(1996).23.Blythe,S.P .,Castillo-Chavez,C.&Palmer,J.S.T oward a unified theory of sexual mixing and pair formation.Math.Biosci.107,379–405(1991).24.Kretschmar,M.&Morris,M.Measures of concurrency in networks and the spread of infectious disease.Math.Biosci.133,165–195(1996).25.Das,R.,Mitchell,M.&Crutchfield,J.P .in Parallel Problem Solving from Nature (eds Davido,Y.,Schwefel,H.-P.&Ma¨nner,R.)344–353(Lecture Notes in Computer Science 866,Springer,Berlin,1994).26.Axelrod,R.The Evolution of Cooperation (Basic Books,New Y ork,1984).27.Gray,C.M.,Ko¨nig,P .,Engel,A.K.&Singer,W.Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature 338,334–337(1989).Acknowledgements.We thank B.Tjaden for providing the film actor data,and J.Thorp and K.Bae for the Western States Power Grid data.This work was supported by the US National Science Foundation (Division of Mathematical Sciences).Correspondence and requests for materials should be addressed to D.J.W.(e-mail:djw24@).0.150.20.250.30.350.00010.0010.010.11rhalfpaFigure 3Simulation results for a simple model of disease spreading.The community structure is given by one realization of the family of randomly rewired graphs used in Fig.1.a ,Critical infectiousness r half ,at which the disease infects half the population,decreases with p .b ,The time T (p )required for a maximally infectious disease (r ¼1)to spread throughout the entire population has essen-tially the same functional form as the characteristic path length L (p ).Even if only a few per cent of the edges in the original lattice are randomly rewired,the time to global infection is nearly as short as for a random graph.0.20.40.60.810.00010.0010.010.11pb。

相关文档
最新文档